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Abstract. Lorentzian polynomials, recently introduced by Brändén and Huh, generalize the notion of

log-concavity of sequences to homogeneous polynomials whose supports are integer points of generalized

permutahedra. Brändén and Huh show that normalizations of integer point transforms of generalized per-
mutahedra are Lorentzian. Moreover, normalizations of certain projections of integer point transforms of

generalized permutahedra with zero-one vertices are also Lorentzian. Taking this polytopal perspective fur-

ther, we show that normalizations of certain projections of integer point transforms of flow polytopes are
Lorentzian.

1. Introduction

The classical notion of log-concavity of sequences is often either a very easy or a notoriously difficult
property to prove. A sequence a0, a1, . . . , an is said to be log-concave if a2i ≥ ai−1ai+1 for i ∈ [n − 1]. In
groundbreaking recent work Brändén and Huh [BH20] introduced Lorentzian polynomials (see Section 2.1
for definition), which generalize the notion of log-concavity. Just one of their theory’s many consequences
are the celebrated Alexandrov-Fenchel inequalities on mixed volumes of Minkowski sums of polytopes; these
inequalities follow from the Lorentzian property of the volume polynomial [BH20, Theorem 9.1]. In [BES19],
Lorentzian polynomials were used to give a generalization of Postnikov’s formula for the volume of a general-
ized permutahedron, a beautiful polytope studied extensively in [Pos09]. In [EH19], Lorentzian polynomials
were also used to prove a generalization of Mason’s conjecture on the f -vectors of independent subsets of
matroids.

Our motivation for the present paper is simple: we want to understand Lorentzian polynomials polytopally.

Recall that for a polytope P ⊂ Rn, the integer point transform of P is defined as

(1.1) σP (x1, . . . , xn) =
∑︂

p∈P∩Zn

xp, where xp =

n∏︂
i=1

xpii .

Define the normalization operator N on R[x1, . . . , xn] by

(1.2) N(xα) =
xα

α!
,

where for a vector α = (α1, . . . , αn) of nonnegative integers we write α! to mean
∏︁n
i=1 αi!.

By definition, the support of a Lorentzian polynomial forms the integer points of a generalized permu-
tahedron. Brändén and Huh show that the normalization of the integer point transform of a generalized
permutahedron is always Lorentzian [BH20, Theorem 7.1(4),(7)]. When these generalized permutahedra have
vertices in {0, 1}n, certain projections of their integer point transforms are also Lorentzian, by [BH20, The-
orem 2.10] and [BH20, Corollary 6.7]. In joint work with Huh, Matherne and St. Dizier, the first author
showed that the normalization of certain projections of the integer point transforms of Gelfand-Tsetlin poly-
topes are Lorentzian [HMMS19, Theorem 1]. The question lurking in the background of the present work
is:

Question 1.1. Which polytope/projection pairs give rise to normalized projected integer point transforms
that are Lorentzian?
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The current paper adds a natural class of polytope/projection pairs yielding Lorentzian polynomials: flow
polytopes, with projection onto a coordinate subspace.

The flow polytope FG(a) associated to a loopless graph G on vertex set [n+1] with edges directed from
smaller to larger vertices and to the netflow vector a = (a1, . . . , an+1) ∈ Zn+1 is:

(1.3) FG(a) = {f ∈ RE(G)
≥0 : MGf = a},

where MG is the incidence matrix of G; that is, the columns of MG are the vectors ei − ej for (i, j) ∈ E(G),
i < j, where ei is the i-th standard basis vector in Rn+1. The points f ∈ FG(a) are called (a-)flows (on G).

Observe that the number of integer points in FG(a) is the number of ways to write a as a nonnegative
integral combination of the vectors ei − ej for edges (i, j) in G. This number is the Kostant partition
function KG(a).

We define two natural projections φ and ψ of FG(a) onto generalized permutahedra in Propositions 3.4
and 3.6 in Section 3. The projections φ and ψ induce projections on the integer point transform σFG(a)(x)

of FG(a), acting on monomials via xf ↦→ xφ(f) and xf ↦→ xψ(f). The resulting projected polynomials are
denoted

(1.4) σφG(a)(x)
def
=

∑︂
p∈FG(a)∩Z|E(G)|

xφ(p),

and

(1.5) σψG(a)(x)
def
=

∑︂
p∈FG(a)∩Z|E(G)|

xψ(p).

