
Ecological Modelling 468 (2022) 109965

Available online 31 March 2022
0304-3800/© 2022 Elsevier B.V. All rights reserved.

Separating acoustic signal into underlying behaviors with self-exciting 
point process models 

Eliza M. Grames a,1,*, Piper L. Stepule b, Susan Z. Herrick a, Benjamin T. Ranelli a,2, Chris 
S. Elphick a 

a Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269 United States of America 
b Department of Mathematics, University of Connecticut, Storrs, CT, 06269 United States of America   

A R T I C L E  I N F O   

Keywords: 
Acoustic signals 
Self-exciting point process 
Inhomogeneous point process model 
Singing behavior 
Song function 

A B S T R A C T   

In animal communication, signals can arise endogenously or in response to cues, such as signals by conspecifics. 
When one signal serves dual functions, such as in birds that use the same song for mate attraction and territorial 
defense, the underlying reason for a vocalization cannot be determined without direct observations, and even 
then, may be hard to discern. We present an inhomogeneous, self-exciting point process model to estimate the 
underlying reasons for why an individual initiates a signal. In our application of these models, endogenous 
signals are assumed to arise at a constant rate, but each signal can also instigate (“self-excite”) additional signals 
by conspecific individuals. When applied to bullfrog (Rana catesbeiana) calls and ovenbird (Seiurus aurocapilla) 
songs, our model performs as well as a homogeneous point process model typically used to describe count data, 
while providing additional detail on the underlying motivations for signals. Although we apply the models to 
acoustic signals, our model can be applied to any self-exciting process and can be extended to include spatio
temporal dynamics in signals.   

1. Introduction 

The evolution of reliable signals in animal communication is gov
erned by fitness benefits accrued by signalers and receivers (Smith and 
Harper, 2003; Searcy and Nowicki 2005; Wells and Schwartz 2007). For 
example, the role of acoustic signals in resource acquisition and defense 
has long been assumed, with early ecologists taking it for granted that 
bird song and other signals are used in mate attraction and territory 
defense (e.g. Howard 1920, Tinbergen 1939, Nice 1941), as since 
confirmed by decades of research. Countersinging, chorusing, and other 
aggressive vocal responses are used by songbirds (Smith 1959; Heck
enlively 1967; Wasserman 1977; Yasukawa 1981), anurans (Wells 1977; 
Gerhardt 1992), orthopterans (Schatral et al., 1984), and primates 
(Cowlishaw 1992), among others, in territory establishment and de
fense. Acoustic signals are also associated with mate attraction (Left
wich and Ritchison, 2000; Morris et al., 2002; Wells and Schwartz 2007; 
Proppe and Ritchison 2008; Lohr et al., 2013), mate guarding (Diniz 
et al., 2018), and pair bond maintenance (Whittingham et al., 1997; 

Ham et al., 2017). Species also use acoustic signals for other functions 
such as predator deterrence (e.g. Pereyra and Morton 2010) or as a 
warning to alert other individuals of predator presence (e.g. Halkin 
1997; Park et al., 2004). 

Broadly speaking, acoustic signals can be grouped into three classes 
based on the cause and subject of the signal: 1) those that arise endog
enously, such as widely broadcast bird songs to attract a mate or 
advertisement calls in anurans, 2) those that arise in response to a signal 
by a different individual, such as countersinging or chorusing to defend 
territorial boundaries, and 3) those that arise due to a stimulus external 
to both the signaler and receiver, such as presence of a predator (Smith 
and Harper, 1995). We will focus on the first two classes since they 
involve only intraspecific interactions (Searcy and Nowicki, 2005) and 
they rely on self-reporting instead of information external to the signaler 
and receiver, making them relatively predictable based on the evolu
tionary history of the system that led to these signals being reliable 
(Smith and Harper, 1995). For example, one can predict how frequently 
a male songbird should sing to attract a mate or to defend territorial 
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boundaries based on costs and benefits of the signal, but it is harder to 
predict the occurrence of alarm calls without knowing whether or not 
there is a cue (i.e. a nearby predator). When the underlying reasons for 
an acoustic signal are known, it is possible to model and predict not only 
the pattern of signals (e.g. Dawson and Efford, 2009), but also the pat
terns of behavior associated with the signals (e.g. Byers 2007; 
Upham-Mills et al., 2020). 

