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Abstract—Monitoring the smart grid involves analyzing con-
tinuous data-stream from various measurement devices deployed
throughout the system, which are topologically distributed and
structurally interrelated. In this paper, a graph signal processing
(GSP) framework is used to represent and analyze the inter-
related smart grid measurement data for security and reliability
analyses. The effects of various cyber and physical stresses in the
system are evaluated in different GSP domains including vertex
domain, graph-frequency domain, and the joint vertex-frequency
domain. Two novel techniques based on vertex-frequency energy
distribution, and the local smoothness of graph signals are pro-
posed and their performance have been evaluated for detecting
and locating various cyber and physical stresses. Based on the
presented analyses, the proposed techniques show promising
performance for detecting sophisticated stresses with no sharp
changes at the onset, for detecting abrupt load changes, and also
for locating stresses.

Index Terms—Smart grid security, cyber attack, graph signal
processing, local smoothness, vertex-frequency representation.

NOMENCLATURE

Graph and Related Sets
L Graph Laplacian Matrix.
E Set of all transmission lines (edges).
G Graph associated with the power system (i.e.,

domain of the graph signal).
VA Set of all buses (vertices) under cyber attack.
VR Set of all buses (vertices) the attackers have

access to record data.
V Set of all buses (vertices).
dij Geographical distance between bus i and j.
eij Link between vertex vi and vj .
lij Entry of row i and column j of L.
wij Weight of the link eij .
λk k−th eigenvalue of L.
Signals and Instantaneous Quantities
η(n, t) Difference in VFED marginalized over graph-

frequency components.
γ(t) Amount of high frequency component at time t.
X̂(λk, t) GFT of the graph signal x(n, t) at time t.
θψ Threshold likelihood for the random variable ψ.
x Graph signal x(n) in vector form.
E(n, k, t) VFED of the graph signal x(n, t) at time t.
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H(λ) High-pass graph filter.
lx(n) n− th element of the vector Lx.
pψ(ζ) Probability distribution of random variable ψ.
q(t) Additive white Gaussian noise (AWGN) added

to voltage angle time-series.
s(n, t) Local smoothness at time, t.
uk(n) k−th eigenvector of L, basis signal for GFT.
x(n, t) Bus voltage angle time-varying graph signal.
x(vn), x(n) Graph Signal.
c(t) Corrupted time-series under cyber attack (gen-

eral model).
Constants
α Ratio of the load change amount relative to the

original load size.
β Load change scaling factor, 1− α.
σ2
nA Variance of white noise at bus nA.
a Accuracy of detection.
d Amount of delay in delay attack (in samples).
LA Location accuracy.
m Slope of the ramp attack.
N Cardinality of the set V .
tEnd Ending time of an attack.
tStart Starting time of an attack.
x′ The magnitude of difference between the false

data injected and true value in FDIA.

I. INTRODUCTION

The availability of large volume of energy data in smart
grids provides extensive opportunities to support their critical
functions. In recent years, various data analytics and machine
learning techniques have been applied to analyze energy data
in order to supplement or enhance traditional power grid
monitoring and control functions. In this paper, a Graph Signal
Processing (GSP) framework [1], [2] has been exploited for
representation and analyses of smart grids data, particularly to
support the monitoring function for their reliable and secure
operation.

GSP is a fast-growing field, which extends the classical
signal processing techniques and tools to irregular graph
domain instead of the Euclidean domain. GSP is suitable
for analyzing structured data and the dynamics of systems
with interconnected components, such as those of smart grids.
Particularly, it is shown that by representing the smart grid data
using graph signals, one can exploit the rich tools that GSP
framework provides to analyze the implicit structures in the
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smart grid data for security and reliability analyses. In general,
for analyzing data from complex networked systems, such
as smart grids, their physical topology, as well as the struc-
tured interactions (model-based or data-driven interactions [3])
among the components are of immense importance. While
connectivities and interactions cannot be captured by classical
signal processing approaches, GSP provides a framework to
capture such information in graph signals.

The reliability and security of smart grids, as critical infras-
tructures, are of utmost importance. Smart grids maintain their
proper functioning by continuous acquisition and processing
of measurement data. Any attack on the availability and
integrity of measurement data can lead to improper decisions
and actions, which may result in severe consequences and
instability of the system. Examples of such attacks include
denial of service (DoS) attack [4], data-replay attack [5], ramp
attack [6] and false data injection attack (FDIA) [4], which
have been extensively studied in smart grids’ literature. These
attacks can be launched on the supervisory control and data
acquisition (SCADA) readings as well as on the time-stamped
synchrophasor measurements from the phasor measurement
units (PMUs). In real-world, these attacks can be launched by
unauthorized access and compromising various cyber elements
of the system, ranging from sensing and monitoring devices
(such as PMUs), communication channel, data processing
servers, and more. In addition to cyber stresses, physical
stresses can also affect the reliability and stability of the
system. Examples of such stresses include line and generator
failures, and abrupt load changes. In this paper, the term stress
is used to refer to any kind of cyber or physical anomaly that
can threaten the smooth operation of the system.

To ensure seamless monitoring, control, and operation of
smart grids, it is essential to enhance the situational aware-
ness toward cyber and physical stresses. To do so, in this
paper, properties and characteristics of graph signals asso-
ciated with the power grid measurements (e.g., bus voltage
angles) are analyzed in various GSP domains including ver-
tex domain, graph-frequency domain, and the joint vertex-
frequency domain. Based on the effects of different stresses
on the vertex-frequency energy distribution (VFED) [7] and
the local smoothness (LS) [8] of the graph signals, two
novel GSP-based stress detection techniques are proposed.
These techniques also enable stress localization in the smart
grid. To the best of our knowledge, this is the first work,
which introduces VFED and LS-based techniques in analyzing
smart grid’s data for stress detection and localization. The
proposed technique based on LS, is named local smoothness
second time-derivative (LSSTD) and is particularly effective
for detecting and locating the designed cyber attacks and
physical stresses. For evaluation of the proposed techniques,
abrupt load change (as the physical stress) and five types
of cyber attacks with smooth transitions of signal values
at the onset of the attack are modeled on the time-series
representation of the bus voltage angle measurement values.
These carefully designed attacks with smooth change of values
at the onset are challenging to detect for many existing
stress detection techniques. The performance of the proposed
techniques are evaluated in comparison with the graph Fourier

transform (GFT)-based detection technique [9], [10], as a
GSP-based benchmark technique, and other non-GSP-based
techniques including support vector machine (SVM), decision
tree (DT), long short-term memory (LSTM) and techniques
directly analyzing the time-series data, such as three sample
quadratic prediction algorithm (TSQPA) [6]. The proposed
GSP-based techniques show promising performance and also
address some of the limitations of the GFT-based technique
for detecting stresses with no sharp changes at the onset, for
detecting abrupt changes in load demand, and for locating
stresses. The main contribution of this paper can be summa-
rized as follows:
• A general GSP framework for modeling power system

states as graph signals is presented in order to exploit the
knowledge of interaction and interconnection among the
components of the system in analyzing energy data.

