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In this work, we consider a certain multilayered (thick layer) wave–(thin layer) 
wave–heat (fluid) interactive PDE system. Such coupled PDE systems have been 
used in the literature to describe the blood transport process in mammalian vascular 
systems. In particular, the deformations of the boundary interface (thin layer) are 
described via the two dimensional elastic equation. The present work constitutes 
an investigation of the extent of the stabilizing effects of the underlying fluid 
dissipation – across the boundary interface – upon both the thick and thin structural 
components. (All three PDE components evolve on their respective geometries.) In 
this regard, our main result is the derivation of uniform decay rates for classical 
solutions of this multilayered PDE model. To obtain these estimates, necessary a 
priori inequalities for certain static multilayered PDE models are generated here to 
ultimately allow an application of a wellknown resolvent criterion for rational decay.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

The fluid structure interaction (FSI) phenomena constitutes a broad area of research with applications in 
variety of real world problems [12,26,30]. In particular, mammalian blood vascular walls, being composed of 
viscoelastic materials, undergo large deformations due to hemodynamic forces generated during the blood 
transport process. As such, there is a coupling of respective blood flow and wall deformation dynamics. This 
physiological interaction between arterial walls and blood flow plays a crucial role in the physiology and 
pathophysiology of the human cardiovascular system, and can be mathematically realized by multilayered
FSI PDE. In such FSI modeling, the blood flow is governed by the fluid flow PDE component (incom-
pressible Stokes or Navier Stokes); the displacements along the elastic vascular wall are described by the 
structural PDE component (e.g., systems of elasticity). In this regard, the multilayered FSI modeling with 
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Fig. 1. Multilayered structure-fluid interaction domain.

a view to understanding the incidence of aneurysm caused by arterial wall deformations during the blood 
transportation process has recently been a topic of great interest, see e.g. [15,39] and reference within.

In this paper, we consider a simplified multilayered structure-fluid interaction (FSI) system where the 
coupling of the 3D fluid (blood flow) and 3D elastic (structural vascular wall) PDE components is realized 
via an additional 2D elastic system on the boundary interface.

The PDE Model

Let the fluid geometry Ωf ⊆ R3 be Lipschitz, and the structure domain Ωs ⊆ R3 be a convex polyhedron
which is strictly contained in Ωf (see Fig. 1). Moreover, fluid boundary is decomposed via ∂Ωf = Γf ∪ Γs, 
where Γs = ∂Ωs, and so Γf ∩ Γs = ∅. Thus, Γs is the boundary interface between fluid geometry Ωf and 

structure geometry Ωs. The boundary interface is further decomposed via Γs =
K⋃
j=1

Γj , where each Γj is 

an open polygonal domain, with Γi ∩ Γj = ∅ for i �= j. In addition, for 1 ≤ j ≤ K, nj denotes the unit 
normal vector which is exterior to ∂Γj. Also, as pictured in Fig. 1, ν(x) denotes the unit outward normal 
with respect to Ωf (and so ν(x) is inward with respect to Ωs).

For said {Ωf , Γs, Ωs}, the multilayered structure-fluid FSI system in solution variables u(t, x) (corre-
sponding to the fluid velocity), hj(t, x) (1 ≤ j ≤ K) (thin layers displacements), and w(t, x) (thick layer 
displacement) is as follows:

{
ut − Δu = 0 in (0, T ) × Ωf

u|Γf
= 0 on (0, T ) × Γf

(1)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

For 1 ≤ j ≤ K,
∂2

∂t2hj − Δhj + hj = ∂w
∂ν |Γj

− ∂u
∂ν |Γj

on (0, T ) × Γj⎧⎨
⎩

hj |∂Γj∩∂Γl
= hl|∂Γj∩∂Γl

∂hj

∂nj

∣∣∣
∂Γj∩∂Γl

= − ∂hl

∂nl

∣∣∣
∂Γj∩∂Γl

on (0, T ) × (∂Γj ∩ ∂Γl), ∀ 1 ≤ l ≤ K; ∂Γj ∩ ∂Γl �= ∅
(2)

{
wtt − Δw = 0 in (0, T ) × Ωs

wt|Γj
= ∂

∂thj = u|Γj
on (0, T ) × Γj , for j = 1, ...,K (3)

[u(0), h1(0), ∂h1(0)
∂t , ..., hK(0), ∂h1(0)

∂t , w(0), wt(0)] = [u0, h01, h02, ..., h0K , h0K , w0, w1] ∈ H (4)

where the finite energy space H is given by
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H ≡
{

[u0, h01, h02, ..., h0K , h0K , w0, w1] ∈ L2(Ωf ) ×
K∏
j=1

[
H1(Γj) × L2(Γj)

]
× H1(Ωs) × L2(Ωs) :

(i) w0|Γj
= h0j ;

(ii) hj |∂Γj∩∂Γl
= hl|∂Γj∩∂Γl

on (0, T ) × (∂Γj ∩ ∂Γl) ∀ 1 ≤ l ≤ K such that ∂Γj ∩ ∂Γl �= ∅
}
.

(5)

The H-inner product is

(
Φ0, Φ̃0

)
H = (u0,ũ0)Ωf

+
K∑
j=1

[(
∇h0j ,∇h̃0j

)
Γj

+
(
h0j , h̃0j

)
Γj

]

+
K∑
j=1

(
h1j , h̃1j

)
Γj

+ (∇w0,∇w̃0)Ωs
+ (w1, w̃1)Ωs

(6)

for Φ0 = [u0, h01, h11(t)...., h0K , h1K , w0, w1] and Φ̃0 =
[
ũ0, h̃01, h̃11(t)...., h̃0K , h̃1K , w̃0, w̃1

]
∈ H.

We should note that the boundary interface does not evolve with time. However, it is well-accepted that 
if the boundary interface displacements between structure and fluid are small relative to the scale of the 
geometry, the resulting FSI models are physically relevant and reliable; (see [24,31]).