For species with multi-signal repertoires where signal types are 
associated with specific behaviors, ascertaining the underlying reason 
for a signal can be done by linking signals to observed behaviors. For 
example, observations of songbirds have been used to determine which 
song types or elements (e.g. buzzes, trills) are linked to territoriality and 
which to mate attraction (Trillo and Vehrencamp 2005; Proppe and 
Ritchison 2008; Lohr et al., 2013). Similarly, some anurans alter the 
frequency with which they combine call types (e.g. whines, chucks) to 
attract females when perceived predation risk is high (Bosch et al., 
2000). When a signal type is used for multiple behaviors, however, the 
reason for any given signal requires direct observation of the individual 
at the time it occurs (Leftwich and Ritchison, 2000). To make behavioral 
inferences for species with such signals, or for which the functional role 
is unknown, researchers either need detailed field observations, which 
may be impossible to obtain and are often subject to detection bias and 
observation error, or a modeling framework that partitions the under
lying behavioral processes and estimates their parameters separately. 

To break behavioral patterns into their component parts, researchers 
can use a class of self-exciting point process models (Hawkes, 1971), a 
specific case of an inhomogeneous point process in situations where the 
history of the process predicts future events. These methods have been 
used in a wide variety of settings, such as to understand the occurrence 
of earthquakes (e.g. Türkyilmaz et al., 2013; Fox et al., 2016), infectious 
disease transmission and outbreaks (e.g. Meyer et al., 2012; Kim et al., 
2019; Schoenberg et al., 2019), or the behavior of financial market 
traders (e.g. Hewlett, 2006, Bowsher, 2007; Chavez-Demoulin and 
McGill, 2012; Bacry et al., 2015). Here, we present a self-exciting point 
process model that can be used to estimate whether a given signal arises 
unprompted or in response to a conspecific signal. We illustrate the 
model using case studies of intraspecific signals in frogs and songbirds 
and demonstrate how the models can be used to test hypotheses about 
underlying reasons for signals. 

2. Materials and methods 

2.1. Model 

Self-exciting point process models (Hawkes, 1971) are used to model 
counting events that arise from an inconsistent rate that varies with the 
history of events. Models in this class assume some intrinsic background 
rate of event occurrence, and that when an event occurs, it incites (or 
“self-excites”) additional occurrences of that event. For example, an 
earthquake triggers aftershocks that are spatially and temporally linked 
(Vere-Jones, 1970), and buyer behavior in stock markets is influenced 
by other buyers’ decisions (Hewlett, 2006). Depending on the nature of 
the process generating the events, however, over time the self-exciting 
nature of the process declines and additional event occurrences cease 
until a new instance of the event (Hawkes, 1971). 

Classical self-exciting point process models (Hawkes, 1971) and their 
extensions treat time as a continuous process and estimate the instan
taneous rate of events. In many systems, it is more feasible to treat time 
as discrete and to only consider the influence of events in previous time 
bins. For example, although biological processes operate in continuous 
time, data measurements and analysis are often done in discrete time 
due to logistical constraints in recording observations (Kass et al., 2011). 
In such cases, the true distribution of the data is assumed to arise from a 
continuous process, but the observed data are not; thus, researchers 
often create time bins that are sufficiently small to only capture either 
0 or 1 signals and model the observed data using a discrete-time logistic 

approximation. These types of extensions of the general class of 
self-exciting point process models make fitting the models more feasible 
for a broad range of biological processes with different observational 
challenges that make continuous time recordings difficult or impossible. 