While the normalization of the integer point transform of FG(a) is not Lorentzian in general, we prove

that the normalizations of its projections σφG(a) and σ
ψ
G(a) are always Lorentzian:

Theorem 5.1. Let G be a loopless directed graph on the vertex set [n + 1] with a unique sink, and let

a = (a1, . . . , an+1) ∈ Zn≥0 × Z≤0. The polynomials N(σφG(a)) and N(σψG(a)) are Lorentzian.

Theorem 5.1 implies that the Kostant partition function is log-concave along root directions (Corol-
lary 5.2). We remark that log-concavity of the Kostant partition function along root directions is also a
corollary of volume polynomials (of flow polytopes) being Lorentzian (Theorem 2.7).

Roadmap of the paper. Section 2 contains the necessary background on Lorentzian polynomials, gen-
eralized permutahedra and flow polytopes. Section 3 introduces the projections φ and ψ of FG(a) onto
generalized permutahedra that we are interested in, while Section 4 studies their fibers. Section 5 establishes
our main result, Theorem 5.1. Section 6 prods Question 1.1.

2. Background

In this section we give background on the main players of the paper: Lorentzian polynomials, generalized
permutahedra and flow polytopes.

2.1. Lorentzian polynomials and generalized permutahedra. Let N = {0, 1, 2, . . .}, and denote by ei
the ith standard basis vector of Nn. A subset J ⊆ Nn is called M-convex if for any index i and any α, β ∈ J
whose ith coordinates satisfy αi > βi, there is an index j satisfying

αj < βj , α− ei + ej ∈ J, and β − ej + ei ∈ J.

The convex hull of an M-convex set is a polytope also called a generalized permutahedron. A special
class of generalized permutahedra consist of Minkowski sums of scaled coordinate simplices: for a subset
S ⊆ [n], the coordinate simplex ∆S ⊆ Rn is the convex hull of the coordinate basis vectors {ei}i∈S .
Minkowski sums of scaled coordinate simplices are called y-generalized permutahedra.

Let Hdn be the space of degree d homogeneous polynomials with real coefficients in the n variables
x1, . . . , xn. For f ∈ Hdn, we write supp(f) ⊆ Nn for the support of f . For f ∈ Hdn, denote by ∂

∂xi
f the

partial derivative of f relative to xi. The Hessian of a homogenous quadratic polynomial f ∈ H2
n is the

symmetric n× n matrix H = (Hij)i,j∈[n] defined by Hij = ∂i∂jf . The set Ldn of Lorentzian polynomials
2



with degree d in n variables is defined as follows. Set L1
n ⊆ H1

n to be the set of all linear polynomials with
nonnegative coefficients. Let L2

n ⊆ H2
n be the subset of quadratic polynomials with nonnegative coefficients

whose Hessians have at most one positive eigenvalue and which have M-convex support. For d > 2, define
Ldn ⊆ Hdn recursively by

Ldn =

{︃
f ∈ Md

n :
∂

∂xi
f ∈ Ld−1

n for all i

}︃
.

where Md
n ⊆ Hdn is the set of polynomials with nonnegative coefficients whose supports are M-convex.

Since f ∈ Md
n implies ∂

∂xi
f ∈ Md−1

n , we have

Ldn =

{︃
f ∈ Md

n :
∂

∂xi1

∂

∂xi2
· · · ∂

∂xid−2

f ∈ L2
n for all i1, i2, . . . , id−2 ∈ [n]

}︃
.

Recall the normalization operator N on R[x1, . . . , xn]:

N(xα) =
xα

α!
,

where for a vector α = (α1, . . . , αn) of nonnegative integers we write α! to mean
∏︁n
i=1 αi!.

