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ABSTRACT. We show that normalized Schur polynomials are strongly log-concave. As a
consequence, we obtain Okounkov’s log-concavity conjecture for Littlewood–Richardson
coefficients in the special case of Kostka numbers.

1. INTRODUCTION

Schur polynomials are the characters of finite-dimensional irreducible polynomial
representations of the general linear group GLmpCq. Combinatorially, the Schur polyno-
mial of a partition λ in m variables is the generating function

sλpx1, . . . , xmq �
¸
T

xµpTq, xµpTq � x
µ1pTq
1 � � �xµmpTq

m ,

where the sum is over all Young tableaux T of shape λ with entries from rms, and

µipTq � the number of i’s among the entries of T, for i � 1, . . . ,m.

Collecting Young tableaux of the same weight together, we get

sλpx1, . . . , xmq �
¸
µ

Kλµx
µ,

where Kλµ is the Kostka number counting Young tableaux of given shape λ and weight
µ [Kos82]. Correspondingly, the Schur module Vpλq, an irreducible representation of the
general linear group with highest weight λ, has the weight space decomposition

Vpλq �
à
µ

Vpλqµ with dimVpλqµ � Kλµ.
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Schur polynomials were first studied by Cauchy [Cau15], who defined them as ratios
of alternants. The connection to the representation theory of GLmpCq was found by
Schur [Sch01]. For a gentle introduction to these remarkable polynomials, and for all
undefined terms, we refer to [Ful97].

We prove several log-concavity properties of Schur polynomials. An operator that
turns generating functions into exponential generating functions will play an important
role. This linear operator, denoted N, is defined by the condition

Npxµq �
xµ

µ!
�

xµ1
1

µ1!
� � �

xµm
m

µm!
for all µ P Nm.

Recall that a partition is a weakly decreasing sequence of nonnegative integers.

Theorem 1 (Continuous). For any partition λ, the normalized Schur polynomial

Npsλpx1, . . . , xmqq �
¸
µ

Kλµ
xµ

µ!

is either identically zero or its logarithm is concave on the positive orthant Rm
¡0.

Let ei be the i-th standard unit vector in Nm. For µ P Zm and distinct i, j P rms, we
set

µpi, jq � µ� ei � ej .

We show that the sequence of weight multiplicities of Vpλq we encounter is always
log-concave if we walk in the weight diagram along any root direction ei � ej .

Theorem 2 (Discrete). For any partition λ and any µ P Nm, we have

K2
λµ ¥ Kλµpi,jqKλµpj,iq for any i, j P rms.

For partitions ν, κ, λ, the Littlewood–Richardson coefficient cνκλ is given by the decom-
position

Vpκq bVpλq �
à
ν

Vpνq`cνκλ .

When the skew shape ν{κ has at most one box in each column, cνκλ is the Kostka number
Kλµ, where µ � ν � κ. This equality follows from Pieri’s formula

hµ1px1, . . . , xmq � � �hµmpx1, . . . , xmq �
¸
λ

Kλµsλpx1, . . . , xmq,

where hµi is the µi-th complete symmetric function [Ful97, Section 6.1]. When ν{κ has
at most one box in each column, the left-hand side is the skew Schur function sν{κ, given
by the Littlewood–Richardson rule

sν{κpx1, . . . , xmq �
¸
λ

cνκλsλpx1, . . . , xmq.
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Conversely, for any partition λ and any µ, we have

Kλµ � cνκλ,

where ν and κ are the partitions given by νi �
°n

j�i µj and κi �
°n

j�i�1 µj . Thus
Theorem 2 verifies a special case of Okounkov’s conjecture that the discrete function

pν, κ, λq ÞÝÑ log cνκλ

is concave [Oko03, Conjecture 1]. The conjecture holds in the “classical limit” [Oko03,
Section 3], but the general case is refuted in [CDW07]:

c
p4n,3n,2n,1nq
p3n,2n,1nqp2n,1n,1nq �

�
n� 2

2



and c

p8n,6n,4n,2nq
p6n,4n,2nqp4n,2n,2nq �

�
n� 5

5



for all n.

The same example shows that the log-concavity conjecture for parabolic Kostka numbers
[Kir04, Conjecture 6.17] also fails.

We point out that, for any fixed λ, the log-concavity of Kλµ along any direction is
known to hold asymptotically. By [Hec82], the Duistermaat–Heckman measure obtained
from the orbit of λ under SUm is a translate of the weak limit

lim
kÑ8

°
µKkλµδ 1

k
µ°

µKkλµ
,

where δ 1
k
µ is the point mass at 1

kµ. It follows from [Gra96] that, in this case, the density
function of the Duistermaat–Heckman measure is log-concave. We refer to [BGR04,
Section 3] for an exposition.

