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Abstract—While sampling in classical signal processing is well-
developed and studied, sampling in the Graph Signal Processing
framework and its application domains are fairly new. In this
paper, sampling of power grids’ graph signals are discussed and
analyzed in the context of two applications including the recovery
of missing measurements during cyber stresses and the optimal
PMU placement problem. The effects of various topological
and power-dynamical factors in the system are evaluated for
the selection of the sampling-set for power grid graph signals
and graph signal reconstruction performance. Moreover, a novel
sampling-set selection criterion based on the error introduced in
the process of band-limiting the graph signal has been proposed.

Index Terms—Graph signal processing, graph signal sampling,
graph-frequency, smart Grid, PMU placement.

I. INTRODUCTION

The large volume of energy data generated in modern power
systems provides new opportunities for improving various
functions in power systems. Energy data has been represented
and processed in various forms to extract useful information
for various functions in the system. One of the emerging
techniques to represent and analyze such data is through a
Graph Signal Processing (GSP) framework [1]. GSP is a fast-
growing area, which extends the concepts of classical digital
signal processing to irregular, non-Euclidean, graph domains.
This special type of signal processing is becoming popular
for processing of signals in various fields, such as brain
connectivity network analysis [2], Electrocardiogram (ECG)
signal analysis [3], image, and video processing [4], as well
as power systems and similar infrastructures [S]-[7].

Due to the underlying structures and the complex dynamical
inter-relations among the components in power systems, graph
signal (a mapping of the graph vertices into an N—dimensional
vector of real numbers) presents a suitable framework for pre-
senting and analyzing certain types of energy data from widely
deployed sensors in power systems (e.g., Phasor Measurement
Units-PMUs). For instance, the voltage angles of the buses
can be represented as a graph signal with voltage angle values
mapped to the vertices (buses) of the power system connected
over the graph of system’s structure (topology).

Over the past decade, GSP has extended the concepts
of classical signal processing to irregular graph domains.
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For instance, the interpretation of the frequency domain in
the context of graph signals is one of the key foundations
of GSP [1]. Another key concept in GSP is the sampling
of graph signals. The concept of sampling is significant in
classical signal processing for its applications in analog-to-
digital conversions, data compression, and more.

Sampling of graph signals can be considered as taking
values corresponding to a subset of the vertices in the graph
signal. For graph signals, analogous concepts and relations to
classical signal processing sampling theorems can be observed.
However, the selection of the sampling-set for graph signal
processing is not as straightforward as the uniform sampling
in classical signal processing due to the irregularity of the
graph domain. In this paper, the effects of various topological
and power-dynamical factors in the system are evaluated for
the selection of the sampling-set for power grid graph signals
and graph signal reconstruction performance. A sampling-
set selection criterion based on the error introduced in the
process of band-limiting the graph signal has been proposed
to improve the reconstruction performance.

Being able to down-sample the power system’s graph sig-
nals and to reconstruct them using the sampled data, can
enable various critical functions in power systems. Here,
we will particularly discuss two applications of graph signal
sampling: (1) unobservable state information recovery in case
of stresses, and (2) the PMU placement problem. Specifically,
the first application focuses on the state recovery when PMUs
become unobservable due to, for instance, cyber attacks (e.g.,
Denial of Service-DoS), failure of the communication link or
the physical failure of the PMU. Although the unobservability
of the PMUs can be due to any of the aforementioned stresses
for the discussion in this paper, we will focus on cyber
attacks. This problem can be fitted to a graph signal sampling-
reconstruction framework by considering the buses that are not
affected by the stress in the PMU network as the sampling ver-
tices and the unobservable buses as the non-sampling vertices.
Thus the measurements from the sampling-set of buses can be
used to recover the unobservable ones due to the stress. Graph
signal sampling-reconstruction framework is also a good fit
for solving the PMU placement problem. Specifically, the
sampling-set will be the buses with PMUs and the graph
signal reconstruction process can provide observability for
non-sampling non-PMU buses. The main contribution of this
paper can be summarized as:

Authorized licensed use limited to: University of South Florida. Downloaded on June 16,2022 at 15:35:47 UTC from |IEEE Xplore. Restrictions apply.



o Several criteria of sampling-set selection in the context
of electrical grid including network-based and power-
dynamical criteria (e.g., node degree-based, page-rank-
based, and load-demand-based) and a technique based on
anti-aliasing filter have been discussed and compared. It
is shown that the novel sampling-set selection criterion
based on the error of the anti-aliasing filter has a promis-
ing performance to minimize the reconstruction error.

o The problem of recovery of power grid’s sensor mea-
surements under stresses has been formulated as a graph
signal sampling-reconstruction problem and the recovery
performance has been evaluated for different scenarios
including clustered and randomly scattered attacks.

o The optimal PMU placement problem has been discussed
and formulated in a graph signal sampling framework. To
solve the optimization, a heuristic approach based on the
anti-aliasing filter error selection criterion is proposed and
evaluated.