For a quadratic polynomial

f(x) =
∑︂

1≤i≤j≤n

cijxixj ∈ M2
n,

observe that the ij-th entry of the Hessian of N(f), namely the quantity ∂i∂jN(f), is the coefficient cij of
xixj in f . Thus, asking whether N(f) is Lorentzian, equivalently whether the Hessian of N(f) has at most
one positive eigenvalue, can be phrased purely in terms of the coefficients of f . For arbitrary polynomials
f ∈ Md

n we use the following lemma:

Lemma 2.2. The linear operator N−1 ∂
∂xi

N acts on polynomials by

(2.1)

(︃
N−1 ∂

∂xi
N

)︃
:
∑︂
α

cαx
α ↦→

∑︂
α : αi≥1

cαx
α−ei .

We arrive at the following criterion for Lorentzian polynomials.

Lemma 2.3. Let f be a homogeneous polynomial of degree d ≥ 2, and suppose

f(x) =
∑︂
α

cαx
α ∈ Md

n.

For each d = (d1, . . . , dn) with d1 + · · ·+ dn = d− 2 and di ∈ Z≥0 for i ∈ [n], define the n× n matrix

Hd = (Hij;d)i,j∈[n]; Hij;d = cd+ei+ej

consisting of coefficients of f . Then N(f) ∈ Ldn if and only if Hd has at most one positive eigenvalue for
each d.

Proof. Note that normalization and differentiation preserve M -convexity of the support of a polynomial. By
Lemma 2.2, we obtain

N−1∂dN(f) =
∑︂

α : α≥d

cαx
α−d ∈ M2

n.

Because the Hessian of N(N−1∂dN(f)) = ∂dN(f) is Hd, by definition N(f) is Lorentzian if and only if Hd

has at most one positive eigenvalue for each d. □

The coefficients of Lorentzian polynomials satisfy a log-concavity inequality as in Proposition 2.4 below.
It is in this sense that Lorentzian polynomials generalize the notion of log-concavity.

Proposition 2.4 ([BH20, Proposition 9.4]). If f(x) =
∑︁
α cαx

α is a homogeneous polynomial on n variables
so that N(f) is Lorentzian, then for any α ∈ Nn and any i, j ∈ [n] the inequality

c2α ≥ cα+ei−ejcα−ei+ej

holds.
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This proposition can be seen as a consequence of Cauchy’s Interlacing Theorem. We recall below a special
case of Cauchy’s Interlacing Theorem, which we will use later.

Proposition 2.5 (Cauchy’s Interlacing Theorem, [Par98, Theorem 10.1.1]). Let A be a symmetric n × n
matrix, and let S ⊆ [n], and m = |S|. Let B = AS be the m × m principal submatrix of A given by
B = (aij)i,j∈S. Let α1 ≤ · · · ≤ αn be the eigenvalues of A and let β1 ≤ · · · ≤ βm be the eigenvalues of B.
Then for every j ∈ [m],

αj ≤ βj ≤ αn−m+j .

In other words, the jth smallest eigenvalue of A is at most the jth smallest eigenvalue of B, and the jth
largest eigenvalue of A is at least the jth largest eigenvalue of B.

We recall two important theorems about Lorentzian polynomials here:

Theorem 2.6 ([BH20, Theorem 2.10]). If f ∈ Ldn is a Lorentzian polynomial in n variables, and A is an
n × m matrix with nonnegative entries, then f(Av) ∈ Ldm is a Lorentzian polynomial in the m variables
v = (v1, . . . , vm).

Theorem 2.7 ([BH20, Theorem 9.1]). Let K = (K1, . . . ,Kn) be convex bodies in Rd. The volume polynomial

(w1, . . . , wn) ↦→ vol(w1K1 + · · ·+ wnKn)

is a Lorentzian polynomial.

2.8. Flow polytopes. Recall the definition of flow polytopes in (1.3). We record several properties of them
here which we will be using in later sections.

Lemma 2.9 ([Sch03]). For any graph G on the vertex set [n+ 1], the vertices of the flow polytope FG(e1 −
en+1) are unit flows with support equal to p, where p is an increasing path from vertex 1 to vertex n+ 1.

Proposition 2.10 ([BV08, Section 3.4]). For nonnegative integers a1, . . . , an and G a graph on the vertex
set [n+ 1] we have that

(2.2) FG(a) = a1FG(e1 − en+1) + a2FG(e2 − en+1) + · · ·+ anFG(en − en+1).