In [BH20], the authors introduce Lorentzian polynomials as a generalization of vol-
ume polynomials in algebraic geometry and stable polynomials in optimization theory.
See Section 2 for a brief introduction. We show that normalized Schur polynomials are
Lorentzian in the sense of [BH20], and deduce Theorems 1 and 2 from the Lorentzian
property.

Theorem 3. The normalized Schur polynomial Npsλpx1, . . . , xmqq is Lorentzian for any
λ.

Using general properties of Lorentzian polynomials [BH20, Section 6], Theorem 3 can
be strengthened as follows.

Corollary 4. For any sequence of partitions λ1, . . . , λℓ and any positive integers m1, . . . ,mℓ,

(1) the normalized product of Schur polynomials Np
±ℓ

k�1 sλkpx1, . . . , xmk
qq is Lorentzian,

and

(2) the product of normalized Schur polynomials
±ℓ

k�1Npsλkpx1, . . . , xmk
qq is Lorentzian.
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We prove Theorem 3 in Section 2 in a more general context of Schubert polynomials,
but the main idea is simple enough to be outlined here. Recall that a Cartier divisor on a
complete variety Y is nef if it intersects every curve in Y nonnegatively (see [Laz04] for
an introduction). The volume polynomial of an irreducible complex projective variety Y ,
with respect to a sequence of nef divisor classes H � pH1, . . . ,Hmq, is the homogeneous
polynomial

volY,Hpx1, . . . , xmq �
1

dimY !

»
Y
px1H1 � � � � � xmHmq

dimY ,

where the intersection product of Y is used to expand the integrand. Volume polyno-
mials are prototypical examples of Lorentzian polynomials [BH20, Section 10]. To show
that the normalized Schur polynomial of λ is a volume polynomial, we suppose that
the partition λ has m parts, and choose a large integer ℓ to get a complementary pair of
partitions

λ � pλ1, λ2, . . . , λmq and κ � pℓ, ℓ, . . . , ℓq � pλm, λm�1, . . . , λ1q.

It is easy to check that the dual of the Schur module Vpλq has highest weight p�λm, . . . ,�λ1q,
see [FH91, Exercise 15.50]. Hence, the Schur polynomials of the partitions λ and κ are
related by the identity

sκpx1, . . . , xmq � xℓ1 � � �x
ℓ
msλpx

�1
1 , . . . , x�1

m q.

Let X be the product of projective spaces pPℓqm, and let Y be a subvariety of X whose
fundamental class satisfies

rY s � sκpH1, . . . ,Hmq X rXs, Hi � c1pπ
�
i Op1qq,

where πi is the i-th projection. The volume polynomial of Y with respect to H is

volY,Hpx1, . . . , xmq �
1

dimY !

»
Y
px1H1 � � � � � xnHmq

dimY

�
1

dimY !

»
X
sκpH1, . . . ,Hmqpx1H1 � � � � � xmHmq

dimY � Npsλpx1, . . . , xmqq.

Such Y can be constructed from a sequence of generic global sections
Àm

i�1 π
�
i Op1q as a

degeneracy locus [Ful98, Example 14.3.2], completing the argument.

In Section 2, we introduce Lorentzian polynomials and prove the main results. In
Section 3, we present evidence for the ubiquity of Lorentzian polynomials through a
series of results and conjectures.
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2. NORMALIZED SCHUR POLYNOMIALS ARE LORENTZIAN

A subset J � Zn is M-convex if, for any index i P rns and any α P J and β P J whose
i-th coordinates satisfy αi ¡ βi, there is an index j P rns satisfying

αj   βj and α� ei � ej P J and β � ej � ei P J.

The notion of M-convexity forms the foundation of discrete convex analysis [Mur03].
The convex hull of an M-convex set is a generalized permutohedron in the sense of [Pos09],
and conversely, the set of integral points in an integral generalized permutohedron is
an M-convex set [Mur03, Theorem 1.9].

Lorentzian polynomials connect discrete convex analysis with many log-concavity
phenomena in combinatorics. See [AOGV18,ALOGV19,ALOGV18,BES19,BH18,BH20,
EH20] for recent applications. Here we briefly summarize the relevant results, and refer
to [BH20] for details.

We fix integers d and e � d�2. By the support of a polynomial hpx1, . . . , xnq, we mean
the set of monomials appearing in h, viewed as a subset of Nn.

Definition 5. Let hpx1, . . . , xnq be a degree d homogeneous polynomial. We say that h
is strictly Lorentzian if all the coefficients of h are positive and

B

Bxi1
� � �

B

Bxie
h has the signature p�,�, . . . ,�q for any i1, . . . , ie P rns.

