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Abstract Snow disappearance date (SDD) affects the ecohydrological dynamics of montane forests, by
altering water availability, forest fire regime, and the land surface energy budget. The forest canopy modulates
SDD through competing processes; dense canopy intercepts snowfall and enhances longwave radiation

while shading snowpack from shortwave radiation and sheltering it from the wind. Limited ground-based
observations of snow presence and absence have restricted our ability to unravel the dominant processes
affecting SDD in montane forests. We apply a lidar-derived method to estimate fractional snow cover area
(fSCA) at two relatively warm sites in the Sierra Nevada and two colder sites in the Rocky Mountains, which
we link to SDD. With the exception of late season snowpack and low fSCA, snow retention is longer under low
vegetation density than under high vegetation density in both warm and cold sites. Warm forests consistently
have longer snow retention in open areas compared to dense under canopy areas, particularly on south-facing
slopes. Cold forests tend to have longer snow retention under lower density canopy compared to open areas,
particularly on north-facing slopes. We use this empirical analysis to make process inferences and develop an
initial framework to predict SDD that incorporates the role of topography and vegetation structure. Building on
our framework will be necessary to provide better forest management recommendations for snowpack retention
across complex terrain and heterogenous canopy structure.

Plain Language Summary The timing of snow disappearance is an important control of the
amount and timing of water available for forest ecosystems and downstream communities. In forested areas,
trees intercept snowfall which decreases snow accumulation, but they also shade the snowpack from the sun
and reduce wind, which lengthens snow retention. Warm trees also emit thermal radiation that can melt the
snowpack near the canopy. Competition among these factors causes different snow disappearance timing in
open areas versus under tree canopy. We use light detection and ranging (lidar) measurements to quantify
snow presence or absence in the open and below the forest canopy. The results show that snow disappears
earlier under dense forest canopy than in open areas at warmer sites, especially on south-facing slopes that
receive more sunlight. In contrast, colder sites tend to retain snow longer under a tree canopy than open areas,
especially on north-facing slopes. However, lower elevations of colder sites can behave more like warmer sites
by retaining snow longer in open areas. This unique multi-site snow dataset suggests that tree canopy removal
would have greater benefit for retaining snow longer at warm sites than at cold sites, although additional
refinement is needed.

1. Introduction

Snow and ice melt provide about 20% of the global water supply, with snow water supplies concentrated in north-
ern hemisphere forests with complex topography (Barnett et al., 2005). Snowmelt timing and disappearance date
have substantial impacts on montane forests, by affecting soil moisture and deeper recharge (Bales et al., 2011;
Conner et al., 2015; Harpold, Marshall, et al., 2015; Huntington & Niswonger, 2012; Pavlovskii et al., 2019),
ecosystem water availability and streamflow timing (Harpold, 2016; Kormos et al., 2017; Stewart et al., 2004),
growing season length (Harpold, 2016; O’Leary et al., 2018), spring phenology (O’Leary et al., 2018; Pederseng
et al., 2018), soil greenhouse gas emission (Blankinship et al., 2018), and land surface-atmosphere energy fluxes
(Knowles et al., 2015; Peichl et al., 2013; Slater et al., 2001). A later snow disappearance delays soil water inputs,
resulting in a longer recession in soil moisture (Harpold & Molotch, 2015), delays peak forest transpiration (A. E.
Cooper et al., 2020), and limits the duration of soil moisture stress for vegetation if summer rains are not present
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(Harpold, 2016). Since climate change portends shorter snow duration in montane forests (Bach et al., 2018; M.
G. Cooper et al., 2016; Dibike et al., 2018; Harpold & Molotch, 2015; Li et al., 2017), improving predictions of
snow retention is critical. However, processes and factors controlling the fate of seasonal snowpack are complex
and strongly influenced by local climate, forest structure, and topography (Broxton et al., 2015, 2019; Dicker-
son-Lange et al., 2017; Lundquist et al., 2013; Tennant et al., 2017; Varhola et al., 2010). A lack of detailed, high
spatial resolution snow observations across climate and topographic gradients in mountain forests has limited our
ability to unravel the interacting processes that affect snow disappearance. New remote sensing tools, like lidar
(light detection and ranging), allow for estimates of snow retention across variable topography and forest char-
acteristics that are hard to obtain from limited ground-based observations or from passive optical remote sensing
that does not penetrate the canopy.

The influence of forest canopy on snow retention and melt is complex due to tradeoffs between physical pro-
cesses that reduce snow accumulation (e.g., snow interception and sublimation from the canopy) and processes
that alter snowpack ablation (e.g., shortwave radiation (SWR) shading and wind sheltering). Dense forests can
intercept more than 50% of snowfall in the winter (Ellis et al., 2011; D. Moeser et al., 2016; Roth & Nolin, 2017).
Snow interception and sublimation are the main factors causing longer snow duration in the open than under
canopy locations in denser, warmer forests (Varhola et al., 2010) where interception efficiency is high (Dicker-
son-Lange et al., 2017; Storck et al., 2002). Colder snowfall has lower snow interception efficiency (Pfister &
Schneebeli, 1999; Roth & Nolin, 2017). In windier locations snow redistributes more, increasing sublimation
losses, resulting in longer snow retention under the canopy (Dickerson-Lange et al., 2017). Using a simple set of
models, Lundquist et al. (2013) demonstrated radiative tradeoffs between longwave radiation (LWR) and SWR:
warmer sites have LWR as the primary radiative component of the energy budget controlling snow disappear-
ance timing but snowpack energy budget in cold forests is dominated by SWR. This is partially correct because
warm forests with high emissivity enhance LWR toward the snowpack by up to 150% (Todt et al., 2018; Webster
et al., 2016a) and typically cause positive net LWR (positive energy to the snowpack) under dense canopy cover,
while net LWR is negative in open locations (Lundquist et al., 2013). SWR shading, on the other hand, can de-
lay snowmelt under forest canopies, especially in cold climates and north-facing slopes (Lundquist et al., 2013;
Malle et al., 2019; Musselman et al., 2012, 2015; Strasser et al., 2011) in late winter and spring, when the solar
zenith angle decreases (i.e., the sun is higher in the sky). The forest also influences the sensible and latent heat
exchange at the snowpack surface, which can substantially contribute to the snowpack energy budget specifically
at cold windy sites (Conway et al., 2018; Harder et al., 2019; Mahat et al., 2013; Reba et al., 2012). The tradeoffs
of these processes in controlling the differential snow disappearance timing in open and under canopy areas, and
landscape-scale snow retention, are typically investigated at the point scale, which has limited the investigation of
topographic and forest canopy effects (Dickerson-Lange et al., 2017; Lundquist et al., 2013).