In our model (Fig. 1), we treat time as discrete with sufficiently small 
time bins to only include either 0 or 1 observed signals. Due to obser
vation error and limitations of data measurement (see below for 
recording details), we assume the true distribution of signals arises from 
a Poisson process and more than one simultaneous signal can occur in a 
time bin but cannot be distinguished. Thus, the occurrence of one or 
more signals at time t arises from a Poisson process with a variable rate 
(λt) (Eq. 1) that describes the overall rate of signals in the system. This 
rate (λt) in turn depends on an intrinsic background rate of the signal 
process (μ) and a conditional intensity at time t (γt) based on the history 
of signals prior to t (Eq. 2). The background rate (μ) is assumed to be 
constant and is modeled with uninformative priors (Eqs. 4–8). In situ
ations where data could inform μ, additional parameters and covariates 
could be used to estimate it. The conditional intensity (γt) is modeled as a 
function of individual motivation to respond to a signal, the self- 
excitement parameter (α), based on memory of the history of signals 
(ηt), which decays at an exponential rate based on the memory kernel (β) 
(Eq. 3). We specified an exponential rate of decay based on models of 
animal ‘forgetting’ that assume exponential decay in memory and 
response to signals (Speed 2000), however, alternative specifications of 
the memory kernel could be used. The self-excitement parameter (α) and 
memory kernel (β) are drawn from uninformative gamma distributions 
that have been truncated at arbitrary maxima that represent biologically 
implausible scenarios (Eqs. 9 and 10). The history of the process (ηt) is a 

Fig. 1. Conceptual diagram illustrating our model, in which a signal arising at a 
given time arises from a background rate of singing (e.g. to attract a mate or 
establish a territory) and a conditional intensity (e.g. countersinging behavior) 
based on self-excitement of the process which decays over time as the memory 
of the history of signals diminishes. 
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vector of time differences between the current time t and event occur
rences in previous time steps leading up to time t (i.e. ηt = t - ti:t). We 
restrict the history based on the memory (m) of the process, where m is a 
constant that is determined based on biological assumptions of the 
system. Thus, ti is indexed starting from i = t - m for all times t > m; times 
t < m are indexed starting from i = 1. By setting a limit on the maximum 
memory (m) of the process, this restricts the window of previous events 
that can influence signals at the current time step t. Signals from all 
previous time bins could be modeled, but the inclusion of this cutoff 
reduces computational intensity by fixing the influence of signals 
outside the memory to zero rather than estimating many infinitesimally 
small values. 

yt ∼ Pois(λt) (1)  

λt = μ + γt (2)  

γt =
∑

i: ti−m<ti<t

[
∝ ∗

(
e−β∗(ηti :t)

)]
(3)  

μ ∼ Gamma(k, θ) (4)  

k = x2/
σ2 (5)  

θ = x
/

σ2 (6)  

x ∼ Unif(0, 100) (7)  

σ ∼ Unif(0, 100) (8)  

α ∼ Gamma(0.0001, 0.0001)[0.0001, 1] (9)  

β ∼ Gamma(0.0001, 0.0001)[0.0001, 5] (10) 

The underlying processes governing when events occur, μ and γt, 
correspond to the first two classes of behavior described earlier – a 
background level of signals such as those used to attract a mate, and 
responsive signals such as countersinging. The background rate (μ) 
arises endogenously with no influence of previous signals from con
specifics. It could, however, be modeled based on environmental factors 
that influence mate attraction in systems where these factors are hy
pothesized or known. The conditional intensity (γt) depends on the 
history of the process, representing signals by conspecifics that increase 
the probability that an individual responds with a new signal that does 
not arise endogenously. By separating these processes, self-exciting 
point process models (Hawkes, 1971) let us make predictions about 
factors that affect behavioral processes and understand why signals 
occur when they do, and for what reasons. This ability sets them apart 
from homogenous point process models, which are commonly used to 
describe count data such as songs (e.g. Byers, 2007; Upham-Mills et al., 
2020), that do not distinguish the underlying reasons for a signal. 

