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Abstract—State estimation (SE) is one of the key functions of
smart grids. The availability of large volumes of measurement
data introduces new opportunities for improving and comple-
menting the conventional model-based SE in power systems. In
this work, a data-driven approach based on Graph Convolution
Neural Networks (G-CNNs) is presented for SE in smart grids.
The G-CNN can learn the features in the non-Euclidean domain
of graphs, which can capture the structures and interactions
among the components of power grids. By integrating the
temporal dependencies in the time-series data, a temporal G-
CNN (T-GCN) is adopted for the SE problem. Specifically,
a message-passing G-CNN is used to capture the topological
structure of the smart grid and the gated recurrent units are
used to capture the dynamic variation of state information
for temporal dependencies. The performance evaluation of the
presented method for two cases of full measurement availability
and availability of a subset of measurements in comparison with
some of the existing SE techniques shows promising performance.

Index Terms—State Estimation, Smart Grid, Phasor Mea-
surement Units, Cyber and Physical Systems, Graph Neural
Networks, Graph Convolution Networks, GRU.

I. INTRODUCTION

Smart grids, with extensive integration of sensing, com-
munication, and computing components, are complex cyber-
physical systems with transmission and distribution infras-
tructures that are delivering electricity from generators to
consumers. Availability of large volumes of energy data from
various measuring devices provides new opportunities to im-
prove the monitoring and operation of smart grids through
enhancing their critical functions and systems, such as wide-
area situational awareness (WASA). WASA makes smart grids
aware of their physical and operational state, which enable
effective operational decisions and control [1].

The state estimation (SE) is one of the main functions of the
WASA. The conventional state estimators have been widely
deployed in utility control centers to help with monitoring
the state of the system. However, traditional SE methods do
not adequately meet the real-time monitoring and accuracy
requirements for smart grids. Many of the model-based SE
techniques are based on steady-state analysis, which cannot
be accurate for modern power systems due to highly dy-
namic and stochastic variations introduced by, for instance,
distributed energy generations and fast-changing loads. Be-
sides, the deployment of phasor measurement units (PMUs)
and the availability of a large volume of measurement data,
introduce new opportunities for improving and complement-
ing the conventional model-based SE in power systems. As

such, in addition to conventional model-based SE, various
data-driven SE methods have been developed in the past
decade [2], [3]. Among such methods, variations of Kalman
Filters (KF), deep learning algorithms, such as Recurrent
Neural Network (RNN), Gated Recurrent Units (GRU), and
Long-Short Term Memory (LSTM), have shown promising
performance by learning the underlying nonlinear dynamics
of these systems.

The dynamics of power systems are governed by various
physical and operational attributes of these systems. The
underlying interactions and interconnections among the com-
ponents of power systems are important attributes that their
effects are reflected in the structured data collected from these
systems. The structural topology of the power system and the
embedded structures in the data due to interactions among
the components are valuable information that can help with
data-driven SE methods. However, many of the existing data-
driven SE techniques do not adequately take into account such
information.

To fill this gap, in this paper, temporal as well as graph-
based features of power system measurements are considered
in analyzing PMU time-series for SE. Specifically, a Graph
Convolutional Neural Network (G-CNN) is combined with
GRU units to create a spatio-temporal model that uses the
topology of the system in learning the patterns embedded
in the PMU time-series for SE. The performance of the
presented approach is compared with the SE techniques based
on Minimum Mean Square Error (MMSE), Bayesian Mul-
tivariate Linear Regression with Auto Regression, Support
Vector Regression, and Multivariate LSTM, which do not
explicitly consider the graph structures in data. The presented
SE approach is also evaluated for the cases when the mea-
surements are available from all the buses and also when the
measurements are only available from a subset of buses. The
presented SE method shows improved performance under both
cases compared to the SE techniques that do not explicitly
consider the graph structures.

