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In animal communication, signals can arise endogenously or in response to cues, such as signals by conspecifics.
When one signal serves dual functions, such as in birds that use the same song for mate attraction and territorial
defense, the underlying reason for a vocalization cannot be determined without direct observations, and even
then, may be hard to discern. We present an inhomogeneous, self-exciting point process model to estimate the
underlying reasons for why an individual initiates a signal. In our application of these models, endogenous

signals are assumed to arise at a constant rate, but each signal can also instigate (“self-excite”) additional signals
by conspecific individuals. When applied to bullfrog (Rana catesbeiana) calls and ovenbird (Seiurus aurocapilla)
songs, our model performs as well as a homogeneous point process model typically used to describe count data,
while providing additional detail on the underlying motivations for signals. Although we apply the models to
acoustic signals, our model can be applied to any self-exciting process and can be extended to include spatio-

temporal dynamics in signals.

1. Introduction

The evolution of reliable signals in animal communication is gov-
erned by fitness benefits accrued by signalers and receivers (Smith and
Harper, 2003; Searcy and Nowicki 2005; Wells and Schwartz 2007). For
example, the role of acoustic signals in resource acquisition and defense
has long been assumed, with early ecologists taking it for granted that
bird song and other signals are used in mate attraction and territory
defense (e.g. Howard 1920, Tinbergen 1939, Nice 1941), as since
confirmed by decades of research. Countersinging, chorusing, and other
aggressive vocal responses are used by songbirds (Smith 1959; Heck-
enlively 1967; Wasserman 1977; Yasukawa 1981), anurans (Wells 1977;
Gerhardt 1992), orthopterans (Schatral et al., 1984), and primates
(Cowlishaw 1992), among others, in territory establishment and de-
fense. Acoustic signals are also associated with mate attraction (Left-
wich and Ritchison, 2000; Morris et al., 2002; Wells and Schwartz 2007;
Proppe and Ritchison 2008; Lohr et al., 2013), mate guarding (Diniz
et al., 2018), and pair bond maintenance (Whittingham et al., 1997;
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Ham et al., 2017). Species also use acoustic signals for other functions
such as predator deterrence (e.g. Pereyra and Morton 2010) or as a
warning to alert other individuals of predator presence (e.g. Halkin
1997; Park et al., 2004).

Broadly speaking, acoustic signals can be grouped into three classes
based on the cause and subject of the signal: 1) those that arise endog-
enously, such as widely broadcast bird songs to attract a mate or
advertisement calls in anurans, 2) those that arise in response to a signal
by a different individual, such as countersinging or chorusing to defend
territorial boundaries, and 3) those that arise due to a stimulus external
to both the signaler and receiver, such as presence of a predator (Smith
and Harper, 1995). We will focus on the first two classes since they
involve only intraspecific interactions (Searcy and Nowicki, 2005) and
they rely on self-reporting instead of information external to the signaler
and receiver, making them relatively predictable based on the evolu-
tionary history of the system that led to these signals being reliable
(Smith and Harper, 1995). For example, one can predict how frequently
a male songbird should sing to attract a mate or to defend territorial
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boundaries based on costs and benefits of the signal, but it is harder to
predict the occurrence of alarm calls without knowing whether or not
there is a cue (i.e. a nearby predator). When the underlying reasons for
an acoustic signal are known, it is possible to model and predict not only
the pattern of signals (e.g. Dawson and Efford, 2009), but also the pat-
terns of behavior associated with the signals (e.g. Byers 2007;
Upham-Mills et al., 2020).

For species with multi-signal repertoires where signal types are
associated with specific behaviors, ascertaining the underlying reason
for a signal can be done by linking signals to observed behaviors. For
example, observations of songbirds have been used to determine which
song types or elements (e.g. buzzes, trills) are linked to territoriality and
which to mate attraction (Trillo and Vehrencamp 2005; Proppe and
Ritchison 2008; Lohr et al., 2013). Similarly, some anurans alter the
frequency with which they combine call types (e.g. whines, chucks) to
attract females when perceived predation risk is high (Bosch et al.,
2000). When a signal type is used for multiple behaviors, however, the
reason for any given signal requires direct observation of the individual
at the time it occurs (Leftwich and Ritchison, 2000). To make behavioral
inferences for species with such signals, or for which the functional role
is unknown, researchers either need detailed field observations, which
may be impossible to obtain and are often subject to detection bias and
observation error, or a modeling framework that partitions the under-
lying behavioral processes and estimates their parameters separately.

