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Abstract—Graph signal processing has been shown to provide
a unique platform and new perspective for representing and
analyzing power system measurements. In this paper, the effects
of various cyber and physical stresses, as well as their differences
on the graph signals of the system and their spectral domain are
presented and discussed. Specifically, graph Fourier transform
(GFT) and the local smoothness corresponding to the graph
signals are presented as tools for the characterization of the
effects of stresses. Particularly, various cyber-attacks including
denial-of-service, replay attack, ramp attack, and delay attack are
considered on the time-series associated with the voltage angle
measurements. An analysis of the relation of the degrees of the
nodes under cyber-attack with the GFT of the associated graph
signal has also been presented. Finally, a comparative analysis of
the effects of cyber and physical stresses on the graph spectrum
in the context of detecting and locating stresses in the smart grid
are presented.

Index Terms—Graph Signal Processing, cyber-physical stress,
smart grid, graph-frequency, local smoothness.

I. INTRODUCTION

The issues of security and reliability of smart grids are
becoming more challenging day by day because of the in-
sertion of various modern equipment with more complex and
stochastic nature into the system. With the modernization of
electric grids, a large number of sensing and metering devices
are being deployed throughout geographically widespread
regions that increases the risk of cyber-attacks in the smart
grid. The denial-of-service (DoS) attack [1], [2], timing-related
attacks (e.g. GPS spoofing, data-replay attack, delay attack)
[1]–[3], and false data injection attack (FDIA) [4], [5] are
some of the common cyber-attacks on smart grids. Moreover,
different types of physical stresses (e.g. abrupt changes of
loads, tripping of branches, and failure of generators, etc.) are
always prevalent in the grid. Proper maintenance and operation
of the smart grid require detecting, locating, and identifying
various types of stresses in the grid quickly and accurately.

Due to the advancement of the sensing and metering infras-
tructure in power systems in recent years by the deployment
of high-resolution measurement devices (e.g. Phasor measure-
ment units - PMUs), a massive amount of data are being
produced in smart grids. For this reason, data-driven methods

for security and reliability assessment of the smart grid are
getting attention from researchers. Smart grids are networks
of electric equipment, in which their elements may interact in
complex ways. Therefore, data generated at different locations
of the grid have interdependency among themselves. Classical
data representations in Euclidean data domains (e.g. multi-
variate time-series model for the PMUs) are not well suited
to capture these internal relations and dynamic interactions
among the components of the system. Graph signal processing
(GSP) enables handling data from such complex networks
by considering the underlying topology of the system in
representing and analyzing data. For instance, by considering
the buses and transmission lines of an electrical grid as the
vertices and the edges of a graph, respectively, one can view
the bus measurements of the grid as graph signals residing
on the vertices of the graph. In this way, the topological and
relational information about the data sources can be imparted
into the signal model to inspect deeper into the dynamics of
the network for security and resilience issues.

In classical signal processing, observing the signal in the
time-domain and its spectral components in the frequency-
domain offer a better understanding of the physical process
associated with the signal. Similarly, in GSP, analyses of the
signal in the vertex domain along with the graph-frequency
domain enable extracting more information from the graph
signal and better understand the system. The signatures of
various events in a graph signal are often easily detectable
in the graph-frequency domain. For example, in our previous
work [6], we showed that stresses in power systems can
be detectable from the graph-frequency representation of the
power system graph signal. In this work, we use graph Fourier
transform (GFT) and local smoothness values as the frequency
domain tools for analyzing the effect of different cyber and
physical stresses in the smart grid. The GFT is the graph
signal counterpart of the Fourier transform in traditional signal
processing. Although the local smoothness of a graph signal
is defined in its vertex domain, it provides the degree of
relative fluctuations of signal values at each vertex and thereby
presents the amount of high-frequency components in the
vicinity of each vertex.