The interactions between forest structure (e.g., height, leaf area index, percent cover, and trees spatial distribu-
tion) and topography (e.g., elevation, aspect, and slope) differentially alter the energy and mass balance of open
and under canopy snowpack in ways that are challenging to observe and predict across mountain environments. A
current paradigm for predicting differential snow disappearance under the canopy and in open areas suggests that
locations with December-February (DJF) mean air temperature > -1°C have earlier snow disappearance under
canopy areas, whereas sites with DJF mean air temperatures < -1°C exhibit earlier snow disappearance in open
areas (Lundquist et al., 2013). This paradigm was developed from plot-scale observations and has not been ap-
plied across gradients in canopy structure or slope-aspect that are typical of montane, forested areas. For example,
warmer northern-hemisphere areas have longer snow retention on northern slopes (Lopez-Moreno et al., 2017,
Maxwell et al., 2019; Seyednasrollah et al., 2013) due to reduced incoming SWR. Heterogeneous forest canopy
structure (e.g., variable height and leaf area) causes variation in canopy gap sizes that is an important factor
controlling fine-scale snow retention (Jonas & Essery, 2011; Mazzotti et al., 2020; Webster et al., 2016b). The
first-order effects of topography and forest structure on snow retention (Trujillo et al., 2009; Zheng et al., 2016)
indicate the need for the development of a new tool for predicting differential snow disappearance across montane
forests.

Active remote sensing tools, like airborne-based lidar, can penetrate the forest canopy and be used to quantify
snow cover and estimate snow disappearance date (SDD, defined as the first date when snow disappears after
peak snow water equivalent, SWE). Ground-based observation such as snow courses, temperature loggers, and
time-lapse cameras (Dickerson-Lange, Lutz, Martin, et al., 2015; Raleigh et al., 2013) are also used to estimate
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SDD. Dickerson-Lange, Lutz, Martin et al. (2015); Dickerson-Lange et al. (2017) collected spatially distribut-
ed snow presence/absence data with cameras to demonstrate their strengths compared to snow depth sensors.
Distributed temperature sensing (DTS) is another ground-based method (Tyler et al., 2009), but it is typically
too costly to maintain, automate, and operate over large domains (Dickerson-Lange, Lutz, Martin, et al., 2015;
Fujihara et al., 2017). Since the canopy obscures the under-canopy snowpack, most passive remote sensing-based
(e.g., Landsat and MODIS) estimates of fractional snow cover area (fSCA, percentage of a given area covered by
snow) assume that open and under canopy fSCA are identical (Molotch & Margulis, 2008; Raleigh et al., 2013).
Therefore, such optical measurements are not useful for detecting differences between open and under canopy
snow presence/absence (Coons et al., 2014; Raleigh et al., 2013).

A new method proposed and validated by Kostadinov et al. (2019), based on “snow-on” and “snow-off” lidar
datasets, showed that under canopy fSCA could be observed in complex terrain, providing a ‘snapshot’ of fSCA.
If areas of similar precipitation are grouped (by elevation or temperature bands), then a comparison of open and
under canopy fSCA implicates accumulation and ablation processes that control snow retention at 1-m scales.
For example, Kostadinov et al. (2019) showed that snow disappeared preferentially under the forest canopy
(compared to open areas) in ways that bias passive remote sensing. Lidar can also map topography and vegeta-
tion structure at fine scales (~1-m) yet also over relatively large extents (~10's of square km), making it ideal
for understanding the interactions between forest structure and topography on snow retention in montane forests
(Deems et al., 2013; Harpold, Biederman, et al., 2015; Kostadinov et al., 2019; Mazzotti et al., 2019; Revuelto
et al., 2015; Tennant et al., 2017).

In this paper, we aim to unravel how winter climate interacts with topography and vegetation structure to alter
snow disappearance in open versus under canopy locations using a unique collection of multi-site and multi-tem-
poral lidar datasets. This unique set of snow-on lidar datasets in predominantly forested terrain adjacent to climate
stations in the continental U.S. We leverage existing snow-on and snow-off lidar observations at two relatively
warm sites in the Sierra Nevada, California, USA (Sagehen Creek Watershed and Kings River Experimental Wa-
tersheds) and two colder sites in the Rocky Mountains, USA (Boulder Creek, Colorado and Jemez River Basin,

New Mexico) to map fSCA in open and under-canopy locations (henceforth, referred to as fSCAOpen and fSCA

Opy) using the Kostadinov et al. (2019) method. This analysis allows us to answer three questions:

1. How do fSCAopen, fSCAcanopy, and SDD vary as a function of slope/aspect and elevation at sites with different
climate?

2. How does forest structure influence differences between fSCAOpen and fSCAcampy across climate and/or topo-
graphic conditions?

3. What are the inferred energy and mass balance drivers causing differences in fSCAOpen and fSCAcampy in

warmer and colder climates?

2. Study Sites and Data

We chose four sites, two in the USA Rocky Mountains (Boulder Creek, Colorado (CO) and Jemez River Basin,
New Mexico (NM)) and two in the USA Sierra Nevada (Sagehen Creek Watershed and Kings River Experimental
Watersheds in California (CA)) (Figure 1). These sites represent strong climate and vegetation gradients, have
snow-on and snow-off lidar datasets and detailed point observations of snow depths for multiple years, including
years that overlap with the lidar flights acquisition. Topographic and climatic characteristics of the four sites are
shown in Table 1 (for more details see also Harpold, Marshall, et al., 2015; Kostadinov et al., 2019 ; O'Geen
et al., 2018; Tennant et al., 2017) and lidar flights characteristics are shown in Table 2. The flights all used an
infrared pulsed laser with a wavelength of 1,047 nm. Vertical and horizontal position accuracies are 5-30 cm (1
sigma) and 1/5,500 X altitude (1 sigma) respectively.

2.1. Boulder Creek, CO (Boulder)

Boulder Creek, hereafter referred as Boulder, is located 35 km west of the city of Boulder, Colorado, USA, and
is part of the U.S. National Science Foundation network of Critical Zone Observatories (CZOs). Boulder is the
coldest of the four study sites with an average annual air temperature of 10°C (Harpold, Molotch, et al., 2015) and
average DJF temperature of —5.4°C. The average winter wind speed is 6.5 m/s and the mean annual snowfall is
about 1040 mm (Harpold, Molotch, et al., 2015). The site was equipped with three pairs of ultrasonic snow depth
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Figure 1. Location, lidar-based terrain elevation (MASL = meters above sea level), hillshade (background digital elevation models) and the extent of processed
snow-off lidar data at the four study sites: Sagehen Creek Watershed, CA, Kings River Experimental Watersheds, CA, Jemez River Basin, NM and Boulder Creek, CO.

SNOTEL station locations are shown.

sensors in the open and under canopy areas between 2007 and 2011 (Table 1) near the Niwot Ridge Ameriflux
station at a single elevation (Harpold, Marshall, et al., 2014). Three Snow Telemetry (SNOTEL) sites across
an elevation gradient (Table 1) were used to estimate a linear winter temperature lapse rate. The snow-off lidar
survey for Boulder was conducted in a 600 km? area within the Boulder Creek Watershed in August 2010. The
dominant vegetation is subalpine fir (Abies lasiocarpa), Engelman spruce (Picea engelmannii) and lodgepole
pine (Pinus contorta). The lidar snow-on surveys were acquired on 5, 9, 20, and 21 May 2010, and used a single
snow-off lidar survey from 2010 (Table 2).