II. LITERATURE REVIEW

Conventional power system SE techniques have been in use
for a long in power systems. Such techniques rely heavily on
power system models including the connectivity, attributes,
and operating conditions of the components. A review of
various methods for model-based power system SE can be
found in [4], [5]. With the availability of a large volume
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of energy data, data-driven, and machine learning-based SE
techniques are gaining more attention in the literature. Some
of the benefits of data-driven approaches include robustness
against frequent topology changes and missing or inaccura-
cies in the system information as well as better situational
awareness against cyber/physical stresses [6]. As the focus of
the current paper is on data-driven SE, we briefly review some
of such methods.

Some of the most popular data-driven SE methods are the
ones based on KF and variations of KF [2], such as Extended
Kalman Filter (EKF) [7], Unscented Kalman Filter (UKF) [8],
Cubature Kalman Filter (CKF) [9], Particle Filter [10], and
Gaussian Mixture Filter [11]. The SE methods based on
regression-based optimization using past measurements [12]
and instantaneous correlations [13] of the measurements have
also been proposed in the literature. However, with the avail-
ability of a vast amount of data from smart grids sensors,
neural network-based techniques are becoming increasingly
popular in solving critical operations of smart grids [14]. For
instance, variants of artificial neural networks (ANN) [15],
such as RNN [16], LSTM [17], Residual Neural Network
(ResNet) [18], and Convolutional Neural Network (CNN) [19]
have been adopted for solving data-driven forecasting-aided
SE in smart grids. In the later techniques, measurement data
are fed as the input to the models either as multivariate
time-series or images in Euclidean space. The aforementioned
techniques do not explicitly consider the information about the
underlying graph structures in the system data. Particularly,
CNN generally handles data in Euclidean space and fails to
address non-Euclidean spaces created by graphs; especially
when there is no spatial locality due to the arbitrary structure
of the graph [20].

The technique presented in the current paper incorporates
graph information in the model through a G-CNN. G-CNN,
first introduced in [21], extends the existing neural network
methods for processing the data represented in graph domains.
The underlying structures and graph of connections among the
components of power grids suggest the potential of G-CNN to
capture and use such information. Applications of G-CNN to
smart grids problems are emerging [22]. For instance, in [23],
the authors have modeled the fault localization problem as a
graph search approach using G-CNN in the distribution grid.
The authors in [24] proposed a quasi Monte-Carlo method
based on G-CNN to calculate distribution characteristics of
system power flow. The problem of intentional islanding con-
sidering load-generation balance has also been addressed using
G-CNN in [25]. A physics-aware graph-pruned neural network
model for distribution grid SE has been proposed in [26]. Joint
detection of false data injection attacks in smart grids using
auto-regressive moving average (ARMA) graph convolutional
filters on G-CNN has been proposed in [27]. The technique
presented in the current paper falls in the category of SE based
on the G-CNN model, where graph time-series are considered
as the input of the model to capture both the spatial and
temporal features of the measurements. While in the G-CNN
domain both graph spectral filtering CNN and message passing

neural networks are developed [28], the presented method
uses a hierarchical message passing framework for iterative
estimation of the system states.

III. METHODOLOGY

A. State Estimation Model

The interconnected components with complex interactions
within smart grids make them complex networks that can be
represented by graphs. In addition to the physical topology
of the power grid, various data-driven and power physics-
based methods have modeled and revealed the underlying
graph of interconnections in smart grids [29]. In this paper,
we consider the physical topology of the power grid as a
graph G := {N , E}, where N := {1, 2, ..., N} is the set
of N buses/nodes, and E := {(n, n′)} ∈ N × N is the
set of all the lines/edges. For each bus n ∈ N , Vn and θn
denote the corresponding voltage magnitude and phase angle,
respectively, and Pn and Qn denote the real and reactive power
injections. For each line (n, n′) ∈ E , let P fnn′ and Qfnn′ denote
the real and reactive power flow seen at the forwarding end,
and P tnn′ and Qtnn′ to be the real and reactive power flow at
the terminal end, respectively.