• A novel technique, named LSSTD, is proposed, which is
based on analyzing the time-varying graph signal model
of the smart grid voltage angle signals. It is shown that the
LSSTD method performs well in detecting and locating
challenging cyber and physical stresses with no abrupt
change at the attack onset.

• A novel technique based on analyzing the vertex-graph-
frequency representation of power system graph sig-
nals, namely VFED, is proposed for stress detection
and localization. Although the detection accuracy of this
method is not as high as the first proposed technique,
it outperforms LSSTD in locating the physical stresses
(i.e., the abrupt load change cases). The key merits of
this method can be recognized by its new graph signal-
analytical perspective and providing a new approach in
locating complex physical stresses.

• A detailed analysis and discussion on the performance of
the presented techniques compared to other GSP-based
and non-GSP-based techniques are presented to reveal
the advantages of time-varying GSP-based techniques.

II. RELATED WORKS

In this section, the related works are briefly reviewed in two
categories including the developments in the area of GSP and
smart grids security. Over the last decade, GSP has emerged
and extended the concepts of classical signal processing to the
irregular graph domain. Several works have been published
on the interpretation of the frequency domain in the context
of graph signals [1], [2]. The tools and theories built based
on these interpretations allow studying graph signals in a
new domain with a similar notion to the frequency domain
for classical signals. For instance, the relationship between
the graph signal frequency and the eigenvalues of the graph
Laplacian as well as various concepts related to the graph
signal frequency, e.g., global and local smoothness of signals,
graph filtering, and modulation of graph signals have been
discussed [1], [2]. Recently, GSP techniques have been used
in various application domains including sensor arrays and
networks [13], transportation systems [14], electrocardiogram
(ECG) and electroencephalogram (EEG) signal analysis [15],
[16], image, and video processing [17] and smart grids [9],
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[11]. Specifically, researchers have shown that GSP can be a
prospective field for detecting anomalies in different types of
networks and their associated signals [18].

The application of GSP to smart grids is recent and limited
so far. For instance, Kroizer et al. in [19] approximated the
non-linear measurement functions in the power grid as the
output of a graph filter and proposed a regularized least-
squares estimator for signal recovery based on the inverse
of the obtained graph filter. Ramakrishna and Scaglione [11]
modeled the voltage phasor measurements in the power grid as
the output of the low-pass graph filter in response to the low-
rank excitation that comes from the generators. This developed
GSP model has been used in several smart grid applications
such as inferring the power grid topology as a Laplacian
learning problem, detection of false data, and PMU data
compression. Sampling and reconstruction of graph signals to
provide observability in the smart grid under cyber attacks or
under selective PMU placement have also been discussed in
our earlier work [20].

Smart grid’s security and reliability have been the focus of
many researchers for decades. Different techniques for detect-
ing and locating cyber and physical stresses in smart grids have
been proposed in the literature based on both the traditional
supervisory control and data acquisition (SCADA) measure-
ments as well as the high-frequency PMU measurements. The
detection methods based on state estimation of power systems
are well suited for the SCADA-based static monitoring while
the time-series prediction-based methods exploiting the space-
time relationship among the states are more applicable to
PMU-based dynamic system monitoring [21]. Examples of
data-driven approaches for detecting and locating stresses in
power systems include principle component analysis (PCA)
and dimensionality-reduction-based methods [22], [23], spatial
and temporal correlation-based methods [24], neural network-
based methods [25], and linear minimum mean square error
(MMSE) estimation technique [26].

Detection and determining the location of cyber attacks in
the smart grid using GSP is a new domain. In our earlier
work [27], [28], the effects of cyber and physical stresses
on the associated power system’s graph signals in the ver-
tex and graph-frequency domains are discussed. Drayer and
Routtenberg [9] proposed a GFT-based detection method for
FDIA in smart grids. In the later work, it is assumed that
the graph signal associated with the bus voltage angles of
the power system is smooth and for this reason, the high-
frequency components (corresponding to the large eigenval-
ues of the graph Laplacian) of the graph signals would be
insignificant. The existence of the false data is proposed to be
detected based on the existence of significant high-frequency
components. Moreover, in [29], the authors proposed locating
FDIA using graph modulation. In the work by Ramakrishna
and Scaglione [11], the voltage phasor measurement model
developed based on GSP is utilized to detect FDIA in smart
grids. Anderson and Yu [30] proposed a physics-based graph
construction technique specifically for three-phase distribution
systems and used the lower dimensional representation of the
GFTs associated with the voltage magnitude graph signals to
identify bad data in the SCADA measurements. Shi et. al in

[31] proposed a GSP-based technique to sort the PMUs so
that the PMUs with strong correlation in measurements are
kept together in the PMU data tensor, which is the input for
a deep-learning model for event detection and classification.

In the current paper, novel GSP-based techniques based
on VFED and LS are presented, which address some of the
limitations of the existing methods in detecting and locating
stresses with no abrupt changes at the onset of the attack in
smart grids.

III. REVIEW OF GSP AND ENERGY GRAPH SIGNALS

A. Preliminaries and Definitions

The first important definition in GSP is the definition of the
graph signal. While in classical signal processing, signals are
defined by Euclidean representation of their values; in GSP,
the graph signals are defined by the values residing on vertices
V (i.e., V = {v1, v2, ..., vN}), which are connected over graph
G = (V, E) with E representing the set of links (i.e., E =
{eij : (i, j) ∈ V × V}). The graph signal can formally be
represented by a vector of values denoted by x with size N
defined as x : V → R. The graph signal can be denoted by
x(n) instead of x(vn) for simplicity.

B. Defining graph domain for power grids

In this paper, our discussion will be limited to the bus-
vertex graph: a weighted undirected graph in which buses
are considered as the vertices and the transmission lines
or the branches are considered as the edges. Note that the
above graph is based on the physical topology of the power
system. However, the interactions among the components of
the power system can be beyond the physical topology. As
such, other methods of constructing a graph domain for power
grids can also be used. For instance, the data-driven and
electric-distance-based methods discussed in [3], can be used
to infer and construct graph domains for power grids beyond
their physical connectivities (when needed depending on the
analyses of interest). In this paper, the geographical distance
between buses i and j is denoted by dij and the weight
corresponding to the edge eij in the bus-vertex graph G is
defined as wij = 1

dij
, if there is an edge between node

i and node j (i.e., eij = 1) and wij = 0, otherwise (if
there is no edge between node i and node j, i.e., eij = 0).
Graph Laplacian matrix L, with lij elements, is also defined
as lij =

∑N
j=1 wij if i = j and lij = −wij , otherwise. Since,

the graph Laplacian, L is a real and symmetric matrix, it
has real and non-negative eigenvalues corresponding to the
orthonormal set of eigenvectors. The Laplacian matrix of the
graph will be used later in defining the frequency domain
representation of graph signals.