2.2. Jemez River Basin, NM (Jemez)

The Jemez River Basin, hereafter referred as Jemez, is a CZO site at the southern end of the Rocky Mountains in
northern New Mexico, USA. The average DJF air temperature and wind speed are —3.3°C and 3.9 m/s, respec-
tively. The mean annual snowfall in the basin is around 1,310 mm. Ground-based measurement to track SDD
includes three paired ultrasonic snow depth sensors under canopy and in the open. The snow depth observations
were recorded from 2005 to 2011 (excluding 2007) at a single elevation close to the Valles Caldera mixed conifer
Ameriflux site (Harpold, Marshall, et al., 2014). Forest covers 33% of the basin with various types of conifers,
including Douglas fir (Pseudotsuga menziesii), white fir (Abies concolor), blue spruce (Picea pungens), limber
pine (Pinus flexilis) and ponderosa pine (Pinus ponderosa) (Harpold, Marshall, et al., 2015).
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Table 1

Characteristics of the Study Sites

Kings River Experimental

Characteristics watershed, CA Sagehen Creek watershed, CA Jemez River basin, NM Boulder Creek, CO

Latitude 37°5'N 39°25'53"N 35°53’18"N 40°0’°53"N

Longitude 119°28°'W 120°14'23"W 106°31°55"W 105°16’14"W

Mean elevation (MASL — in 1848 + 157 2082 + 160 2882 + 201 2927 + 175
lidar dataset domain)

Slope (degrees) 16 +9 11+8 17+9 14 +8

Aspect (clockwise from north) 201 +91 159 + 105 198 + 104 141 + 88

Numbers of paired open and 6(11) NA 3(6) 3(6)
under snow depth sensors
(total sensors)

b Average winter air 2.2 -1.0 -3.3 -54
temperature (°C)

b Mean annual precipitation 2000 1215 1980 1300
(mm)

bAverage daily winter 209.1 127.97 150.6 149.6
incoming SWR (W/m?)

bAverage daily winter 251.3 254.4 201.6 199.9

incoming LWR (W/m?)
bVegetation type
bAverage forest height (m)

bAverage vegetation density (in
areas with slope <30°)

¢ Air temperature (°C) lapse
rate equation

¢ Precipitation (cm) lapse rate
equation®

Stations Information

Source of climate data used

Mixed conifer
13.3
0.59

— 0.003 X elevation + 7.29

0.06 X elevation - 13.978

I) "UppProv_Met",
"Providence Creek upper
met station", Location:
37.05934, —119.1822771;
ELV: 1981 ft.

II) "Providence Creek
lower met station",
Location: 37.0563521,
—119.202104; ELV:

1753 ft.

https://czo-archive.
criticalzone.org/sierra/
data/dataset/2659/

Mixed conifer

15.0
0.3
Ty, = — 0.001 x
elevation + 2.79
T, . =—0.001x
pr
elevation + 2.05
TMay =-0.002 x

elevation + 5.25
0.08 X elevation - 130.65

I) California (PST)
SNOTEL Site
Independence Camp;
ELV: 2127 MASL;
Station ID: 539

II) California (PST)

SNOTEL Site

Independence Creek;

ELV: 1962 MASL;

Station ID: 540

California (PST)

SNOTEL Site

11I)

Independence Lake; ELV:

2541 MASL; Station ID:
541

https://www.nrcs.usda.gov/
wps/portal/wcc/home/
snowClimateMonitoring/

Mixed conifer
7.7
0.4

— 0.005 X elevation + 8.67

0.006 X elevation + 15.52

I) New Mexico (PST)
SNOTEL Site Quemazon;
ELV: 2896 MASL;
Station ID: 708

II) New Mexico (PST)

SNOTEL Site Senorita

Divide #2 ELV: 2621

MASL; Station ID: 744

New Mexico (PST)

SNOTEL Station Vacas

Locas; ELV: 2836

MASL; Station ID: 1017

100

https://criticalzone.
org/catalina-jemez/

infrastructure/field-area/
jemez-river-basin/

https://www.wce.nres.usda.
gov/snow/snotel-data.html

Mixed conifer
7.2
0.47

— 0.007 X elevation + 17.82

0.03 X elevation - 68.98

I) Colorado (PST) SNOTEL
Site Lake Eldora; ELV:
2957 MASL; Site ID: 564

II) Colorado (PST) SNOTEL

Site Niwot; ELV: 3020

MASL; Station ID: 663

Colorado (PST) SNOTEL

Site University Camp;

ELV: 3140 MASL;

Station ID: 838

I1I)

https://www.nrcs.usda.gov/
wps/portal/wec/home/
snowClimateMonitoring/

https://wcce.sc.egov.usda.gov/
nwce/site?sitenum=663

2Averaged over December, January and February. ®Calculated over the entire domain. “Details given in Section 3.
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Table 2

Lidar Dataset Properties for the Study Sites

Properties

Kings River Experimental
watershed, CA

Sagehen Creek watershed,
CA?

Jemez River basin, NM

Boulder Creek, CO

Organization that acquired the
flight

Sensor

Average point density, Snow-
off (points/m?)

Average point density, Snow-
on (points/m?)

Swaths overlap
Horizontal datum
Time of Acquisition Snow-off

Time of Acquisition snow-on

National Center for Airborne

Laser Mapping, funded
by National Science
Foundation And Southern
Sierra Critical Zone
Observatory

Optech GEMINI Airborne
Laser Terrain Mapper
mounted in either a twin-
engine Cessna Skymaster
(N337P) or Piper Twin
PA-31 Chieftain

11.65

9.21

50%
UTM Zone 11N NAD83
August 2010
March 2010

National Center for Airborne
Laser Mapping, Funded
by USDA Forest Service

and U.S. Geological
Survey; Airborne Snow
Observatory (ASO)/NASA
for snow on (Painter
et al., 2016)

Snow off: Optech GEMINI
Airborne Laser Terrain
Mapper (ALTM) mounted
in a twin-engine Piper
Navajo PA-31 Snow on:
Riegl Q1560 unit flown on
a Beechcraft King Air A90
Twin-Turboprop aircraft.

8.91

~3

>50%
UTM Zone 10N NAD83
August 2014
March, April, and May 2016

National Center for Airborne
Laser Mapping, Jemez
River Basin and Santa

Catalina Mountains
Critical Zone Observatory,
University of California,
Merced, Funded by
National Science
Foundation

Optech GEMINI Airborne
Laser Terrain Mapper
mounted in either a twin-
engine Cessna Skymaster
(N337P) or Piper Twin
PA-31 Chieftain

9.68

9.08

50%
UTM Zone 13N NADS83
June and July 2010
March and April 2010

Boulder Creek CZO and
the National Center for
Airborne Laser Mapping
(NCALM), funded by
the National Science
Foundation (NSF)

Optech GEMINI Airborne
Laser Terrain Mapper
(ALTM) mounted in
a Piper Twin PA-31
Chieftain

11.33

7.29°

50%
UTM Zone 13N NADS3
August 2010
May 5, 9, 20, and 21, 2010

Information provided here is the same for all Sagehen flights. "Average point density of snow-on lidar dataset on 5, 9, 20, and 21 May 2010.