Let N o and Eo denote subsets of buses and lines, (i.e.,
N o ⊆ N , Eo ⊆ E), where sensor measurements are available.
For instance, N o can represent the set of buses, where
PMUs are mounted to provide system observability accord-
ing to a PMU placement strategy [30], [31]. Let Zt :=
[Vn,t, Pn,t, Qn,t, P

f
nn′,t, Q

f
nn′,t, P

t
nn′,t, Q

t
nn′,t]

T be the mea-
surement vector at time t for n, n′ ∈ N o.

The SE at time t aims to estimate the system state Xt :=
[Vt, θt]

T ∈ R2N for all the buses (∀n ∈ N ) from generally
available noisy measurements Zt from buses inN o using Zt =
XT
t HXt+ εt, where H ∈ R2N×2N is defined by the physical

laws of power flow based on the topological relations (spatial
relation) and ε is the white Gaussian noise. The typical SE
problem solves the following optimization problem

X̂t := arg min
X∈R2N

1

N

N∑
n=1

‖Zt −XTHX‖. (1)

Many traditional SE algorithms have been developed to
solve this optimization problem [5]. In data-driven approaches,
the goal is to learn the complex relationship among measure-
ments and system state (i.e., H) from data without directly
using the system’s physical model.

B. Temporal Graph-CNN Model for State Estimation

In general, G-CNN combines the feature information and
the graph structure to learn better representations on graphs,
for instance, via feature propagation and aggregation. In this
paper, given the input measurement features Zt, the SE process
is modeled in a message-passing framework of Graph Neural
Network (GNN) [21]. In this framework, the state x1 of
the node n1 depends on the information contained in its
neighborhood (see Figure 1). In the example in Figure 1, the
state of node n1 can be learnt by aggregating the information
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of its neighbours using function f as x1 = f(x2, x3, x4, x4),
where f(.) is a nonlinear function modeled in the neural
network. The same goes for each node of the graph. In this
framework, message h (hidden node state information) will be
passed among neighbors for node-level state prediction.

Fig. 1: An example of the message passing process in a
neighbourhood for G-CNN

.

This step along with integrating the temporal dependencies
in the data for one-step ahead prediction of the system’s state
can be modeled as

Zt = f1(.)Xt, (2)
Xt+1 = f2(.)Xt, (3)

where f1(.) and f2(.) are nonlinear functions of state
variables Xt that will be learnt from the measurement data.
Particularly, the function f1(.) maps the measurements to the
system state, and f2(.) does the one-step ahead forecasting.
Instead of learning two separate nonlinear relationships, both
functions can be combined into one mapping function F (.) as
Xt+1 = F (Zt, Xt). In this work, a two layer spatio-temporal
G-CNN is used to learn the mapping function F . Since power
system measurements are highly correlated multivariate time-
series, to capture the spatial dependencies, a graph convolution
layer with message passing is used as the first layer of
the network. The second layer is a GRU layer, which is
responsible for capturing the temporal dependencies of the
measurements.

The traditional CNN can obtain local spatial features in
the Euclidean data space. Power system graphs are complex
networks and as such, CNN cannot accurately capture the
embedded spatial dependencies. G-CNN can learn the spa-
tial features of complex graph structured data based on the
neighborhood aggregation (for message passing framework),
given the adjacency matrix A := {0, 1} ∈ RN×N , and feature
matrix Z. A typical G-CNN layer [32] can be expressed as
follows

Hl+1 = σ(D̃−
1
2 ÃD̃−

1
2HlWl). (4)

Here, Ã := A + IN (where IN is the identity matrix of
size N ) and D̃ := IN

∑
j Ãi,j are the adjacency and degree

matrix, respectively. Moreover, σ(.) is the sigmoid activation
function, l is the layer number, Wl holds the weights of layer

l, and Hl is the output of layer l. Multiple such layers can be
added on top of one another to create a multi-layer G-CNN
model.