Notation

Throughout, for a given domain D, the norm of corresponding space L2(D) will be denoted as || · ||D
(or simply || · || when the context is clear). Inner products in L2(O) or L2(O) will be denoted by (·, ·)O, 
whereas inner products L2(∂O) will be written as 〈·, ·〉∂O. We will also denote pertinent duality pairings as 
〈·, ·〉X×X′ for a given Hilbert space X. The space Hs(D) will denote the Sobolev space of order s, defined 
on a domain D; Hs

0(D) will denote the closure of C∞
0 (D) in the Hs(D)-norm ‖ · ‖Hs(D). We make use of 

the standard notation for the boundary trace of functions defined on O, which are sufficiently smooth: i.e., 
for a scalar function φ ∈ Hs(O), 1

2 < s < 3
2 , γ(φ) = φ

∣∣
∂O, which is a well-defined and surjective mapping 

on this range of s, owing to the Sobolev Trace Theorem on Lipschitz domains (see e.g., [37], or Theorem 
3.38 of [33]). Also, C > 0 will denote a generic constant.

2. Literature

Stability analyses of fluid structure interaction (FSI) PDE systems have been an ongoing object of study 
[2,3,5,6,25,38]. Because of their utility in mathematically describing fluid or flow dynamics as they interact 
with elastic materials, such FSI models arise in biomedicine, biomechanics and aeroelasticity, see e.g. [12,23]. 
The main motivation of the current problem comes from the mathematical modeling of vascular blood 
flow: the corresponding modeling PDE dynamics accounts for the fact that blood-transporting vessels are 
generally composed of several layers. Such multilayered FSI PDE models have a crucial role in understanding 
the physiology of the human cardiovascular system [9,28,36].

Examples of single layered FSI – i.e., only one elastic PDE (describing three dimensional bulk elasticity 
or some lower-dimensional model of plate/shell type) models the structural dynamics; the displacement 
along the interaction interface is not modeled via any elastic equation – appear extensively in the literature, 
see e.g. [5,8,10,20,22,24,29,35] and references within. However, many biomedical devices (such as stents) are 
being developed with the view that vascular wall structures are composed of composite materials and not 
of single layer; see [16–19,36]. In short, some degree of physical realism is lost if the FSI PDE does not 
adequately describe arterial wall layers of composite type.

Compared to the extensive work undertaken for single layered FSI, there is a relative paucity of results 
for multilayered FSI systems. A multilayered FSI (2D heat-1D wave-2D wave) system was initially studied 
in [36] with a focus on showing wellposedness. Therein, the authors exploited an underlying regularity 
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which was available by the presence of the additional wave equation. A simplified 1D model was studied in 
[34] where the optimal regularity result was proved. In [7], wellposedness and strong stability of a higher 
dimensional linear version of the system considered in [36] were studied. In particular, to prove strong 
decay, the authors of [7] appealed to the wellknown spectral criteria in [1]. Very recently, an alternative 
resolvent criterion approach to strong decay, with respect to a multilayered Lamé-heat system was given in 
[4]. However, up to the present time, there has not been, to the best of our knowledge, any investigations 
into uniform decay properties – with respect to either finite energy or higher norm – of multilayered FSI 
PDE models. Accordingly, the question in the present work is, is the dissipation emanating from the thermal 
component of the FSI system (1)-(4) strong enough to elicit polynomial decay?

3. Novelty and challenges

As noted above, despite extensive research activity on single-layer FSI models in the last twenty years 
or so, a comprehensive long term analysis theory for multilayered FSI – in which the boundary interface 
coupling between fluid and structure components is realized via an additional elastic equation – is largely 
absent. Having established in [7] the strong (asymptotic) stability for the multilayered FSI model (1)-(4), 
the authors in the present work address the issue of obtaining rational decay rates for solutions of the 
coupled 3D heat-2D wave-3D wave dynamics under consideration. These rational decay rates will pertain 
to solutions of (1)-(4) which correspond to smooth initial data; i.e., initial data drawn from the domain of 
the associated heat-wave-wave C0-semigroup generator A : D(A) ⊂ H → H in (7) below.

Our approach here for solving the rational decay problem will entail an appropriate estimation of the 
resolvent of the corresponding semigroup generator, with a view of invoking the wellknown resolvent criterion 
in [13] for polynomial decay. Ultimately, we will obtain an explicit decay rate of O(t− 2

11 ). This is Theorem 3
below. As far as we can tell, this is the first such polynomial stability result obtained for multilayered FSI. 
By way of obtaining the rational decay result, we will operate in the frequency domain and deal with a 
static FSI system – which is essentially the Laplace transformed version of the original system (1)-(4) – and 
the resolvent of the generator of the dynamical system. In this regard, challenging issues associated with 
the analysis are as follows:
(i) Majorizing the solution to the resolvent equation in terms of the heat component. Having obtained in 
our previous work [7] an understanding of the spectral properties of the corresponding semigroup generator 
A : D(A) ⊂ H → H (of (7) below), we proceed with considering the resolvent system in (11) below and 
discern an inherent (static) fluid dissipative relation. Analogous to what the analysis undertaken in the time 
domain for control of PDE’s in general – see e.g., [40] – we will strive here to exploit the static dissipation 
by majorizing the solution Φ of (10) in terms of the heat component u. However the key issue here will be 
an appropriate estimate for the 3D thick wave component w.
(ii) Sharpening Poincaré’s Inequality for the thermal component. In order to deal with critical boundary 
trace terms and ultimately majorize them with respect to the static heat dissipation, we will need to refine 
some of the estimates concerning the boundary term ∂u

∂ν

∣∣
Γs

. This will require us to prove a sharpening of 
Poincaré’s Inequality; in particular, we will need to properly majorize the L2-norm of the thermal component 
in such a way so as to ultimately secure the given decay rate.
(iii) Control of the critical three wave boundary terms. As we pointed out in (i), the main challenge here 
will be the appropriate estimate for the 3D thick wave component w. The use of a certain “Dirichlet” map 
will ultimately enable us to homogenize this thick wave component of (11), via a new variable z, which has 
zero Dirichlet boundary trace. To this new variable z, we subsequently apply frequency domain versions of 
known vector identities for the control of (uncoupled) waves. However, the obtained preliminary estimate 
on the thick wave component will still contain the problematic boundary term ∂z

∂ν

∣∣
Γs

, a term which should 
be controlled in L2-sense. The desired estimate of this flux term will require the invocation of the thin layer 
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h-equations in (11) and some sharp interpolation inequalities. It is the estimation of this boundary term 
which ultimately dictates the obtained rational decay rate.