2.3. Kings River Experimental Watershed, CA (Kings)

Kings River Experimental Watersheds, hereafter referred as Kings, is a part of the Kings River Experimental
Watershed operated by the US Forest Service within the southern Sierra Nevada in California, USA. Kings is the
warmest site considered with an average DJF temperature of 2.2°C (O'Geen et al., 2018). We focus on the Provi-
dence Creek sub-watershed within the site. Kings has an average annual snowfall of about 1,750 mm. Ultrasonic
snow depth sensors collected snow depth between 2010 and 2012 at three sites along an elevational gradient
(Harpold, Marshall, et al., 2014). This domain is mostly covered by mixed-coniferous forest (60%), consisting of
white fir (Abies concolor), ponderosa pine (Pinus ponderosa), Jetfrey pine (Pinus jeffreyi), California black oak
(Quercus kelloggii), sugar pine (Pinus lambertiana Douglas), and incense cedar (Calocedrus decurrens) (O'Geen
et al., 2018).

2.4. Sagehen Creek Watershed, CA (Sagehen)

Sagehen Creek Watershed, hereafter referred as Sagehen, has a drainage area of 28 km? and is located in the
northern Sierra Nevada, California. The elevation ranges between 1,800 and 2,700 MASL and the mean annual
snowfall is 850 mm at the base of the watershed. The DJF average temperature is —1.0°C. Sagehen is a forested
montane watershed covered by mixed conifers including White Fir (Abies concolor), Red Fir (A. magnifica),
Lodgepole Pine (Pinus contorta), Jeffrey Pine (P. jeffreyi), Sugar Pine (P. lambertiana), Western White Pine (P.
monticola), and Ponderosa Pine (P. ponderosa). A ground-based distributed temperature sensor (DTS) (Tyler
et al., 2009) is used as in-situ observations to quantify snow cover. The DTS instrumentation in Sagehen recorded
ground temperature every 30 min between March 10 and 18 May 2016, every 0.25 m along a 1500-m stretch of
fiber optic cable. We assumed snow is on the ground if the daily air temperature is between —1 and 1°C and the
daily standard deviation of observed temperatures is less than 0.35°C (Kostadinov et al., 2019).
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3. Materials and Methods

The methods for this work require several levels of data analysis due to the nature of the lidar datasets and the
multiple predictor variables (i.e., climate, topography, and vegetation structure). After developing the fSCAopen
and fSCA%mopy estimates (Section 3.1), vegetation structure metrics (Section 3.1), and topographic metrics (Sec-
tion 3.2), we apply visual comparisons and statistical tests that differentiate fSCA between open and under cano-
py locations (Section 3.3). However, a more complex random forest model is also needed to fully characterize the

interacting effects of the multiple predictor variables (Section 3.4).

3.1. Vegetation and Snow Presence/Absence Classification

We used vegetation and snow presence classifications presented by Kostadinov et al. (2019) to estimate fSCAOpen

and fSCAcanopy. A 1-m lidar-derived raster is created to classify vegetation structure (height and cover) and snow
presence/absence. Slopes >30° are excluded from the analysis to reduce the uncertainty in the estimation of snow
presence/absence (Kostadinov et al., 2019). At each site, a small road section that is maintained snow-free is
selected to compare snow-on and snow-off flights and to eliminate potential vertical bias between the snow-on
lidar-derived elevations and the snow-off digital terrain model (DTM). Even though this is the most common
method for vertical bias correction (Hopkinson et al., 2012), it is acknowledged that vertical biases are not nec-
essarily uniform across the study domain (Harpold, Marshall, et al., 2014). This analysis shows that snow-on
lidar flights over the snow-free roads are on average 0.28 m, 0.08 m, and 0.03 m higher than snow-off returns for
Kings, Jemez, and Boulder, respectively. Kostadinov et al. (2019) made the same analysis for three flights over
Sagehen and found mean biases of 0.23 m, 0.26 m, and 0.38 m for the 26 March, 17 April, and 18 May 2016
flights (Table 2), respectively. These biases are then subtracted from all snow-on lidar-derived elevations (see
Kostadinov et al., 2019 for details).

Vegetation presence is classified using the snow-off lidar. A 1-m grid cell is defined as tree-covered if there is
any lidar return above 2 m from the bare-earth elevation. If the tree-covered grids have any return between 0.15
and 2 m, those grids are classified as tree-covered with low branches. The latter grid cells are removed from the
analysis (about 41% on average from all domains) because low branches can be confused with the snow surface
during the snow-on flights (Kostadinov et al., 2019). Grid cells with all returns between —0.3 and 0.15 m from
the 1-m DTM are classified as ‘open’. If a tree-covered grid cell has snow-on returns with elevation between 0.15
and 2 m above the 1-m DTM, it is classified as snow-covered. In contrast, if a return's elevation is between —0.30
and 0.15 m from the 1-m DTM, the grid cell is classified as snow-free. More details are presented in Kostadinov
et al. (2019). fSCA ..
cells by the total number of tree-covered grid cells with sufficient lidar returns. fSCA___is calculated on a 100-m

open
pixel-basis by dividing the number of ‘open’ (i.e., non-vegetated) snow-covered grid cells by the total number of

is calculated on 100-m basis by dividing the number of vegetated snow-covered grid

open grid cells with sufficient lidar returns.

Vegetation density is calculated for each 1-m pixel by dividing the number of returns that hit the canopy (i.e.,
height >2 m) by the number of total returns in each 1-m grid cell (Broxton et al., 2015) using the snow-off lidar.
If the vegetation density (VD) is < 0.4 the pixel is classified as a low vegetation density (lowVD) and if VD > 0.6,
it is classified as high density (highVD). In this simple approach, we exclude grid cells with moderate vegetation
density from 0.4 - 0.6 to determine the effects of low and high vegetation density end-members on SDD.

3.2. Topographic Classification

We calculate the northness index (Amatull et al., 2018) from the 1-m DTM to investigate the impact of aspect
and slope on fSCA:

Northness = cos(aspect) X sin(slope)

where slope and aspect are in radians, and aspect is measured clockwise from true north. Northness varies from
+1 on north-facing terrain with steep slopes of 90° to —1 on south-facing terrain with slopes of 90°, and it is O for
flat terrain (and also for east and west-facing terrain of any slope). Grid cells are classified as “south-facing” if
Northness < —0.1, “east-facing, west-facing and flat” if —0.1 < Northness <0.1, and “north-facing” if Northness
>0.1.
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Each domain is binned into 10 elevation bands to study the effect of elevation on fSCAOpen and fSCAcanopy. Lapse
rates for air temperature and precipitation at each site are developed using observed mean daily air temperature
and precipitation from local weather stations between December 1st and the date of the flights (Table 1). Our
lapse rate-based method did not consider explicitly cold air drainage or temperature inversion in our analysis.
These site-specific lapse rates are used to estimate average December-January-February air temperature (T ;) for

the elevation bands (hereafter referred as Ty, bands) at each site.