2.2. Applications of the model to empirical case studies 

To illustrate use of our model, we applied it to two acoustic signal 
datasets. The first dataset consists of times when American bullfrogs 
(Rana catesbeiana) initiated calls in a single pond in eastern Connecticut, 
USA, during the 2006 and 2007 breeding seasons. Calls were collected 
with an autonomous, continually recording unit placed nightly in a new, 
randomly selected, position around the 135 m perimeter of the study 
pond, and each call was automatically detected with the Song Scope® 
bioacoustics software (version 2.4; Ingranat 2007, 2009) (see Herrick 
et al., 2018 for detailed data collection methods). For the second dataset, 
we sampled singing behavior of male ovenbirds (Seiurus aurocapilla) 
using autonomous recording units in 15 Connecticut forest fragments 
ranging in size from 19 to 1014 ha during the 2017 and 2019 breeding 
seasons. Within each forest fragment, observers made 3–7 recordings 

(mean = 5.81, sd = 1.04) at different points within the fragment, each 
separated from every other point by several hundred meters. Due to 
habitat heterogeneity within forest fragments, not all points included 
ovenbirds and these recordings were not included in this study. The 
recordings are repeated samples of the same forest fragment on the same 
day but include different individual birds. Each recording began with a 
human voice interruption that reset the process, ensuring that the first 
signal recorded was endogenous and not influenced by previous signals. 
Recordings lasted eight minutes, thus, variation in rates of signals over 
the course of the day were not a concern within each recording. The start 
time of every ovenbird song from each recording was manually tran
scribed and measured to the nearest 0.5 second to produce a discrete 
time series of songs in time bins of 0.5 s. If two songs were initiated 
simultaneously, we could not detect this in the recording, and thus each 
time bin consisted of either a 0 or 1 indicating if a signal was initiated. 
We measured all signals captured by the recording device, however, 
there may be edge effects (Zhuang et al., 2004) introduced by in
dividuals that were vocalizing outside the range of the recording device 
and that influenced signals by individuals which we did detect. We 
analyzed data from each forest fragment separately because each site is 
physically separated from the others by sufficient distance to represent 
independent groups of ovenbirds during the breeding season. 

2.3. Model performance and applications 

To test model performance, we compared predictive ability of the 
self-exciting point process models to that of homogenous point process 
models. For each time series, we fit both models in a hierarchical 
framework with uninformative priors, in R 3.5.1 (R Core Team, 2018) 
using R2jags 0.6.1 (Su and Yajima, 2015) and simulated time series with 
the estimated parameters (see Appendix A for code). We ran three 
MCMC chains and assessed convergence using the potential scale 
reduction factor (R̂) with a cutoff of <1.1 (Gelman and Rubin 1992; 
Brooks and Gelman 1998). As a benchmark to compare performance of 
our model and the homogenous model, we assessed correspondence 
between the simulated time series from each model and the observed 
time series. We calculated the mean and 90% credible intervals for the 
difference in total number of estimated vocalizations in the simulated 
time series from each model compared to the observed vocalizations. 

The unique features of our model can be used to test hypotheses 
about the underlying causes of signals. For example, large forest patches 
represent high quality habitat for forest interior songbirds such as ov
enbirds, resulting in higher densities (Porneluzi et al., 1993) and thus 
greater motivation for territorial males to respond to the songs of 
neighbors (Leftwich and Ritchison, 2000). To demonstrate this potential 
application of the model, we fit generalized linear models with a gamma 
response distribution and identity link to the background rate of singing 
(μ), which must always be positive and is assumed to be nonzero, in 
response to time in the breeding season (x) for both large forests and 
small forests (Eqs. 11 and 12) with uniformative priors (Eqs. 13–15). 
Note that although the background rate of singing (μ) is shared between 
these models and the model described earlier, the parameters (α, β, k) 
and covariate (x) are distinct and symbols are only recycled for consis
tency with conventions. 