The following explicit formula for the volume of a flow polytope, combined with Theorem 2.7 and
Lemma 2.3, give many matrices with at most one positive eigenvalue. The proof of Theorem 5.1 will
then proceed by applying Lemma 2.3 in the opposite direction.

Theorem 2.11 (Baldoni–Vergne volume formula, [BV08, Theorem 38]). Let G be a directed graph on the
vertex set [n+ 1] with a unique sink, so that edges are oriented from a smaller vertex to a larger vertex. Let
x = (x1, . . . , xn,−

∑︁n
i=1 xi), xi ∈ Z≥0. Then

volFG(x) =
∑︂
j

KG(j1 − out1, . . . , jn − outn, 0)
xj

j!
,

for outi = outdegi − 1, where outdegi denotes the outdegree of vertex i in G. The sum is over weak
compositions j = (j1, . . . , jn) of |E(G)| − n that dominate (out1, . . . , outn), that is, for every i ∈ [n] we have

j1 + · · ·+ ji ≥ out1 + · · ·+ outi.

In the above xj =
∏︁n
i=1 x

ji
i and j! =

∏︁n
i=1 ji!.

Remark 2.12. Suppose G is a directed graph on the vertex set [n + 1] with a unique sink. Then the
Kostant partition function KG(v) is nonzero only when v dominates 0. Thus, Baldoni–Vergne’s formula
(Theorem 2.11) could be stated as

volFG(x) =
∑︂
j

KG(j1 − out1, . . . , jn − outn, 0)
xj

j!
,

where the sum runs over weak compositions j = (j1, . . . , jn) of |E(G)| − n.
4



3. Projections of flow polytopes onto generalized permutahedra

In this section, we define the projections φ : FG(a) → P(G;a) and ψ : FG(a) → Q(G;a), where P(G;a)
andQ(G;a) are y-generalized permutahedra (see Propositions 3.4 and 3.6). We study their fibers in Section 4,

leading us to explicit expressions for the polynomials σφG(a) and σ
ψ
G(a); see Corollary 4.3. In Section 5 we use

these expressions to prove Theorem 5.1.

Notational Conventions for Sections 3, 4 and 5. Unless specified otherwise, G denotes a loopless
directed graph on the vertex set [n + 1] with a unique sink. Every edge of G is oriented from its smaller
vertex to its larger vertex. All flow polytopes FG(a) have netflow vector a ∈ Zn≥0 × Z≤0. For a finite set S,

we denote by RS the real vector space consisting of R-linear combinations of elements in S; in particular,
for sets S ⊆ T , the vector space RS is a coordinate subspace of RT . We write Rn to denote R[n].

Definition 3.1. For i, j ∈ V (G) = [n + 1], we denote by M(i, j) ∈ N≥0 the number of edges from i to j,
and by {(i, j; k)}k∈[M(i,j)] ⊆ E(G) the set of edges of G connecting i to j.

Definition 3.2 (see Example 3.3). We denote by SG the set of all edges incident to the sink, that is,

SG
def
= {e ∈ E(G) : e = (i, n+ 1; k) for some i ∈ [n], k ∈ [M(i, n+ 1)]}.

For i ∈ [n], let SG,i ⊆ SG be the set of edges incident to n+ 1 which can be reached from vertex i, that is,

if G denotes the transitive closure of G, then

SG,i
def
= {e ∈ SG : e = (j, n+ 1; k) and (i, j) ∈ E(G)}.

Denote by TG the set of all vertices incident to the sink, that is,

TG
def
= {i ∈ V (G) : M(i, n+ 1) ≥ 1}.

For i ∈ [n], let TG,i ⊆ TG be the set of vertices adjacent to n+1 which can be reached from vertex i, that is,

TG,i
def
= {j ∈ TG : (i, j) ∈ E(G)}.

Example 3.3. Let G be as in Figure 1. The set SG ⊆ E(G) consists of the blue edges, while SG,2 consists of
the four blue edges emanating from vertices 2 and 4. If G′ denotes the graph obtained from G by removing
the edge (2, 3; 1) ∈ E(G), then SG′,2 would only consist of the two blue edges emanating from vertex 2.