In this work, the voltage angle measurements associated
with the buses of the grid are considered as the graph signals.978-1-6654-4875-8/21/$31.00 ©2021 IEEE
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Specifically, in this work, cyber-attacks on the smart grid
have been considered as corruptions of the time-varying graph
signals. The denial-of-service (DoS) attack, data-replay attack,
ramp attack, false data injection attack, and delay attack are
considered among the cyber-attacks. In the current paper, we
have studied the characteristics of GFT and local smoothness
of graph signals (described in [6]) associated with the cyber-
attacks modeled in this paper as well as on physical stresses.
This study shows that cyber and physical stresses have differ-
ent effects on graph signals of the power system, their local
smoothness as well as on the GFT of the signals and thereby
need different techniques for characterization and localization
by the grid operators. Our analyses have revealed that although
GFT is applicable for detecting anomalies with sharp changes
of values, it is not suitable for detecting attacks with a smooth
transition of signal values on the stress onset. Moreover, the
effects of physical stresses are not obvious from the GFT of
the associated signal. However, the local smoothness of the
graph signal is suitable for detecting both types of anomalies,
although determining the exact location in case of physical
stresses is challenging.

II. RELATED WORKS

In recent years, the field of GSP has become very popular
among the signal processing researchers working in various
domains, especially in applications with topological data (e.g.
sensor networks [7], brain signal analytics [8], [9], image pro-
cessing [10], [11]). The application of GSP in power systems
is relatively new. The application mainly involves modeling
power system measurements in the GSP environment and
detecting anomalies from power system measurements. For
instance, Ramakrishna and Scaglione [12] proposed a graph
signal based model for the power system in which the mea-
surements are considered to be the output of a graph filter
while the low-rank excitations from the generators act as
an input graph signal. A similar model is also proposed by
Kroizer et al. [13] to consider the non-linear measurements
as the output of a graph filter. In addition, the authors in
[13] showed that an inverse system of the filter can be
used to recover the input signal under smoothness constraints
by regularized least-squares estimation. Schultz et al. [14]
proposed resilience analysis of smart grid using GSP.

Ramakrishna and Scaglione [15] proposed a detection of
false data injection attack (FDIA) in power system by using
their measurement model developed in [12]. Drayer and Rout-
tenberg [16] proposed a detecting technique for FDIA based
on graph Fourier transform. In this paper, it has been showed
that the graph signal associated with the bus measurements
is smooth, and thereby does not contain significant high-
frequency components. The authors suggested that the pres-
ence of a significantly large GFT component corresponding
to a higher graph frequency indicates the insertion of falsified
measurements. A location technique for FDIA is also proposed
by the same author using modulation of the graph signal [17].
In our previous work [6], we have proposed three differ-
ent graph spectral domain techniques for detecting stresses

in the smart grid: GFT-based technique, local smoothness-
based technique, and vertex-frequency energy distribution-
based technique. The latter two techniques are capable of
locating the anomalies.

In this paper, the work in [6] is extended for detecting
and localization of cyber and physical stresses in the smart
grid to evaluate the effectiveness of the GSP-based techniques
for special types of stresses on the time-varying measurement
signals. A comparative study on the effects of cyber and
physical stresses on graph signals has also been presented.

III. GRAPH SIGNAL PROCESSING- PRELIMINARIES

In this section, we have presented a brief review of the
fundamental concepts of GSP in the context of power grid’s
measurements. A detailed discussion can be found in our
previous work [6].

A. Graph and Graph signals in power system

A graph G = (V, E) consists of two sets, V and E , where,
V = {v1, v2, ..., vN} represents the set of all vertices (nodes)
and E = {eij : (i, j) ∈ V × V} represents the set of all
edges (links between two nodes) of the graph G. Let us define
the weights associated with the graph G as wij for eij ∈ E ,
and zero, otherwise. In this work, we will use the bus-vertex
graph [6] for power systems in which the buses and the
transmission lines of an electric grid are considered as the
vertices and the edges of the graph, G, respectively. The order,
N = |V| and the size, M = |E| of the graph G represents
the number of the buses and the number of the transmission
lines in the grid, where |.| denotes the cardinality of a set.
The weights are defined as wij = 1/dij for eij ∈ E , where
dij is the normalized geographical distance between the i−th
and j−th buses i.e. normalized length of the transmission line
represented by the edge eij . However, other structure of graphs
and its weights are also used in power system [18] depending
on the application and characteristics of the analysis.