We say that h is Lorentzian if it satisfies any one of the following equivalent conditions.

(1) All the coefficients of h are nonnegative, the support of h is M-convex, and

B

Bxi1
� � �

B

Bxie
h has at most one positive eigenvalue for any i1, . . . , ie P rns.

(2) All the coefficients of h are nonnegative and, for any i1, i2, . . . P rns and any positive
k,

the functions h and
B

Bxi1
� � �

B

Bxik
h are either identically zero or log-concave on Rn

¡0.

(3) The polynomial h is a limit of strictly Lorentzian polynomials.
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For example, a bivariate polynomial
°d

k�0 akx
k
1x

d�k
2 with nonnegative coefficients is

Lorentzian if and only if the sequence a0, . . . , ad has no internal zeros and

a2k�
d
k

�2 ¥ ak�1�
d

k�1

� ak�1�
d

k�1

� for all 0   k   d.

Polynomials satisfying the second condition of Definition 5, introduced by Gurvits in
[Gur09], are called strongly log-concave. See [BH20, Section 5] for a proof of the equiva-
lence of the three conditions in Definition 5.

We write Sn for the group of permutations of rns. The Schubert polynomial Swpx1, . . . , xnq

for w P Sn can be defined recursively as follows.

(1) If w � w� is the longest permutation n n� 1 � � � 2 1, then

Swpx1, . . . , xnq � xn�1
1 xn�2

2 � � �x1n�1.

(2) If wpiq ¡ wpi� 1q for some i and si is the adjacent transposition pi i� 1q, then

Swsipx1, . . . , xnq � BiSwpx1, . . . , xnq.

The symbol Bi stands for the i-th divided difference operator defined by the formula

BiSw �
Sw � siSw

xi � xi�1
,

where siSw is the polynomial obtained from Sw by interchanging xi and xi�1. The
divided difference operators satisfy the braid relations, and it follows that the Schubert
polynomials are well-defined [MS05, Exercise 15.3]. For any w P Sn, we define

S_
w � Npxn�1

1 � � �xn�1
n Swpx

�1
1 , . . . , x�1

n qq.

Theorem 6. The polynomial S_
wpx1, . . . , xnq is Lorentzian for any w P Sn.

We conjecture that NpSwpx1, . . . , xnqq is Lorentzian for any w P Sn, see Section 3.2.

Proof. Recall that the volume polynomial of a projective variety Y , with respect to a
sequence of Cartier divisor classes H � pH1, . . . ,Hnq, is the homogeneous polynomial

volY,Hpx1, . . . , xnq �
1

dimY !

»
Y
px1H1 � � � � � xnHnq

dimY .

By [BH20, Theorem 10.1], the volume polynomial is Lorentzian whenever Y is irre-
ducible and H1, . . . ,Hn are nef. We show that S_

w is a volume polynomial for suitable
Y � Yw and H.
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Let X be the product of projective spaces pPn�1qn. We write xi1, xi2, . . . , xin for the
homogeneous coordinates of the i-th projective space, and write πi for the i-th projec-
tion. We consider the map between the rank n vector bundles

Ψ :
nà

i�1

OX ÝÑ
nà

j�1

π�jOp1q, Ψpxq � pxijq1¤i¤n,1¤j¤n.

For p, q P rns, the induced map
Àp

i�1 OX Ñ
Àq

j�1 π
�
jOp1q will be denoted Ψp�q. We set

Y � Yw :�
!
x P X | rank Ψp�qpxq ¤ rank wp�q for all p and q

)
,

where wp�q is the p � q partial permutation matrix with ij-entry 1 for wpiq � j. The
locus Y is defined by all minors of pxijq1¤i¤p,1¤j¤q of size one more than the rank of
wp�q for all p and q.

By [Ful92, Theorem 8.2], the fundamental class of Y in the Chow group of X is given
by

rY s � SwpH1, . . . ,Hnq X rXs, Hi � c1pπ
�
i Op1qq.

An alternative proof of the displayed formula, in a more refined setting, was obtained
in [KM05] through an explicit degeneration of Y . An important point for us is that Y is
irreducible of expected codimension deg Sw [Ful92]. For an elementary proof that the
multi-homogeneous ideal defining Y is prime, see [MS05, Section 16.4]. The volume
polynomial of Y with respect to H � pH1, . . . ,Hnq is

volY,Hpx1, . . . , xnq �
1

dimY !

»
Y
px1H1 � � � � � xnHnq

dimY

�
1

dimY !

»
X
SwpH1, . . . ,Hnqpx1H1 � � � � � xnHnq

dimY � S_
wpx1, . . . , xnq.