Fig. 2: Schematics of the temporal G-CNN model adopted
from [33] for SE in the smart grid.

To perform forecasting-aided estimation on multivariate
time-series, a GRU model is used. The basic principle of GRU
and LSTM models are roughly the same [34]. However, LSTM
has a comparatively complex structure and longer training
time. Stacking the GRU model with G-CNN creates a temporal
G-CNN (T-GCN), which was first proposed in [33]. The T-
GCN can be described as follows

F (Zt, A) = σ(ÂReLU(ÂZtW0)W1)

ut = σ(Wu[F (Zt, A), ht−1] + bu)

rt = σ(Wr[F (Zt, A), ht−1] + bu)

ct = tanh (Wc[F (Zt, A), (rt ∗ ht−1] + bc)

ht = ut ∗ ht−1 + (1− ut) ∗ ct

(5)

Here, Â := D̃−
1
2 ÃD̃−

1
2 is the pre-processing of graph

convolution layer.W0 ∈ Rβ×δ andW1 ∈ Rδ×τ are the model
weights, where the parameters β, δ, and τ denote the batch
size, hidden unit, and prediction length, respectively. In this
model, rt is the reset gate, which is used to decide how much
of the past information to forget and ut is the update gate,
which helps the model to determine how much of the past
information needs to be passed to the future. Moreover, ct is
the memory unit, which calculates information stored at time
t and ht is the hidden state at time t. The parameter b denotes
the bias parameter at respective levels. Over the model training
iteration ht will slowly converge into model prediction Xt+1.
Figure 2 shows the overall schematics and information flow
of T-GCN model.

IV. RESULTS

In this paper, the IEEE 118 bus system has been used
to demonstrate the performance of the presented technique.
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MATPOWER [35] simulation toolbox has been used to sim-
ulate a large dataset of PMU time-series considering both
the full placement of PMUs and also PMUs at a subset
of buses. We have used real load profiles from the New
York Independent System Operator (NYISO) and sampled at
30Hz to generate quasi-static synthesized PMU time-series by
solving power flow at each sample. From the simulation, time-
series measurements of real power flow, reactive power flow,
voltage angle, and voltage magnitude have been recorded. We
have tested the T-GCN algorithm for two cases as follows.

A. Case-I: Full Set of Measurements are Available

In this case, the assumption is that measurements are
available at all the buses in the system. As such, this case
is a multivariate time-series forecasting problem described as

Xt+1 = F (Zt−p, A, ). [p ∈ N] (6)

B. Case-II: A Subset of Measurements are Available

In this case, the assumption is that measurements are
available only at a subset of buses (i.e., at n ∈ N o), which can
be identified, for instance, using a PMU placement strategy to
ensure full observability of the system. In this work, three
PMU placement strategies for the IEEE 118 bus system have
been adopted and considered from [36] as shown in Table I
to evaluate the performance of the presented SE technique
for different availability of the measurements. Note that the
measurement at the rest of the buses are modeled as white
Gaussian noise, which can, for instance, represent the channel
noise. The SE process in this case will estimate the state of
all the nodes from the available measurements of N o buses
along with one-step ahead state prediction.