The set TG ⊆ V (G) = [5] is equal to {1, 2, 4}, and TG,3 = {4}.

G

1 2 3 4 5

Figure 1. A graph G satisfying the conventions of this section, with edge orientations
suppressed.

Proposition 3.4. Let φ denote the map sending a flow in FG(a) to the coordinates corresponding to edges
in SG. Then φ is a projection

φ : FG(a) ↠ P(G;a),

where P(G;a) ⊆ RSG is the y-generalized permutahedron defined by

P(G;a)
def
=

∑︂
i∈[n]

ai∆SG,i
.
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Proof. Proposition 2.10 asserts that

FG(a) =
∑︂
i∈[n]

aiFG(ei − en+1).

Because linear maps factor through Minkowski sums, we obtain

φ(FG(a)) =
∑︂
i∈[n]

aiφ(FG(ei − en+1)).

Observe that φ(FG(ei − en+1)) = ∆SG,i
, because their vertex sets coincide: Lemma 2.9 asserts that the

vertices of FG(ei − en+1) are unit flows on paths p from i to n + 1; under φ, the vertex of FG(ei − en+1)
corresponding to p is mapped to the vertex of ∆SG,i

corresponding to the (unique) edge in p that is incident
to n+ 1. The claim φ(FG(a)) = P(G;a) follows. □

We note that a special case of Proposition 3.4 was considered in [MS20, Section 4].

Definition 3.5. For i ∈ [n], let Ii denote the set ofM(i, n+1) coordinates in RE(G) corresponding to an edge
connecting i to n+1. For a flow x ∈ FG(a), define the escaping flow vector ef(x) = (ef(x)1, . . . , ef(x)n) ∈ Rn
coordinatewise by

ef(x)i
def
=

∑︂
j∈Ii

xj .

For x ∈ FG(a), and φ as in Proposition 3.4, define

ef(φ(x))
def
= ef(x).

Note that ef(x) depends only on coordinates of x ∈ FG(a) ⊆ RE(G) indexed by an edge e ∈ SG. Hence

ef(φ(x))
def
= ef(x) is well defined since φ leaves the coordinates of x corresponding to edges in SG unchanged.

Note also that if i ̸∈ TG, or equivalently that if Ii = ∅, then ef(x)i = 0. Thus, we may regard ef(x) as
a vector in RTG (however, it will be useful to regard them as elements of Rn whose coordinates indexed by
[n] \ TG are zero).

Proposition 3.6. Let ψ denote the map sending x ↦→ ef(x). Then ψ is a projection

ψ : FG(a) ↠ Q(G;a),

where Q(G;a) ⊆ RTG is the y-generalized permutahedron defined by

Q(G;a)
def
=

∑︂
i∈[n]

ai∆TG,i
.

The map ψ factors through φ, that is, the following diagram commutes:

FG(a) P(G;a) Q(G;a)
φ

ψ

φ(x)↦→ef(φ(x))

Proof. As in the proof of Proposition 3.4, it will suffice to show ψ(FG(ei − en+1)) = ∆TG,i
. Lemma 2.9

asserts that that the vertices of FG(ei− en+1) are unit flows on paths p from i to n+1; under ψ, the vertex
of FG(ei − en+1) corresponding to p is mapped to the vertex of ∆TG,i

corresponding to the (unique) vertex
t of G for which p contains an edge from t to n+ 1.

The statement that the diagram commutes boils down to the fact that ef(φ(x))
def
= ef(x) is well defined,

as discussed after Definition 3.5. □
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4. The fibers of φ and ψ

In order to study σφG(a) and σψG(a) as defined in (1.4) and (1.5), we rewrite them as in equations (4.1)

and (4.2) below; these equations follows from Propositions 3.4 and 3.6. Equations (4.1) and (4.2) make it

evident that in order to explicitly compute the coefficients of the monomials appearing in σφG(a) and σψG(a)

(Corollary 4.3) we need to compute the fibers of φ and ψ, which is what we accomplish in Theorem 4.1 and
Corollary 4.2, respectively.

