
1.  Introduction
Snow and ice melt provide about 20% of the global water supply, with snow water supplies concentrated in north-
ern hemisphere forests with complex topography (Barnett et al., 2005). Snowmelt timing and disappearance date 
have substantial impacts on montane forests, by affecting soil moisture and deeper recharge (Bales et al., 2011; 
Conner et al., 2015; Harpold, Marshall, et al., 2015; Huntington & Niswonger, 2012; Pavlovskii et al., 2019), 
ecosystem water availability and streamflow timing (Harpold, 2016; Kormos et al., 2017; Stewart et al., 2004), 
growing season length (Harpold, 2016; O’Leary et al., 2018), spring phenology (O’Leary et al., 2018; Pederseng 
et al., 2018), soil greenhouse gas emission (Blankinship et al., 2018), and land surface-atmosphere energy fluxes 
(Knowles et al., 2015; Peichl et al., 2013; Slater et al., 2001). A later snow disappearance delays soil water inputs, 
resulting in a longer recession in soil moisture (Harpold & Molotch, 2015), delays peak forest transpiration (A. E. 
Cooper et al., 2020), and limits the duration of soil moisture stress for vegetation if summer rains are not present 
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(Harpold, 2016). Since climate change portends shorter snow duration in montane forests (Bach et al., 2018; M. 
G. Cooper et al., 2016; Dibike et al., 2018; Harpold & Molotch, 2015; Li et al., 2017), improving predictions of 
snow retention is critical. However, processes and factors controlling the fate of seasonal snowpack are complex 
and strongly influenced by local climate, forest structure, and topography (Broxton et al., 2015, 2019; Dicker-
son-Lange et al., 2017; Lundquist et al., 2013; Tennant et al., 2017; Varhola et al., 2010). A lack of detailed, high 
spatial resolution snow observations across climate and topographic gradients in mountain forests has limited our 
ability to unravel the interacting processes that affect snow disappearance. New remote sensing tools, like lidar 
(light detection and ranging), allow for estimates of snow retention across variable topography and forest char-
acteristics that are hard to obtain from limited ground-based observations or from passive optical remote sensing 
that does not penetrate the canopy.

The influence of forest canopy on snow retention and melt is complex due to tradeoffs between physical pro-
cesses that reduce snow accumulation (e.g., snow interception and sublimation from the canopy) and processes 
that alter snowpack ablation (e.g., shortwave radiation (SWR) shading and wind sheltering). Dense forests can 
intercept more than 50% of snowfall in the winter (Ellis et al., 2011; D. Moeser et al., 2016; Roth & Nolin, 2017). 
Snow interception and sublimation are the main factors causing longer snow duration in the open than under 
canopy locations in denser, warmer forests (Varhola et al., 2010) where interception efficiency is high (Dicker-
son-Lange et al., 2017; Storck et al., 2002). Colder snowfall has lower snow interception efficiency (Pfister & 
Schneebeli, 1999; Roth & Nolin, 2017). In windier locations snow redistributes more, increasing sublimation 
losses, resulting in longer snow retention under the canopy (Dickerson-Lange et al., 2017). Using a simple set of 
models, Lundquist et al. (2013) demonstrated radiative tradeoffs between longwave radiation (LWR) and SWR: 
warmer sites have LWR as the primary radiative component of the energy budget controlling snow disappear-
ance timing but snowpack energy budget in cold forests is dominated by SWR. This is partially correct because 
warm forests with high emissivity enhance LWR toward the snowpack by up to 150% (Todt et al., 2018; Webster 
et al., 2016a) and typically cause positive net LWR (positive energy to the snowpack) under dense canopy cover, 
while net LWR is negative in open locations (Lundquist et al., 2013). SWR shading, on the other hand, can de-
lay snowmelt under forest canopies, especially in cold climates and north-facing slopes (Lundquist et al., 2013; 
Malle et al., 2019; Musselman et al., 2012, 2015; Strasser et al., 2011) in late winter and spring, when the solar 
zenith angle decreases (i.e., the sun is higher in the sky). The forest also influences the sensible and latent heat 
exchange at the snowpack surface, which can substantially contribute to the snowpack energy budget specifically 
at cold windy sites (Conway et al., 2018; Harder et al., 2019; Mahat et al., 2013; Reba et al., 2012). The tradeoffs 
of these processes in controlling the differential snow disappearance timing in open and under canopy areas, and 
landscape-scale snow retention, are typically investigated at the point scale, which has limited the investigation of 
topographic and forest canopy effects (Dickerson-Lange et al., 2017; Lundquist et al., 2013).

The interactions between forest structure (e.g., height, leaf area index, percent cover, and trees spatial distribu-
tion) and topography (e.g., elevation, aspect, and slope) differentially alter the energy and mass balance of open 
and under canopy snowpack in ways that are challenging to observe and predict across mountain environments. A 
current paradigm for predicting differential snow disappearance under the canopy and in open areas suggests that 
locations with December-February (DJF) mean air temperature > -1°C have earlier snow disappearance under 
canopy areas, whereas sites with DJF mean air temperatures < -1°C exhibit earlier snow disappearance in open 
areas (Lundquist et al., 2013). This paradigm was developed from plot-scale observations and has not been ap-
plied across gradients in canopy structure or slope-aspect that are typical of montane, forested areas. For example, 
warmer northern-hemisphere areas have longer snow retention on northern slopes (Lopez-Moreno et al., 2017; 
Maxwell et al., 2019; Seyednasrollah et al., 2013) due to reduced incoming SWR. Heterogeneous forest canopy 
structure (e.g., variable height and leaf area) causes variation in canopy gap sizes that is an important factor 
controlling fine-scale snow retention (Jonas & Essery, 2011; Mazzotti et al., 2020; Webster et al., 2016b). The 
first-order effects of topography and forest structure on snow retention (Trujillo et al., 2009; Zheng et al., 2016) 
indicate the need for the development of a new tool for predicting differential snow disappearance across montane 
forests.

Active remote sensing tools, like airborne-based lidar, can penetrate the forest canopy and be used to quantify 
snow cover and estimate snow disappearance date (SDD, defined as the first date when snow disappears after 
peak snow water equivalent, SWE). Ground-based observation such as snow courses, temperature loggers, and 
time-lapse cameras (Dickerson-Lange, Lutz, Martin, et al., 2015; Raleigh et al., 2013) are also used to estimate 
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SDD. Dickerson-Lange, Lutz, Martin et al. (2015); Dickerson-Lange et al. (2017) collected spatially distribut-
ed snow presence/absence data with cameras to demonstrate their strengths compared to snow depth sensors. 
Distributed temperature sensing (DTS) is another ground-based method (Tyler et al., 2009), but it is typically 
too costly to maintain, automate, and operate over large domains (Dickerson-Lange, Lutz, Martin, et al., 2015; 
Fujihara et al., 2017). Since the canopy obscures the under-canopy snowpack, most passive remote sensing-based 
(e.g., Landsat and MODIS) estimates of fractional snow cover area (fSCA, percentage of a given area covered by 
snow) assume that open and under canopy fSCA are identical (Molotch & Margulis, 2008; Raleigh et al., 2013). 
Therefore, such optical measurements are not useful for detecting differences between open and under canopy 
snow presence/absence (Coons et al., 2014; Raleigh et al., 2013).