The second equality is the projection formula, and the third equality follows from»
X
Hµ �

#
1 if µ � pn� 1, . . . , n� 1q,
0 if µ � pn� 1, . . . , n� 1q.

Now the Lorentzian property of S_
w can be deduced from [BH20, Theorem 10.1]. □

Lemma 7. For any µ P Nn and any polynomial f � fpx1, . . . , xnq,

Npfq is Lorentzian if and only if Npxµfq is Lorentzian.

Proof. If a polynomial gpx1, . . . , xnq is Lorentzian, then so is its partial derivative

Bµg �
� B

Bx1

	µ1

� � �
� B

Bxn

	µn

gpx1, . . . , xnq.

Therefore, the “if” direction follows from the equality of linear operators

Bµ �N � xµ � N.
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The “only if” direction is a special case of [BH20, Corollary 6.8]. □

Proof of Theorem 3. As in the introduction, given a partition λ with m parts, we choose a
large integer ℓ and write κ for the partition complementary to λ in the m� ℓ rectangle.
Choose another large integer n, and let w be the unique element of Sn satisfying

κ �
�
wpmq �m, . . . , wp1q � 1

�
and wpmq ¡ wpm� 1q   wpm� 2q   � � �   wpnq.

The element w is the Grassmannian permutation in Sn with the Lehmer code

Lpwq � pwp1q � 1, . . . , wpmq �m, 0, . . . , 0q � pκm, . . . , κ1, 0, . . . , 0q.

The Schubert polynomial of w satisfies

Swpx1, . . . , xnq � sκpx1, . . . , xmq � xℓ1 � � �x
ℓ
msλpx

�1
1 , . . . , x�1

m q,

where the first equality is [Man01, Proposition 2.6.8] and the second equality is [FH91,
Exercise 15.50]. By Theorem 6, we know that the polynomial S_

w is Lorentzian, which
is equal to

Npxn�1
1 � � �xn�1

n sκpx
�1
1 , . . . , x�1

m qq � Npxµsλpx1, . . . , xmqq for some µ P Nn.

Therefore, by Lemma 7, the Lorentzian property of S_
w implies that of Npsλpx1, . . . , xmqq.

□

Proofs of Theorems 1 and 2. Since any nonzero Lorentzian polynomial is log-concave on
the positive orthant, Theorem 1 follows from Theorem 3. For Theorem 2, we may sup-
pose that

µ1 � � � � � µm � λ1 � � � � � λm ¥ 2 and κ :� µ� ei � ej P Nm.

We consider the quadratic form with at most one positive eigenvalue

Bκ1

Bxκ1
1

� � �
Bκm

Bxκm
m

Npsλpx1, . . . , xmqq,

viewed as an m � m symmetric matrix. Its 2 � 2 principal submatrix corresponding
to i and j is either identically zero or has exactly one positive eigenvalue, by Cauchy’s
interlacing theorem. The nonpositivity of the 2�2 principal minor gives the conclusion

K2
λµ ¥ Kλµpi,jqKλµpj,iq. □

Proof of Corollary 4. The first part follows from Theorem 3 and [BH20, Corollary 6.8].
The second part follows from Theorem 3 and [BH20, Corollary 5.5]. □



LOGARITHMIC CONCAVITY OF SCHUR AND RELATED POLYNOMIALS 9

In general, if h is a Lorentzian polynomial, then its normalization Nphq is a Lorentzian
polynomial [BH20, Corollary 6.7]. We record here that Schur polynomials, before the
normalization, need not be Lorentzian.

Example 8. The Schur polynomial of the partition λ � p2, 0q in two variables is

sλpx1, x2q � x21 � x1x2 � x22.

The quadratic form has eigenvalues 3
2 and 1

2 , and hence sλ is not Lorentzian.

A polynomial fpx1, . . . , xmq is stable if f has no zeros in the product of m open upper
half planes [Wag11]. Homogeneous stable polynomials with nonnegative coefficients
are motivating examples of Lorentzian polynomials [BH20, Proposition 2.2]. We record
here that normalized Schur polynomials, although Lorentzian, need not be stable.

Example 9. The normalized Schur polynomial of λ � p3, 1, 1, 1, 1q in five variables is

Npsλpx1, . . . , x5qq �
1

12
x1x2x3x4x5

� ¸
1¤i j¤5

3xixj �
¸

1¤i¤5

2x2i

	
.

By [Wag11, Lemma 2.4], if Npsλq is stable, then so is its univariate specialization

Npsλq|x2�x3�x4�x5�1 �
1

6
x1

�
x21 � 6x1 � 13

	
.