4. Preliminaries

It is shown in [7] that the multilayered PDE system (1)-(4) can be described via the matrix operator 
A : D(A) ⊂ H → H defined by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δ 0 0 . . . 0 0 0 0
0 0 I . . . 0 0 0 0

− ∂
∂ν

∣∣
Γ1

(Δ − I) 0 . . . 0 0 ∂
∂ν

∣∣
Γ1

0
...

...
... . . .

...
...

...
...

0 0 0 . . . 0 I 0 0
− ∂

∂ν

∣∣
ΓK

0 0 . . . (Δ − I) 0 ∂
∂ν

∣∣
ΓK

0
0 0 0 . . . 0 0 0 I

0 0 0 . . . 0 0 Δ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (7)

with
D(A) = {[u0, h01, h11(t)...., h0K , h1K , w0, w1] ∈ H :

(A.i) (a) u0 ∈ H1(Ωf ), (b) h1j ∈ H1(Γj) for j = 1, ..., K, (c) w1 ∈ H1(Ωf );
(A.ii) (a) Δu0 ∈ L2(Ωf ), (b) Δw0 ∈ L2(Ωs), (c) Δh0j − ∂u0

∂ν

∣∣
Γj

+ ∂w0
∂ν

∣∣
Γj

∈ L2(Γj) for j = 1, ..., K,

(d) ∂h0j
∂nj

∣∣∣
∂Γj

∈ H− 1
2 (∂Γj) for j = 1, ..., K;

(A.iii) (a) u0|Γf
= 0, (b) u0|Γj = h1j = w1|Γj for j = 1, ..., K;

(A.iv) For j = 1, ..., K such that ∂Γj ∩ ∂Γl �= ∅:

(a) h1j |∂Γj∩∂Γl
= h1l|∂Γj∩∂Γl

; (b) ∂h0j
∂nj

∣∣∣
∂Γj∩∂Γl

= − ∂h0l
∂nl

∣∣∣
∂Γj∩∂Γl

}
.

This is to say, Φ(t) =
[
u(t), h1(t), ∂

∂th1(t)...., hK(t), ∂
∂thK , w(t), wt(t)

]
satisfies the PDE model (1)-(4) if 

and only if these variables solve the following ODE in Hilbert space H:

d

dt
Φ(t) = AΦ(t) on (0, T ); Φ(0) = Φ0 = [u0, h01, h02, ..., h0K , h0K , w0, w1] ∈ H. (8)

We recall the wellposedness result given in [7]:

Theorem 1. The linear operator A : D(A) ⊂ H → H, as defined in (7), generates a C0-semigroup {
eAt

}
t≥0 of contractions on H. Thus, for Φ0 = [u0, h01, h02, ..., h0K , h0K , w0, w1] ∈ H, the solution 

Φ(t) =
[
u(t), h1(t), ∂

∂th1(t)...., hK(t), ∂
∂thK , w(t), wt(t)

]
of (1)-(4) is given (continuously) by

Φ(t) = eAtΦ0 ∈ C([0, T ];H).

5. Main result

Our present work mainly focuses on analyzing the long time behavior of solutions to the given multilayered 
system (1)-(4), with a view of obtaining rational decay rate of these solutions. Our main proof of stability 
will be based on an ultimate appeal to wellknown resolvent criterion of A. Borichev and Y. Tomilov [13, 
Theorem 2.4]:
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Theorem 2. Let {T (t)}t≥0 be a bounded C0-semigroup on a Hilbert space H with generator A such that 
iR ⊂ ρ(A). Then for fixed α > 0 the following are equivalent:

(i) ‖R(is;A)‖ = O(|s|α), |s| → ∞;
(ii) 

∥∥T (t)A−1x
∥∥ = o(t− 1

α ), t → ∞, x ∈ H.

Given this operator theoretic result, it will suffice to establish the “frequency domain” PDE estimate in 
(9); the proof of this estimate will constitute the bulk of the effort in the present paper. Now, we give our 
main result of polynomial decay for solutions which correspond to smooth initial data as follows:

Theorem 3. In regard to the multilayered PDE system in (1)-(4) (or equivalently (8)): if Φ0 =
[u0, h01, h02, ..., h0K , h0K , w0, w1] ∈ D(A), then the corresponding solution of (1)-(4) (or equivalently (8)) 
satisfies the estimate,

‖Φ(t)‖H ≤ C

t
2
11

‖Φ0‖D(A) . (9)

That is, the solution to (1)-(4) (or equivalently (8)), which corresponds to smooth initial data, decays at a 
rate of O(t− 2

11 ).

Proof of Theorem 3
The proof relies on the resolvent criterion given in Theorem 2, and presupposes that there is no intersection 

of σ(A) with the imaginary axis. In fact it was shown in [7, Proposition 7, Lemma 9, Corollary 10] – see
Section 4 therein – that iR ⊂ ρ(A).