For brevity of notation, we index the coordinates of a point x ∈ RSG with (i; k), which is shorthand for
the edge (i, n+ 1; k) ∈ SG. We define the polynomials

(4.1) σφG(a)(xi;k) =
∑︂

p∈P(G;a)∩ZSG

|φ−1(p) ∩ ZE(G)|xp,

and

(4.2) σψG(a)(xi) =
∑︂

p∈Q(G;a)∩ZTG

|ψ−1(p) ∩ ZE(G)|xp.

Theorem 4.1. Given a point p ∈ P(G;a), the preimage Sp
def
= φ−1(p) is a translation of the flow polytope

FG(a1 − ef(p)1, . . . , an − ef(p)n, 0). For p ∈ ZSG , the polytope Sp is integrally equivalent to FG(a1 −
ef(p)1, . . . , an − ef(p)n, 0).

We emphasize that a = (a1, . . . , an,−
∑︁n
i=1 ai) with ai ≥ 0, and that for any p ∈ P(G;a) we have

n∑︂
i=1

ef(p)i =
n∑︂
i=1

∑︂
j∈Ii

pj =
∑︂
j∈SG

pj =

n∑︂
i=1

ai,

with the second equality by the fact that
⨆︁
i Ii = SG and the last equality by the definition of P(G;a).

Proof of Theorem 4.1. Let φ⊥ : RE(G) → RE(G) denote the projection sending components corresponding to
edges in SG to zero. Note that φ and φ⊥ project RE(G) to orthogonal complements, so φ⊥ is necessarily an
injection from Sp onto its image (since points in Sp are all mapped to p by φ). To clean up notation, we
write zi = ai − ef(p)i.

Restricting an a-flow in Sp onto the edges in G|[n] gives a (nonnegative) flow with netflow precisely ai −
ef(p)i on vertex i. Hence, φ⊥ is a map Sp ↪→ FG(z1, . . . , zn, 0); furthermore, the inverse FG(z1, . . . , zn, 0) →
Sx is translation by

p̃ = (p̃e)e∈E(G) ∈ RE(G); p̃e
def
=

{︄
pe if e ∈ SG

0 otherwise

Hence, Sp is equal to FG(z1, . . . , zn, 0) up to translation by p̃. Furthermore, if p ∈ ZSG , then translation by

p̃ ∈ ZE(G) is an integral equivalence Sp ≡ FG(z1, . . . , zn, 0). □

Corollary 4.2. Given a point p ∈ Q(G;a), the preimage Tp
def
= ψ−1(p) is equal to FG(a1 − p1, . . . , an −

pn, 0)×
∏︁
i∈TG

pi∆Ii .

Proof. Observe that φ⊥(Tp) = FG(a1 − p1, . . . , an − pn, 0), since an a-flow in Tp restricted onto just the
edges in G|[n] gives a flow with netflow precisely ai − pi on vertex i. The fiber ψ−1(q) ∩ FG(a) of any point
q ∈ FG(a1 − p1, . . . , an − pn, 0) is equal to {q} ×

∏︁
i∈TG

pi∆Ii . The claim follows. □

Corollary 4.3. We have

σφG(a)(xi;k) =
∑︂

p∈P(G;a)∩ZSG

KG(a1 − ef(p)1, . . . , an − ef(p)n, 0)x
p,

and

σψG(a)(xi) =
∑︂

p∈Q(G;a)∩ZTG

KG(a1 − p1, . . . , an − pn, 0)

(︃
|I1|+ p1 − 1

|I1| − 1

)︃
. . .

(︃
|In|+ pn − 1

|In| − 1

)︃
xp.

Proof. The number of integer points of FG(a) is given by the Kostant partition function KG(a). Combining
this fact with Theorem 4.1 and Corollary 4.2 gives the desired result. □
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5. Normalized projections of integer point transforms are Lorentzian

In this section, we show that N(σφG(a)) and N(σψG(a)) are Lorentzian; see Theorem 5.1. In order to prove

this we begin with a series of reductions (Proposition 5.8 and Lemma 5.11). Then, a combinatorial symmetry
(Lemma 5.14) allows us to realize Hessians of repeated partial derivatives of σφG(a) as Hessians of repeated

partial derivatives of volume polynomials.
We begin by formally stating the main result of this section.