A new method proposed and validated by Kostadinov et al. (2019), based on “snow-on” and “snow-off” lidar 
datasets, showed that under canopy fSCA could be observed in complex terrain, providing a ‘snapshot’ of fSCA. 
If areas of similar precipitation are grouped (by elevation or temperature bands), then a comparison of open and 
under canopy fSCA implicates accumulation and ablation processes that control snow retention at 1-m scales. 
For example, Kostadinov et  al.  (2019) showed that snow disappeared preferentially under the forest canopy 
(compared to open areas) in ways that bias passive remote sensing. Lidar can also map topography and vegeta-
tion structure at fine scales (∼1-m) yet also over relatively large extents (∼10's of square km), making it ideal 
for understanding the interactions between forest structure and topography on snow retention in montane forests 
(Deems et al., 2013; Harpold, Biederman, et al., 2015; Kostadinov et al., 2019; Mazzotti et al., 2019; Revuelto 
et al., 2015; Tennant et al., 2017).

In this paper, we aim to unravel how winter climate interacts with topography and vegetation structure to alter 
snow disappearance in open versus under canopy locations using a unique collection of multi-site and multi-tem-
poral lidar datasets. This unique set of snow-on lidar datasets in predominantly forested terrain adjacent to climate 
stations in the continental U.S. We leverage existing snow-on and snow-off lidar observations at two relatively 
warm sites in the Sierra Nevada, California, USA (Sagehen Creek Watershed and Kings River Experimental Wa-
tersheds) and two colder sites in the Rocky Mountains, USA (Boulder Creek, Colorado and Jemez River Basin, 
New Mexico) to map fSCA in open and under-canopy locations (henceforth, referred to as fSCAopen and fSCAcan-

opy) using the Kostadinov et al. (2019) method. This analysis allows us to answer three questions:

1.	 �How do fSCAopen, fSCAcanopy, and SDD vary as a function of slope/aspect and elevation at sites with different 
climate?

2.	 �How does forest structure influence differences between fSCAopen and fSCAcanopy across climate and/or topo-
graphic conditions?

3.	 �What are the inferred energy and mass balance drivers causing differences in fSCAopen and fSCAcanopy in 
warmer and colder climates?

2.  Study Sites and Data
We chose four sites, two in the USA Rocky Mountains (Boulder Creek, Colorado (CO) and Jemez River Basin, 
New Mexico (NM)) and two in the USA Sierra Nevada (Sagehen Creek Watershed and Kings River Experimental 
Watersheds in California (CA)) (Figure 1). These sites represent strong climate and vegetation gradients, have 
snow-on and snow-off lidar datasets and detailed point observations of snow depths for multiple years, including 
years that overlap with the lidar flights acquisition. Topographic and climatic characteristics of the four sites are 
shown in Table 1 (for more details see also Harpold, Marshall, et al., 2015; Kostadinov et al., 2019 ; O'Geen 
et al., 2018; Tennant et al., 2017) and lidar flights characteristics are shown in Table 2. The flights all used an 
infrared pulsed laser with a wavelength of 1,047 nm. Vertical and horizontal position accuracies are 5–30 cm (1 
sigma) and 1/5,500 × altitude (1 sigma) respectively.

2.1.  Boulder Creek, CO (Boulder)

Boulder Creek, hereafter referred as Boulder, is located 35 km west of the city of Boulder, Colorado, USA, and 
is part of the U.S. National Science Foundation network of Critical Zone Observatories (CZOs). Boulder is the 
coldest of the four study sites with an average annual air temperature of 10°C (Harpold, Molotch, et al., 2015) and 
average DJF temperature of −5.4°C. The average winter wind speed is 6.5 m/s and the mean annual snowfall is 
about 1040 mm (Harpold, Molotch, et al., 2015). The site was equipped with three pairs of ultrasonic snow depth 
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sensors in the open and under canopy areas between 2007 and 2011 (Table 1) near the Niwot Ridge Ameriflux 
station at a single elevation (Harpold, Marshall, et al., 2014). Three Snow Telemetry (SNOTEL) sites across 
an elevation gradient (Table 1) were used to estimate a linear winter temperature lapse rate. The snow-off lidar 
survey for Boulder was conducted in a 600 km2 area within the Boulder Creek Watershed in August 2010. The 
dominant vegetation is subalpine fir (Abies lasiocarpa), Engelman spruce (Picea engelmannii) and lodgepole 
pine (Pinus contorta). The lidar snow-on surveys were acquired on 5, 9, 20, and 21 May 2010, and used a single 
snow-off lidar survey from 2010 (Table 2).

2.2.  Jemez River Basin, NM (Jemez)

The Jemez River Basin, hereafter referred as Jemez, is a CZO site at the southern end of the Rocky Mountains in 
northern New Mexico, USA. The average DJF air temperature and wind speed are −3.3°C and 3.9 m/s, respec-
tively. The mean annual snowfall in the basin is around 1,310 mm. Ground-based measurement to track SDD 
includes three paired ultrasonic snow depth sensors under canopy and in the open. The snow depth observations 
were recorded from 2005 to 2011 (excluding 2007) at a single elevation close to the Valles Caldera mixed conifer 
Ameriflux site (Harpold, Marshall, et al., 2014). Forest covers 33% of the basin with various types of conifers, 
including Douglas fir (Pseudotsuga menziesii), white fir (Abies concolor), blue spruce (Picea pungens), limber 
pine (Pinus flexilis) and ponderosa pine (Pinus ponderosa) (Harpold, Marshall, et al., 2015).