C. Representation of Power System Measurements as Graph
Signals: Vertex Domain Representation

In this paper, the measurement values associated with each
vertex i.e. bus voltage angles for G at a time instance are
considered as a graph signal. Fig. 1 illustrates an example of
a graph signal based on the voltage angles of all the buses for
the IEEE 118 bus system [32]. It is assumed that the signal
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Fig. 1: Voltage angle measurements at a particular time instance as
a graph signal on the IEEE 118 bus system.

values are available at all the buses of the grid (i.e., vertices
of the graph). To realize this assumption, it can be further
assumed that PMUs are available at every bus of the system.
Alternatively, to relax this assumption based on real-world
scenarios with selective PMU placement, it can be assumed
that the signal values are available either directly from the
measurement devices mounted on the buses (e.g., PMUs) or
through state estimation using the measurements from other
buses. However, the state estimation process to obtain the
graph signal values and its performance are not directly a
concern in this work. While state estimation is not the focus
of this work, the proposed techniques can detect anomalies
resulted in the state estimation process as well (for instance,
due to cyber attacks). The anomalies considered in the graph
signals in this work follow the models discussed in Section
IV and are applied to the graph signals with complete signal
values at all the buses. The graph signal values at different time
instances can be modeled as time-series associated with each
vertex and the resultant graph signal becomes a function of
time, i.e., a time-varying graph signal that has been discussed
in subsequent subsections.

D. Spectral Characteristics of Power Grid’s Graph Signal -
Graph-Frequency Domain

Analogous to the concept of Fourier transform and fre-
quency domain representation of the signal in classical signal
processing, the graph Fourier transform (GFT) of a graph
signal x(n) is defined as:

X̂(λk) =
N∑
n=1

x(n)uk(n), (Analysis equation) (1)

and the inverse graph Fourier transform (IGFT) is:

x(n) =
N∑
k=1

X̂(λk)uk(n), (Synthesis equation) (2)

Here, uk(n) is the basis graph signal for the GFT, which
plays a similar role to the role of complex exponential signal
in classical Fourier transform. Here, uk(n) is considered as
the eigenvectors of the graph Laplacian L, where subscript
k denotes the k−th eigenvector and n is the index of n−th
node in the graph G. The corresponding eigenvalues to these
eigenvectors are denoted by λk, which are considered as the
graph-frequencies, and 0 = λ1 < λ2 < λ3 < ... < λN . The
first eigenvalue λ1 = 0 is analogous to the zero-frequency (DC
component) in the case of temporal signals. The eigenvectors
with lower/higher eigenvalues (i.e., smaller/larger k) corre-
spond to lower/higher frequency components with less/more

variation of values over vertices in a local neighborhood. In
contrast to the basis functions in classical Fourier transform
(i.e. complex exponential), the graph Laplacian eigenvectors
are localized in the vertex domain.

E. Local Smoothness of Graph Signals

The smoothness measure of a signal quantifies how rapidly
the values of the signal change. While the global smoothness
[12] of a graph signal provides an overall measurement of the
smoothness of a graph signal, the local smoothness associated
with the graph signal, defined as s(n) = lx(n)

x(n) for x(n) 6= 0,
specifies how fast the values of the graph signal x(n) change
from vertex to vertex in the vicinity of the n−th vertex. Here
lx(n) is the n−th element of the vector, Lx. The work by
Daković et al. [8] shows that the concept of local smoothness
in the graph signal is analogous to the concept of instantaneous
frequency in classical signal processing.

F. Joint Vertex-Frequency Representations

In classical signal processing, the joint time-frequency rep-
resentations of signals (e.g., spectrogram, windowed Fourier
transform, wavelets, etc.) are used for the time-localization of
a particular frequency component. The joint vertex-frequency
representations serve a similar purpose for graph signals. In
GSP, there are different approaches for localization of the fre-
quency components in the literature. For example, Stanković
et al. [7] propose localized vertex spectrum (LVS) of graph
signal x(n) as:

LV Sx(n, λk) =
N∑
m=1

x(m)h(n−m)uk(m), (3)

where h(n) is the window function. This approach has a
major drawback of being dependent on the width and the
characteristics of the window function. Instead, for improving
the localization of the signal energy in the joint vertex-
frequency domain, the VFED is introduced in [7], which does
not require any window. The VFED, E(n, k) is calculated
from the graph signal using the equation:

E(n, k) =
N∑
m=1

x(n)x(m)uk(m)uk(n). (4)

G. Time-Varying Graph Signals

In our previous discussions, we have only considered the
graph signal at a single time instant. However, in dynamic
systems, such as power grids, the values of the signal at each
node vary in time. For instance, the bus voltage measurements
in power grids change in time because of changes in load
demand and other changes in the power system. As a result, the
graph signal x(n) changes in time. Therefore, a time-varying
graph signal can be thought of as a function of both vertex
and time and can be denoted by x(n, t). While dynamic time-
varying graph signals are considered here, we assume that the
underlying graph of the system (vertices and links) remains
unchanged during the analyses. If the underlying graph of the
system and consequently graph of the graph signal change,
then the set of eigenvectors and thus the basis of GFT will

Authorized licensed use limited to: University of South Florida. Downloaded on June 16,2022 at 15:26:52 UTC from IEEE Xplore.  Restrictions apply. 



1949-3053 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2022.3177154, IEEE
Transactions on Smart Grid

5

change, which make the frequency analyses of graph signals
before and after the graph change incomparable. For time-
varying graph signal x(n, t), the spectral representations, as
well as the global and local smoothness of the graph signals
also change with time. In this paper, the k−th eigenvalue,
the k−th eigenvector, the GFT, the VFED, and the local
smoothness at time t will be denoted by λk(t), uk(t), X̂(λk, t),
E(n, k, t), and s(n, t), respectively.