II. RELATED WORKS

Although GSP has become popular in various signal pro-
cessing applications in the last decade, its application in power
systems has been limited. Examples of the application of GSP
in power system domain include graph-filter-based modeling
of power system measurements [5], [6], detecting and locating
false data injection attacks in the grid [8]-[10], and GSP-based
analysis for the resilience of power systems [7].

The sampling technique for the graph signals has become a
topic of interest for GSP researchers for the last few years.
Narang and Ortega [11] showed that the spectral domain
interpretation for the sampling on k-regular bipartite graphs
is analogous to the Nyquist criterion for down-sampling of
classical discrete-time signals. Although this paper considers
only a special kind of simple graph structure, the results are
important for the understanding of graph signal sampling in
general. Anis et al. [12] introduced the concept of uniqueness
set to interpret the graph signal counterpart of the Nyquist
theorem for arbitrary graphs and proposed a graph-spectral do-
main approach for the selection of the optimal sampling-set for
graph signal sampling and reconstruction. Gadde and Ortega
[13] presented a probabilistic interpretation for graph signal
sampling. In [14], Chen et al. proposed a sampling theory for
band-limited finite-length graph signals, which ensures per-
fect reconstruction without any probability constraints. In the
subsequent works [15]-[17], the authors presented extensive
analyses on various aspects of graph signal sampling including
comparison among various selection criteria of sampling-set,
different techniques of signal recovery, and theoretical aspects
of the graph signal sampling-reconstruction process. Tanaka
and Eldar [18] introduced the periodic graph spectrum (PGS)
subspace as the GSP counterpart of shift-invariant subspace in
classical signal processing. In this work, the author proposed
a generalized graph signal sampling-reconstruction technique
for the smooth graph signals that lie in the PGS subspace. The
application of graph signal sampling in real-world problems
is still limited. Lorenzo et al. [19] presented sampling on a
randomly generated band-limited graph signal on the IEEE

118 bus [20] topology, and on an approximately band-limited
signal of a road network topology and studied the effect of
different sampling-set selections. Sakiyama et al. [21] applied
graph signal sampling for placing sensors in a network. In
this paper, we have implemented the reconstruction method
developed in [14]. However, for the sampling-set selection,
we have studied different techniques from the topological and
the power system perspective.

III. GRAPH SIGNAL SAMPLING OVERVIEW

In this section, first, some of the preliminary definitions and
concepts related to GSP are reviewed, which will set the stage
for discussing the mathematical foundation of graph signal
sampling. A more detailed review of the basic concepts of
GSP can be found in our previous work [10].

A. Graph Signals

In contrast to the definition of signals by Euclidean repre-
sentation of their values in classical signal processing, in GSP,
a graph signal is defined by a set of values that resides on the
vertices of a graph G = (V, ), where V = {v1,va,...,un} s
the set of all vertices and €& = {e;; : (i,j) € V x V} is the
set of all edges. The order and the size of the graph G can be
represented by N = |V| and M = |£|, where |.| denotes the
cardinality of a set. The graph signal is defined as a mapping
of the graph vertices into an N —dimensional vector of real
numbers, i.e., z : ¥V — R. The value of the graph signal at the
vertex v, is represented as x (v, ); however, we will denote it
as x(n) for simplicity. The weight associated with the edge e;;
in graph G is defined as w;; for e;; € £, and zero, otherwise.
The edge weights can be defined in different ways depending
on the applications and nature of the graph signal [7]. The
Laplacian matrix, L corresponding to a graph is defined as
followin%[(for the element at the ¢—th row and j—th column):
lij = > wij if i = j and l;; = —w;;, otherwise. The graph
Laplacian L is a real and symmetric matrix, which produces
real and non-negative eigenvalues and an orthogonal set of
eigenvectors. The k—th eigenvalue and the k—th eigenvector
of L are denoted as A and u,,.