However, the displayed cubic has a pair of nonreal zeros, and hence Npsλq is not stable.

3. UBIQUITY OF LORENTZIAN POLYNOMIALS

It follows from Definition 5 that the support of any Lorentzian polynomial is M-
convex. In particular, the Newton polytope of any Lorentzian polynomial is a type A

generalized permutohedron in the sense of [Pos09]. Generalized permutohedra have
appeared in several works as the supports of multivariate polynomials related to the
representation theory of GLmpCq and its Weyl group Sm, and to the Schubert calculus of
the flag variety. These polynomials are natural candidates for the Lorentzian property.
We collect results and conjectures for various families of polynomials from this setting.

3.1. Multiplicities of highest weight modules. We point to [Hum08] for background
on representation theory of semisimple Lie algebras. Let Λ be the integral weight lattice
of the Lie algebra slmpCq, let ϖ1, . . . , ϖm�1 be the fundamental weights, and let ρ be the
sum of the fundamental weights. For λ P Λ, we write Vpλq for the irreducible slmpCq-
module with highest weight λ, and consider its decomposition into finite-dimensional
weight spaces

Vpλq �
à
µ

Vpλqµ.
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For µ P Λ and distinct i, j P rms, we write µpi, jq for the element µ� ei � ej P Λ.

Conjecture 10. For any λ P Λ and any µ P Λ, we have

pdimVpλqµq
2 ¥ dimVpλqµpi,jq dimVpλqµpj,iq for any i, j P rms.

When λ is dominant, the dimension of the weight space Vpλqµ is the Kostka number
Kλµ, and Theorem 2 shows that Conjecture 10 holds in this case. When λ is antidomi-
nant [Hum08, Section 4.4], Vpλq is the Verma module Mpλq, the universal highest weight
module of highest weight λ. We note that Conjecture 10 holds in this case as well.

Proposition 11. For any λ P Λ and any µ P Λ, we have

pdimMpλqµq
2 ¥ dimMpλqµpi,jq dimMpλqµpj,iq for any i, j P rms.

One may deduce Proposition 11 from its stronger variant Proposition 13 below.

Alternative proof. The Poincaré–Birkhoff–Witt theorem shows that the dimensions of the
weight spaces are given by the Kostant partition function p:

dimMpλqµ � ppµ� λq � number of ways to write µ� λ as a sum of negative roots.

Lidskij’s volume formula for flow polytopes shows that all Kostant partition func-
tion evaluations are mixed volumes of Minkowski sums of polytopes [BV08]. The
Alexandrov–Fenchel inequality for mixed volumes [Sch14, Section 7.3] yields the de-
sired log-concavity property. □

The diagram below shows some of the weight multiplicities of the irreducible sl4pCq-
module with highest weight �2ϖ1 � 3ϖ2. We start from the highlighted vertex ϖ1 �

6ϖ2�3ϖ3 and walk along negative root directions in the hyperplane spanned by e2�e1

and e3� e2. In the shown region, the sequence of weight multiplicities along any line is
log-concave, as predicted by Conjecture 10.

We note, however, that a naive analog of Conjecture 10 does not hold for symplectic
Lie algebras. In the weight diagram of the irreducible representation of sp4pCq with
highest weight 2ϖ2 shown below, the weight multiplicities along the two diagonals of
the square do not form log-concave sequences. On the other hand, the Newton polytope
of any homogeneous strongly log-concave polynomial is necessarily a generalized per-
mutohedron of type A: Any edge of the Newton polytope should be parallel to ei � ej

for some i and j.
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To strengthen Conjecture 10, we extend the normalization operator N to the space of
Laurent generating functions by the formula

N

� ¸
αPZn

cαx
α

�
�
¸

αPNn

cα
xα

α!
.

For λ P Λ, we introduce the Laurent generating functions

chλpx1, . . . , xmq �
¸
µPΛ

dimVpλqµ x
µ�λ and chλpx1, . . . , xmq �

¸
µPΛ

dimMpλqµ x
µ�λ.

Note that every monomial appearing in the shifted characters chλ and chλ is a product
of degree zero monomials of the form xix

�1
j with i ¡ j.

We tested the following statement for λ � �wρ�ρ and δ � p1, . . . , 1q, for all permuta-
tions w in Sm for m ¤ 6. We point to https://github.com/avstdi/Lorentzian-Polynomials

for code supporting the computations in Section 3.

https://github.com/avstdi/Lorentzian-Polynomials


12 JUNE HUH, JACOB P. MATHERNE, KAROLA MÉSZÁROS, AND AVERY ST. DIZIER

Conjecture 12. The polynomial Npxδ chλpx1, . . . , xmqq is Lorentzian for any λ P Λ and
δ P Nm.