IV. STRESS MODELS

A. Cyber Attack Models

In this section, the approach for modeling the effects of
different types of cyber attacks on the time-varying voltage
angle graph-signals in smart grids are discussed. Specifically,
five types of cyber attacks including DoS attack, replay attack,
ramp attack, delay attack, and a special form of FDIA have
been considered. For modeling cyber attacks in graph signal
domain, let us consider a set of vertices, VA ⊂ V is under
attack within the time interval tstart to tend. The corrupted
signal in the generalized cyber attack model can be expressed
as follows:

x(nA, t) = c(t), for tstart ≤ t ≤ tend, and nA ∈ VA.
(5)

The corrupted signal c(t) can be defined to model and cap-
ture the effects of various types of attacks as will be discussed
next. Fig. 2, illustrates different types of cyber attacks on
the time-series, x(105, t), which is associated with the time-
varying values of the graph signal x(n, t) at vertex/bus 105 in
the IEEE 118 bus system.

1) Denial-of-service (DoS Attack): In a DoS attack, the
attackers can prevent the communication of measurement
values (at certain parts of the system) to the data collection and
monitoring system, for instance through overloading network
resources. In cyber security literature, DoS attacks are often
modeled as the absence of measurement signal at the attack
location [4]. As a result, the data collection and monitoring
system receives only the measurement noise from tstart to tend
from the attacked location, which creates an abrupt change
of signal value at tstart. To make the attack model more
challenging, in this work, the DoS attack is modeled as the
suspension of updating the time-series measurements at the
attack location. As a result, the corrupted measurements appear
to be a constant value during the attack (i.e., the value at the
onset of the attack, x(nA, tstart) plus noise). More specifically,
the model for this attack considers c(t) = x(nA, tstart)+q(t),
where q(t) is the additive white Gaussian noise with zero mean
and variance σ2

nA . In Fig. 2, the example DoS attack starts at
time 5 and ends at time 6.

2) False Data Injection Attack (FDIA): FDIA involves
sophisticated false data designing methods to deceive the tradi-
tional bad data detection techniques associated with the state
estimation and monitoring mechanisms. The most common
strategy of FDIA in smart grids from literature, designs the
FDIA based on the power system state estimation framework
with z = h(y), where z and y are the measurements and
the states of the power system, respectively. The non-linear
function h relates measurements and states. The traditional

bad data detector declares a set of measurements z as bad
data if the residue of state estimation r = ||z− h(ŷ)||2
exceeds a threshold τ , where ŷ is the estimated states. To
bypass the bad data detector, the attacker injects a false
measurement zFDIA = z+ a in such a way that the residue,
||zFDIA − h(ŷ)||2 ≤ τ . In this work, the bus voltage angles
are considered as the state of the power system and the
measurements are taken in the form of bus voltage angles.
It is also assumed that the state values of the nodes are
obtained either by mounting measurement devices (e.g., PMU)
on every bus or by estimating the voltage angle of buses
with the available measurement devices at other buses. In
this paper, a special type of FDIA is considered, which does
not introduce any sharp change at the onset of the attack
and is thereby challenging to be detected by many detection
mechanisms. To model this type of FDIA in the general
cyber attack model in equation (5), c(t) can be defined as
c(t) = x(nA, t)+(−1)bx′, where b ∈ {0, 1}, |x′| is considered
to be a very small value that the injected false datum does not
create any easily detectable abrupt change at the onset of the
attack and also bypasses the bad-data detector embedded into
the state estimation system. In other words, the FDIA in this
paper is designed such that the absolute value of the difference
of the true datum and the falsified datum change, i.e., x′, to be
smaller than the detector threshold τ . In Fig. 2, the example
FDIA starts at time 3 and ends at time 4.

3) Ramp Attack: Ramp attack involves inserting falsified
measurement gradually in the measurement time-series of
the compromised buses. Since there is no abrupt change
of values at the onset of the attack, the detection of ramp
attack can be challenging. Ramp attack can be modeled by
c(t) = x(nA, tstart)+m× (t− tstart)+ q(t), where m is the
slope of the change and q(t) is the additive white Gaussian
noise. In Fig. 2, the example ramp attack with slope −0.8
starts at time 7 and ends at time 9.

4) Replay Attack: Replay attack involves inserting any
recorded previous measurement as the current measurement
in the attack duration. In this case, the attackers get access
to some of the meters (PMUs), record the measurements,
and afterward insert the recorded measurements as the true
measurements into the same meter or other meters in the
attack duration. Replay attack can be modeled by c(t) ∈
{x(nR, tp)}, tp < tstart, nR ∈ VR, where VR ⊂ V is the
set of all buses (vertices) in which the attackers have access to
record measurements before tstart. Depending on the selection
of the compromised meter and the data to be inserted, replay
attacks can be designed in various ways. In this work, c(t)
is considered to be c(t) = x(nA,−t). In Fig. 2, the example
replay attack starts at time 15 and ends at time 17.

5) Delay Attack: In the delay attack, the attackers compro-
mise the global positioning system (GPS) signal associated
with the PMUs to falsify the measurements using the delayed
version of the original measurements. The delay attack can be
modeled by c(t) = x(nA, t − td), where td is the amount of
delay. For small td’s, the detection of this type of attack is
very challenging. In Fig. 2, the example delay attack starts at
time 19 and ends at time 21.

For a successful cyber attack from the attacker’s perspec-
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Fig. 2: cyber attacks on time-series.

tive, the attack must bypass the traditional bad data detector
based on a threshold determined from historical data. The
cyber attacks designed in this work involve injecting recent-
past valid measurements in the current time with a smooth
transition of measurement values at the attack onset. For this
reason, the cyber attacks proposed in this paper can bypass the
traditional bad data detectors, at least at the beginning of the
attack duration. Moreover, the absence of any abrupt changes
in the onset of the attack makes it difficult for the existing
methods to detect them quickly in real-time.

B. Physical Stress Model

In this work, the abrupt change in the demand at a single bus
is considered as a physical stress. Although the variation of
load/demand with time is perpetual in electric grids, it usually
occurs slowly in a smooth fashion. Sudden changes in the
demand can represent abnormal conditions as can hamper the
reliability of the grid. In this paper, the abrupt change in load
demand is modeled using a scaling factor β. Specifically, if
the original load demand of the n−th bus at time t is Pn(t)
mega-watt, then the load demand of the stressed bus at time
t + ε is considered βPn(t) mega-watt, where ε is small. In
this work, the range of the values for β is considered in such
a way that the abrupt changes in the load do not cause failure
of transmission lines and subsequent islanding that alter the
topology of the system (i.e., changing the underlying graph
G). In other words, the techniques in this paper are for graph
signals with static G and time and vertex varying values.
Physical stresses that create changes in the topology can be
addressed by dynamic graphs [33] and are out of the scope of
this work and important for future studies.