Figure 1.  Location, lidar-based terrain elevation (MASL = meters above sea level), hillshade (background digital elevation models) and the extent of processed 
snow-off lidar data at the four study sites: Sagehen Creek Watershed, CA, Kings River Experimental Watersheds, CA, Jemez River Basin, NM and Boulder Creek, CO. 
SNOTEL station locations are shown.
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Characteristics
Kings River Experimental 

watershed, CA Sagehen Creek watershed, CA Jemez River basin, NM Boulder Creek, CO

Latitude 37°5′N 39°25′53″N 35°53’18″N 40°0’53″N

Longitude 119°28’W 120°14′23″W 106°31’55″W 105°16’14″W

Mean elevation (MASL – in 
lidar dataset domain)

1848 ± 157 2082 ± 160 2882 ± 201 2927 ± 175

Slope (degrees) 16 ± 9 11 ± 8 17 ± 9 14 ± 8

Aspect (clockwise from north) 201 ± 91 159 ± 105 198 ± 104 141 ± 88

Numbers of paired open and 
under snow depth sensors 
(total sensors)

6 (11) NA 3 (6) 3 (6)

a,b Average winter air 
temperature (°C)

2.2 −1.0 −3.3 −5.4

b Mean annual precipitation 
(mm)

2000 1215 1980 1300

bAverage daily winter 
incoming SWR (W/m2)

209.1 127.97 150.6 149.6

bAverage daily winter 
incoming LWR (W/m2)

251.3 254.4 201.6 199.9

bVegetation type Mixed conifer Mixed conifer Mixed conifer Mixed conifer
bAverage forest height (m) 13.3 15.0 7.7 7.2
bAverage vegetation density (in 

areas with slope <30°)
0.59 0.3 0.4 0.47

c Air temperature (°C) lapse 
rate equation

− 0.003 × elevation + 7.29 TMar = − 0.001 × 
elevation + 2.79

− 0.005 × elevation + 8.67 − 0.007 × elevation + 17.82

TApr = − 0.001 × 
elevation + 2.05

TMay = − 0.002 × 
elevation + 5.25

c Precipitation (cm) lapse rate 
equation3

0.06 × elevation - 13.978 0.08 × elevation - 130.65 0.006 × elevation + 15.52 0.03 × elevation - 68.98

Stations Information �I)	� "UppProv_Met", 
"Providence Creek upper 
met station", Location: 
37.05934, −119.1822771; 
ELV: 1981 ft.

�II)	� "Providence Creek 
lower met station", 
Location: 37.0563521, 
−119.202104; ELV: 
1753 ft.

�I)	� California (PST) 
SNOTEL Site 
Independence Camp; 
ELV: 2127 MASL; 
Station ID: 539

�II)	� California (PST) 
SNOTEL Site 
Independence Creek; 
ELV: 1962 MASL; 
Station ID: 540

�III)	� California (PST) 
SNOTEL Site 
Independence Lake; ELV: 
2541 MASL; Station ID: 
541

�I)	� New Mexico (PST) 
SNOTEL Site Quemazon; 
ELV: 2896 MASL; 
Station ID: 708

�II)	� New Mexico (PST) 
SNOTEL Site Senorita 
Divide #2 ELV: 2621 
MASL; Station ID: 744

�III)	� New Mexico (PST) 
SNOTEL Station Vacas 
Locas; ELV: 2836 
MASL; Station ID: 1017

�I)	� Colorado (PST) SNOTEL 
Site Lake Eldora; ELV: 
2957 MASL; Site ID: 564

�II)	� Colorado (PST) SNOTEL 
Site Niwot; ELV: 3020 
MASL; Station ID: 663

�III)	� Colorado (PST) SNOTEL 
Site University Camp; 
ELV: 3140 MASL; 
Station ID: 838

Source of climate data used https://czo-archive.
criticalzone.org/sierra/

data/dataset/2659/

https://www.nrcs.usda.gov/
wps/portal/wcc/home/

snowClimateMonitoring/

https://criticalzone.
org/catalina-jemez/

infrastructure/field-area/
jemez-river-basin/

https://www.nrcs.usda.gov/
wps/portal/wcc/home/

snowClimateMonitoring/

https://www.wcc.nrcs.usda.
gov/snow/snotel-data.html

https://wcc.sc.egov.usda.gov/
nwcc/site?sitenum=663

aAveraged over December, January and February. bCalculated over the entire domain. cDetails given in Section 3.

Table 1 
Characteristics of the Study Sites
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2.3.  Kings River Experimental Watershed, CA (Kings)

Kings River Experimental Watersheds, hereafter referred as Kings, is a part of the Kings River Experimental 
Watershed operated by the US Forest Service within the southern Sierra Nevada in California, USA. Kings is the 
warmest site considered with an average DJF temperature of 2.2°C (O'Geen et al., 2018). We focus on the Provi-
dence Creek sub-watershed within the site. Kings has an average annual snowfall of about 1,750 mm. Ultrasonic 
snow depth sensors collected snow depth between 2010 and 2012 at three sites along an elevational gradient 
(Harpold, Marshall, et al., 2014). This domain is mostly covered by mixed-coniferous forest (60%), consisting of 
white fir (Abies concolor), ponderosa pine (Pinus ponderosa), Jeffrey pine (Pinus jeffreyi), California black oak 
(Quercus kelloggii), sugar pine (Pinus lambertiana Douglas), and incense cedar (Calocedrus decurrens) (O'Geen 
et al., 2018).

2.4.  Sagehen Creek Watershed, CA (Sagehen)

Sagehen Creek Watershed, hereafter referred as Sagehen, has a drainage area of 28 km2 and is located in the 
northern Sierra Nevada, California. The elevation ranges between 1,800 and 2,700 MASL and the mean annual 
snowfall is 850 mm at the base of the watershed. The DJF average temperature is −1.0°C. Sagehen is a forested 
montane watershed covered by mixed conifers including White Fir (Abies concolor), Red Fir (A. magnifica), 
Lodgepole Pine (Pinus contorta), Jeffrey Pine (P. jeffreyi), Sugar Pine (P. lambertiana), Western White Pine (P. 
monticola), and Ponderosa Pine (P. ponderosa). A ground-based distributed temperature sensor (DTS) (Tyler 
et al., 2009) is used as in-situ observations to quantify snow cover. The DTS instrumentation in Sagehen recorded 
ground temperature every 30 min between March 10 and 18 May 2016, every 0.25 m along a 1500-m stretch of 
fiber optic cable. We assumed snow is on the ground if the daily air temperature is between −1 and 1°C and the 
daily standard deviation of observed temperatures is less than 0.35°C (Kostadinov et al., 2019).

Properties
Kings River Experimental 

watershed, CA
Sagehen Creek watershed, 

CA a Jemez River basin, NM Boulder Creek, CO

Organization that acquired the 
flight

National Center for Airborne 
Laser Mapping, funded 

by National Science 
Foundation And Southern 

Sierra Critical Zone 
Observatory

National Center for Airborne 
Laser Mapping, Funded 
by USDA Forest Service 

and U.S. Geological 
Survey; Airborne Snow 

Observatory (ASO)/NASA 
for snow on (Painter 

et al., 2016)

National Center for Airborne 
Laser Mapping, Jemez 
River Basin and Santa 

Catalina Mountains 
Critical Zone Observatory, 
University of California, 

Merced, Funded by 
National Science 

Foundation

Boulder Creek CZO and 
the National Center for 

Airborne Laser Mapping 
(NCALM), funded by 
the National Science 
Foundation (NSF)

Sensor Optech GEMINI Airborne 
Laser Terrain Mapper 

mounted in either a twin-
engine Cessna Skymaster 

(N337P) or Piper Twin 
PA-31 Chieftain

Snow off: Optech GEMINI 
Airborne Laser Terrain 

Mapper (ALTM) mounted 
in a twin-engine Piper 

Navajo PA-31 Snow on: 
Riegl Q1560 unit flown on 
a Beechcraft King Air A90 
Twin-Turboprop aircraft.