3.3. Snow Retention Metrics

A random sample of 100 grid cells within each site and T, . band are collected to determine statistical differenc-
es between fSCAUpen and fSCAmupy. This random sub-sampling is repeated 100 times to reduce random error.

fSCA ., and fSCA
signed-rank test at a 5% significance level is conducted to examine whether fSCAUpen and fSCAmupy are statisti-

canopy AT€ calculated from the average of the 100 sub-samples. The non-parametric Wilcoxon
cally different. The p-values from the 100 random samples are averaged to estimate if the under canopy and open
fSCA are statistically different.

3.4. Random Forest Modeling to Analyze Vegetation and Climate Impacts on fSCA

A random forest model (RFM) is used to help infer the process controls causing differences between fSCA

and fSCAszopy in ways that prior graphical and statistical analysis (Section 3.3) could not. For example, tlljle
previous statistical analysis relies on binning all predictor variables (e.g., northness >0.1 and <-0.1) and not
treating them as the continuous variables they typically are, nor does it consider interactions between predictor
variables. Rather than use topographic variables that may not be directly comparable across sites with different
climates and latitudes, we focus on the above-canopy winter incoming SWR and LWR, precipitation, and air
temperature, specifically, that are directly causal variables and that are thus more comparable across sites. The
RFM utilizes an ensemble of regression trees to build a predictive model based on a series of predictors and the
response variable fSCAnpen—fSCAcanopy. The number of trees in our RFM is limited to 200, as a higher number
of trees does not change the accuracy of results (Cawley & Talbot, 2010). We randomly select 70% of our data
to train the model and the remaining 30% data for verification. We applied a 10-fold cross-validation procedure
to decrease the bias in the selection of the training and verification data, which is commonly used to avoid RFM
overfitting (Cawley & Talbot, 2010). The RFM is also used to rank predictors' importance. We classified the 100-
m grid cells into four bins within each site, with a roughly equal number of grid cells for each flight: fSCA < 0.3,
0.3 < fSCA < 0.55,0.55 < fSCA < 0.8 and 0.8 < fSCA (fSCA > 0.99 and fSCA < 0.01 are excluded to reduce
outlier effects). The fSCA binning (using the total fSCA of the 100 m pixel) helped to group areas with similar
incoming precipitation that are at similar points in their ablation season (i.e., elevation). In this way, we could try
to understand how factors such as radiation and vegetation density control differences in snow retention between
open and under canopy areas by minimizing differences in above canopy precipitation. A skilled model would
suggest that fSCAOPen—fSCAszopy differences can be explained by local climate and vegetation structure and their
interactions. We used the trained RFM to predict how fSCAnPen—fSCAmnopy varies with vegetation density in high
and low radiation environments at 100-m resolution.

The RFM allows non-linear interactions among variables, potentially elucidating controls on under-canopy and
open areas energy and mass fluxes. The average winter air temperature and precipitation of each 1-m grid cell
are calculated using lapse rate equations in Table 1 and then averaged to the 100-m scale. Hourly incoming
SWR and LWR at the top of the canopy are calculated using the pre-processing toolbox of the Snow Physics and
Lidar Mapping model (SnowPALM; Broxton et al. [2015]) at 1-m spatial resolution. SnowPALM downscales
hourly incoming SWR from phase-2 of the North American Land Data Assimilation System (NLDAS-2; Xia
et al. [2012]) using the methods of Kumar et al. (2010) that corrects for terrain shadowing. Although this ap-
proach does not correct potential biases in NLDAS-2 radiation fluxes, it provides adequate incoming radiation
fluxes for snow modeling over complex terrain (Broxton et al., 2015; Krogh et al., 2020). Incoming SWR and
LWR are averaged to daily 100-m grid cells from December 1st to the date of each flight.

The mean absolute error (MAE) metric is used to evaluate the accuracy of the RFM's predictions:
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Figure 2. Snow disappearance day (SDD) under canopy and in the open at Sagehen (a), Kings (b), Jemez (c), and Boulder
(d) sites in different years. We used snow depth observations from the ultrasonic sensors (number of sensors show on each
bar) at Boulder, Jemez, and Kings, and distributed temperature sensing data at Sagehen to determine under canopy and
open SDD. The boxes represent the 25th and 75th percentile and the whiskers are the minimum and maximum. The number
(‘num’) above each boxplot represents the number of available points used to compute the statistics.
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where x, is the observed [fSCADPen—fSCACmpy], Y, is the modeled [fSCAopen—fSCAcﬂnopy] and n is the number of
the 100-m grid cells.

4. Results
4.1. Limited Ground-Based Differences Between Open and Under Canopy SDD

Ground-based observations from ultrasonic snow depths and DTS data show that snow generally lasts longer
under canopy at the colder Jemez and Boulder sites by a few days to a week, but not in the warm and dry years
at Jemez (2006) and Boulder (2007, 2010). Open and under canopy SDD is approximately two months later at
Boulder than at Jemez (Figure 2).

In contrast, SDD is on average 5 and 7 days later in the open than under canopy at the warmer Sagehen and Kings,
respectively. SDD happens about 41 days earlier at Sagehen than at Kings. It is worth noting that these sites are
all effectively flat (see Harpold, Marshall, et al., 2014) and that the vegetation structure above the under-canopy
sensors is only characterized as open or under canopy.

4.2. Ground-Based Relationships Between fSCA and SDD at Sagehen via DTS Observations

Because our lidar-based tool is developed to measure fSCA over large spatial extents, rather than SDD from a
point location, we are interested in exploring the relationships between SDD and fSCA at Sagehen Creek. There
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Figure 3. fSCAOpen and fSCAC,dmpy in each T ;. band for lidar flights over Sagehen on 26 March, 17 April, and 18 May 2016
(a, b, ¢), Kings in March 2010 (d), Jemez in April 2010 (e), and Boulder in May 2010 (f). “+” signs in all panels represent
statistically different fSCAope" and fSCA based on Wilcoxon signed-rank test. Note that the range in the x-axis is
different for each site.