V. GSP-BASED DETECTION AND LOCALIZATION

In this section, we first review the GFT-based technique for
detecting stresses as presented in [9], [11]. Then, we present
two new techniques for analyzing power grid’s measurements
for detecting and locating stresses based on VFED and LS of
graph signals.

A. Stresses Detection using GFT

In general, the low-frequency components are prominent
for the bus voltage angle graph signals because of the smooth
changes of bus-to-bus values due to the power flow dynamics.
The GFT coefficient magnitudes with respect to the normalized
graph-frequencies (i.e., λ̂k = λk−mini{λi}

maxi{λi}−mini{λi} ) are illus-
trated in Fig. 3 for a bus-voltage angle graph signal defined on
the graph of the IEEE 118 bus system under normal condition,

under an FDIA at bus 49, and under an abrupt change of
load (physical stress) at the same bus. It can be observed
that the magnitudes of the high-frequency components become
larger in the case of the FDIA but remain almost unaffected
in the case of physical stress. The reason is that in the case of
physical stress at bus 49, the graph signal values corresponding
to vertex 49 as well as its nearby vertices get affected. This
means no abrupt change can be observed in the graph signal
value at bus 49, instead more spread out changes occur over the
graph. In contrast, in the case of FDIA, the value changes only
occur at the vertex under attack, vertex 49. Such abrupt change
at only a single vertex results in an increase in the magnitude
of the high-graph frequency components. This property can be
exploited for the detection of anomalies in the measurement
data. A parameter γ(t) is introduced to quantify the amount
of high graph-frequency components corresponding to a graph
signal x(n, t) at the time instant t as follows:

γ(t) =
∑
k

|X̂(λ̂k, t)H(λ̂k)|, (6)

where H(λ) is a high-pass graph filter expressed by the
following frequency response: H(λ) = 0, if λ ≤ λc and
H(λ) = 1, if λ > λc, where λc is the cut-off graph-
frequency. For detecting cyber and physical stresses, we esti-
mate the probability distribution of γ, pγ(ζ), in normal condi-
tions from the past measurements of the system and assuming
γ is a stationary random variable. For a certain time instant
t, a stress is declared if the likelihood of γ(t) corresponding
to the distribution is less than a certain threshold θγ , (i.e.,
pγ(γ(t)) < θγ). The threshold θγ is selected empirically con-
sidering the tail probabilities of pγ(ζ). Although this method
detects cyber stresses reasonably well, the major drawback of
this method is that it cannot provide any information about
the location of the stress.

Fig. 3: GFT magnitude response for IEEE 118 bus system: empha-
sized high graph-frequency components can be observed in case of
false data injection.

B. Detecting and locating Stresses using VFED

Containing the topological and the spectral information
simultaneously, the VFED associated with the time-varying
graph signal x(n, t) makes itself suitable for detecting and
locating anomalies in complex networks. Moreover, due to
the better concentration of signal energy compared to the
linear joint vertex-frequency representations [7], it serves
better for locating stresses. According to equation (4), let
E(n, k, tstart − ε) and E(n, k, tstart + ε) be the VFEDs
corresponding to the graph signals just before the attack
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(under normal condition) and just after the stress, respectively.
Cyber/physical stresses involve abnormal changes in the time-
vertex graph signal x(n, t), which also affect the graph-
spectral characteristics of the graph signal at that time instant,
i.e., E(n, k, tstart+ε). Hence, the VFEDs before and after the
stress have certain differences that can be used in detecting and
locating stresses. Here, by marginalizing the difference distri-
bution, η(n, t) =

∑N
k=1 |E(n, k, t+ ε)−E(n, k, t− ε)|, over

the graph-frequency axis k, we use the comparatively large
values of η(n, t) as indicators for the compromised vertices.
Specifically, if the likelihood of η(n, t) value is below a certain
threshold likelihood θηn (i.e., pηn(η(n, t)) < θηn ) at time
instant t, a stress is declared at vertex n at that time instant.
Fig. 4 illustrates normalized η(n, tstart) in the case of an FDIA
at vertex 86 of IEEE 118 bus system, where a large value can
be observed. Although the VFED provides a technique for
locating stresses with abrupt changes in graph signal values,
this method fails to detect the sophistically designed stresses
with smooth transitions of graph signal values at the onset
discussed in Section IV-A. It is worth mentioning that the basis
signals of the graph frequency domain (i.e., eigenvectors of the
Laplacian matrix) are localized around certain vertices unlike
the sinusoidal bases for classical Fourier transform. For this
reason, the VFED fails to contain information corresponding
to the stress located at a particular vertex as distinctively as in
the case of classical joint time-frequency representations (e.g.,
spectrogram). Moreover, this technique is computationally
heavy for real-time applications.

Fig. 4: Normalised η(n, tstart) (between 0 to 1). For n = 86, the
largest value is obtained which indicates a stress at vertex (bus) 86.

C. Detecting and locating stresses using local smoothness

Both the GFT- and the VFED-based methods provide in-
sights into how the graph-frequency components associated
with the graph signal at one instant can be utilized to detect
anomalies in the grid. The latter method is also capable of
providing information about the stress location in the grid.
While both of the methods work well for stress models with
abrupt changes in graph signal values at the onset of the
attacks, they fail to detect and locate sophistically designed
stresses with no abrupt change at the onset as discussed in
Section IV-A. Here, a technique for detecting and locating
stresses based on the local smoothness of the graph signals
is presented that addresses the limitation of the previous
techniques. As described in Section III-E, the local smoothness
s(n, t) of the graph signal x(n, t) specifies how the graph
signal values at time t vary among the vertices. For example,
a higher value of s(n, t) specifies higher fluctuations of signal

values in the vicinity of vertex n. Fig. 5 illustrates the local
smoothness of the vertices of the IEEE 118 bus system
corresponding to the bus-vertex graph G and graph signal
x(n) in the normal condition (Fig. 5(a)) as well as under
DoS attack at bus number 100 (Fig. 5(b)). It can be observed
that the local smoothness values of the vertices in the vicinity
of vertex number 100 have changed significantly. This effect
on the local smoothness of the vertices can be exploited
to detect and locate anomalies in the grid. Specifically, by
evaluating the changes in the signal values around each vertex
of a graph signal, local smoothness s(n, t) provides spectral
and vertex-domain information simultaneously (similar to the
instantaneous frequency in classical signal processing).

(a)

(b)
Fig. 5: Local smoothness of the vertices of the IEEE 118 bus system:
(a) at normal condition, (b) during DoS attack at bus 100.