Optech GEMINI Airborne 
Laser Terrain Mapper 

mounted in either a twin-
engine Cessna Skymaster 

(N337P) or Piper Twin 
PA-31 Chieftain

Optech GEMINI Airborne 
Laser Terrain Mapper 
(ALTM) mounted in 
a Piper Twin PA-31 

Chieftain

Average point density, snow-
off (points/m2)

11.65 8.91 9.68 11.33

Average point density, snow-
on (points/m2)

9.21 ∼3 9.08 7.29 b

Swaths overlap 50% >50% 50% 50%

Horizontal datum UTM Zone 11N NAD83 UTM Zone 10N NAD83 UTM Zone 13N NAD83 UTM Zone 13N NAD83

Time of Acquisition Snow-off August 2010 August 2014 June and July 2010 August 2010

Time of Acquisition snow-on March 2010 March, April, and May 2016 March and April 2010 May 5, 9, 20, and 21, 2010
aInformation provided here is the same for all Sagehen flights. bAverage point density of snow-on lidar dataset on 5, 9, 20, and 21 May 2010.

Table 2 
Lidar Dataset Properties for the Study Sites
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3.  Materials and Methods
The methods for this work require several levels of data analysis due to the nature of the lidar datasets and the 
multiple predictor variables (i.e., climate, topography, and vegetation structure). After developing the fSCAopen 
and fSCAcanopy estimates (Section 3.1), vegetation structure metrics (Section 3.1), and topographic metrics (Sec-
tion 3.2), we apply visual comparisons and statistical tests that differentiate fSCA between open and under cano-
py locations (Section 3.3). However, a more complex random forest model is also needed to fully characterize the 
interacting effects of the multiple predictor variables (Section 3.4).

3.1.  Vegetation and Snow Presence/Absence Classification

We used vegetation and snow presence classifications presented by Kostadinov et al. (2019) to estimate fSCAopen 
and fSCAcanopy. A 1-m lidar-derived raster is created to classify vegetation structure (height and cover) and snow 
presence/absence. Slopes >30° are excluded from the analysis to reduce the uncertainty in the estimation of snow 
presence/absence (Kostadinov et al., 2019). At each site, a small road section that is maintained snow-free is 
selected to compare snow-on and snow-off flights and to eliminate potential vertical bias between the snow-on 
lidar-derived elevations and the snow-off digital terrain model (DTM). Even though this is the most common 
method for vertical bias correction (Hopkinson et al., 2012), it is acknowledged that vertical biases are not nec-
essarily uniform across the study domain (Harpold, Marshall, et al., 2014). This analysis shows that snow-on 
lidar flights over the snow-free roads are on average 0.28 m, 0.08 m, and 0.03 m higher than snow-off returns for 
Kings, Jemez, and Boulder, respectively. Kostadinov et al. (2019) made the same analysis for three flights over 
Sagehen and found mean biases of 0.23 m, 0.26 m, and 0.38 m for the 26 March, 17 April, and 18 May 2016 
flights (Table 2), respectively. These biases are then subtracted from all snow-on lidar-derived elevations (see 
Kostadinov et al., 2019 for details).

Vegetation presence is classified using the snow-off lidar. A 1-m grid cell is defined as tree-covered if there is 
any lidar return above 2 m from the bare-earth elevation. If the tree-covered grids have any return between 0.15 
and 2 m, those grids are classified as tree-covered with low branches. The latter grid cells are removed from the 
analysis (about 41% on average from all domains) because low branches can be confused with the snow surface 
during the snow-on flights (Kostadinov et al., 2019). Grid cells with all returns between −0.3 and 0.15 m from 
the 1-m DTM are classified as ‘open’. If a tree-covered grid cell has snow-on returns with elevation between 0.15 
and 2 m above the 1-m DTM, it is classified as snow-covered. In contrast, if a return's elevation is between −0.30 
and 0.15 m from the 1-m DTM, the grid cell is classified as snow-free. More details are presented in Kostadinov 
et al. (2019). fSCAcanopy is calculated on 100-m basis by dividing the number of vegetated snow-covered grid 
cells by the total number of tree-covered grid cells with sufficient lidar returns. fSCAopen is calculated on a 100-m 
pixel-basis by dividing the number of ‘open’ (i.e., non-vegetated) snow-covered grid cells by the total number of 
open grid cells with sufficient lidar returns.

Vegetation density is calculated for each 1-m pixel by dividing the number of returns that hit the canopy (i.e., 
height >2 m) by the number of total returns in each 1-m grid cell (Broxton et al., 2015) using the snow-off lidar. 
If the vegetation density (VD) is < 0.4 the pixel is classified as a low vegetation density (lowVD) and if VD > 0.6, 
it is classified as high density (highVD). In this simple approach, we exclude grid cells with moderate vegetation 
density from 0.4 - 0.6 to determine the effects of low and high vegetation density end-members on SDD.

3.2.  Topographic Classification

We calculate the northness index (Amatull et al., 2018) from the 1-m DTM to investigate the impact of aspect 
and slope on fSCA:

Northness = cos(aspect) × sin(slope)�

where slope and aspect are in radians, and aspect is measured clockwise from true north. Northness varies from 
+1 on north-facing terrain with steep slopes of 90° to −1 on south-facing terrain with slopes of 90°, and it is 0 for 
flat terrain (and also for east and west-facing terrain of any slope). Grid cells are classified as “south-facing” if 
Northness < −0.1, “east-facing, west-facing and flat” if −0.1 < Northness <0.1, and “north-facing” if Northness 
>0.1.
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Each domain is binned into 10 elevation bands to study the effect of elevation on fSCAopen and fSCAcanopy. Lapse 
rates for air temperature and precipitation at each site are developed using observed mean daily air temperature 
and precipitation from local weather stations between December 1st and the date of the flights (Table 1). Our 
lapse rate-based method did not consider explicitly cold air drainage or temperature inversion in our analysis. 
These site-specific lapse rates are used to estimate average December-January-February air temperature (TDJF) for 
the elevation bands (hereafter referred as TDJF bands) at each site.

3.3.  Snow Retention Metrics

A random sample of 100 grid cells within each site and TDJF band are collected to determine statistical differenc-
es between fSCAopen and fSCAcanopy. This random sub-sampling is repeated 100 times to reduce random error. 
fSCAopen and fSCAcanopy are calculated from the average of the 100 sub-samples. The non-parametric Wilcoxon 
signed-rank test at a 5% significance level is conducted to examine whether fSCAopen and fSCAcanopy are statisti-
cally different. The p-values from the 100 random samples are averaged to estimate if the under canopy and open 
fSCA are statistically different.