TABLE I: Three PMU placement strategies for the IEEE 118
bus system adopted from [36]

Optimal
PMU Set BUS index

O1

2, 5, 10, 11, 12, 17, 20, 23, 25, 29, 34, 37, 40, 45, 49,
50, 51, 52, 59, 65, 66, 71, 75, 77, 80, 85, 87, 91, 94,

101, 105, 110, 114, 116

O2

1, 5, 10, 12, 13, 17, 21, 25, 28, 34, 37, 40, 45, 49, 52,
56, 62, 63, 68, 70, 71, 75, 77, 80, 85, 87, 90, 94, 102,

105, 110, 114

O3

1, 4, 5, 6, 8, 9, 10, 11, 12, 17, 18, 19, 20, 21, 22, 24,
25, 26, 27, 28, 30, 32, 34, 37, 40, 43, 45, 49, 50, 56,
59, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 75,
77, 79, 80, 83, 85, 87, 89, 90, 92, 94, 96, 100, 101,

105, 106, 108, 110, 111, 112, 114, 116, 117, 118

The model parameters used for the evaluations are presented
in Table II. Specifically, for the hyper-parameter p, its effects
on the performance of the model have been evaluated for up
to 12 sequence lengths. Since the lowest RMSE is observed
at p = 7 (as shown in Figure 3), and a large value of p will
increase the model complexity and thus the execution time,
this value is considered for the rest of the evaluations.

In this work, the performance of the T-GCN for SE in
the smart grid is compared with some baseline forecasting
models for SE including History Average (HA) model, Support

(a) (b)

Fig. 3: The evaluation of the impacts of sequence length, p, on
the performance of the model based on (a) the average RMSE,
and (b) the execution time (training and testing).

TABLE II: Adopted model parameters

Key Value
p 7

learning rate 0.001
epoch 250

training ratio 0.8
batch size 32
GRU units 64

Vector Regression (SVR) model, Minimum Mean Square Er-
ror (MMSE) optimization-based model, Bayesian Multivariate
Regression (BMLAR) combined with Auto-Regressive model,
and LSTM. As can be observed from the results presented in
Table III, the presented T-GCN shows superior performance
in SE compared to the aforementioned models.

TABLE III: The average RMSE for various SE techniques for
the defined Cases I and II for the availability of measurements.

Models Case:I Case:II-O1 Case:II-O2 Case:II-O3

HA 0.7950 0.89675 0.91307 0.70449
SVR 0.04290 0.84007 0.85523 0.66068

MMSE 1.2530 1.4510 1.53070 1.33950
BMLAR 0.04000 0.72340 0.74300 0.45660
LSTM 0.04473 0.99445 0.98533 0.53607
T-GCN 0.00533 0.01452 0.01278 0.01215

Moreover, according to [16], the average RMSE for the SE
in the IEEE 118 case based on Gauss-Newton, 6-layer Feed-
forward Neural Network (FNN) and 8-layer FNN, and Prox-
linear net are 4.71× 10−2, 1.645× 10−3, 2.366× 10−3, and
2.97× 10−4, respectively. Here, the two layer T-GCN, which
considers both the spatial (in the form of a graph) and temporal
information shows a competitive performance of 5.33× 10−3

for the case when full measurements are available. G-CNN
also improves performance for Case-II, where only a subset
of PMU measurements are available. For different subsets of
available PMUs, performance slightly improves with larger
number of available PMUs (as in Case:II-O3).

V. CONCLUSION

In this work, a data-driven approach based on G-CNN is
presented for the SE problem in smart grids. Since G-CNNs
are deep learning-based methods that operate on the graph
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domain, they lend themselves well to the problem of SE in
smart grids with underlying graph-based structures and inter-
actions. In this work, a modified variant of G-CNN, namely
temporal G-CNN (T-GCN), suitable for analyses of graph
time-series, is presented for one-step ahead state prediction in
smart grids. The T-GCN model can deal with complex spatial
dependencies over graphs as well as temporal dynamics in
the measurements. Specifically, a message passing G-CNN is
used to capture the topological structure of the smart grid
network in the spatial dependency analyses and the gated
recurrent units are used to capture the dynamic variation of
state information for obtaining the temporal dependencies. The
performance evaluation of the presented method for two cases
of full measurement availability and availability of a subset
of measurements in comparison with some of the existing SE
techniques shows better accuracy, low latency and faster data
processing, which can result in improved wide-area monitoring
for smart grids.
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