Signals in classical signal processing are defined over the
Euclidean domain. The graph signals, on the other hand, reside
on the vertices of a graph, G = (V, E), a non-Euclidean
irregular domain. A real-valued graph signal x(vn) can be
defined as the mapping of the vertices of the graph into an
N−dimensional vector of real numbers, i.e., x : V → R.
However, for simplicity, we will use x(n) instead of x(vn)
to denote the graph signal value at the n−th vertex. In this
work, we consider the bus voltage angle at a single time instant
(in degree) as the graph signal. Therefore, x(n) signifies the
voltage angle at the n−th bus. The Laplacian matrix of the
graph, G is denoted by L. The element, lij of the L is defined
as: lij =

∑N
j=1 wij if i = j and lij = −wij , otherwise.

B. The graph Fourier transform (GFT)

The GFT and the inverse graph Fourier transform (IGFT)
of a graph signal x(n) are defined, respectively as:

X(λk) =
N∑

n=1

x(n)u∗k(n), (Analysis equation) (1)
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x(n) =
N∑

k=1

X(λk)uk(n), (Synthesis equation) (2)

where uk(n) is a graph signal, which is the basis signal of
GFT analogous to complex exponential being the basis signal
for traditional Fourier transform. The graph signal uk(n) is
defined as the k−th eigenvector of Laplacian matrix of the
graph L. The eigenvalues, λk of L are considered as the
graph frequencies. Since in this application L is real and
symmetric, all the eigenvalues are real and the eigenvectors
form an orthogonal set.

C. Local Smoothness of graph signals

The local smoothness of a graph signal x(n) (similar to
the concept of instantaneous frequency in temporal signal
processing [19]) at vertex n is:

s(n) =
lx(n)

x(n)
, x(n) 6= 0, (3)

where lx(n) is the n−th element of Lx. The local smoothness
corresponding to a vertex, n of a graph signal specifies the
amount of fluctuations near the n−th vertex, i.e., how abruptly
the signal values changes from the vertex, n to the neighboring
vertices.

D. Time-varying graph signal

The time-varying graph signal x(n, t) represents the voltage
angle graph signal x(vn) at time t. In this paper, we have
simulated the time-varying graph signals for IEEE 118 [20]
bus system by adding a time-varying load pattern collected
from New York independent system operator (NYISO) [21]
to the static loads of MATPOWER [22]. The corresponding
GFT and local smoothness are denoted as X(λk, t) and s(n, t).

E. Detecting grid stresses

In reference to our previous work [6], we will discuss
detecting cyber and physical stresses using GFT and local
smoothness of the graph signal. For detection, we define the
amount of high graph-frequency components in the graph
signal at time t, γ(t) as:

γ(t) =
∑
k

|X(λk, t)H(λk)|, (4)

where H(λ) is a high-pass graph filter with frequency re-
sponse: H(λ) = 0, if λ ≤ λc and H(λ) = 1, if λ > λc and
λc is the cut-off frequency. Since during normal operation,
the graph signal is smooth and thereby contains only low
graph-frequency components, a high value of γ(t) indicates an
anomaly in the grid. However, all kinds of anomalies are not
reflected in the value of γ(t) and this quantity is dependent
on the selection of λc. For detecting stresses by using the
local smoothness, we use the instantaneous local smoothness,
s(n, t) to detect stresses.