To break behavioral patterns into their component parts, researchers
can use a class of self-exciting point process models (Hawkes, 1971), a
specific case of an inhomogeneous point process in situations where the
history of the process predicts future events. These methods have been
used in a wide variety of settings, such as to understand the occurrence
of earthquakes (e.g. Tiirkyilmaz et al., 2013; Fox et al., 2016), infectious
disease transmission and outbreaks (e.g. Meyer et al., 2012; Kim et al.,
2019; Schoenberg et al., 2019), or the behavior of financial market
traders (e.g. Hewlett, 2006, Bowsher, 2007; Chavez-Demoulin and
McGill, 2012; Bacry et al., 2015). Here, we present a self-exciting point
process model that can be used to estimate whether a given signal arises
unprompted or in response to a conspecific signal. We illustrate the
model using case studies of intraspecific signals in frogs and songbirds
and demonstrate how the models can be used to test hypotheses about
underlying reasons for signals.

2. Materials and methods
2.1. Model

Self-exciting point process models (Hawkes, 1971) are used to model
counting events that arise from an inconsistent rate that varies with the
history of events. Models in this class assume some intrinsic background
rate of event occurrence, and that when an event occurs, it incites (or
“self-excites”) additional occurrences of that event. For example, an
earthquake triggers aftershocks that are spatially and temporally linked
(Vere-Jones, 1970), and buyer behavior in stock markets is influenced
by other buyers’ decisions (Hewlett, 2006). Depending on the nature of
the process generating the events, however, over time the self-exciting
nature of the process declines and additional event occurrences cease
until a new instance of the event (Hawkes, 1971).

Classical self-exciting point process models (Hawkes, 1971) and their
extensions treat time as a continuous process and estimate the instan-
taneous rate of events. In many systems, it is more feasible to treat time
as discrete and to only consider the influence of events in previous time
bins. For example, although biological processes operate in continuous
time, data measurements and analysis are often done in discrete time
due to logistical constraints in recording observations (Kass et al., 2011).
In such cases, the true distribution of the data is assumed to arise from a
continuous process, but the observed data are not; thus, researchers
often create time bins that are sufficiently small to only capture either
0 or 1 signals and model the observed data using a discrete-time logistic
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approximation. These types of extensions of the general class of
self-exciting point process models make fitting the models more feasible
for a broad range of biological processes with different observational
challenges that make continuous time recordings difficult or impossible.

In our model (Fig. 1), we treat time as discrete with sufficiently small
time bins to only include either O or 1 observed signals. Due to obser-
vation error and limitations of data measurement (see below for
recording details), we assume the true distribution of signals arises from
a Poisson process and more than one simultaneous signal can occur in a
time bin but cannot be distinguished. Thus, the occurrence of one or
more signals at time ¢ arises from a Poisson process with a variable rate
(40 (Eq. 1) that describes the overall rate of signals in the system. This
rate (4¢) in turn depends on an intrinsic background rate of the signal
process (1) and a conditional intensity at time t (y¢) based on the history
of signals prior to t (Eq. 2). The background rate (1) is assumed to be
constant and is modeled with uninformative priors (Egs. 4-8). In situ-
ations where data could inform y, additional parameters and covariates
could be used to estimate it. The conditional intensity (y;) is modeled as a
function of individual motivation to respond to a signal, the self-
excitement parameter (a), based on memory of the history of signals
(11t), which decays at an exponential rate based on the memory kernel ()
(Eq. 3). We specified an exponential rate of decay based on models of
animal ‘forgetting’ that assume exponential decay in memory and
response to signals (Speed 2000), however, alternative specifications of
the memory kernel could be used. The self-excitement parameter (a) and
memory kernel (f) are drawn from uninformative gamma distributions
that have been truncated at arbitrary maxima that represent biologically
implausible scenarios (Egs. 9 and 10). The history of the process (1) is a
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Fig. 1. Conceptual diagram illustrating our model, in which a signal arising at a
given time arises from a background rate of singing (e.g. to attract a mate or
establish a territory) and a conditional intensity (e.g. countersinging behavior)
based on self-excitement of the process which decays over time as the memory
of the history of signals diminishes.
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vector of time differences between the current time t and event occur-
rences in previous time steps leading up to time ¢t (i.e. ny = t - t;:t). We
restrict the history based on the memory (m) of the process, where m is a
constant that is determined based on biological assumptions of the
system. Thus, ¢ is indexed starting from i = t - m for all times t > m; times
t < mare indexed starting from i = 1. By setting a limit on the maximum
memory (m) of the process, this restricts the window of previous events
that can influence signals at the current time step t. Signals from all
previous time bins could be modeled, but the inclusion of this cutoff
reduces computational intensity by fixing the influence of signals
outside the memory to zero rather than estimating many infinitesimally
small values.