3.4.  Random Forest Modeling to Analyze Vegetation and Climate Impacts on fSCA

A random forest model (RFM) is used to help infer the process controls causing differences between fSCAopen 
and fSCAcanopy in ways that prior graphical and statistical analysis (Section  3.3) could not. For example, the 
previous statistical analysis relies on binning all predictor variables (e.g., northness >0.1 and <-0.1) and not 
treating them as the continuous variables they typically are, nor does it consider interactions between predictor 
variables. Rather than use topographic variables that may not be directly comparable across sites with different 
climates and latitudes, we focus on the above-canopy winter incoming SWR and LWR, precipitation, and air 
temperature, specifically, that are directly causal variables and that are thus more comparable across sites. The 
RFM utilizes an ensemble of regression trees to build a predictive model based on a series of predictors and the 
response variable fSCAopen–fSCAcanopy. The number of trees in our RFM is limited to 200, as a higher number 
of trees does not change the accuracy of results (Cawley & Talbot, 2010). We randomly select 70% of our data 
to train the model and the remaining 30% data for verification. We applied a 10-fold cross-validation procedure 
to decrease the bias in the selection of the training and verification data, which is commonly used to avoid RFM 
overfitting (Cawley & Talbot, 2010). The RFM is also used to rank predictors' importance. We classified the 100-
m grid cells into four bins within each site, with a roughly equal number of grid cells for each flight: fSCA < 0.3, 
0.3 ≤ fSCA < 0.55, 0.55 ≤ fSCA < 0.8 and 0.8 ≤ fSCA (fSCA > 0.99 and fSCA < 0.01 are excluded to reduce 
outlier effects). The fSCA binning (using the total fSCA of the 100 m pixel) helped to group areas with similar 
incoming precipitation that are at similar points in their ablation season (i.e., elevation). In this way, we could try 
to understand how factors such as radiation and vegetation density control differences in snow retention between 
open and under canopy areas by minimizing differences in above canopy precipitation. A skilled model would 
suggest that fSCAopen–fSCAcanopy differences can be explained by local climate and vegetation structure and their 
interactions. We used the trained RFM to predict how fSCAopen–fSCAcanopy varies with vegetation density in high 
and low radiation environments at 100-m resolution.

The RFM allows non-linear interactions among variables, potentially elucidating controls on under-canopy and 
open areas energy and mass fluxes. The average winter air temperature and precipitation of each 1-m grid cell 
are calculated using lapse rate equations in Table  1 and then averaged to the 100-m scale. Hourly incoming 
SWR and LWR at the top of the canopy are calculated using the pre-processing toolbox of the Snow Physics and 
Lidar Mapping model (SnowPALM; Broxton et al. [2015]) at 1-m spatial resolution. SnowPALM downscales 
hourly incoming SWR from phase-2 of the North American Land Data Assimilation System (NLDAS-2; Xia 
et al. [2012]) using the methods of Kumar et al. (2010) that corrects for terrain shadowing. Although this ap-
proach does not correct potential biases in NLDAS-2 radiation fluxes, it provides adequate incoming radiation 
fluxes for snow modeling over complex terrain (Broxton et al., 2015; Krogh et al., 2020). Incoming SWR and 
LWR are averaged to daily 100-m grid cells from December 1st to the date of each flight.

The mean absolute error (MAE) metric is used to evaluate the accuracy of the RFM's predictions:
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MAE =
∑𝑛𝑛

𝑖𝑖=0 |𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖|
𝑛𝑛

� (1)

where xi is the observed [fSCAopen–fSCACanopy], yi is the modeled [fSCAopen–fSCACanopy] and 𝐴𝐴 𝐴𝐴 is the number of 
the 100-m grid cells.

4.  Results
4.1.  Limited Ground-Based Differences Between Open and Under Canopy SDD

Ground-based observations from ultrasonic snow depths and DTS data show that snow generally lasts longer 
under canopy at the colder Jemez and Boulder sites by a few days to a week, but not in the warm and dry years 
at Jemez (2006) and Boulder (2007, 2010). Open and under canopy SDD is approximately two months later at 
Boulder than at Jemez (Figure 2).

In contrast, SDD is on average 5 and 7 days later in the open than under canopy at the warmer Sagehen and Kings, 
respectively. SDD happens about 41 days earlier at Sagehen than at Kings. It is worth noting that these sites are 
all effectively flat (see Harpold, Marshall, et al., 2014) and that the vegetation structure above the under-canopy 
sensors is only characterized as open or under canopy.

4.2.  Ground-Based Relationships Between fSCA and SDD at Sagehen via DTS Observations

Because our lidar-based tool is developed to measure fSCA over large spatial extents, rather than SDD from a 
point location, we are interested in exploring the relationships between SDD and fSCA at Sagehen Creek. There 

Figure 2.  Snow disappearance day (SDD) under canopy and in the open at Sagehen (a), Kings (b), Jemez (c), and Boulder 
(d) sites in different years. We used snow depth observations from the ultrasonic sensors (number of sensors show on each 
bar) at Boulder, Jemez, and Kings, and distributed temperature sensing data at Sagehen to determine under canopy and 
open SDD. The boxes represent the 25th and 75th percentile and the whiskers are the minimum and maximum. The number 
(‘num’) above each boxplot represents the number of available points used to compute the statistics.
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is a bounded relationship between fSCA and SDD, where multiple SDD can occur for the same fSCA, that is 
underlain by a physical relationship predicated on snow disappearing when fSCA declines. We estimate fSCA 
from the DTS at each 10 m using 40 snow presence/absence measurements spaced 25 cm for every day during 
one ablation season in 2016. Our initial goal was to develop a sigmoidal relationship for multiple days during 
the ablation season, but we could not find statistically robust relationships. However, individual days did show 
fSCA and SDD relationships at Sagehen. For example, on 17 April 2016, the fitted sigmoidal relationship is 
robust (R2 = 0.76, not shown). During this time fSCA ranges from 0 to 1 over the ∼1,500 m DTS length, which 
corresponds to a range of SDD from about 90 to 140 days averaged for the roughly 37,500 observations. The cor-
relation of the fSCA and SDD relationships is weaker in March and May 2016. The weakness of the relationship 
could result from snow disappearance or reappearance along the cable (see Kostadinov et al., 2019) or different 
amounts of precipitation and its timing. For example, if areas receive more (or later) snowfall they will melt later 
and have greater fSCA than areas that receive more precipitation. The scatter in the relationship could also arise 
from different open and under canopy environments, that is, differences in vegetation density in under canopy en-
vironments, that were not considered in this analysis. Although these results are used sparingly through the paper, 
because of the DTS cable only being available at a single site and the lack of robust statistical relations, they are 
meant to provide the context in the range of SDD that can be inferred from lidar-derived fSCA. The weakness of 
these relationships suggests that future efforts should refine this analysis.