For example, when m � 4 and λ � �wρ� ρ for the transposition w � p1, 2q, we have

Npx1x2x3x4chλpx1, x2, x3, x4qq �
4

24
x44 �

2

6
x1x

3
4 �

2

6
x2x

3
4 �

4

6
x3x

3
4 �

3

4
x23x

2
4

�
1

2
x1x2x

2
4 �

2

2
x1x3x

2
4 �

2

2
x2x3x

2
4 �

1

6
x33x4 �

1

2
x1x

2
3x4 �

1

2
x2x

2
3x4 �

1

1
x1x2x3x4,

which is a Lorentzian polynomial. In general, the homogeneous polynomial Npxδchλq
can be computed using the Kazhdan–Lusztig theory [Hum08, Chapter 8].

Theorem 3 and Lemma 7 show that Conjecture 12 holds for any δ when λ is dominant.
We show that Conjecture 12 holds for any δ when λ is antidominant.

Proposition 13. The polynomial Npxδ chλpx1, . . . , xmqq is Lorentzian for any λ P Λ and
δ P Nm.

Proof. Recall that the dimensions of the weight spaces of Mpλq are given by the Kostant
partition function p. In other words, we have

chλpx1, . . . , xmq �
¹
i¡j

p1� xix
�1
j � x2ix

�2
j � � � � q.

It is clear that the product is well-defined. Officially, the product occurs in the ring of
formal characters of the category O of slmpCq-modules, denoted X in [Hum08, Section
1.15]. Note that in the expansion of the above product, only the terms of degree at
least �δ contribute to Npxδchλq. Therefore, we may choose a suitably large α P Nm

depending on δ P Nm so that

Npxδchλq � Npxδx�β
¹
i¡j

px
αj

j � xix
αj�1
j � � � � � x

αj

i qq, where βi � pm� iqαi for all i.

Observe that the right-hand side is the β-th partial derivative of the normalized product
of xδ and

°
k x

αj�k
i xkj , whose normalization is the Lorentzian polynomial

Npx
αj

j � xix
αj�1
j � � � � � x

αj

i q �
1

αj !
pxi � xjq

αj .

The conclusion now follows from [BH20, Corollary 6.8]. □

Conjecture 10 for λ and µ follows from Conjecture 12 for λ and a sufficiently large
δ. Conjecture 12 for λ and δ follows from Conjecture 12 for λ and any δ1 larger than δ

componentwise.



LOGARITHMIC CONCAVITY OF SCHUR AND RELATED POLYNOMIALS 13

3.2. Schubert polynomials. For w P Sn and µ P Zn, we define the number Kwµ by

Swpx1, . . . , xnq �
¸
µ

Kwµx
µ.

As before, for µ P Zn and distinct i, j P rms, we set

µpi, jq � µ� ei � ej .

We note that Theorem 2 can be strengthened as follows.

Proposition 14. For any w P Sn and any µ P Nn, we have

K2
wµ ¥ Kwµpi,jqKwµpj,iq for any i, j P rns.

Proof. By Theorem 6, the polynomial S_
w is Lorentzian. The inequality follows from

[BH20, Proposition 9.4] applied to the Lorentzian polynomial S_
w . □

Are normalized Schubert polynomials Lorentzian? We tested the following state-
ment for all permutations in Sn for n ¤ 8.

Conjecture 15. The polynomial NpSwpx1, . . . , xnqq is Lorentzian for any w P Sn.

More generally, we conjecture that, for double Schubert polynomials [MS05, Section
15.5],

NpSwpx1, . . . , xn,�y1, . . . ,�ynqq is Lorentzian for any w P Sn.

This would imply that the support of any double Schubert polynomial is M-convex,
and hence “saturated” [MTY19, Conjecture 5.2].

Proposition 16. The support of Swpx1, . . . , xnq is M-convex for any w P Sn.

Proposition 16 was conjectured in [MTY19, Conjecture 5.1] and proved in [FMS18]
using an explicit description of flagged Schur modules. Here we give an alternative
proof based on Theorem 6. A similar argument can be used more generally to show
that the supports of single quiver polynomials appearing in [MS05, Section 17.4] are
M-convex.

Proof. By Theorem 6, the support of S_
w is M-convex. It is straightforward to check

using the definition of M-convexity the general fact that, if the support of hpx1, . . . , xnq
is M-convex, then the support of xµhpx�1

1 , . . . , x�1
n q is M-convex for any monomial xµ

divisible by all monomials in the support of h. This general fact extends matroid duality
[Oxl11, Chapter 2], which is the special case µ � p1, . . . , 1q. □

Proposition 17. Conjecture 15 holds when w P Sn avoids the patterns 1423 and 1432.
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Sketch of Proof. By [BH20, Corollary 6.7], the Lorentzian property of Sw implies that of
NpSwq. We deduce the Lorentzian property of Sw from known results on Schubert and
Lorentzian polynomials, for permutations avoiding 1423 and 1432.