Subsequently, given parameter β ∈ R and data Φ∗
0 = [u∗, h∗

01, h
∗
02, ..., h

∗
0K , h∗

0K , w∗
0 , w

∗
1 ] ∈ H, we consider 

the resolvent equation

[iβI − A] Φ = Φ∗
0, (10)

with solution Φ = [u, h01, h02, ..., h0K , h0K , w0, w1] ∈ D(A). From the definition of A, this abstract equation 
can be written explicitly as

{
iβu− Δu = u∗ in Ωf

u|Γf
= 0 on Γf

{
iβh0j − h1j = h∗

0j in Γj

−β2h0j − Δh0j + h0j + ∂u
∂ν − ∂w0

∂ν = h∗
1j + iβh∗

0j in Γj⎧⎪⎪⎨
⎪⎪⎩

For all 1 ≤ l ≤ K such that ∂Γj ∩ ∂Γl �= ∅
h0j |∂Γj∩∂Γl

= h0l|∂Γj∩∂Γl

∂h0j
∂nj

∣∣∣
∂Γj∩∂Γl

= − ∂h0l
∂nl

∣∣∣
∂Γj∩∂Γl

,

⎧⎪⎨
⎪⎩

w1 = iβw0 − w∗
0 in Ωs

−β2w0 − Δw0 = iβw∗
0 + w∗

1 in Ωs

[iβw0 − w∗
0 ]Γj

= h1j = u|Γj
on Γj .

(11)

We will give our proof step-wise, estimating each solution component separately:
Step 1: A static dissipation relation for heat component u:

We will start with an inherent (static) fluid dissipative relation which will be the key ingredient for future 
steps. First, we take the H-inner product of both sides of (10) with respect to pre-image Φ. This gives
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iβ ‖Φ‖2
H + ‖∇u‖2

Ωf
− 2i

∑K
j=1

[
Im (∇h1j ,∇h0j)Γj

+ Im (h1j , h0j)Γj

]
−2iIm (∇w1,∇w0)Ωs

= (Φ∗
0,Φ0)H ,

(12)

and then the following dissipation relation:

‖∇u‖2
Ωf

= Re (Φ∗
0,Φ)H . (13)

In view of relation (13), we should strive to majorize solution Φ of (10) in norm in terms of the static heat 
dissipation. With this theme in mind, from the mechanical compatibility conditions in (5), and the resolvent 
relations and matching velocity BC’s in (11), we have for j = 1, ..., K,

[
iβh0j − h∗

0j
]
Γj

= h1j |Γj
= u|Γj

. (14)

Combining this relation with the Sobolev Trace Theorem (and Poincaré’s Inequality), we then have for 
j = 1, ..., K,

‖βh0j‖
H

1
2 (Γj)

≤ C
(
‖∇u‖Ωf

+ ‖Φ∗
0‖H

)
. (15)

Moreover, via an integration by parts we get∥∥∥∥∂u∂ν
∥∥∥∥
H− 1

2 (∂Ωf )
≤ C

(
‖Δu‖Ωf

+ ‖∇u‖Ωf

)

= C
(
‖iβu− u∗‖Ωf

+ ‖∇u‖Ωf

)
(16)

which, in turn, gives ∥∥∥∥∂u∂ν
∥∥∥∥
H− 1

2 (∂Ωf )
≤ C

(
|β| ‖u‖Ωf

+ ‖∇u‖Ωf
+ ‖Φ∗

0‖H
)
. (17)

We should note that this estimate can be refined with respect to β. In fact, for our particular multilayered 
PDE model, we have the following “sharpening” of Poincaré’s Inequality:

Proposition 4. For |β| > 0, the heat solution component of (11) obeys the estimate

|β|
1
2 ‖u‖Ωf

≤ C
(
‖∇u‖Ωf

+ ‖Φ∗
0‖H

)
. (18)

Proof. The details of the proof are taken in large part from Lemma 5.2 of [5] and [6]. Given heat component 
u of (11), let variable u1 solve

{
Δu1 = iβu in Ωf

u1|∂Ωf
= 0 on ∂Ωf .

(19)

Taking the L2-inner product of both sides of (19)1 by u1, we subsequently have, from the heat equation in 
(11):

‖∇u1‖2
Ωf

= − (Δu1, u1)Ωf

= − (iβu, u1)Ωf

= − (Δu + u∗, u1)Ωf

= (∇u,∇u1) − (u∗, u1) ;
Ωf Ωf
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whence we obtain, via Poincaré’s and Young’s Inequalities,

‖∇u1‖Ωf
≤ C

(
‖∇u‖Ωf

+ ‖Φ∗
0‖H

)
. (20)

Since the u1-equation in (19) gives

‖u‖H−1(Ωf ) = 1
|β| ‖Δu1‖

H−1(Ωf )
,

using again the Poincaré’s Inequality yields

‖u‖H−1(Ωf ) ≤
C

|β| ‖∇u1‖Ωf
≤ C

|β|
(
‖∇u‖Ωf

+ ‖Φ∗
0‖H

)
, (21)

after using (20). Moreover, it is known – see e.g., Theorem B.8, Theorem 3.30 and Theorem 3.33 of [33] – 
that

L2(Ωf ) =
[
H−1(Ωf ), H1(Ωf )

]
1
2

(which is the Lipschitz domain version of the interpolation result Lemma 12.1 of [32]). Combining this with 
the estimate (21) gives

‖u‖L2(Ωf ) ≤ C ‖u‖
1
2
H−1(Ωf ) ‖∇u‖

1
2
Ωf

≤ C

|β|
1
2

(
‖∇u‖Ωf

+ ‖Φ∗
0‖H

)

which yields (18) and finishes the proof of Proposition 4. �
Now, applying the estimate (18) to the right hand side of (17), we then have the following normal 

derivative trace estimate for the heat component of the static problem (11):

Corollary 5. For |β| > 1, the heat solution component of (11) obeys the estimate
∥∥∥∥∂u∂ν

∥∥∥∥
H− 1

2 (∂Ωf )
≤ C |β|

1
2
(
‖∇u‖Ωf

+ ‖Φ∗
0‖H

)
. (22)