μ ∼ Gamma(k, k / ep) (11)  

p = α + β ∗ x (12)  

α ∼ N(0, 0.0001) (13)  

β ∼ N(0, 0.0001) (14)  

k ∼ Unif(0, 500) (15)  
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3. Results 

There were no differences in the total number of vocalizations pre
dicted by our model and homogenous models for either bullfrogs or 
ovenbirds (Fig. 2a–d). Both models over and under-predicted total vo
calizations at similar rates (Fig. 2e), with slight underestimates on 
average. Mean differences in the number of bullfrog calls predicted and 
observed was −1.05 calls (se = 0.11) for our model and −0.83 calls (se 
= 0.18) for homogenous models. For ovenbird songs, averaged across all 
sites, the mean difference was −0.66 songs (se = 0.02) for our model and 
−0.58 songs (se = 0.03) for the homogenous models. 

Our models show that the mean proportion of the overall signaling 
rate explained by conditional intensity (i.e. countersinging in response 
to conspecifics) was 0.55 (se = 6.59e-04) for bullfrog calls, and ranged 
from 0.02 to 0.59 for ovenbird songs depending on site, with an overall 
average across all sites of 0.33 (se = 3.95e-04). This proportion is based 
on the relative weight at each time step t of the background rate of 
singing and the conditional intensity based on the history of signals 
leading up to time t. Our analyses suggest a decline in the background 
rate (μ) of singing in larger forest fragments over the course of the 
breeding season (Fig. 3), with an estimated slope of −0.04 μ/ha (90% CI 
−0.05, −0.03). The background rate (μ) remains constant in smaller 
fragments throughout the breeding season, however, with an estimated 
slope of −0.01 μ/ha and a credible interval that overlaps zero (90% CI 
−0.03, 0.02) indicating no directional effect of time in the breeding 
season within smaller forest fragments. 

4. Discussion 

The primary strength of our model is its ability to partition the 
processes generating acoustic signals into those that arise endogenously, 
measured as the background rate, and those that arise in response to 

conspecific signals, measured as the conditional intensity. This parti
tioning enables researchers to make predictions about environmental 
factors that affect these separate classes of signals, which can help 
identify tradeoffs that govern when animals expend energy to emit 
different types of signals. In our bird song case study, for example, we 
were able to determine how the extent to which songs are used for 
territory establishment and mate attraction (i.e. the background rate of 
singing) change over the course of the breeding season in high quality 
(large forests) and low quality (small forests) breeding habitat. Param
eter outputs of the model could also be used to determine when bird 
singing shifts from one purpose to another over time, or if males in 
habitats with low resource availability allocate more time to counter
singing than males in areas with high resource availability. Our models 
can distinguish between unprompted singing and responses to conspe
cific signals (e.g. territory defense), which provides substantial im
provements over simple homogenous point process models in our ability 
to make behavioral inferences from acoustic signal datasets. That our 
model performed similarly to the homogenous point process model 
suggests that there is no performance cost associated with these gains in 
interpretation. 

Determining the proper form of the memory kernel is critical for 
model interpretation. Self-exciting point process models are sensitive to 
misspecification, which can result in biased estimates of the magnitude 
and timescale of influence of self-excitement on the process (Reinhart 
and Greenhouse, 2018). Thus, it is important to consider the biology of 
the system when specifying the memory kernel. We implemented an 
exponential memory kernel because animal ‘forgetting’ is assumed to 
decay exponentially based on experimental studies (Speed, 2000), 
however, this may not be a good assumption for many questions. For 
example, responses that arise from linked network interactions, such as 
the spread of infectious disease within a wild population (Meyer and 
Held, 2014) or long-lasting neuron memory (Kauer and Malenka, 2007), 