To this end, we propose local smoothness second time-
derivative (LSSTD) method for detecting and locating stresses.
In this method, instead of using s(n, t) directly, the second
time derivative of s(n, t), i.e., s′′(n, t) = d2

dt2 (s(n, t)), has
been considered. The rationale behind this consideration is
that s′′(n, t) differentiate between the changes in the local
smoothness values due to stresses and due to the regular load
changes better by reducing non-stationarity in s(n, t) (which
is introduced by the non-stationarity of x(n, t) due to load
changes). At each time instant t, if the likelihood of s′′(n, t)
is less than a certain threshold θs′′n (i.e., ps′′n(s

′′(n, t)) < θs′′n ),
a stress is declared at vertex n. If multiple vertices are ob-
tained, all the vertices are considered as the possible candidate
locations of stresses. The most possible location is identified
as κ ∈ V for which ps′′κ (s

′′(κ, t)) = minn ps′′n(s
′′(n, t)). In

this paper, past measurements of the system have been used
to estimate the probability distribution of the second time
derivative of the local smoothness of the n−th vertex ps′′n(ζ)
under normal conditions. In summary, the process consists of
three critical steps: 1) calculating the second time-derivative of
the local smoothness, 2) obtaining the likelihood of the second-
derivative of the local smoothness values at each vertex/bus,
and 3) comparing the likelihoods with the thresholds at each
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bus to detect and locate stresses simultaneously. In this work,
Gaussian distributions are assumed for pγ(ζ), pηn(ζ), and
ps′′n(ζ) and the estimation of the parameters of the distributions
are updated regularly to be consistent with the effects of chang-
ing statistics of x(n, t) (i.e., data drift [34]) that arise from
changes in generations, load demands, and control parameters.

VI. PERFORMANCE EVALUATION

A. Simulating Stress Scenarios

For evaluating the performance of our proposed detecting
and locating techniques, the IEEE 118 bus system [32] has
been considered and simulated using MATPOWER 6.0 [35].
For generating time-series associated with the graph vertices,
the time-varying load patterns from the New York Independent
System Operator (NYISO) [36] have been added with the
default MATPOWER loads as in [24]. The time-varying graph
signal associated with the bus voltage angle measurements
is obtained from the load flow analysis resulting. The cyber
attacks are simulated according to the descriptions in Section
IV-A. The noise q(t) is added so that the signal-to-noise ratio
is 45 dB in the generated signals. For the physical stresses, i.e.,
abrupt changes in load demand at a bus, the original demand
at that bus has been scaled up by factor β. For performance
evaluation of the detecting and localization techniques with
respect to cyber attacks, 10,000 random scenarios are sim-
ulated among which there are normal cases and attack cases
with equal probability. For cyber stresses, the stress start time,
tstart, and the location of the stress are selected randomly, all
using the uniform distribution. The reference bus for voltage
angle measurement (i.e., bus no. 69 in IEEE 118 bus system) is
excluded from the consideration of being a location of a cyber
stress. For FDIA, range of x′ = 0.02 to 3 for voltage angel
degrees are considered. For physical stresses (i.e., the abrupt
load change), 1,000 scenarios are simulated for each value of
β (specifically for β = 0.5, 0.6, 0.7, 0.8 and 0.9). Note that
based on the selected range of values for β to avoid topology
change, larger values indicate smaller changes in the load. For
better clarity, the performance of the methods is shown as a
function of parameter α defined as 1− β to better reflect the
proportional changes in the load. Among the aforementioned
1,000 simulated scenarios, there are normal cases as well as
abrupt load changes with equal probability. In the normal
scenarios, the loads of the buses change gradually following a
pattern affected by the daily and seasonal variations and other
slowly changing events that can introduce small changes in the
load demand from one time sample to the next. The locations
(buses) of the abrupt load change are selected from the load
buses of the IEEE 118 bus system with equal probability.
B. Performance Metrics

Several metrics have been considered for the assessment of
the proposed real-time detecting and locating schemes. The
true positive rate (TPR) expresses the ratio of the number of
true-positive (TP ) and the number of total positive cases, i.e.,
stress scenarios, while the false positive rate (FPR) expresses
the ratio of the number of the false-positive (FP ) and the
number of total negative cases, i.e., normal scenarios. The
accuracy of detection is defined as a = TP+TN

TP+TN+FP+FN .

TABLE I: Performance Evaluation of LSSTD Method.

Stress Type Accuracy, a LAExact LA1−hop
DoS Attack 0.967 0.635 0.996

Replay Attack 0.978 0.670 1.0000
Ramp Attack 0.999 0.647 1.0000

FDIA (x′ = 0.01) [See Fig.6(a)] 0.993 0.634 0.988
Delay Attack (d = 2 samples) [See Fig.6(b)] 0.989 0.628 0.994

Load Change (β = 0.6)[See Fig.6(c)] 1.00 0.609 0.778

In a real-time application, it is important to consider the time
needed to detect the stress; the detection time is defined is
as tdetect − tstart, where tdetect is the time instant at which
the stress is detected. For the assessment of the performance
of stress locating techniques, the location accuracy has been
defined in two forms: (1) based on LAexact, which specifies
the efficiency based on the ability to locate the exact location
(i.e., the vertex, where the stress occurred) and (2) based on
the performance in locating the stress within K−hop distances
of the actual location of the stress. In this paper, we have
considered K = 1 and K = 2 and denote the corresponding
performance metric by LA1−hop and LA2−hop, respectively.

C. Analysis of the result

Table I summarizes the performance of detecting and local-
izing cyber and physical stresses by the LSSTD techniques.
For all types of stresses, the false-positive rate is zero. Since
the distributions (pγ(ζ), pηn(ζ), and ps′′n(ζ)) have long tails,
we have selected the detection threshold in such a way that
the false-positive rate is zero without significantly affecting the
false-negative rate. The detection times for most of the stresses
(> 90%) are instant, i.e., they are detected immediately;
however, for the rest of the cases (< 10%), it can take several
time samples to detect the stress. Note that the results in Table
I for the delay attack and the FDIA are for particular attack
intensities (i.e., x′ = 0.04 for FDIA and d = 2 samples
for delay attack). The detailed performance for the FDIA has
been illustrated in Fig. 6(a). As can be observed from the
results, a large value of x′ creates a large change in graph
signal values of the compromised vertex and thereby becomes
easy to detect. Similarly, in delay attacks, a large delay is
less challenging to detect (Fig. 6(b)). The average detection
accuracy for FDIA in the range x′ = −0.04 to x′ = 0.04 is
0.887, while the average exact location accuracy and average
1− hop location accuracies are, respectively, 0.485 and 0.792.
For the delay attacks, the average detection accuracy, exact
location accuracy, 1− hop location accuracy over the range
d = 1 to d = 5 are, 0.978, 0.611, 0.988, respectively. Since
the physical stress, i.e., load demand change at a particular
bus, is always abrupt, it can be easily detected by the proposed
techniques. However, since the physical stresses affect the bus
voltage angle measurements associated with a large number of
buses in the grid, identifying the location of the stress is very
challenging. Fig. 6(c) illustrates the location performances as a
function of the changes in load demand ratio. The 1− hop and
2−hop locating accuracies are 0.792 and 0.894, respectively,
on average for β = 0.5, 0.6, 0.7, 0.8, 0.9.