Step 2: The thick wave displacement w0
In what follows, we require “Dirichlet” map D, defined by having for given boundary function g ∈ H

1
2 (Γs),

ΔDg = 0 in Ωs; Dg|Γs
= g on Γs. (23)

By the Lax-Milgram Theorem and an argument similar to that which resulted in (17), we have

D ∈ L
(
H

1
2 (Γs), H1(Ωs)

)
, ∂D

∂ν
∈ L

(
H

1
2 (Γs), H− 1

2 (Γs)
)
. (24)

(The latter is the “Dirichlet to Neumann” map.) Therewith, and with respect to the thick wave displacement 
w0 in (11), we set

z = w0 + i

β
D
(
u|Γs

+ w∗
0 |Γs

)
. (25)

Then, via (23), the variable z satisfies the following boundary value problem:
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−β2z − Δz = −iβD
[
u|Γs

+ w∗
0 |Γs

]
+ w∗

1 + iβw∗
0 in Ωs;

z = 0 on Γs. (26)

Since Ωs is convex then z ∈ H2(Ωs) (see e.g., Theorem 3.2.1.2, p. 147 of [27]). Subsequently, we can appeal 
to the known Sobolev boundary regularity results for polyhedral domains; [11, p. 43, Theorem 6.9]. In short, 
we have the estimate, for |β| ≥ 1,

‖z‖H2(Ωs) +
K∑
j=1

∥∥∥∥∂z∂ν
∥∥∥∥
H

1
2 (Γj)

≤ C0

(
β2 ‖z‖Ωs

+ |β|
∥∥D [

u|Γs
+ w∗

0 |Γs

]∥∥
Ωs

+ ‖w∗
1 + iβw∗

0‖Ωs

)

≤ C0 |β|
(
‖βz‖Ωs

+ ‖∇u‖Ωf
+ ‖Φ∗

0‖H
)
, (27)

after using (26), (24) and the Sobolev Imbedding Theorem.
With respect to the z-wave equation in (26), we appeal to the “frequency domain” version of the well-

known wave identity which is synonymous with boundary control of wave equations; see Proposition 7 
(ii) of [2], and also [21],[40]. We adopt those wave identities to our solution component z in the following 
Proposition:

Proposition 6. Let m(x) = [m1(x), m2(x), m3(x)] be an arbitrary real-valued [C2(Ω̄s)]3-vector field, with 
associated Jacobian matrix M(x). Then the wave component of the solution to the resolvent equation (10)
obeys the following relation:

(i)
∫
Ωs

∣∣∣M 1
2 (x)∇z

∣∣∣2 dΩs = −Re
∫
Γs

∂z

∂ν
(m · ∇z) dΓs + 1

2

∫
Γs

∣∣∣∣∂z∂ν
∣∣∣∣
2

m · νdΓs

+1
2

∫
Ωs

{
|∇z|2 − β2 |z|2

}
div(m)dΩsh

−Re
∫
Ωs

(
iβD

[
u|Γs

+ w∗
0 |Γs

]
− w∗

1 − iβw∗
0
)
(m · ∇z) dΩs

= −1
2

∫
Γs

∣∣∣∣∂z∂ν
∣∣∣∣
2

m · νdΓs + 1
2

∫
Ωs

{
|∇z|2 − β2 |z|2

}
div(m)dΩs

+iβRe
∫
Ωs

∇
(
D
[
u|Γs

+ w∗
0 |Γs

]
− w∗

0
)
· mz̄dΩs

+iβRe
∫
Ωs

(
D
[
u|Γs

+ w∗
0 |Γs

]
− w∗

0
)
z̄div(m)dΩs

+Re
∫
Ωs

w∗
1 (m · ∇z) dΩs. (28)

(ii) If m̃(x) is an arbitrary real-valued [C2(Ω̄s)]3-vector field, then the wave component of the solution to 
the resolvent equation (10) satisfies the relation,

∫ {
|∇z|2 − β2 |z|2

}
div(m̃)dΩs = −Re

∫ (
iβD

[
u|Γs

+ w∗
0 |Γs

]
− w∗

1 − iβw∗
0
)
zdiv (m̃) dΩs
Ωs Ωs
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−Re
∫
Ωs

[∇z · ∇div(m̃)] z̄dΩs. (29)

(Note that the expressions (28)-(29) each reflect the fact that z = 0 on Γs and/or the unit normal vector 
ν(x) is pointing inward with respect to solid geometry Ωs.)

Now, let the vector fields m and m̃ in (28) and (29), respectively, be taken as

m(x) = m̃(x) = x. (30)

Then, via (24), Young’s Inequality and the Sobolev Trace Theorem, we have for |β| ≥ 1,
∣∣∣∣∣∣
∫
Ωs

{
|∇z|2 − β2 |z|2

}
dΩs

∣∣∣∣∣∣ ≤ εβ2 ‖z‖2
Ωs

+ Cε

(
‖∇u‖2

Ωf
+ ‖Φ∗

0‖
2
H

)
. (31)

In turn, with vector field m as specified in (30), applying (31) to the right hand side of (28), using (24), the 
Sobolev Trace Theorem and again Young’s Inequality, we have the following Proposition:

Proposition 7. For |β| ≥ 1 and ε > 0, the variable z of (25) and (26) satisfies

∫
Ωs

|∇z|2 dΩs ≤ C∗
∫
Γs

∣∣∣∣∂z∂ν
∣∣∣∣
2

dΓs + ε
(
‖∇z‖2

Ωs
+ β2 ‖z‖2

Ωs

)
+ Cε

(
‖∇u‖2

Ωf
+ ‖Φ∗

0‖
2
H

)
(32)

(with respect to (31) there has also been a rescaling of ε > 0).