Fig. 2. Differences between the number of estimated and observed bullfrog calls (teal) and ovenbird songs (coral) using our model (a,c) and a homogenous model (b, 
d). The dashed line represents perfect prediction, and negative values indicate underprediction of the number of vocalizations. For both the bullfrog site and a 
representative ovenbird site, differences between observed and estimated vocalizations are shown for each repeated sample with a sample-level density of posterior 
predictions (colored shading); overall density of posterior predictions across all samples from a site is indicated by the heavy colored line. Differences in estimates 
between our model and homogenous models (e) are shown for each recording, with each line representing a single site; positive numbers indicate that predictions 
from our model were closer to observations than those from homogenous models. 
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may be better modeled with a power-law decay function. Similarly, 
spread of signals within a socially complex system (e.g. non-human 
primates) may be better modeled with a power-law decay function 
due to the strong ties between individuals (Sueur et al., 2011). Re
searchers adapting the model should consider alternative specifications 
of the memory kernel appropriate to their system, including those which 
include a spatial component. 

In our case study, we extended the model to test hypotheses about 
the effects of forest size and time in the breeding season on the rate of 
background singing; many extensions are possible depending on what 
additional information researchers have about the system and what 
hypotheses are being tested. Because our model can be fit in a hierar
chical structure and all components are modular, it can be adapted to a 
wide range of behaviors, hypotheses about what influences those be
haviors, and systems with vastly different characteristics. For example, 
where pairing status is known and mate attraction can be ruled out for 
signals produced by paired males (i.e., no extra-pair mate attraction), 
one could incorporate this information into the background singing rate 
(μ) to more precisely estimate the probability that any given song is a 
response to a conspecific signal. Similarly, some environmental factors 
can be allowed to influence only the background rate of singing or only 
the conditional intensity, depending on the biology of the system being 
modeled. We did not test any hypotheses with the bullfrog call data, 
however, this second case study demonstrates that the models are 
flexible and can be applied to systems with orders of magnitude more 
acoustic signals per time period than our bird case study. 

The models could also be extended to incorporate information about 
the spatial structure of signals. Our model assumes that all individuals 
within the area being sampled are equally likely to respond to all others, 
however, this is unlikely to be an accurate assumption (Simpson, 1985). 
For example, individuals may have higher motivation to respond to 
close neighbors than to distant neighbors, or to strangers rather than to 
known neighbors (Galeotti and Pavan, 1993). In our case study, we were 
unable to identify the spatial history of signals because all recordings 
were done from a single point and we were thus unable to account for 
edge effects introduced by individuals signaling from outside the range 

of the recording unit. When the spatial arrangement of individual songs 
is known, however, the spatial history of signals could be incorporated 
into the models (Reinhart, 2018). In many animal systems, the location 
of each signal could be determined through arrays of recording units 
(Mennill et al., 2012), or if individuals are highly territorial and territory 
boundaries are mapped through other means such as visual surveys. In 
these cases where the spatial history of signals is known, alternative 
specifications of the memory kernel that include both a time decay and a 
spatial decay can be used to predict not only when and why a signal 
would occur, but also where in the landscape. 

Our model is only one of many inhomogeneous point process models 
that could be used to analyze behavioral signal patterns. The value of 
our modeling approach is in the simplicity of the framework that relies 
only on the signals themselves to make behavioral inferences, though 
contextual data can improve inferences based on the models and be used 
to test hypotheses about the underlying processes generating the signals. 
This simple framework can easily incorporate additional information 
about a system to improve inferences about the underlying reasons for 
signals. Although we have only applied the models to acoustic data, they 
could be applied to any class of animal communication that is initiated 
both endogenously and in response to others. For example, the models 
could be applied to displays in lekking species (e.g., Gibson and Brad
bury, 1985) or to any type of coordinated visual display (e.g., Buck and 
Buck, 1968). Because self-exciting point process models provide a means 
for separating signal patterns into different behavioral components, they 
provide an opportunity to study behavioral trade-offs and factors 
influencing when and why animals signal and countersignal. 
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