IV. EFFECTS OF CYBER ATTACKS ON GRAPH SPECTRA

A. Cyber Attack Models

In this work, a generalized approach for modeling various
cyber attacks based on various corruptions in the time series of

(a)

(b)

(c)

(d)
Fig. 1. The effects of various cyber-attacks on (a) time-varying graph signal
values at vertex 102, x(102, t), (b) changes in the amount of high-frequency
components, γ

′
t , (c) local smoothness values of vertex 102, s(102, t), and (d)

local smoothness values of vertex 92, s(92, t) (neighboring vertex of 102).

system measurements has been considered. We have specifi-
cally considered DoS attack, replay attack, ramp attack, delay
attack, and one type of false data injection attack in smart
grids. The models presented in this work improve the attack
models in [6] as they are designed to be more challenging
to detect. Let VA be the set of all buses (i.e. vertices) under
cyber-attack in between the time interval [tstart, tend] and VR
be the set of all buses (vertices) in which the attackers have
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access to record data. The values of x(n, t) during the attack
at any vertex under cyber attack can be described as:

x(nA, t) = c(t), for tstart ≤ t ≤ tend, and nA ∈ VA. (5)
Next, models for different cyber-attacks are presented by

defining c(t).
1) Denial-of-service (DoS Attack): The denial-of-service

(DoS) attack involves the unavailability of the data during the
duration of the attack. In this case, we have modeled the DoS
attack as the suspension of updating the measurement values at
the attack onset, tstart corresponding to the attacked bus, nA.
During the attack duration, the bus measurement (i.e., graph
signal value at vertex nA) is considered to be constant at the
value that was measured just before the attack was launched.
In other words, c(t) = x(nA, tstart).

2) False Data Injection Attack (FDIA): The FDIA can
be modeled from various perspectives and by using different
techniques in the cyber security literature. In this work we
have used a simple but challenging-to-detect model for FDIA,
which involves changing the original measurements by a
small amount mathematically expressed as c(t) = x(nA, t) +
(−1)dx′, where d ∈ {0, 1} and x′ is a small value such that
the change at the onset of the attack cannot be considered as
abrupt (cause a small deviation from current value).

3) Replay Attack: In the replay attack, the attackers record
previous measurements from any of the measurement devices
that they have access to and record data and insert the
data into the attacked meter during the attack duration, i.e.,
c(t) ∈ {x(nR, tp)}, tp < tstart, nR ∈ VR. In this work,
we have considered a special type of replay-attack, where
c(t) = x(nA, tstart − t).

4) Delay Attack: The delay attack is modeled as inserting
the delayed version of the original measurement time-series
to corrupt the signal. This type of attack can be launched
by compromising the global positioning system (GPS) signal
associated with the PMUs. This can be expressed as c(t) =
x(nA, t − td), where td is the amount of delay. For small
delays, this type of cyber-attack is very challenging from the
detection perspective.

5) Ramp Attack: In ramp attack, the attackers insert falsi-
fied measurements gradually in the buses under attack. This
type of attack is challenging from the detection perspective
because of not having abrupt changes at the onset of the attack.
This attack can be specified as c(t) = x(nA, tstart) + m ×
(t − tstart) + q(nA, t), where m is the slope of change and
q(nA, t) is the additive white Gaussian noise associated with
the measurement devices at the bus nA.

B. Reflection of cyber-attacks on Graph Spectra

In this subsection, analyses of the impacts of types and
the location of cyber stresses in the smart grid on the graph-
spectral domain are presented through GFT and local smooth-
ness of the graph signals associated with the bus voltage
angle measurements. Fig. 1 illustrates how the aforementioned
cyber-attacks affect the time-varying graph signal of the sys-
tem as well as the frequency domain representations associated
with it. In Fig. 1(a), the cyber-attacks launched at the bus no.