D. Comparison with existing methods

1) Candidate techniques for comparison: In this work,
the performance of the proposed techniques is compared
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(a) (b) (c)
Fig. 6: Performance sensitivity to (a) magnitude of difference between false data injected and true value in FDIA x′, (b) delay, d in delay
attack, (c) changes in load demand ratio, α.

with other GSP- and non-GSP-based techniques. In the GSP-
based category, the GFT-based detection technique [9], [11]
(reviewed in Section V-A) and in the non-GSP-based category,
support vector machine (SVM), decision tree (DT), long short
term memory (LSTM)-based and the three sample quadratic
prediction algorithm (TSQPA) [6] are considered. Among
the non-GSP-based methods, SVM and DT are well-known
machine learning methods, which do not consider the temporal
correlation within the data stream. On the other hand, LSTM
and TSQPA are two methods that consider the temporal
correlation. LSTM is a neural network-based method that
requires a large amount of data to capture the normal pattern
in the time-series. The TSQPA is a signal processing-based
technique that is selected in this work as it uses the time-
series representation of streaming bus voltage angle data and
attack models based on the time-series similar to this work.
The TSQPA method predicts a measurement sample using
quadratic prediction with the past three measurement samples
of the same time-series. If the difference between the predicted
value and the actual value exceeds a certain threshold, an
attack is declared. In the LSTM-based method, the above-
mentioned prediction is done by an LSTM neural network
considering the multivariate setting of the time-series, and
an attack is declared when the normalized prediction error
exceeds a certain threshold similar to the TSQPA method.

The exact same time-series dataset and simulated cyber and
physical scenarios, discussed in Section VI-A, are consid-
ered for all the techniques. Specifically, for machine learning
methods (SVD, DT, and LSTM), the voltage angle time-series
are directly considered as the features. The LSTM prediction
model is considered with two LSTM layers with 100 neurons
in each followed by an output dense layer with a single
neuron. The performance of the LSTM-based stress detector
improves by increasing the amount of training data; however,
for ensuring the fairness of comparison among the detection
methods the model is trained using the same dataset used by
other methods.

2) Comparison of detection accuracy: Our evaluations re-
vealed that while all these methods (GFT-based, VFED-based,
SVM, DT, LSTM-based, and TSQPA methods) perform well
in detecting the stresses with sharp/abrupt changes at the onset,
the proposed LSSTD outperforms these methods significantly
in the case of more sophisticated and challenging cyber attacks
with no abrupt change at the onset. The comparative perfor-
mance of the proposed LSSTD method with the other GSP-
based and non-GSP-based methods has been shown in Fig. 7.

Next, some of the details of this comparison are presented.
In the case of FDIA, where parameter x′ quantifies the

change in the value of the attack at its onset, our simulations
have shown that for x′ = 0.02, the accuracy of detection
for TSQPA, GFT, SVM, DT, LSTM, and the VFED method
is limited to just a little over 0.5. While for x′ = 0.05,
the TSQPA method attains an accuracy of 0.76, the per-
formance of the other methods for this setting is still lim-
ited. For a large abrupt change, i.e., x′ = 3, the LSSTD,
TSQPA, SVM, DT, LSTM, VFED methods attain accuracies
of 1, 1, 0.97, 0.99, 0.97, and 0.93, respectively.

The performance of the GFT-based method in all these
scenarios is just over 0.5. However, GFT can detect FDIA
with more abrupt changes; for example, for x′ = 15, the GFT
technique achieves an accuracy of 0.94 and for x′ = 16.5
it achieves an accuracy of 1. The reason behind the lower
performance of GFT in the time-series setting is the changing
statistics of the time-series data due to high non-stationarity,
which poses difficulty in choosing θγ that leads to a high false-
positive rate. In [27] and [9], it is shown that a comparable
accuracy for GFT-based method is attainable in scenarios in
which the statistics of the states are stationary.

The example of the physical stress case considered in this
work is the abrupt load change, which in general contains
sharp changes of signal values at the onset. Both the LSSTD
method and the TSQPA method attain perfect accuracy in
detection for α = 0.1 to 0.5, while the accuracy of the
VFED method is between 0.79 to 0.92. However, the GFT-
based method is not able to detect load changes due to the
absence of high-graph frequency components as illustrated in
Fig. 3. In the GFT-based method, the GFT of a graph signal
cannot capture the local dynamics of the grid as it is a global
measurement of the contribution of the frequency components.

In the case of load change, instead of the multivariate setting
of the LSTM (as for the cyber stress detection model), 118
separate LSTM models are considered. It can be observed from
Fig. 7-b that although LSTM is generally an efficient method
for analyzing time-series, in the specific case of this work
with high dimensionality and under limited data utilization,
it fails to perform up to the mark. Moreover, from Fig. 7, it
can be observed that although VFED achieves lower detection
accuracy than all the other methods both in the case of
cyber and physical stresses, it outperforms LSTM and SVD
especially in the challenging range of small load changes (i.e.,
α < 0.3) as can be seen in Fig. 7-b. The VFED method is
based on the joint-vertex frequency distribution of the graph
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(a) (b)
Fig.7:Comparisonamongthedetectionaccuracyofdifferentmethodsforvarious(a)FDIAattackintensity,x(b)abruptloadchanging
factorα=1 β.