‘canopy’

is a bounded relationship between fSCA and SDD, where multiple SDD can occur for the same fSCA, that is
underlain by a physical relationship predicated on snow disappearing when fSCA declines. We estimate fSCA
from the DTS at each 10 m using 40 snow presence/absence measurements spaced 25 cm for every day during
one ablation season in 2016. Our initial goal was to develop a sigmoidal relationship for multiple days during
the ablation season, but we could not find statistically robust relationships. However, individual days did show
fSCA and SDD relationships at Sagehen. For example, on 17 April 2016, the fitted sigmoidal relationship is
robust (R? = 0.76, not shown). During this time fSCA ranges from 0 to 1 over the ~1,500 m DTS length, which
corresponds to a range of SDD from about 90 to 140 days averaged for the roughly 37,500 observations. The cor-
relation of the fSCA and SDD relationships is weaker in March and May 2016. The weakness of the relationship
could result from snow disappearance or reappearance along the cable (see Kostadinov et al., 2019) or different
amounts of precipitation and its timing. For example, if areas receive more (or later) snowfall they will melt later
and have greater fSCA than areas that receive more precipitation. The scatter in the relationship could also arise
from different open and under canopy environments, that is, differences in vegetation density in under canopy en-
vironments, that were not considered in this analysis. Although these results are used sparingly through the paper,
because of the DTS cable only being available at a single site and the lack of robust statistical relations, they are
meant to provide the context in the range of SDD that can be inferred from lidar-derived fSCA. The weakness of
these relationships suggests that future efforts should refine this analysis.

4.3. Topographic Controls on Snow Retention

fSCAOpen and fSCAmDpy in each T}, band indicate that fSCA is generally higher when T is colder (i.e., eleva-
tion increases) at all sites (Figure 3). fSCAOpen is higher than fSCAcam)py at T, bands between —5 and +2°C at all
sites. fSCAcamlDy is significantly higher at open areas at the colder Boulder site in T, . bands < -7°C (Figure 3f).
At Jemez, there are not large differences between fSCAopen and fSCAcam]Dy in Tj,;. bands < —5°C because fSCA
is close to 1. Conversely, fSCAOpen is significantly higher than fSCAcmpy (Figure 3e) for T}, bands > -5.5°C at
Jemez. At the warmer Sagehen and Kings sites, fSCAOpen is generally larger than fSCAcmpy. However, in warmer
T,z bands of Kings (T}, > +2°C) where fSCA is < 0.4 and the ablation season is nearly over, fSCACanopy is high-
er than fSCAo]Den (Figure 3d). There are little differences (mostly insignificant) between fSCAOpen and fSCACunopy
at Sagehen on 26 March 2016, in the colder T}, bands (T}, < —1.8°C) because fSCA is close to 1 (Figure 3a).

JF
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Figure 4. fSCA bias ([fSCA__ —fSCA JASCA__ ) for south-facing and north-facing slopes over different T, . bands

canopy open canopy open DIF

for each lidar flight over Sagehen on 26 March, 17 April, and 18 May 2016 (a, b, ¢); Kings in March 2010 (d); Jemez in April
2010 (e); and Boulder in May 2010 (f). Positive numbers of fSCAwmpy bias indicate higher fSCAopen and negative indicate
higher fSCA “+” signs indicate a statistically significant difference between south- and north-facing fSCA bias.

canopy” canopy

As snowmelt progresses into April and May at Sagehen, fSCA declines and it becomes significantly greater in
the open than under canopy in all but the coldest bands (7}, ;. < —2°C).

We define fSCA bias as [fSCA —fSCA /fSCA such that values less than 1.0 have more snow

canopy open canopy open’
under canopy and values over 1.0 have more snow in the open. Generally, south-facing slopes show greater dif-

ferences between fSCA » and fSCA oy than north-facing slopes, with the exception of the lower elevations of

open canoj

Jemez and Boulder and the May 2016 flight at Sagehen. At the coldest Boulder site and in the coldest T}, bands
(T, < —9°C) fSCA___is higher than fSCA on south-facing slopes (Figure 4f). Conversely, north-facing

DIF open canopy
slopes in colder bands (7. < —8°C) at Boulder have higher fSCAcanopy than fSCAOpen (except for the coldest

DIF

Ty, band). In warmer T . bands at Boulder (7}, . > —7.5°C), fSCAOpen is higher than fSCACanopy on north-facing

slopes (except for the warmest T, bands), but the opposite is true on south-facing slopes (Figure 4f). Warmer

T, bands at Jemez act similar to warmer parts of Boulder, where fSCAOpen is higher than fSCAC,(mOpy on north-fac-

ing slopes and vice versa for south-facing slopes (Figure 4¢). In Kings, fSCAopen is higher than fSCAcmpy in cold-
er Tj,; bands but reverses in warmer T, . bands across north and south-facing slopes (Figure 4d). At Sagehen,
fSCA ___is higher than fSCA

open canopy

during all flights (Figures 4a and 4b). In general, differences between fSCAOpen and fSCA accentuate at lower

canopy
bias is not exhaustively explained

DIF
on both north- and south-facing slopes for most warmer bands (T, . > =2 C)

elevations (i.e., warmer) within sites; however, this also reveals that fSCAcanopy

by air temperature across varying topography and parts of the ablation season in the case of Sagehen.

4.4. Forest Structure and Energy and Mass Budget Controls on Snow Retention
4.4.1. Vegetation Controls on Snow Retention Over Topographic Gradients

In general, fSCA is the highest under lowVD on north-facing slopes, except at low elevations in Kings. On the
contrary, fSCA is the lowest under highVD on south-facing slopes, with the exception of low elevations at Kings
(Figure 5). Generally, fSCAcanopy is higher under lowVD compared to highVD (Figure 6) on both north- and
south-facing slopes, except in Jemez. Over colder Ty, bands (T}, < —6.5°C for Boulder, and T}, < —4.5°C for
Jemez), this pattern is clear. However, in warmer T}, . bands at Boulder and Jemez, fSCA is higher under highVD
for both south- and north-facing slopes (Figures 4e and 5f). At the warmest T . bands at Kings site (>2°C) fSCA
is highest under highVD in south-facing slopes and lowest under lowVD in north-facing slopes (Figure 5d). At
Sagehen over all Ty bands, there is a large difference between fSCA on south- and north-facing slopes under

both lowVD and highVD (Figures 5a, 5b and 5c) that increases in warmer months and warmer T, bands. fSCA
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Figure 5. fSCACannpy for south- and north-facing slopes with low and high vegetation density (low vegetation density [VD] and highVD, respectively) across Ty, . bands

for each lidar flight over Sagehen in 26 March, 17 April, and 18 May 2016 (a, b, c¢), Kings in March 2010 (d), Jemez in April 2010 (e), and Boulder in May 2010 (f).

is highest in north-facing slopes under lowVD and lowest in south-facing slopes under highVD at Sagehen, and
colder T, bands at Kings (7T, < 1.5°C) and Boulder (T}, < —7°C). Although the analysis behind Figure 5 is
powerful, it is subject to an inability to compare between open areas (VD = 0) because that would require 100 m?
open areas that are rare in these forested locations. This analysis is also dependent on the distribution of forest

structure metrics across variable topography (i.e., elevation, slope, and aspect) that differs across sites.