4.3.  Topographic Controls on Snow Retention

fSCAopen and fSCAcanopy in each TDJF band indicate that fSCA is generally higher when TDJF is colder (i.e., eleva-
tion increases) at all sites (Figure 3). fSCAopen is higher than fSCAcanopy at TDJF bands between −5 and +2°C at all 
sites. fSCAcanopy is significantly higher at open areas at the colder Boulder site in TDJF bands < -7°C (Figure 3f). 
At Jemez, there are not large differences between fSCAopen and fSCAcanopy in TDJF bands < −5°C because fSCA 
is close to 1. Conversely, fSCAopen is significantly higher than fSCAcanopy (Figure 3e) for TDJF bands > -5.5°C at 
Jemez. At the warmer Sagehen and Kings sites, fSCAopen is generally larger than fSCAcanopy. However, in warmer 
TDJF bands of Kings (TDJF > +2°C) where fSCA is < 0.4 and the ablation season is nearly over, fSCAcanopy is high-
er than fSCAopen (Figure 3d). There are little differences (mostly insignificant) between fSCAopen and fSCAcanopy 
at Sagehen on 26 March 2016, in the colder TDJF bands (TDJF < −1.8°C) because fSCA is close to 1 (Figure 3a). 

Figure 3.  fSCAopen and fSCAcanopy in each TDJF band for lidar flights over Sagehen on 26 March, 17 April, and 18 May 2016 
(a, b, c), Kings in March 2010 (d), Jemez in April 2010 (e), and Boulder in May 2010 (f). “+” signs in all panels represent 
statistically different fSCAopen and fSCAcanopy, based on Wilcoxon signed-rank test. Note that the range in the x-axis is 
different for each site.
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As snowmelt progresses into April and May at Sagehen, fSCA declines and it becomes significantly greater in 
the open than under canopy in all but the coldest bands (TDJF < −2°C).

We define fSCAcanopy bias as [fSCAopen–fSCAcanopy]/fSCAopen, such that values less than 1.0 have more snow 
under canopy and values over 1.0 have more snow in the open. Generally, south-facing slopes show greater dif-
ferences between fSCAopen and fSCAcanopy than north-facing slopes, with the exception of the lower elevations of 
Jemez and Boulder and the May 2016 flight at Sagehen. At the coldest Boulder site and in the coldest TDJF bands 
(TDJF < −9°C) fSCAopen is higher than fSCAcanopy on south-facing slopes (Figure 4f). Conversely, north-facing 
slopes in colder bands (TDJF < −8°C) at Boulder have higher fSCAcanopy than fSCAopen (except for the coldest 
TDFJ band). In warmer TDJF bands at Boulder (TDJF > −7.5°C), fSCAopen is higher than fSCAcanopy on north-facing 
slopes (except for the warmest TDFJ bands), but the opposite is true on south-facing slopes (Figure 4f). Warmer 
TDJF bands at Jemez act similar to warmer parts of Boulder, where fSCAopen is higher than fSCAcanopy on north-fac-
ing slopes and vice versa for south-facing slopes (Figure 4e). In Kings, fSCAopen is higher than fSCAcanopy in cold-
er TDJF bands but reverses in warmer TDJF bands across north and south-facing slopes (Figure 4d). At Sagehen, 
fSCAopen is higher than fSCAcanopy on both north- and south-facing slopes for most warmer bands (TDJF > −2 C) 
during all flights (Figures 4a and 4b). In general, differences between fSCAopen and fSCAcanopy accentuate at lower 
elevations (i.e., warmer) within sites; however, this also reveals that fSCAcanopy bias is not exhaustively explained 
by air temperature across varying topography and parts of the ablation season in the case of Sagehen.

4.4.  Forest Structure and Energy and Mass Budget Controls on Snow Retention

4.4.1.  Vegetation Controls on Snow Retention Over Topographic Gradients

In general, fSCA is the highest under lowVD on north-facing slopes, except at low elevations in Kings. On the 
contrary, fSCA is the lowest under highVD on south-facing slopes, with the exception of low elevations at Kings 
(Figure 5). Generally, fSCAcanopy is higher under lowVD compared to highVD (Figure 6) on both north- and 
south-facing slopes, except in Jemez. Over colder TDJF bands (TDJF < −6.5°C for Boulder, and TDJF < −4.5°C for 
Jemez), this pattern is clear. However, in warmer TDJF bands at Boulder and Jemez, fSCA is higher under highVD 
for both south- and north-facing slopes (Figures 4e and 5f). At the warmest TDJF bands at Kings site (>2°C) fSCA 
is highest under highVD in south-facing slopes and lowest under lowVD in north-facing slopes (Figure 5d). At 
Sagehen over all TDJF bands, there is a large difference between fSCA on south- and north-facing slopes under 
both lowVD and highVD (Figures 5a, 5b and 5c) that increases in warmer months and warmer TDJF bands. fSCA 

Figure 4.  fSCAcanopy bias ([fSCAopen–fSCAcanopy]/fSCAopen) for south-facing and north-facing slopes over different TDJF bands 
for each lidar flight over Sagehen on 26 March, 17 April, and 18 May 2016 (a, b, c); Kings in March 2010 (d); Jemez in April 
2010 (e); and Boulder in May 2010 (f). Positive numbers of fSCAcanopy bias indicate higher fSCAopen and negative indicate 
higher fSCAcanopy. “+” signs indicate a statistically significant difference between south- and north-facing fSCAcanopy bias.
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is highest in north-facing slopes under lowVD and lowest in south-facing slopes under highVD at Sagehen, and 
colder TDJF bands at Kings (TDJF < 1.5°C) and Boulder (TDJF < −7°C). Although the analysis behind Figure 5 is 
powerful, it is subject to an inability to compare between open areas (VD = 0) because that would require 100 m2 
open areas that are rare in these forested locations. This analysis is also dependent on the distribution of forest 
structure metrics across variable topography (i.e., elevation, slope, and aspect) that differs across sites.

4.4.2.  Co-variation Between Vegetation and Topography

The hypsometry (i.e., distribution of site area across elevation) and co-variation between vegetation and topog-
raphy affect differences between fSCAopen and fSCAcanopy across and within sites. The hypsometry varies among 
sites, with a bias to more relatively low elevation area in Sagehen and Jemez to more relatively high elevation 
area in Kings and Boulder. The effects of elevation and aspect on vegetation structure are shown in Figure 6, with 
more area of high vegetation density at a higher elevation at Kings and lower vegetation density at the higher 
elevations of Sagehen and Boulder. The analysis in Figure 6 does not include “east-facing, west-facing, or flat” 
pixels with northness <0.1 and > −0.1 nor medium vegetation density pixels with VD > 0.4 and < 0.6, which is 
the reason the values do not sum to 100%. The differences in topography between sites, and their interactions and 
control on vegetation structure, limit the utility of binned statistical comparisons done in Section 4.3 and supports 
the need for a more sophisticated statistical analysis.