It is shown in [FMS18, Theorem 7] that, for any w P Sn, the support of Sw is the
set of integral points in the Minkowski sum of n matroid polytopes. The set Jw of
integral points in the Cartesian product of these matroid polytopes is an M-convex sub-
set of Nn�n, and hence the generating function fw of Jw is a Lorentzian polynomial in
n2 variables xij [BH20, Theorem 7.1]. Since any nonnegative linear change of coordi-
nates preserves the Lorentzian property [BH20, Theorem 2.10], substituting the vari-
ables xij by xi in the generating function fw gives a Lorentzian polynomial. According
to [FMS20, Corollary 5.6] and [FG19, Theorem 1.1], this specialization of fw coincides
with Sw when w avoids 1423 and 1432, and thus Sw is Lorentzian for such permuta-
tions. □

We note that the Schubert polynomials S1423 and S1432 are not Lorentzian.

3.3. Degree polynomials. Let w   wpi, jq be a covering relation in the Bruhat order
of Sn labelled by the transposition of i   j in rns. The Chevalley multiplicity is the
assignment

w   wpi, jq ÞÝÑ
¸

i¤k j

xk,

where xk are independent variables. The degree polynomial of w P Sn is the generating
function

Dwpx1, . . . , xn�1q �
¸
C

mCpx1, . . . , xn�1q,

where the sum is over all saturated chains C from the identity permutation to w, and
mC is the product of Chevalley multiplicities of the covering relations in C. The degree
polynomials were introduced by Bernstein, Gelfand, and Gelfand [BGG73] and studied
from a combinatorial perspective by Postnikov and Stanley [PS09].

Proposition 18. The degree polynomial Dwpx1, . . . , xn�1q is Lorentzian for any w P Sn.

Proof. Let B be the group of upper triangular matrices in GLnpCq, and let Xw be the
closure of the B-orbit of the permutation matrix corresponding to w in the flag variety
GLnpCq{B. By [PS09, Proposition 4.2], the degree polynomial of w is, up to a normaliz-
ing constant, the volume polynomial of Xw with respect to the line bundles associated
to the fundamental weights ϖ1, . . . , ϖn�1. The conclusion follows from [BH20, Theo-
rem 10.1]. □
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The same argument shows that the analogous statement holds for Weyl groups in
other types.

3.4. Skew Schur polynomials. Let λ{ν be a skew Young diagram. The skew Schur poly-
nomial of λ{ν in m variables is the generating function

sλ{νpx1, . . . , xmq �
¸
T

xµpTq, xµpTq � x
µ1pTq
1 � � �xµmpTq

m ,

where the sum is over all Young tableaux T of skew shape λ{ν with entries from rms,
and

µipTq � the number of i’s among the entries of T, for i � 1, . . . ,m.

Are normalized skew Schur polynomials Lorentzian? We tested the following state-
ment for all partitions λ with at most 12 boxes and at most 6 parts.

Conjecture 19. The polynomial Npsλ{νpx1, . . . , xmqq is Lorentzian for any λ{ν.

Theorem 3 shows that Conjecture 19 holds when ν is zero, and Corollary 4 provides
some further evidence. We remark that the M-convexity of the support of any skew
Schur polynomial can be deduced from [MTY19, Proposition 2.9].

In [LPP07], Lam, Postnikov, and Pylyavskyy show that, for two skew shapes λ{µ and
ν{ρ, �

sλ�ν
2
{µ�ρ

2

	2
� sλ{µsν{ρ

is a nonnegative linear combination of Schur polynomials, when both λ � ν and µ � ρ

have only even parts. It would be interesting to know if there are relations between
different notions of log-concavity for skew Schur polynomials.

3.5. Schur P -polynomials. Let λ be a strict partition, that is, a decreasing sequence of
positive integers. The Schur P -polynomial of λ in m variables is the generating function

Pλpx1, . . . , xmq �
¸
T

xµpTq, xµpTq � x
µ1pTq
1 � � �xµmpTq

m ,

where the sum is over all marked shifted Young tableaux of shape λ with entries from
rms. See [Mac15, Chapter III] for this and other equivalent definitions of the polynomial
Pλ.

Are normalized Schur P -polynomials Lorentzian? We tested the following statement
for all strict partitions λ with λ1 ¤ 12 and at most 4 parts.