102 at different moments of the day are shown on x(102, t).
Fig. 1(b), illustrates the changes in the amount of high graph-
frequency components γ

′

t associated with x(n, t) over time.
From this figure, we observe that these critically designed
cyber-attacks are not well reflected on γ

′

t values, although
it is shown that these values can be used to detect simple
cyber-attacks [6], [16]. Fig. 1(c) shows the time-varying local
smoothness corresponding to the attack bus (vertex), s(102, t).
We observe that all the attacks are well reflected on s(102, t).
In particular, the delay attack at hour 19, which is even difficult
to perceive from x(102, t) itself, has a noticeable signature on
s(102, t). Fig. 1(d) shows the time-varying local smoothness
values at vertex 92, which corresponds to a neighboring bus
of the attacked bus, 102. From this figure, it can be noticed
that although the values of s(92, t) are affected by the cyber-
attacks, they are not as prominent as in s(102, t). The vertex
in which the change of local smoothness value is the most can
be considered as the location of the cyber-attack.

C. Effects of Node-degree of Stressed Buses on Graph Spectra

The degrees of the buses (i.e. nodes), which are under
cyber-attack or physical stress, affect the graph spectra of
the associated graph signal. The reason behind this is the
localization of the eigenvectors of the graph Laplacian, L. It
is observed that the eigenvectors corresponding to the high
graph-frequency components are more localized in nature and
each of the high-frequency eigenvectors is localized in the
vicinity of a particular vertex with a high degree. Whenever a
cyber-attack occurs in a bus with a high degree, the GFT co-
efficient corresponding to the particular eigenvector localized
in that vertex (i.e. bus) is mostly affected. In contrast, when a
cyber-attack occurs at a bus with a low degree, several GFT
coefficients are affected. Fig. 2 illustrates the scenarios for two
buses having degrees 9 and 5.

Fig. 2. The effects of degree of the attacked bus on GFT.

V. COMPARATIVE ANALYSES OF EFFECTS OF CYBER AND
PHYSICAL STRESSES

In this subsection, we have compared the effects of cyber
and physical stresses on the graph-spectral domain of the
corresponding graph signals. The motivation behind this com-
parison is that cyber-attacks and physical stresses affect the bus
voltage angle graph signal differently that consequently has a
distinguishable effect on the spectral domain representations of
the graph signals. Since from the perspective of the monitoring
and operation of the smart grid, characterization of stress is
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crucial along with its detection and localization, analysis of
their distinct signatures on the graph signal and its spectral
representation is important.

Fig. 3. The GFT values associated with the graph signals during normal
condition, under FDIA at bus 11, and load change at bus 11.

Fig. 3 compares the GFT of the graph signals associates
with a cyber-attack, and a physical stress occurring on the
same bus. From the GFT representation of the graph signals,
it can be observed that an abrupt change of a load at bus
no. 11 affects the low-frequency components of the GFT.
The abrupt load change being a physical event changes the
power flow around a region centering bus no. 11. The bus-
to-bus variations in the voltage angle measurements around
bus no. 11 is smooth, which corresponds to low-frequency
components of GFT. In contrast, the injection of false data
at bus no. 11 introduces changes in the magnitude of some
of the high-frequency components. A false data at bus no.
11 causes a change in the voltage angle value of bus no 11
only. For this reason, there introduces a sharp variation in the
values of voltage angles (i.e. graph signal values) of bus no.
11 with respect to its neighboring values. This sharp variation
corresponds to the high-frequency component of GFT.

Fig. 4. The local smoothness values of the nodes during normal condition,
cyber attack at bus 11, and load change at bus 11.

Fig. 4 illustrates the same pair of phenomena in terms of
local smoothness values. We observe that false data injection
at the bus no. 11 affects the local smoothness values of only
a few vertices (vertices at a one-hop distance) around v11,
whereas the abrupt change in the load demand changes local
smoothness values around a wider region centering vertex 11.

VI. CONCLUSION

In this paper, various cyber-attacks on the voltage angle
time-series of the power grid are considered, and a tech-
nique for detecting and locating these cyber-attacks using the
changes in local smoothness values of the associated graph
signal have been proposed. The proposed technique is effective

for detecting cyber-attacks that are challenging (e.g. ramp
attack and delay attack) to detect by traditional techniques.
This paper also presents a comparison between the effects of
cyber and physical stresses (abrupt load change) on the graph
spectral domain of the associated voltage angle graph signal.
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