4.4.3.  Vegetation Controls on Snow Retention in Different Mass and Energy Environments

We develop site-specific RFM to predict fSCAopen–fSCAcanopy using mass (i.e., precipitation) and energy (i.e., 
SWR and LWR) predictor variables that account for the continuous nature of the predictors and the underlying 
spatial correlation between predictor variables. fSCAopen–fSCAcanopy is calculated within each 100-m grid cell 
using all available 1-m pixels. The RFM was able to reasonably calibrate and test predictive models with average 
RFM MAEs for Sagehen on 26 March, 17 April, and 18 May 2016, Kings, Jemez, and Boulder of 0.07, 0.06, 0.05, 
0.12, 0.10, and 0.11 (fSCA is dimensionless), respectively. The consistency of the relationships across four fSCA 
bins helps determine the predictive power of the random forest in different areas with differing precipitation and 
ablation (Figure 7). In general, vegetation density is the most important predictor variable in the RFM at the 
colder sites (Figure 7) and the role of vegetation density lessens (and micro-climate increases) at lower fSCA at 

Figure 5.  fSCAcanopy for south- and north-facing slopes with low and high vegetation density (low vegetation density [VD] and highVD, respectively) across TDJF bands 
for each lidar flight over Sagehen in 26 March, 17 April, and 18 May 2016 (a, b, c), Kings in March 2010 (d), Jemez in April 2010 (e), and Boulder in May 2010 (f).
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most sites. The importance of precipitation and temperature is largest in the lowest fSCA bins, with mixed effects 
at Sagehen (Figure 7).

5.  Discussion
Leveraging a new method by Kostadinov et al. (2019) applied over multiple snow-on airborne lidar flights al-
lows new insights into the causes of differential snow retention in open versus under canopy areas. Our site 
with the smallest lidar dataset has 2.6 million 1-m2 grid cells (Kings), compared to the typically small sample 
size of around ∼5–10 ground-based sensors per site at a single flat location depending on the year (Figure 2). 
Lidar surveys have an obvious advantage for accurate determination of snow presence or absence over large and 
heterogeneous spatial extents, though only providing a snapshot in time. Ground-based observations provide a 
continuous time-series over a much smaller domain, but they are impractical for observing snow presence at high 
spatial resolution across gradients of vegetation density and topography. A large number of lidar returns provide 
statistical power and decrease uncertainty that could otherwise overwhelm a small sample of ground-based obser-
vations, especially when the effects of topography or forest structure are considered. This study uses a unique set 
of snow-on flights in forested terrain in the western U.S., but as the availability of snow-on lidar datasets increases 
(Deems et al., 2013; Painter et al., 2016), the method proposed by Kostadinov et al. (2019) can be expanded and 
better adapted to different collection timing.

A fundamental challenge to lidar flights is that different elevations are at different stages of their (accumulation 
or) ablation season. For the purposes of fSCA analysis like those done here, flights prior to the ablation season, 
especially when fSCA = 1, are less useful. Multi-temporal snow-on lidar datasets, like the Sagehen ASO flights 

Figure 6.  Percentage of area with south facing and north facing slopes, and low and high vegetation density over different 
elevation bands within each site: Sagehen 2016 (a); Kings 2010 (b); Jemez 2010 (c); and Boulder 2010 (d).
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(Painter et al., 2016), should be applied in a way that tracks groups of pixels with similar precipitation to deter-
mine relative fSCA changes (rather than only fSCA magnitudes as done here). Due to the collection timing issues, 
the conflation of accumulation and ablation effects on snow disappearance make statistical analysis challenging. 
We attempted to account for this by grouping areas based on elevation (air temperature by proxy), which is the 
principal control on precipitation at smaller scales like these. Additionally, we compare fSCAopen and fSCAcanopy 
directly within 100-m pixels to reduce these types of biases in the RFM modeling. However, the RFM did not 
produce clear conclusions across fSCA bins and had relatively high MAE, but did highlight the role of vegeta-
tion density (Figure 7). These RFM results highlight the inadequacy of using simple vegetation metrics like low 
and high density. Moreover, we treated 1-m pixels as either canopy or no canopy, which does not include infor-
mation about canopy gap sizes and edges that could inform additional analyses (Broxton et al., 2015; Mazzotti 
et al., 2020; C. D. Moeser et al., 2020). Future analysis might include information about gap size and edginess and 
the south- and north-facing nature of those edges with respect to terrain shading, similar to Moeser et al. (2020). 
Detection of snow surface versus low canopy branches is another fundamental challenge in the dense canopy or 
deep snowpack unless the method or datasets are improved. For example, better methods to resolve the ground 
surface, by use of single- or multi-band lidar reflectance information or perhaps by use of full-waveform lidar, 
may be necessary to resolve this methodological issue. To illustrate this low-branch limitation, in some cases we 
had to discard >50% of the under canopy 1-m grid cells to reduce uncertainty. The challenges of finding clear 

Figure 7.  Importance of five predictors: vegetation density, average incoming shortwave, and longwave radiation, total 
precipitation (P), and average air temperature (T), from December 1st to the day of lidar overflights for predicting [fSCAopen–
fSCAcanopy] in 100-m fractional snow cover area bins (including open and under canopy) of fSCA < 0.3, 0.3 ≤ fSCA < 0.55, 
0.55 ≤ fSCA < 0.8 and 0.8 ≤ fSCA for each lidar flight: Sagehen on 26 March, 17 April, and 18 May 2016 (a, b, c), Kings in 
March 2010 (d), Jemez in April 2010 (e), and Boulder in May 2010 (f).
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fSCA and SDD relationships over a small area in Sagehen suggest that assumptions of even snowfall inputs or 
a lack of more representative vegetation metrics, like canopy density and edge information. Explicitly linking 
fSCA to SDD would provide definitive timing information but would require ground-based snow disappearance 
measurements over elevation gradients and representative open and under canopy locations (Dickerson-Lange, 
Lutz, Gersonde et al., 2015; Dickerson-Lange, Lutz, Martin, et al., 2015; Lundquist et al., 2013).