Conjecture 20. The polynomial NpPλpx1, . . . , xmqq is Lorentzian for any strict partition
λ.
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The M-convexity of the support of Pλ was observed in [MTY19, Proposition 3.5].

3.6. Grothendieck polynomials. Grothendieck polynomials are polynomial representa-
tives of the Schubert classes in the Grothendieck ring introduced by Lascoux and Schützenberger
[LS83]. If w is the longest permutation w� P Sn, then the Grothendieck polynomial of w
is the monomial

Gw�px1, . . . , xnq � xn�1
1 xn�2

2 � � �x1n�1.

In general, if wpiq ¡ wpi�1q for some i and si is the adjacent transposition pi i�1q, then

Gwsipx1, . . . , xnq � πiGwpx1, . . . , xnq, where πi � Bi � Bixi�1.

Let ℓpwq be the degree of the Schubert polynomial of w, let dpwq be the degree of the
Grothendieck polynomial of w, and let Gk

w be the degree ℓpwq � k homogeneous com-
ponent of the Grothendieck polynomial.

Conjecture 21. The polynomial p�1qkNpGk
wpx1, . . . , xnqq is Lorentzian for any w P Sn

and k P N.

The M-convexity of the support of Gk
w was conjectured in [MS20, Conjecture 5.1]

and proved in [EY17] when w is a Grassmannian permutation. Conjecture 21 implies
Conjecture 15 because the degree ℓpwq homogeneous component of Gw is the Schubert
polynomial Sw.

We may strengthen Conjecture 21 in terms of the homogeneous Grothendieck polynomial

Grwpx1, . . . , xn, zq :�

dpwq�ℓpwq¸
k�0

p�1qkGk
wpx1, . . . , xnqz

dpwq�ℓpwq�k,

where z is a new variable. Are normalized homogeneous Grothendieck polynomials
Lorentzian? We tested the following statement for all permutations in Sn for n ¤ 7.

Conjecture 22. The polynomial NpGrwpx1, . . . , xn, zqq is Lorentzian for any w P Sn.

Conjecture 22 implies Conjecture 21 because taking partial derivatives and setting
a variable equal to zero preserve the Lorentzian property. We expect an analogous
Lorentzian property for double Grothendieck polynomials.

3.7. Key polynomials. Key polynomials were introduced by Demazure for Weyl groups
[Dem74] and studied by Lascoux and Schützenberger for symmetric groups [LS90].
When µ P Nn is a partition, the key polynomial of µ is the monomial

κµpx1, . . . , xnq � xµ � xµ1
1 � � �xµn

n .
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If µi   µi�1 for some i and si is the adjacent transposition pi i� 1q, then

κµpx1, . . . , xnq � Bixiκν , where ν � µsi � pµ1, . . . , µi�1, µi, . . . , µnq.

We refer to [RS95] for more information about key polynomials.

Are normalized key polynomials Lorentzian? We tested the following statement for
all compositions µ with at most 12 boxes and at most 6 parts.

Conjecture 23. The polynomial Npκµpx1, . . . , xnqq is Lorentzian for any µ P Nn.

Theorem 3 shows that Conjecture 23 holds when µ is a weakly increasing sequence
of nonnegative integers, because in this case the key polynomial of µ is a Schur polyno-
mial. The M-convexity of the supports of key polynomials was conjectured in [MTY19,
Conjecture 3.13] and proved in [FMS18].

We remark that key polynomials [Dem74] and Schubert polynomials [KP87] are both
characters of flagged Schur modules. Flagged Schur modules are representations of the
group of upper triangular matrices in GLnpCq labelled by diagrams. They are also called
flagged dual Weyl modules, and, in special cases, key modules. We refer to [RS95,
Section 5] and [Magy98, Section 4] for expositions.

It is shown in [FMS18, Theorem 11] that the character of any flagged Schur module
has M-convex support. Are normalized characters of flagged Schur modules Lorentzian?
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[BGG73] Joseph N. Bernšteı̆n, Israel M. Gel′fand, and Sergei I. Gel′fand, Schubert cells and the cohomology
of the spaces G{P , Russian Mathematical Surveys 28 (1973), 1–26.

[BGR04] Sara Billey, Victor Guillemin, and Etienne Rassart, A vector partition function for the multiplici-
ties of slkC, J. Algebra 278 (2004), no. 1, 251–293.

arXiv:1811.01600
arXiv:1905.07114


18 JUNE HUH, JACOB P. MATHERNE, KAROLA MÉSZÁROS, AND AVERY ST. DIZIER
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[Sch14] Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Second expanded edition, Encyclo-
pedia of Mathematics and its Applications, vol. 151, Cambridge University Press, Cambridge,
2014.
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