yi ~ Pois() €8]
h=p+7, (2
= 3 fwe (o)) 3
i ~ Gamma(k, ) Q)
k= x*/c (5)
0 = x/c (6)
x ~ Unif(0, 100) %)
6 ~ Unif(0,100) ®)
a ~ Gamma(0.0001, 0.0001)[0.0001, 1] 9
f ~ Gamma(0.0001, 0.0001)[0.0001, 5] 10)

The underlying processes governing when events occur, x and yy,
correspond to the first two classes of behavior described earlier — a
background level of signals such as those used to attract a mate, and
responsive signals such as countersinging. The background rate (u)
arises endogenously with no influence of previous signals from con-
specifics. It could, however, be modeled based on environmental factors
that influence mate attraction in systems where these factors are hy-
pothesized or known. The conditional intensity (y;) depends on the
history of the process, representing signals by conspecifics that increase
the probability that an individual responds with a new signal that does
not arise endogenously. By separating these processes, self-exciting
point process models (Hawkes, 1971) let us make predictions about
factors that affect behavioral processes and understand why signals
occur when they do, and for what reasons. This ability sets them apart
from homogenous point process models, which are commonly used to
describe count data such as songs (e.g. Byers, 2007; Upham-Mills et al.,
2020), that do not distinguish the underlying reasons for a signal.

2.2. Applications of the model to empirical case studies

To illustrate use of our model, we applied it to two acoustic signal
datasets. The first dataset consists of times when American bullfrogs
(Rana catesbeiana) initiated calls in a single pond in eastern Connecticut,
USA, during the 2006 and 2007 breeding seasons. Calls were collected
with an autonomous, continually recording unit placed nightly in a new,
randomly selected, position around the 135 m perimeter of the study
pond, and each call was automatically detected with the Song Scope®
bioacoustics software (version 2.4; Ingranat 2007, 2009) (see Herrick
etal., 2018 for detailed data collection methods). For the second dataset,
we sampled singing behavior of male ovenbirds (Seiurus aurocapilla)
using autonomous recording units in 15 Connecticut forest fragments
ranging in size from 19 to 1014 ha during the 2017 and 2019 breeding
seasons. Within each forest fragment, observers made 3-7 recordings
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(mean = 5.81, sd = 1.04) at different points within the fragment, each
separated from every other point by several hundred meters. Due to
habitat heterogeneity within forest fragments, not all points included
ovenbirds and these recordings were not included in this study. The
recordings are repeated samples of the same forest fragment on the same
day but include different individual birds. Each recording began with a
human voice interruption that reset the process, ensuring that the first
signal recorded was endogenous and not influenced by previous signals.
Recordings lasted eight minutes, thus, variation in rates of signals over
the course of the day were not a concern within each recording. The start
time of every ovenbird song from each recording was manually tran-
scribed and measured to the nearest 0.5 second to produce a discrete
time series of songs in time bins of 0.5 s. If two songs were initiated
simultaneously, we could not detect this in the recording, and thus each
time bin consisted of either a 0 or 1 indicating if a signal was initiated.
We measured all signals captured by the recording device, however,
there may be edge effects (Zhuang et al., 2004) introduced by in-
dividuals that were vocalizing outside the range of the recording device
and that influenced signals by individuals which we did detect. We
analyzed data from each forest fragment separately because each site is
physically separated from the others by sufficient distance to represent
independent groups of ovenbirds during the breeding season.