Our findings suggest that local topography and vegetation structure can both increase and lessen climatic con-
trols, such as the air temperature threshold proposed by Lundquist et  al.,  2013, in open versus under-canopy 
snow retention. Despite relationships between air temperature and snowpack energy fluxes (Ohmura, 2001) and 
tradeoffs between SWR and LWR (Lundquist et al., 2013), differences between open and under canopy fSCA are 
not well predicted by thresholds in TDJF alone (Figures 4, 5 and 7). Instead, we expect a more complete analysis 
of energy budgets and differences in an interception and wind-caused redistribution need to be considered to 
improve simpler models and expand our process understanding. For example, our findings suggest that aspect 
can accentuate the effects of climate: north-facing slopes act to lengthen snow retention under canopy relative 
to open at the colder sites, while south-facing slopes promote longer snow retention in open areas at warmer 
sites relative to under canopy. However, these results are not consistent across elevation (Figures 4 and 5). Lun-
dquist et al.  (2013) suggest that LWR enhancement by canopy temperatures warmer than the air temperature 
is possible, which is consistent with less fSCAcanopy in both north- and south-facing slopes at warm sites (Todt 
et al., 2018; Webster et al., 2017). Based on enhanced under canopy ablation at warmer sites, we infer that the 
relative importance of LWR to net radiation (and ablation) is greater on north-facing slopes than south facing 
slopes (Lopez-Moreno et al., 2017; Malle et al., 2019; Maxwell et al., 2019; Musselman et al., 2012; Strasser 
et al., 2011). However, at colder sites, the combination of lower interception efficiency and greater dominance 
of SWR to snowpack ablation (Lundquist et al., 2013) likely led to higher fSCAcanopy than fSCAopen. The wind is 
more likely to scour open areas at colder sites with colder snowfall, and have higher scour in lower vegetation 
density that can potentially redistribute snow under canopy (Erickson et al., 2005). These wind effects may ex-
plain longer under canopy snow retention on north-facing slopes at the windy Boulder site (Tennant et al., 2017; 
Toendle and Leaf, 1980). As expected, locations with denser trees in the same climate generally lead to less fSCA 
compared to lower vegetation density (Figures 6 and 7). However, this relationship was less consistent at the end 
of the ablation season (low fSCA values) when fSCAcanopy under dense vegetation could be higher than under 
less dense vegetation at the Jemez and Kings site. Together the challenges in the RFM modeling and developing 
simple fSCA-SDD relationships suggest that a more comprehensive treatment of areas with differing vegetation 
density, and open edge environments, is needed to better constrain the prediction of fSCA and SDD.

We make an attempt to refine the existing air temperature-based framework to predict differential snow disap-
pearance between open and under canopy areas (Lundquist et al., 2013) by including canopy, terrain, and climate 
(Figure 8). Using a gradient of elevation information, rather than multiple plot locations, we estimate a colder 
TDJF threshold for warm sites of −4.5°C as compared to Lundquist et al. (2013) that found a −1°C classification 
(although both are admittedly best estimates). Under canopy snow retention at the colder sites is longer relative 
to open areas on north-facing slopes, especially when overhead vegetation density is low. Conversely, at warmer, 
south-facing sites, snow retention in open areas is longer relative to areas under forest canopy especially if the 
vegetation density is high (Figure 8). Conversely, north-facing low vegetation density areas at warm sites have 
more similar snow disappear between open and under the canopy, behaving more like a colder environment with 
higher importance of SWR. Our new framework is meant to be testable hypotheses based on information from 
four mid-latitude sites that should be viewed with its many limitations previously described.

A lidar-based framework that explains differential snow disappearance in open and under canopy areas has prac-
tical management implications for our sites but will need further refinement and expansion. Forest management 
actions designed to retain snow, like tree removal and prescribed fire, have a long history (Alexander et al., 1985; 
Golding & Swanson, 1986; Varhola et al., 2010). However, our insights allow more spatially explicit management 
strategies that account for the natural variability of climate and forest structure in complex topography (Figure 5) 
that can be reconciled with other management goals, such as wildfire mitigation and wildlife habitat. For exam-
ple, thinning or gap-cutting should generally decrease LWR and snow interception, which has been shown to 
increase snow accumulation and melt volumes in recent fine scale modeling results in the Sierra Nevada (Krogh 
et al., 2020). Thus, canopy removal could potentially help retain snowpack in warmer and denser canopy areas 
of Sagehen and Kings. Similarly, lower elevations of colder north-facing slopes (e.g., Boulder) may experience 
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some benefits of tree removal if the existing forests are dense. However, south-facing slopes at colder sites may 
see earlier snow disappearance if canopy density is reduced too much. Reductions in canopy density below 40% 
should probably be avoided at higher, windier elevations of Boulder and all but the most north-facing aspects of 
Jemez. These results could help explain a lack of snowpack response to tree removal in the Rocky Mountains in 
previous studies of insect-caused tree mortality (Biederman et al., 2014) and fire-caused canopy loss (Harpold, 
Biedermann, et al., 2014). However, our simplistic treatment of vegetation neglects several important controls: (a) 
differences in species and growth limitations, (b) different inter- and intra-site disturbance history, and (c) fine-
scale canopy structure and gaps. Our simple treatment of canopy density cannot adequately capture differences 
in interception efficiency across conifer species (Huerta et al., 2019; Roth & Nolin, 2019). The co-variation of 
tree species with elevation (and aspect) may limit the utility of the RFM because the overall distribution of for-
est canopy (Figure 5) is not accounted for in our approach. For example, differences in forest structure between 
north- and south-facing tree species, may be a driver of the differences in fSCA we observe. Aspect and slope 
also feedback into the forest disturbance history like fire severity and return frequency (Pelletier et al., 2017). 

Figure 8.  Empirical framework indicating the impact of topography and vegetation structure across different climates on snow disappearance in open and under canopy 
areas.
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Improvements in the lidar analysis techniques could be combined with high-resolution, process-based snowpack 
energy budget models (Broxton et al., 2015; Mazzotti et al., 2020) to increase the predictive power of post-forest 
disturbance hydrologic modeling. Ultimately, an explicit energy and mass balance modeling (ideally based on 
ground-based and remote measurements) is likely needed to develop a mechanistic and predictive understanding 
of differential snow disappearance at the scale of management decisions.

6.  Conclusions
Changing the forest canopy is one of the few ways that forest and water resource managers can control snow 
retention and mitigate the negative consequences of climate change on water availability and wildfire regime. Cli-
mate change may dramatically alter snowpack in warm areas with dense vegetation that has the highest potential 
for canopy removal to lengthen snow retention. Colder areas (like Jemez and Boulder) could act more like histori-
cally warm areas (like Sagehen and Kings), which may lead to longer snow retention in open areas as interception 
efficiency and net longwave radiation increase. Our empirical framework helps predict the effects of forest distur-
bance and climate (change) on snow-vegetation interactions across complex terrain, but much remains to be done 
to expand to other sites and better account for methodological limitations. In particular, better connecting fSCA 
to SDD by including a more refined treatment of vegetation canopy could improve our lidar-based methods. 
Given the few available ways to monitor under canopy snow disappearance in montane forests, we believe that 
lidar-derived inferences should continue to be refined as an important tool for improving snow and hydrological 
models. In particular, lidar measurements at small spatial scales over large extent pair well with decision support 
tools (i.e., Figure 8) that are desperately needed to support active forest management.

Data Availability Statement
All snow-on and snow-off lidar datasets for Jemez, Boulder and Kings and snow-off lidar dataset for Sagehen are 
freely available from https://portal.opentopography.org/datasets public data servers. The fSCA products and the 
ASO snow-on lidar datasets are available upon request to the authors (and will soon be made public).
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