4.4.2. Co-variation Between Vegetation and Topography

The hypsometry (i.e., distribution of site area across elevation) and co-variation between vegetation and topog-
raphy affect differences between fSCAOpcn and fSCAcmmpy across and within sites. The hypsometry varies among
sites, with a bias to more relatively low elevation area in Sagehen and Jemez to more relatively high elevation
area in Kings and Boulder. The effects of elevation and aspect on vegetation structure are shown in Figure 6, with
more area of high vegetation density at a higher elevation at Kings and lower vegetation density at the higher
elevations of Sagehen and Boulder. The analysis in Figure 6 does not include “east-facing, west-facing, or flat”
pixels with northness <0.1 and > —0.1 nor medium vegetation density pixels with VD > 0.4 and < 0.6, which is
the reason the values do not sum to 100%. The differences in topography between sites, and their interactions and
control on vegetation structure, limit the utility of binned statistical comparisons done in Section 4.3 and supports
the need for a more sophisticated statistical analysis.

4.4.3. Vegetation Controls on Snow Retention in Different Mass and Energy Environments

We develop site-specific REM to predict fSCAOPen—fSCACanopy using mass (i.e., precipitation) and energy (i.e.,
SWR and LWR) predictor variables that account for the continuous nature of the predictors and the underlying
spatial correlation between predictor variables. fSCAOlm—fSCAumopy is calculated within each 100-m grid cell
using all available 1-m pixels. The RFM was able to reasonably calibrate and test predictive models with average
RFM MAE: for Sagehen on 26 March, 17 April, and 18 May 2016, Kings, Jemez, and Boulder of 0.07, 0.06, 0.05,
0.12,0.10, and 0.11 (fSCA is dimensionless), respectively. The consistency of the relationships across four fSCA
bins helps determine the predictive power of the random forest in different areas with differing precipitation and
ablation (Figure 7). In general, vegetation density is the most important predictor variable in the RFM at the

colder sites (Figure 7) and the role of vegetation density lessens (and micro-climate increases) at lower fSCA at
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Figure 6. Percentage of area with south facing and north facing slopes, and low and high vegetation density over different
elevation bands within each site: Sagehen 2016 (a); Kings 2010 (b); Jemez 2010 (c); and Boulder 2010 (d).

most sites. The importance of precipitation and temperature is largest in the lowest fSCA bins, with mixed effects
at Sagehen (Figure 7).

5. Discussion

Leveraging a new method by Kostadinov et al. (2019) applied over multiple snow-on airborne lidar flights al-
lows new insights into the causes of differential snow retention in open versus under canopy areas. Our site
with the smallest lidar dataset has 2.6 million 1-m? grid cells (Kings), compared to the typically small sample
size of around ~5-10 ground-based sensors per site at a single flat location depending on the year (Figure 2).
Lidar surveys have an obvious advantage for accurate determination of snow presence or absence over large and
heterogeneous spatial extents, though only providing a snapshot in time. Ground-based observations provide a
continuous time-series over a much smaller domain, but they are impractical for observing snow presence at high
spatial resolution across gradients of vegetation density and topography. A large number of lidar returns provide
statistical power and decrease uncertainty that could otherwise overwhelm a small sample of ground-based obser-
vations, especially when the effects of topography or forest structure are considered. This study uses a unique set
of snow-on flights in forested terrain in the western U.S., but as the availability of snow-on lidar datasets increases
(Deems et al., 2013; Painter et al., 2016), the method proposed by Kostadinov et al. (2019) can be expanded and
better adapted to different collection timing.

A fundamental challenge to lidar flights is that different elevations are at different stages of their (accumulation
or) ablation season. For the purposes of fSCA analysis like those done here, flights prior to the ablation season,
especially when fSCA = 1, are less useful. Multi-temporal snow-on lidar datasets, like the Sagehen ASO flights
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Figure 7. Importance of five predictors: vegetation density, average incoming shortwave, and longwave radiation, total
precipitation (P), and average air temperature (T), from December 1st to the day of lidar overflights for predicting [fSCA

open

fSCA py] in 100-m fractional snow cover area bins (including open and under canopy) of fSCA < 0.3, 0.3 < fSCA < 0.55,

canoy

0.55 < fSCA < 0.8 and 0.8 < fSCA for each lidar flight: Sagehen on 26 March, 17 April, and 18 May 2016 (a, b, ¢), Kings in
March 2010 (d), Jemez in April 2010 (e), and Boulder in May 2010 (f).

(Painter et al., 2016), should be applied in a way that tracks groups of pixels with similar precipitation to deter-
mine relative fSCA changes (rather than only fSCA magnitudes as done here). Due to the collection timing issues,
the conflation of accumulation and ablation effects on snow disappearance make statistical analysis challenging.
We attempted to account for this by grouping areas based on elevation (air temperature by proxy), which is the
principal control on precipitation at smaller scales like these. Additionally, we compare fSCADpen and fSCAwmpy
directly within 100-m pixels to reduce these types of biases in the RFM modeling. However, the REM did not
produce clear conclusions across fSCA bins and had relatively high MAE, but did highlight the role of vegeta-
tion density (Figure 7). These RFM results highlight the inadequacy of using simple vegetation metrics like low
and high density. Moreover, we treated 1-m pixels as either canopy or no canopy, which does not include infor-
mation about canopy gap sizes and edges that could inform additional analyses (Broxton et al., 2015; Mazzotti
etal., 2020; C. D. Moeser et al., 2020). Future analysis might include information about gap size and edginess and
the south- and north-facing nature of those edges with respect to terrain shading, similar to Moeser et al. (2020).
Detection of snow surface versus low canopy branches is another fundamental challenge in the dense canopy or
deep snowpack unless the method or datasets are improved. For example, better methods to resolve the ground
surface, by use of single- or multi-band lidar reflectance information or perhaps by use of full-waveform lidar,
may be necessary to resolve this methodological issue. To illustrate this low-branch limitation, in some cases we
had to discard >50% of the under canopy 1-m grid cells to reduce uncertainty. The challenges of finding clear
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fSCA and SDD relationships over a small area in Sagehen suggest that assumptions of even snowfall inputs or
a lack of more representative vegetation metrics, like canopy density and edge information. Explicitly linking
fSCA to SDD would provide definitive timing information but would require ground-based snow disappearance
measurements over elevation gradients and representative open and under canopy locations (Dickerson-Lange,
Lutz, Gersonde et al., 2015; Dickerson-Lange, Lutz, Martin, et al., 2015; Lundquist et al., 2013).