B. Power System Measurements as Graph Signals

Although different types of graph structures have been
proposed to model the topology and the dynamic interactions
of components in power grids from various perspectives, in
this work, the power grid is modeled as a weighted undirected
graph, G, considering the buses of the grid as the vertices and
the transmission lines as the edges of the graph. Moreover,
the weight of the edge e;; is defined as w;; = 1/d;; for
eij € &, where d;; is the geographical distance between
the ¢—th and j—th buses of the grid. In power systems,
measurements, such as, the voltage magnitude and phase,
current magnitude and phase, and instantaneous frequency
measurements corresponding to buses of the system can be
modeled as graph signals. Such measurements can be obtained,
for instance, from the PMUs mounted on the buses. The
analyses presented in this paper are for the voltage angle
measurements of buses, which are modeled as graph signals,
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i.e., x(n) denotes the voltage angle measurement (in degrees)
of the n—th bus of the grid.

C. The Graph Spectral Domain

In this work, the spectral domain of a graph is defined by the
graph Fourier transform. The graph Fourier transform (GFT)
and the the inverse graph Fourier transform (IGFT) of a graph
signal z(n) is defined by the following analysis and synthesis

equations, respectively: N
X(W) = (@(n),ur(n) =Y w(n)u*(n), (D)
N n=1
z(n) = > X()ur(n), 2)
k=1

where uy(n) is the n—th element of wu,, the k—th eigenvector
of the Laplacian L. In other words, ux(n) is a graph signal
that acts a basis signal for GFT, analogous to the complex
exponential in the case of classical Fourier transform. Anal-
ogous to the concept of bandwidth for the signals defined in
the Euclidean domain, the bandwidth, Ap of a graph signal
can be defined as: If X (\;) = 0, for £ > B, then \p is called
the bandwidth of the graph signal x(n). In this case, the graph
signal is said to be band-limited to the graph frequency, Ag.
The set {\r : Ay < Ap} contains B number of significant
graph-frequency components in the graph signal.

D. Sampling of Band-limited Graph Signals

Sampling a graph signal can be defined as considering
graph signal values corresponding to a subset S of the set
of all vertices V. According to the Nyquist criterion in
classical signal processing, while down-sampling a signal
by a factor d, the signal needs to be band-limited within
Zradian/sample for being able to be perfectly reconstructed
from its down-sampled version [22]. If the signal is not band-
limited to 5radian/sample, overlapping would occur in the
spectral domain during the down-sampling process causing
aliasing. To avoid aliasing signals can be made to be band-
limited by discarding insignificant high-frequency contents
over Gradian/sample. If the frequency component beyond
Zradian/sample is not insignificant, the signal should not
be down-sampled at a rate of d. Similarly, down-sampling
of graph signal creates aliasing in the graph-spectral domain
unless the signal is band-limited to a certain frequency. Narang
and Ortega [11] showed that for k—regular bipartite graphs
the phenomenon is the same as Nyquist criteria when every
d vertices are sampled, However, for the arbitrary graphs,
the scenario is not directly analogous to the % limit. For
the method implemented in [14], if the graph signal is band-
limited to B graph-frequency components, then the number of
sampling points N, should not be less than B (i.e. Ny > B).

Let 2(n) be a graph signal approximately band-limited to
Ap, ie. X(Ag,) < X(Ag,), for ky, > B and k; < B. Since
the signal does not have significant frequency contents beyond
Ap, discarding those frequency components would not distort
the signal notably; however, similarly to the case of sampling
in classical signal processing, these insignificant frequency
components cause aliasing during the sampling process, which

makes reconstruction impossible. To avoid this situation and to
be able to reconstruct the original signal from its samples, we
discard the high-frequency components of the original signal
using an anti-aliasing graph filter. The frequency response
of the proposed anti-aliasing graph filter is H(\y) = 1,
for A\, < Ap and zero otherwise. The band-limited graph
signal xpr(n), which is obtained by filtering the original
graph signal x(n) can be described in the GFT domain by
Xpr(Ak) = H(Ak) X (Ag). The set of vertices to be sampled,
S, is an indexed set with the :—th member of the set denoted
as s;. As such, the sampled graph signal can be expressed as
zs(n) =xpr(n) if n € S and x45(n) = 0, otherwise.