2.3. Model performance and applications

To test model performance, we compared predictive ability of the
self-exciting point process models to that of homogenous point process
models. For each time series, we fit both models in a hierarchical
framework with uninformative priors, in R 3.5.1 (R Core Team, 2018)
using R2jags 0.6.1 (Su and Yajima, 2015) and simulated time series with
the estimated parameters (see Appendix A for code). We ran three
MCMC chains and assessed convergence using the potential scale

reduction factor (ﬁ) with a cutoff of <1.1 (Gelman and Rubin 1992;
Brooks and Gelman 1998). As a benchmark to compare performance of
our model and the homogenous model, we assessed correspondence
between the simulated time series from each model and the observed
time series. We calculated the mean and 90% credible intervals for the
difference in total number of estimated vocalizations in the simulated
time series from each model compared to the observed vocalizations.

The unique features of our model can be used to test hypotheses
about the underlying causes of signals. For example, large forest patches
represent high quality habitat for forest interior songbirds such as ov-
enbirds, resulting in higher densities (Porneluzi et al., 1993) and thus
greater motivation for territorial males to respond to the songs of
neighbors (Leftwich and Ritchison, 2000). To demonstrate this potential
application of the model, we fit generalized linear models with a gamma
response distribution and identity link to the background rate of singing
(p), which must always be positive and is assumed to be nonzero, in
response to time in the breeding season (x) for both large forests and
small forests (Egs. 11 and 12) with uniformative priors (Egs. 13-15).
Note that although the background rate of singing () is shared between
these models and the model described earlier, the parameters (a, f3, k)
and covariate (x) are distinct and symbols are only recycled for consis-
tency with conventions.

U ~ Gamma(k,k /") an
p=a+pfxx 12)
a ~ N(0, 0.0001) 13)
B ~ N(0, 0.0001) a4
k ~ Unif(0, 500) (15)
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3. Results

There were no differences in the total number of vocalizations pre-
dicted by our model and homogenous models for either bullfrogs or
ovenbirds (Fig. 2a—d). Both models over and under-predicted total vo-
calizations at similar rates (Fig. 2e), with slight underestimates on
average. Mean differences in the number of bullfrog calls predicted and
observed was —1.05 calls (se = 0.11) for our model and —0.83 calls (se
= 0.18) for homogenous models. For ovenbird songs, averaged across all
sites, the mean difference was —0.66 songs (se = 0.02) for our model and
—0.58 songs (se = 0.03) for the homogenous models.

Our models show that the mean proportion of the overall signaling
rate explained by conditional intensity (i.e. countersinging in response
to conspecifics) was 0.55 (se = 6.59e-04) for bullfrog calls, and ranged
from 0.02 to 0.59 for ovenbird songs depending on site, with an overall
average across all sites of 0.33 (se = 3.95e-04). This proportion is based
on the relative weight at each time step t of the background rate of
singing and the conditional intensity based on the history of signals
leading up to time t. Our analyses suggest a decline in the background
rate (u) of singing in larger forest fragments over the course of the
breeding season (Fig. 3), with an estimated slope of —0.04 x/ha (90% CI
—0.05, —0.03). The background rate (4) remains constant in smaller
fragments throughout the breeding season, however, with an estimated
slope of —0.01 u/ha and a credible interval that overlaps zero (90% CI
—0.03, 0.02) indicating no directional effect of time in the breeding
season within smaller forest fragments.

4. Discussion
The primary strength of our model is its ability to partition the

processes generating acoustic signals into those that arise endogenously,
measured as the background rate, and those that arise in response to
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conspecific signals, measured as the conditional intensity. This parti-
tioning enables researchers to make predictions about environmental
factors that affect these separate classes of signals, which can help
identify tradeoffs that govern when animals expend energy to emit
different types of signals. In our bird song case study, for example, we
were able to determine how the extent to which songs are used for
territory establishment and mate attraction (i.e. the background rate of
singing) change over the course of the breeding season in high quality
(large forests) and low quality (small forests) breeding habitat. Param-
eter outputs of the model could also be used to determine when bird
singing shifts from one purpose to another over time, or if males in
habitats with low resource availability allocate more time to counter-
singing than males in areas with high resource availability. Our models
can distinguish between unprompted singing and responses to conspe-
cific signals (e.g. territory defense), which provides substantial im-
provements over simple homogenous point process models in our ability
to make behavioral inferences from acoustic signal datasets. That our
model performed similarly to the homogenous point process model
suggests that there is no performance cost associated with these gains in
interpretation.