At this point, we also note in the z-wave relation (28) that m(x) could be specified to be the smooth 
vector field of Lemma 1.5.1.9, pg. 40 of [27]: That is, for some δ > 0, m(x) ∈ [C∞(Ωs)] satisfies

−m(x) · ν ≥ δ a.e. on Γs. (33)

This gives in (28):

δ

2

∫
Γs

∣∣∣∣∂z∂ν
∣∣∣∣
2

dΓs ≤

∣∣∣∣∣∣
∫
Ωs

∣∣∣M 1
2 (x)∇z

∣∣∣2 dΩs −
1
2

∫
Ωs

{
|∇z|2 − β2 |z|2

}
div(m)dΩs

−iβRe
∫
Ωs

∇
(
D
[
u|Γs

+ w∗
0 |Γs

]
− w∗

0
)
· mz̄dΩs

−iβRe
∫
Ωs

(
D
[
u|Γs

+ w∗
0 |Γs

]
− w∗

0
)
z̄div(m)dΩs − Re

∫
Ωs

w∗
1 (m · ∇z) dΩs

∣∣∣∣∣∣ .
Estimating right hand side of this relation by means of (24), Young’s Inequality and the Sobolev Trace 
Theorem, we have the control of the trace term ∂z∂ν |Γs

in the following proposition:

Proposition 8. The variable z of (25) and (26) satisfies

∫ ∣∣∣∣∂z∂ν
∣∣∣∣
2

dΓs ≤ C
(
‖∇z‖2

L2(Ωs) + β2 ‖z‖2
Ωs

+ ‖∇u‖2
Ωf

+ ‖Φ∗
0‖

2
H

)
. (34)
Γs
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We should emphasize that given the right hand side of estimate (32), it is apparent that a useful estimate 
of the thick wave energy component of (11) will necessitate “decent” control of ∂z

∂ν

∣∣
Γs

in L2-sense: that is, 
the positive constant C in (34) need not be “small”. However, while the estimate (34) does not constitute 
such needed control, it will serve as an ingredient for attaining that end.
Step 3: The thin wave displacement h0

With respect to the h-wave equations in (11), we take the L2-inner product with respect to h0j , for 
j = 1, ..., K. This gives

− (Δh0j , h0j)Γj
+ ‖h0j‖2

Γj
=
(
β2h0j , h0j

)
Γj

+
〈
∂w0

∂ν
, h0j

〉
Γj

−
〈
∂u

∂ν
, h0j

〉
Γj

+
(
h∗

1j , h0j
)
Γj

+ iβ
(
h∗

0j , h0j
)
Γj

. (35)

Subsequently, we invoke the Green’s Theorem (for j = 1, ..., K) to get

‖∇h0j‖2
Γj

+ ‖h0j‖2
Γj

−
〈
∂h0j

∂ν
, h0j

〉
∂Γj

= β2 ‖h0j‖2
Γj

+
〈
∂w0

∂ν
, h0j

〉
Γj

−
〈
∂u

∂ν
, h0j

〉
Γj

+
(
h∗

1j , h0j
)
Γj

+ iβ
(
h∗

0j , h0j
)
Γj

. (36)

Using the thin layer boundary conditions in (11), we then have upon summation

K∑
j=1

[
‖∇h0j‖2

Γj
+ ‖h0j‖2

Γj

]

=
K∑
j=1

[
β2 ‖h0j‖2

Γj
+
〈
∂w0

∂ν
, h0j

〉
Γj

−
〈
∂u

∂ν
, h0j

〉
Γj

+
(
h∗

1j , h0j
)
Γj

+ iβ
(
h∗

0j , h0j
)
Γj

]
.

Estimating right hand side by means of (22) and (15), and via the inequality

〈
∂u

∂ν
, h0j

〉
Γj

≤
(

1
|β|

1
2

∥∥∥∥∂u∂ν
∥∥∥∥
H− 1

2 (Γj)

)(
|β|

1
2 ‖h0j‖

H
1
2 (Γj)

)
,

we then have for |β| ≥ 1 that the thin wave solution components of (11) obey the following (intermediate) 
estimate:

K∑
j=1

[
‖∇h0j‖2

Γj
+ ‖h0j‖2

Γj

]
≤

∣∣∣∣∣∣
K∑
j=1

〈
∂w0

∂ν
, h0j

〉
Γj

∣∣∣∣∣∣+ C
(
‖∇u‖2

Ωf
+ ‖Φ∗

0‖
2
H

)
. (37)

5.1. An appropriate estimate for ∂z
∂ν

∣∣
Γs

Using the decomposition (25) and the thin wave equations in (11), we have for j = 1, ..., K,

∂z = −β2h0j − Δh0j + h0j + ∂u + i ∂D [
u|Γs

+ w∗
0 |Γs

]
− h∗

1j − iβh∗
0j in Γj . (38)
∂ν ∂ν β ∂ν
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For the first term on right hand side, we use the matching velocities BC and h-resolvent relation in (11)
and a wellknown trace moment inequality – see e.g., Theorem 1.6.6, p. 37 of [14] – so as to have

∥∥β2h0j
∥∥

Γj
=
∥∥∥β u|Γj

+ β h∗
0j
∣∣
Γj

∥∥∥
Γj

≤ C |β|
(
‖u‖

1
2
Ωf

‖∇u‖
1
2
Ωf

+ ‖Φ∗
0‖H

)
. (39)

Subsequently invoking the improvement over Poincaré’s Inequality in Proposition 4, we have now for |β| ≥ 1,

∥∥β2h0j
∥∥

Γj
≤ C

(
|β|

3
4 ‖∇u‖Ωf

+ |β| ‖Φ∗
0‖H

)
.