The selection of vertices to be sampled, S, can be based
on various criteria considering the topology and physics of
the system. In this work, we have compared different types of
criteria for the selection of S (discussed in Section IV). The
reconstruction process estimates the original band-limited sig-
nal values from the sampled signal z:5(n). The reconstructed
signal can be defined as x,.(n) = Z(xs(n)), where Z is
the reconstruction operator that acts on the sampled signal.
Note that the aforementioned descriptions of z4(n) and x;..(n)
provide conceptual definition of the graph signal sampling and
reconstruction process. In this work, we have implemented
both of the operations following the approach suggested in
[14] based on matrix multiplications as discussed next.

The sampling process corresponds to the matrix multiplica-
tion s = ¥xp;, where xg;, a N X 1 vector, is the vector
form of the graph signal zgy,(n) and ¥ is a Ny X N sparse
matrix. The entry at the ¢—th row and j—th column of W is
defined as: v;; = 1 if, j = s;, and v;; = 0, otherwise. The
N x 1 vector s contains the non-zero values of the sampled
signal in the order of the indexed set, S. The reconstruction
process is implemented by r = Un, (\I!UNS)_1§, where Un,
is a N x N, matrix containing the first N, eigenvectors,
{u,, : kK < N,} of the Laplacian matrix L in its Ny columns.
For the application of graph signal sampling in this power
grid we define z,.(n) = z(n) if if n €S and x,.(n) = rp,
otherwise, where r,, is the n—th element of the vector r.

IV. IMPLEMENTATION OF GRAPH SIGNAL SAMPLING
In this work, we have implemented the technique described

in the previous section for power system graph signals. The
voltage angle measurement of each bus for the IEEE 118
bus system has been considered as the graph signal, z(n).
Simulations have been performed in MATPOWER 6.0 [23].
In our work, we have designed the anti-aliasing filter to
obtain g (n) to be band-limited within B = Ng graph-

100

~=Error caused by the Anti-Aliaing Filter
|—Error caused by the ion using Matrix Oy
— Total Error of i )

Mean squared Error

0 1‘0 20 30 40 50 60
Number of Sampled Nodes

Fig. 1. Decomposition of reconstruction error for graph-signal sampling as

a function of number of sampled nodes, Ns.
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frequency components. In this sampling reconstruction pro-
cess, the total error in the reconstructed signal consists of two
errors: 1) error caused by the anti-aliasing filter for band-
limiting the graph signal, 2) error for reconstructing of the
non-sampled vertices in the matrix multiplication process. We
observe that, as IV, increases, the first type of error decreases
since more high-frequency components are being allowed by
the anti-aliasing filter. However, the second error depends
mainly on the selection of the sampling-set, S, and is relatively
negligible compared to the other error. The comparison of the
two types of error is shown in Fig. 1.

We have implemented several criteria for the selection of the
sampling-set, S, and proposed a novel sampling-set selection
criterion based on the average error introduced by the anti-
aliasing filter calculated from the historical data in different
buses. To present the selection criteria, let us define an
operator, .% that operates on a finite-length real-valued vector
to obtain the indices of the values sorted in descending order.
For example, consider a vector, g = [77 92 28 55|, then
Z(q) =[2 1 4 3]T. Next, we will discuss various selection
criteria. Note that except the random selection criterion, the
rest of the sampling-set selection strategies are new techniques
proposed and evaluated for sampling of power grid graph
signals in this paper.

1) Random Selection of S: Among the N vertices, N ver-
tices are selected randomly (based on the uniform distribution
over the vertices) to be sampled as discussed in [15], [24].

2) Degree-based Selection of S: The vertices with higher
node-degree are selected to be sampled first. Let, d be the
vector form of the graph signal d(n), where d(n) indicates
the node-degree of the n—th vertex. Hence, if d’ = #(d)
then the sampling-set can be defined as:

S ={v, €V:ne€ {First Ny elements of d'}}. (3)

3) Page-rank-based Selection of S: The vertices with
higher page-rank centrality measure values are selected to be
sampled first. Let p be the vector form of the graph signal
p(n), where p(n) indicates the page-rank value of the n—th
vertex. If p’ = % (p), the sampling-set can be defined as:

S={v, € V:n e {First N, elements of p'}}. (4

4) Load Demand-based Selection of S: Let £ be the vector
form of the graph signal I(n), where [(n) indicates the load
demand of the n—th bus. If ¢/ = .% ({) then the sampling-set
can be defined as:

S ={v, €V :n e {First Ny elements of ¢'}}. (5)

—Random
—Degree-based
Pagerank-Based
—Load Demand-Based
—Proposed Anti-aliasing Filter Error Based

Mean Absolute Error (in dB)

-90 L L I L L
0 10 20 30 40 50 60

Number of Sampled Vertices

Fig. 2. Relative performance of different selection criteria of the sampling-set,
S in terms of the mean absolute reconstruction error (in dB).