Our findings suggest that local topography and vegetation structure can both increase and lessen climatic con-
trols, such as the air temperature threshold proposed by Lundquist et al., 2013, in open versus under-canopy
snow retention. Despite relationships between air temperature and snowpack energy fluxes (Ohmura, 2001) and
tradeoffs between SWR and LWR (Lundquist et al., 2013), differences between open and under canopy fSCA are

not well predicted by thresholds in T, . alone (Figures 4, 5 and 7). Instead, we expect a more complete analysis

DIF
of energy budgets and differences in an interception and wind-caused redistribution need to be considered to
improve simpler models and expand our process understanding. For example, our findings suggest that aspect
can accentuate the effects of climate: north-facing slopes act to lengthen snow retention under canopy relative
to open at the colder sites, while south-facing slopes promote longer snow retention in open areas at warmer
sites relative to under canopy. However, these results are not consistent across elevation (Figures 4 and 5). Lun-
dquist et al. (2013) suggest that LWR enhancement by canopy temperatures warmer than the air temperature

is possible, which is consistent with less fSCA in both north- and south-facing slopes at warm sites (Todt

canoj

et al., 2018; Webster et al., 2017). Based on enhagéed under canopy ablation at warmer sites, we infer that the
relative importance of LWR to net radiation (and ablation) is greater on north-facing slopes than south facing
slopes (Lopez-Moreno et al., 2017; Malle et al., 2019; Maxwell et al., 2019; Musselman et al., 2012; Strasser
et al., 2011). However, at colder sites, the combination of lower interception efficiency and greater dominance
of SWR to snowpack ablation (Lundquist et al., 2013) likely led to higher fSCA ’ than fSCAopen. The wind is

more likely to scour open areas at colder sites with colder snowfall, and have higher scour in lower vegetation

canop;

density that can potentially redistribute snow under canopy (Erickson et al., 2005). These wind effects may ex-
plain longer under canopy snow retention on north-facing slopes at the windy Boulder site (Tennant et al., 2017;
Toendle and Leaf, 1980). As expected, locations with denser trees in the same climate generally lead to less fSCA
compared to lower vegetation density (Figures 6 and 7). However, this relationship was less consistent at the end
of the ablation season (low fSCA values) when fSCAcanopy
less dense vegetation at the Jemez and Kings site. Together the challenges in the RFM modeling and developing

under dense vegetation could be higher than under

simple fSCA-SDD relationships suggest that a more comprehensive treatment of areas with differing vegetation
density, and open edge environments, is needed to better constrain the prediction of fSCA and SDD.

We make an attempt to refine the existing air temperature-based framework to predict differential snow disap-
pearance between open and under canopy areas (Lundquist et al., 2013) by including canopy, terrain, and climate
(Figure 8). Using a gradient of elevation information, rather than multiple plot locations, we estimate a colder
Ty, threshold for warm sites of —4.5°C as compared to Lundquist et al. (2013) that found a —1°C classification
(although both are admittedly best estimates). Under canopy snow retention at the colder sites is longer relative
to open areas on north-facing slopes, especially when overhead vegetation density is low. Conversely, at warmer,
south-facing sites, snow retention in open areas is longer relative to areas under forest canopy especially if the
vegetation density is high (Figure 8). Conversely, north-facing low vegetation density areas at warm sites have
more similar snow disappear between open and under the canopy, behaving more like a colder environment with
higher importance of SWR. Our new framework is meant to be testable hypotheses based on information from
four mid-latitude sites that should be viewed with its many limitations previously described.

A lidar-based framework that explains differential snow disappearance in open and under canopy areas has prac-
tical management implications for our sites but will need further refinement and expansion. Forest management
actions designed to retain snow, like tree removal and prescribed fire, have a long history (Alexander et al., 1985;
Golding & Swanson, 1986; Varhola et al., 2010). However, our insights allow more spatially explicit management
strategies that account for the natural variability of climate and forest structure in complex topography (Figure 5)
that can be reconciled with other management goals, such as wildfire mitigation and wildlife habitat. For exam-
ple, thinning or gap-cutting should generally decrease LWR and snow interception, which has been shown to
increase snow accumulation and melt volumes in recent fine scale modeling results in the Sierra Nevada (Krogh
et al., 2020). Thus, canopy removal could potentially help retain snowpack in warmer and denser canopy areas
of Sagehen and Kings. Similarly, lower elevations of colder north-facing slopes (e.g., Boulder) may experience
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areas.

some benefits of tree removal if the existing forests are dense. However, south-facing slopes at colder sites may
see earlier snow disappearance if canopy density is reduced too much. Reductions in canopy density below 40%
should probably be avoided at higher, windier elevations of Boulder and all but the most north-facing aspects of
Jemez. These results could help explain a lack of snowpack response to tree removal in the Rocky Mountains in
previous studies of insect-caused tree mortality (Biederman et al., 2014) and fire-caused canopy loss (Harpold,
Biedermann, et al., 2014). However, our simplistic treatment of vegetation neglects several important controls: (a)
differences in species and growth limitations, (b) different inter- and intra-site disturbance history, and (c) fine-
scale canopy structure and gaps. Our simple treatment of canopy density cannot adequately capture differences
in interception efficiency across conifer species (Huerta et al., 2019; Roth & Nolin, 2019). The co-variation of
tree species with elevation (and aspect) may limit the utility of the REM because the overall distribution of for-
est canopy (Figure 5) is not accounted for in our approach. For example, differences in forest structure between
north- and south-facing tree species, may be a driver of the differences in fSCA we observe. Aspect and slope
also feedback into the forest disturbance history like fire severity and return frequency (Pelletier et al., 2017).
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Improvements in the lidar analysis techniques could be combined with high-resolution, process-based snowpack
energy budget models (Broxton et al., 2015; Mazzotti et al., 2020) to increase the predictive power of post-forest
disturbance hydrologic modeling. Ultimately, an explicit energy and mass balance modeling (ideally based on
ground-based and remote measurements) is likely needed to develop a mechanistic and predictive understanding
of differential snow disappearance at the scale of management decisions.

6. Conclusions

Changing the forest canopy is one of the few ways that forest and water resource managers can control snow
retention and mitigate the negative consequences of climate change on water availability and wildfire regime. Cli-
mate change may dramatically alter snowpack in warm areas with dense vegetation that has the highest potential
for canopy removal to lengthen snow retention. Colder areas (like Jemez and Boulder) could act more like histori-
cally warm areas (like Sagehen and Kings), which may lead to longer snow retention in open areas as interception
efficiency and net longwave radiation increase. Our empirical framework helps predict the effects of forest distur-
bance and climate (change) on snow-vegetation interactions across complex terrain, but much remains to be done
to expand to other sites and better account for methodological limitations. In particular, better connecting fSCA
to SDD by including a more refined treatment of vegetation canopy could improve our lidar-based methods.
Given the few available ways to monitor under canopy snow disappearance in montane forests, we believe that
lidar-derived inferences should continue to be refined as an important tool for improving snow and hydrological
models. In particular, lidar measurements at small spatial scales over large extent pair well with decision support
tools (i.e., Figure 8) that are desperately needed to support active forest management.

Data Availability Statement

All snow-on and snow-off lidar datasets for Jemez, Boulder and Kings and snow-off lidar dataset for Sagehen are
freely available from https://portal.opentopography.org/datasets public data servers. The fSCA products and the
ASO snow-on lidar datasets are available upon request to the authors (and will soon be made public).
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