Applying this estimate to the right hand side of (38), along with (37), (22), (24), and the Sobolev Trace 
Theorem, we then have for |β| ≥ 1 (upon summing over j = 1, ..., K),

K∑
j=1

∥∥∥∥∂z∂ν
∥∥∥∥
H−1(Γj)

≤ C1

⎛
⎝
√√√√ K∑

j=1

∣∣∣∣∣
〈
∂w0

∂ν
, h0j

〉
Γj

∣∣∣∣∣+ C |β|
3
4 ‖∇u‖Ωf

+ |β| ‖Φ∗
0‖H

⎞
⎠ . (40)

To refine the right hand side: Using again the decomposition (25), we have for |β| ≥ 1,

√√√√ K∑
j=1

∣∣∣∣∣
〈
∂w0

∂ν
, h0j

〉
Γj

∣∣∣∣∣ =

√√√√ K∑
j=1

∣∣∣∣
〈

∂

∂ν

[
z − i

β
D([u + w∗

0 ]|Γs
)
]
, h0j

〉∣∣∣∣
Γj

=

√√√√ K∑
j=1

∣∣∣∣
〈

1
β

∂z

∂ν
, βh0j

〉
− i

β

〈
∂

∂ν
D([u + w∗

0 ]|Γs
), h0j

〉∣∣∣∣
Γj

.

Applying (15), (24), Sobolev Trace Theorem and the Young’s Inequality, we then obtain for |β| ≥ 1,

√√√√ K∑
j=1

∣∣∣∣∣
〈
∂w0

∂ν
, h0j

〉
Γj

∣∣∣∣∣ ≤ δ∗

|β|C1

K∑
j=1

∥∥∥∥∂z∂ν
∥∥∥∥
H− 1

2 (Γj)
+ Cδ∗

(
‖∇u‖Ωf

+ ‖Φ∗
0‖H

)
,

where C1 > 0 is the constant in (40). Applying this inequality to (40), we have for |β| ≥ 1,

K∑
j=1

∥∥∥∥∂z∂ν
∥∥∥∥
H−1(Γj)

≤ δ∗

|β|

K∑
j=1

∥∥∥∥∂z∂ν
∥∥∥∥
H− 1

2 (Γj)
+ C2,δ∗

[
|β|

3
4 ‖∇u‖Ωf

+ |β| ‖Φ∗
0‖H

]
. (41)

Interpolating now between (34) and (41) we have for j = 1, ..., K,

∥∥ ∂z
∂ν

∥∥
H− 1

2 (Γj)
≤ C

∥∥ ∂z
∂ν

∥∥ 1
2
H−1(Γj)

∥∥ ∂z
∂ν

∥∥ 1
2
Γj

≤ C3

⎧⎨
⎩
(

δ∗

|β|

K∑
j=1

∥∥ ∂z
∂ν

∥∥
H− 1

2 (Γj)
+ C2,δ∗

[
|β|

3
4 ‖∇u‖Ωf

+ |β| ‖Φ∗
0‖H

]) 1
2

×
(
‖∇z‖Ωs

+ ‖βz‖Ωs
+ ‖∇u‖Ωf

+ ‖Φ∗
0‖H

) 1
2
}
.

(42)

Subsequently, for |β| ≥ 1, with constant C3 as in (42) and using the relation |ab| ≤ δ∗KC3
2|β| a2 + |β|

2δ∗KC3
b2, 

we then have
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∥∥∥∥∂z∂ν
∥∥∥∥
H− 1

2 (Γj)
≤ 1

2K

K∑
j=1

∥∥∥∥∂z∂ν
∥∥∥∥
H− 1

2 (Γj)
+ δ∗KC2

3
2 |β|

(
‖∇z‖L2(Ωs) + ‖βz‖Ωs

)

+ Cδ∗

[
|β|

7
4 ‖∇u‖Ωf

+ |β|2 ‖Φ∗
0‖H

]
, for j = 1, ...,K.

Summing this estimate over j now gives

K∑
j=1

∥∥∥∥∂z∂ν
∥∥∥∥
H− 1

2 (Γj)
≤ 1

2

K∑
j=1

∥∥∥∥∂z∂ν
∥∥∥∥
H− 1

2 (Γj)
+ δ∗

|β|C4

(
‖∇z‖L2(Ωs) + ‖βz‖Ωs

)

+Cδ∗

(
|β|

7
4 ‖∇u‖Ωf

+ |β|2 ‖Φ∗
0‖H

)
(where constant C4 is independent of δ∗ > 0). We have then for j = 1, ..., K,

∥∥∥∥∂z∂ν
∥∥∥∥
H− 1

2 (Γj)
≤ δ∗

|β|C5
(
‖∇z‖Ωs

+ ‖βz‖Ωs

)
+ Cδ∗

(
|β|

7
4 ‖∇u‖Ωf

+ |β|2 ‖Φ∗
0‖H

)
. (43)

Subsequently, we interpolate between (43) and (27) to have,

∥∥ ∂z
∂ν

∥∥
Γj

≤ C6
∥∥ ∂z
∂ν

∥∥ 1
2

H− 1
2 (Γj)

∥∥ ∂z
∂ν

∥∥ 1
2

H
1
2 (Γj)

≤ C6

{[
δ∗

|β|C5
(
‖∇z‖Ωs

+ ‖βz‖Ωs

)
+ Cδ∗

(
|β|

7
4 ‖∇u‖Ωf

+ |β|2 ‖Φ∗
0‖H

)]
×C0 |β|

(
‖βz‖Ωs

+ ‖∇u‖Ωf
+ ‖Φ∗

0‖H
)} 1

2

≤ C6

{
δ∗C0C5

([
‖∇z‖Ωs

+ ‖βz‖Ωs
+ ‖∇u‖Ωf

+ ‖Φ∗
0‖H

]2)

+Cδ∗C0 |β|
(
|β|

7
4 ‖∇u‖Ωf

+ |β|2 ‖Φ∗
0‖H

)(
‖∇z‖Ωs

+ ‖βz‖Ωs
+ ‖∇u‖Ωf

+ ‖Φ∗
0‖H

)} 1
2

Invoking once more the relation |ab| ≤ δ∗a2 + Cδ∗b
2, for δ∗ > 0, we have now

∥∥∥∥∂z∂ν
∥∥∥∥

Γj

≤ δ∗C7
(
‖∇z‖Ωs

+ ‖βz‖Ωs

)
+ Cδ∗

(
|β|

11
4 ‖∇u‖Ωf

+ |β|3 ‖Φ∗
0‖H

)
.