5) Anti-Aliasing Filter-based Selection of S: According to
this criterion for selecting S, data on the output of anti-
aliasing filtering applied to instances of system’s graph signals
have been collected. The vertices are then sorted based on
the average amount of error introduced by the filter. From
the sorted set, the vertices with the largest average errors
are selected as the sampling-set, S. The rationale behind this
criterion is that as the anti-aliasing filter discards the high
graph-frequency components from a graph signal, the vertices
with a larger amount of errors are corresponding to the regions
where signal values are rapidly changing with respect to the
neighboring vertices. As such, retaining the values on those
vertices keeps the overall sampling-reconstruction error lower.
Let a be the vector form of the graph signal, where a(n)
indicates the average error caused by the anti-aliasing filter at
the n—th bus. If a’ = .% (a) then the sampling-set is:

S={v, €V:ne{First Ny elements of a'}}. (6)

Fig. 2 illustrates the performance of the sampling-
reconstruction process for these criteria in terms of the mean
absolute sampling-reconstruction error expressed in (dB) for a
different number of sampling vertices, V. It can be observed
that the performance of the bus load demand-based criterion
is quite similar to the uniform random selection of sampling
nodes [15], [24]. However, the topology-based criteria (node
degree and page-rank based) performs better than the random
selection and load-demand-based criterion. The proposed cri-
terion based on anti-aliasing filter error outperforms both the
load demand-based and the topology-based criteria.

V. GRAPH SIGNAL SAMPLING APPLICATIONS

A. Missing Data Recovery due to Cyber Stresses

The graph signal sampling and reconstruction process im-
plemented in the previous sections can be applied to recover
or estimate the system measurements during stresses, for
instance, cyber-attack on the PMUs. In our previous work [25],
we showed that correlations among the states of buses (i.e.,
PMU time series) can be used to estimate the missing PMU
measurements in the smart grid. Here, we demonstrated an
alternative approach using graph signal sampling.

Let A be the set of all buses under cyber-attack in the grid
at time t4. Our goal is to estimate the bus voltage angle
of any bus ¢ € A at any time instant, ¢, for ¢ > t4 using
the graph signal reconstruction technique discussed in the
previous section. In the graph signal sampling-reconstruction
framework, we consider the buses under cyber-attack as non-
sampling vertices and the buses, which are not under cyber-
attack, as the sampling vertices, i.e., A = V\S and V\ A = S.
Fig. 3 shows an example of the missing voltage angle recovery
using graph signal sampling. Fig. 4 illustrates how the location
of the attack affects the recovery performance. Using this
approach, it can be observed that clustered cyber attacks can
cause more recovery error than random attacks of the same
size. Moreover, the vulnerable locations in the grid can be
identified from the buses with higher reconstruction error.
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Fig. 3. An example of missing PMU measurements recovery by graph signal
reconstruction: (a) the band-limited actual voltage angles measurements, (b)
the measurements under cyber-attack at bus no. 59 to 64 (shown in dark blue),
(c) the recovered measurements.

B. Optimal PMU Placement Problem

The optimal PMU placement problem involves selecting a
subset of the buses for mounting PMUs to collect component
measurements. In practice, a PMU can measure the complex
voltage of the bus on which it is mounted, the currents entering
or leaving through all the branches connected to the bus, and
the instantaneous frequency of operation. In this paper, only
the bus voltage angles are considered for reconstruction of
the signal and the evaluation of PMU placement strategies.
The key objective is to collect the maximum amount of
data reflecting the grid dynamics to provide observability
of the state of the system with the minimum number of
PMUs. Based on various requirements of monitoring functions
in the power system, various PMU placement techniques
have been proposed in the literature [26]. In this work, the
PMU placement problem within the graph signal sampling-
reconstruction framework has been studied to find the GSP-
based optimal placement of PMUs for reconstruction of the
state of the whole system. The theoretical minimum number of
required PMUs depends on the smoothness of the graph signal
associated with the PMU measurement values (e.g., voltage
magnitude, angle, frequency, etc.). If the graph signal at any
time instant is band-limited to B graph frequency components,

the theoretical minimum number of PMUs to be placed for
the perfect recovery of the graph signal at each time instant
is B. However, since the graph signals in power grids are not
ideally band-limited, we design and use the anti-aliasing filters
to analyze the reconstruction performance as a function of B.
The value of B can be selected depending on the required
precision of estimation and the details of the high-frequency
components of the graph signal.