signal,whichrepresentsthecontributionofeachfrequency
componentinthevicinityofavertex.AlthoughVFEDdoes
notuseanywindowexplicitly,thecomputationofVFED
byequation(4)implicitlyintroducessomesmoothingeffect
andtherefore,losesspecificitytodetectthesmallamount
ofchangesinthesignal.FromFig.7,itcanbeobserved
thatalthoughTSQPAcanachievethesamelevelofdetection
accuracyastheLSSTDmethodforabruptloadchangeand
FDIAfortherangeofx>0.25buthasloweraccuracyfor
therangeofx<0.25.
3)Performanceoflocationaccuracy:Sincealltheafore-
mentionedmethodsarenotequippedwiththeabilitytolocate
thestresses,thestressdetectionaccuracyisconsideredasthe
primarycriterionofcomparisonamongtheperformanceof
themethods.However,amongtheGSP-basedtechniques,the
proposedLSSTDandVFEDtechniquescanlocatethestresses
alongwiththestressdetection.Betweenthesetwotechniques,
LSSTDhasbetterlocatingaccuracyinmostofthecasesasthe
smoothingeffectincalculatingtheVFEDvaluesreducesits
vertexlocalization.Ontheotherhand,theLSSTDiscalculated
directlyinthevertexdomain,whichhelpswiththelocating
process.However,thelocatingaccuracyoftheVFEDmethod
forabruptloadchangesisbetterthantheLSSTDmethod(0.98
forα=0.4and0.70forα=0.1).
4)Furtherdiscussions:Inthissubsection,morediscus-

sionsontheobservedperformanceofthe methodsinthe
previoussubsectionarepresented.
OneofthechallengesoftheLTSM-basedstressdetection

technique,consideredinthispaperforcomparison,isthat
althoughtheLSTM-basedmethodcancapturethetemporal
dynamics,beingatraining-basedpatternrecognitionmethod,
itconsiderstheverysmallchangesthatarepresentatthe
onsetofthedesignedstressesasnoise,andtherefore,failsto
classifythemasanomalies.Moreover,inthehighdimensional
multivariatetime-seriessetting(forthe118busesinthecase
ofIEEE118buses),LSTMrequiresalargeamountoftraining
dataforgoodaccuracy.Specifically,inthecaseofabrupt
loadchange,achangeofloaddemandinaparticularbus
affectsthevoltageangletime-seriesofmanyofitsneighboring
busessimultaneously.Assuch,fortrainingtheLSTMmodelto
differentiatebetweenthenormalconditionandtheloadchange
condition,alargeamountofdataisneeded.
Furthermore,theSVMandDTmethodsaretraining-based

data-centricmethods.Althoughtheyimplicitlylearnthere-
lationsamongdataandtheirsources,theycannotexplicitly

utilizetheknowledgeofthegridtopology,andalsotheyare
notcapableofcapturingthetimecorrelationamongthestates.
TSQPA methodcantractthetimeevolutionofdatabya
quadraticfunction;however,itcannotcapturetheinterrelation
amongthetime-seriesatdifferentbuses.GFT-basedmethod
alsodoesnotcapturethetemporalrelationsinthedataand
cannotcapturethelocaldynamicsofthegridasitisaglobal
measurementofthecontributionofthefrequencycomponents.
ThekeyadvantageoftheproposedLSSTDmethodisthat
itcombinestheadvantagesoftheexistingmethodsbyhaving
theabilitytocaptureboththetimecorrelationinthestate
valuesaswellastheinter-relationamongthestatesbytheir
structuralinterconnectionthroughthegraph.Specifically,the
proposedLSSTDmethodcandetectthecarefullydesigned
cyberattacksbycapturingtheinteractionandinterconnection
amongthegraphsignalvalueswhilethenon-GSPmethods
cannotutilizetheknowledgeoftheinteractionandintercon-
nectionsamongthedatasourcesexplicitly. Moreover,since
asmallamountofdataisneededtoobtainandupdatethe
probabilitydistributions(pγ(ζ),pηn(ζ),andpsn(ζ)),itcan
workonreal-timewithoutanyexplicittraining.

E.ComputationalComplexity

Inthissubsection,thecomputationalcomplexityofthe
LSSTDandVFEDisdiscussed.Thecomplexityforcomputing
s(n,t)=lx(n,t)x(n,t),x(n,t)=0isdominatedbythecomputation

oflx(n,t),then−thelementofthevector,Lx,whichis
intheorderofO(N2).Thecomplexityforcomputingthe
secondtime-derivativeofs(n,t)andthecomparisonwiththe
thresholdθsn arebothintheorderofO(N).Asaresult,
thecomputationalcomplexityofLSSTDdetectionalgorithm
isO(N2),whereN isthenumberofbusesinthegrid.
ForVFEDtechnique,equation(4)isthekeycomputational
component.Specifically,ateachtimeinstant,thevalueof
VFEDiscalculatedateveryvertex(i.e.,Nbuses)andevery
N frequencycomponent.Thecalculationforeach VFED
valuecomprisesofthreemultiplicationsandN summations.
Therefore,thecomplexityofVFEDisintheorderofO(N3).
Assuch,althoughthesemethodshavebeenappliedtothe
IEEE118bussystem,particularlyVFEDhaslimitedscala-
bilitytolargegridsizes.Itishopedthatfutureresearchon
VFEDtechniquecanleadtonewdevelopmentswithbetter
computationalcomplexityordevelopmentofcomplementing
techniques,suchasaugmentedgraphswithreduceddomain
andgridpartitioning,toallowVFEDapplicationtoasmaller
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system for stress localization. In its current form, the VFED
technique can be applied in parallel to LSSTD to a small
system to complement the localization process after a stress
is detected by the LSSTD technique.
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VII. CONCLUSION AND FUTURE WORKS

In this work, graph signal processing is utilized to represent
and analyze the power grid’s measurement data for reliability
and security evaluation of the system under various stresses.
The physical structure of the power grid has been used to
define the graph domain with the measurements associated
with the grid as the graph signals. The effects of the cyber
and physical stresses on the graph signals have been studied in
the vertex domain, graph-frequency domain, and joint vertex-
frequency domain of the signals. Based on the observations
from the effects of stresses, novel techniques for detecting
and locating stresses from the vertex-frequency energy dis-
tributions, and the local smoothness of graph signals have
been proposed and compared with existing GSP and non-
GSP methods. It is shown that the proposed techniques can
detect challenging stresses with no abrupt changes at the onset.
Moreover, the method based on local smoothness can perform
well in locating the stresses.

The presented work in this paper can be extended in several
directions. Analysis of the effects of noise on the performance
of the GSP-based methods is an important and interesting
topic for future studies. In this work, only the noise, implicitly
present in the load profiles, is considered. Secondly, stresses
that cause changes in the topology of the system (i.e., changes
in the underlying/domain graph of the graph signals) are not
considered in this paper and future studies can, for instance,
consider GSP-based methods based on dynamic graphs to de-
tect and locate such stresses. Future research on the proposed
VFED technique can lead to new developments with better
computational complexity or development of complementing
techniques, such as augmented graphs with reduced domain
and grid partitioning, to allow VFED application to a smaller
system for stress localization. Finally, the presented technique
do not distinguish among different types of stresses. A classifi-
cation method utilizing the graph signal attributes and features
in vertex and graph-spectral domain to classify the stresses can
also be a prospective future work.
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Distributions,” in IEEE Signal Processing Letters, vol. 25, no. 3, pp. 358-
362, March 2018.
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