Summing over j = 1, ..., K, and rescaling δ∗ > 0, we have now the following desired trace estimate for ∂z
∂ν

∣∣
Γs

:

Lemma 9. For |β| ≥ 1 and arbitrary δ∗ > 0, the variable z of (25) and (26) obeys the estimate
∥∥∥∥∂z∂ν

∥∥∥∥
Γs

≤ δ∗
(
‖∇z‖Ωs

+ ‖βz‖Ωs

)
+ Cδ∗

(
|β|

11
4 ‖∇u‖Ωf

+ |β|3 ‖Φ∗
0‖H

)
. (44)

Completion of the Proof of Theorem 3. Applying (44) to right hand side of (32) of Proposition 7 (and 
subsequently rescaling), we have for |β| ≥ 1,

∫
Ωs

|∇z|2 dΩs ≤ ε
(
‖∇z‖2

Ωs
+ β2 ‖z‖2

Ωs

)
+ Cε

(
|β|

11
2 ‖∇u‖2

Ωf
+ |β|6 ‖Φ∗

0‖
2
H

)
. (45)

In turn, we take vector field m̃(x) in (29) of Proposition 6 to satisfy div(m̃) = 1. Afterwards, we estimate this 
relation by means of (45), (24), the Sobolev Trace Theorem and the Young’s Inequality, |ab| ≤ ρa2 + Cρb

2

(1 > ρ > 0) to have
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∫
Ωs

|βz|2 dΩs ≤
ε

(1 − ρ)

(
‖∇z‖2

L2(Ωs) + β2 ‖z‖2
L2(Ωs)

)
+ Cε,ρ

(
|β|

11
2 ‖∇u‖2

Ωf
+ |β|6 ‖Φ∗

0‖
2
H

)
. (46)

In sum, for |β| ≥ 1, (45) and (46) give now,

‖z‖2
H1(Ωs) + ‖βz‖2

Ωs
+
∥∥∥∥∂z∂ν

∥∥∥∥
2

Γs

≤ C
(
|β|

11
2 ‖∇u‖2

Ωf
+ |β|6 ‖Φ∗

0‖
2
H

)
. (47)

Subsequently, via the change of variable in (25), (47) and the regularity for D in (24), with respect to the 
thick layer wave solution components in (11), we have that for |β| ≥ 1,

(i) ‖w0‖2
H1(Ωs) =

∥∥∥∥z − i

β
D
(
u|Γs

+ w∗
0 |Γs

)∥∥∥∥
2

H1(Ωs)

≤ C
(
|β|

11
2 ‖∇u‖2

Ωf
+ |β|6 ‖Φ∗

0‖
2
H

)
; (48)

(ii) ‖w1‖2
L2(Ωs) =

∥∥∥∥iβ
[
z − i

β
D
(
u|Γs

+ w∗
0 |Γs

)]
− w∗

0

∥∥∥∥
2

L2(Ωs)

≤ C
(
|β|

11
2 ‖∇u‖2

Ωf
+ |β|6 ‖Φ∗

0‖
2
H

)
. (49)

In turn, via (37) and the decomposition (25) we get

K∑
j=1

[
‖∇h0j‖2

Γj
+ ‖h0j‖2

Γj

]
≤

∣∣∣∣∣∣
K∑
j=1

〈
∂(z − i

βD
(
u|Γs

+ w∗
0 |Γs

)
∂ν

, h0j

〉
Γj

∣∣∣∣∣∣+ C
(
‖∇u‖2

Ωf
+ ‖Φ∗

0‖
2
H

)

≤ C

⎛
⎝∥∥∥∥∂z∂ν

∥∥∥∥
Γs

+ 1
|β|

∥∥∥∥∥
∂ i

βD
(
u|Γs

+ w∗
0 |Γs

)
∂ν

∥∥∥∥∥
H− 1

2 (Γs)

⎞
⎠ K∑

j=1
‖h0j‖

H
1
2 (Γj)

.

Invoking now, (47), (24), the Sobolev Trace Theorem, and (15), we have for |β| ≥ 1,

K∑
j=1

[
‖∇h0j‖2

Γj
+ ‖h0j‖2

Γj

]
≤ C

(
|β|

11
2 ‖∇u‖2

Ωf
+ |β|6 ‖Φ∗

0‖
2
H

)
. (50)

In addition, via the resolvent relation in (11), we have for j = 1, ..., K,

‖h1j‖2
H

1
2 (Γj)

=
∥∥iβh0j − h∗

0j
∥∥2
H

1
2 (Γj)

,

whence by (15),

‖h1j‖2
H

1
2 (Γj)

≤ C
(
‖∇u‖2

Ωf
+ ‖Φ∗

0‖
2
H

)
. (51)

Finally, collecting (48), (49), (50) and (51) we have with the solution variable Φ = [u, h01, h02, ..., h0K , h0K ,

w0, w1] that

‖Φ‖2
H ≤ C

(
|β|

11
2 ‖∇u‖2

Ωf
+ |β|6 ‖Φ∗

0‖
2
H

)
.

Invoking now the static dissipation relation (13) and Young’s Inequality one last time, we obtain
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‖Φ‖2
H ≤ C

(
|β|

11
2 |(Φ∗

0,Φ)H| + |β|6 ‖Φ∗
0‖

2
H

)
≤ ε ‖Φ‖2

H + |β|11 ‖Φ∗
0‖

2
H .

Since data Φ∗
0 ∈ H in (10) was arbitrary, this gives the desired resolvent bound

‖R(iβ;A)‖L(H) ≤ C |β|
11
2 .

An appeal to Theorem 2 now concludes the proof of Theorem 3.
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