Let us consider P C V to be the set of all the buses with
PMUs mounted on them and representing the sampling-set,
S. The reconstruction process is equivalent to estimating the
measurements of the buses with no PMU from the measure-
ments of the PMU buses. Mathematically, this process can be
captured in the form of z,..(p') = Z(x(p)), Vp e P, Vp' €
V\P, where Z represents the estimation function described in
Section III that estimates the measurements of the buses with
no PMUs from the measurement of the PMU buses. In this
framework, the PMU placement problem can be formulated
as an optimization problem of minimizing the graph signal
reconstruction error with the minimum number of PMUs as
follows:

) = z(@)]* + AP, (7

where )\ is the Lagrange multiplier and |P| denotes the
cardinality of the set P. In the practical setting, in addition to
minimizing the error of estimating the measurement values at
the buses with no PMUs, several aspects are to be considered
regarding the observability and implementations issues. These
aspects can be considered as the constraints of the optimization
problem in (7). In this paper, we are considering two of
these aspects as examples: 1) since placing a PMU at one
bus ensures full observability of the voltage angle of its
1—hop neighbors, if a PMU is placed at bus n, the 1—hop
neighbors of n are not considered as PMU bus, 2) a radial
bus (i.e., vertex with degree 1) is not considered as a PMU
bus [27]. The optimization in (7) can be expanded based
on the reconstruction process discussed in Section III-D and
shown to be an NP-hard problem [19]. Here, we propose a
heuristic for sampling-set selection based on the anti-aliasing
filter error criterion described in Section IV-5. According to
this technique, we consider buses one by one for placing PMUs
in the sequence of the vector, a’. If a bus is a radial one or is
at 1—hop distance of an already placed PMU, the bus will be
skipped and the next bus is considered for placing a PMU.
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Fig. 4. Recovery errors in cyber-attack: clustered attacks introduce larger

errors than random attacks of the same size.

Fig. 5 illustrates the mean absolute reconstruction errors
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as a function of the number of PMU placed in the grid for
directly applying the anti-aliasing filter error based criterion
and for the modification of the anti-aliasing filter error based
criterion considering the two previously stated aspects of PMU
placement. According to the modified criterion, when some
of the buses are equipped with PMUs, the voltage angle
of their 1— hop neighbors can be directly calculated using
Kirchhoff’s law, and the voltage angles of the rest of the buses
are estimated using the graph signal reconstruction method. In
Fig. 5, the mean absolute reconstruction errors for the modified
case are calculated for the unobservable buses only. From Fig.
5 the number of PMUs can be chosen depending on the desired
application and the budget. In our case, we suggest placing
36 PMUs in IEEE 118 bus system according to the modified
anti-aliasing filter error based criterion with an average error
of 0.59 for the non-PMU bus voltage estimation, which is
acceptable for many applications (e.g. real-time performance
monitoring and trending, small-signal stability monitoring,
voltage stability monitoring/assessment, etc [28]).
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—Anti-aliasing Filter Error Based Selection
—PMU setting

=
T

v w - =
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Number of Sampled Vertices / Number of PMUs

Fig. 5. Error of reconstruction in PMU placement setting.
VI. CONCLUSION

In this paper, a graph signal sampling technique has been
discussed to apply to the graph signals associated with the
voltage angle measurements in power grids. Several criteria
based on the topology and power-dynamical properties of the
electric grid for selecting the sampling-set have been studied
to evaluate their effects on the graph signal reconstruction
performance. Specifically, a criterion based on the anti-aliasing
filter error has been proposed that minimizes the reconstruction
error of sampling. The application of the proposed sampling
framework in recovering missing measurements during cyber
stresses has been proposed and studied. As the second applica-
tion, the PMU placement problem has been captured in a graph
signal sampling framework. An anti-aliasing filter error-based
criterion has been proposed for PMU placement to minimize
the measurement reconstruction error.
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