Determining the proper form of the memory kernel is critical for
model interpretation. Self-exciting point process models are sensitive to
misspecification, which can result in biased estimates of the magnitude
and timescale of influence of self-excitement on the process (Reinhart
and Greenhouse, 2018). Thus, it is important to consider the biology of
the system when specifying the memory kernel. We implemented an
exponential memory kernel because animal ‘forgetting’ is assumed to
decay exponentially based on experimental studies (Speed, 2000),
however, this may not be a good assumption for many questions. For
example, responses that arise from linked network interactions, such as
the spread of infectious disease within a wild population (Meyer and
Held, 2014) or long-lasting neuron memory (Kauer and Malenka, 2007),
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Fig. 3. Background rate of ovenbird singing, corresponding to
mate attraction and territory establishment, in relation to date in
the breeding season and forest size class. In large forests (>200
ha), the background rate declines over the breeding season (dark
green) whereas it remains relatively constant in small forests (light
green). Dashed lines show the effect of date on the background rate
of singing, for each forest size class respectively, from a general-
ized linear model with a gamma identity link. The shaded areas are
the 90% credible intervals for these effects.
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may be better modeled with a power-law decay function. Similarly,
spread of signals within a socially complex system (e.g. non-human
primates) may be better modeled with a power-law decay function
due to the strong ties between individuals (Sueur et al., 2011). Re-
searchers adapting the model should consider alternative specifications
of the memory kernel appropriate to their system, including those which
include a spatial component.

In our case study, we extended the model to test hypotheses about
the effects of forest size and time in the breeding season on the rate of
background singing; many extensions are possible depending on what
additional information researchers have about the system and what
hypotheses are being tested. Because our model can be fit in a hierar-
chical structure and all components are modular, it can be adapted to a
wide range of behaviors, hypotheses about what influences those be-
haviors, and systems with vastly different characteristics. For example,
where pairing status is known and mate attraction can be ruled out for
signals produced by paired males (i.e., no extra-pair mate attraction),
one could incorporate this information into the background singing rate
(1) to more precisely estimate the probability that any given song is a
response to a conspecific signal. Similarly, some environmental factors
can be allowed to influence only the background rate of singing or only
the conditional intensity, depending on the biology of the system being
modeled. We did not test any hypotheses with the bullfrog call data,
however, this second case study demonstrates that the models are
flexible and can be applied to systems with orders of magnitude more
acoustic signals per time period than our bird case study.

The models could also be extended to incorporate information about
the spatial structure of signals. Our model assumes that all individuals
within the area being sampled are equally likely to respond to all others,
however, this is unlikely to be an accurate assumption (Simpson, 1985).
For example, individuals may have higher motivation to respond to
close neighbors than to distant neighbors, or to strangers rather than to
known neighbors (Galeotti and Pavan, 1993). In our case study, we were
unable to identify the spatial history of signals because all recordings
were done from a single point and we were thus unable to account for
edge effects introduced by individuals signaling from outside the range

1
June 22

of the recording unit. When the spatial arrangement of individual songs
is known, however, the spatial history of signals could be incorporated
into the models (Reinhart, 2018). In many animal systems, the location
of each signal could be determined through arrays of recording units
(Mennill et al., 2012), or if individuals are highly territorial and territory
boundaries are mapped through other means such as visual surveys. In
these cases where the spatial history of signals is known, alternative
specifications of the memory kernel that include both a time decay and a
spatial decay can be used to predict not only when and why a signal
would occur, but also where in the landscape.

Our model is only one of many inhomogeneous point process models
that could be used to analyze behavioral signal patterns. The value of
our modeling approach is in the simplicity of the framework that relies
only on the signals themselves to make behavioral inferences, though
contextual data can improve inferences based on the models and be used
to test hypotheses about the underlying processes generating the signals.
This simple framework can easily incorporate additional information
about a system to improve inferences about the underlying reasons for
signals. Although we have only applied the models to acoustic data, they
could be applied to any class of animal communication that is initiated
both endogenously and in response to others. For example, the models
could be applied to displays in lekking species (e.g., Gibson and Brad-
bury, 1985) or to any type of coordinated visual display (e.g., Buck and
Buck, 1968). Because self-exciting point process models provide a means
for separating signal patterns into different behavioral components, they
provide an opportunity to study behavioral trade-offs and factors
influencing when and why animals signal and countersignal.
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