Theorem 5.1. The polynomials (N(σφG(a)))(xi;k) and (N(σψG(a)))(xi) are Lorentzian.

Corollary 5.2 (cf. [HMMS19, Proposition 11]). For any directed graph G on the vertex set [n] and for any
v ∈ Zn we have:

(5.1) KG(v)
2 ≥ KG(v + ei − ej)KG(v − ei + ej)

for every i, j ∈ [n].

Proof. As N(σφG(a)) is Lorentzian, the coefficients of σφG(a) satisfy a log-concavity inequality (see Proposi-

tion 2.4). This inequality is precisely Equation (5.1). □

Note that Corollary 5.2 also follows from the classical Alexandrov-Fenchel inequalities for mixed volumes,
since KG(v) can be seen as mixed volumes of Minkowski sums of flow polytopes.

A first stepping stone towards Theorem 5.1 is to reduce to the problem of showing N(σφG(a)) is Lorentzian

for all G; this is the content of Proposition 5.8. In order to do this we introduce the following construction.

Definition 5.3. For a graph G, we denote by Gex = (V ex, Eex) the graph obtained from G by adding formal
vertices iex for each vertex i ∈ TG, by replacing edges (i, n+ 1; j) ∈ SG with edges (i, iex; j), and by adding
edges (iex, n+ 1; 1) for each iex ∈ TG. Formally, we have

V ex def
= [n] ⊔ {iex : i ∈ TG} ⊔ {n+ 1},

Eex def
= (E \ SG) ⊔ {(i, iex; j) : (i, n+ 1; j) ∈ SG} ⊔ {(iex, n+ 1; 1) : i ∈ TG}.

See Figure 2 for an example. The graph G can be recovered from Gex by a series of contractions, so we call
Gex the extension of G.

G

1 2 3 4 5

Gex

1 2 3 4 1ex 2ex 4ex 5

Figure 2. The graph G in Figure 1, along with Gex, defined in Definition 5.3.

Definition 5.4. For any two vectors p = (p1, . . . , pm) ∈ Rm and q = (q1, . . . , qn) ∈ Rn, we denote by
p⊕ q ∈ Rm+n their concatenation, that is,

p⊕ q = (p1, . . . , pm, q1, . . . , qn) ∈ Rm+n.

For a netflow a for G satisfying the conventions of this paper, we denote by aex the netflow for Gex given by

a|[n] ⊕ 0TGex ⊕−an+1 = (a1, . . . , an, 0, . . . , 0⏞ ⏟⏟ ⏞
|TGex | many

,−an+1);

note that aex also satisfies the conventions of this paper.
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Lemma 5.5. The bijection TG ↔ SGex given by i↔ (iex, n+1; 1) induces an isomorphism on the real vector
spaces RTG and RSGex by renaming basis elements according to the bijection. This isomorphism restricts to
an integral equivalence Q(G;a) ≡ P(Gex;aex).

Proof. By definition,

Q(G;a) =
∑︂
i∈[n]

ai∆TG,i
and P(Gex;aex) =

∑︂
i∈[n]⊔TGex

aexi ∆SGex,i
.

Since for every i ∈ TGex we have aexi = 0, and for every i ∈ [n] we have aexi = ai, we may write

P(Gex;aex) =
∑︂
i∈[n]

ai∆SGex ,i;

furthermore, we have SGex,i = {(jex, n + 1; 1) : j ∈ TG,i}. Thus, the isomorphism sends ∆TG,i
to ∆SGex,i

;
passing to the Minkowski sum, we obtain the integral equivalence Q(G;a) ≡ P(Gex;aex). □

Lemma 5.6. The bijection E(G) ↔ E(Gex) \SGex given by sending an edge (i, n+1; k) ∈ SG to (i, iex; k) ∈
E(Gex) \ SGex and an edge (i, j; k) ∈ E(G) \ SG to (i, j; k) ∈ E(Gex) \ SGex induces an isomorphism on the
real vector spaces spanned by E(G) and E(Gex) \SGex by renaming basis elements according to the bijection.
For every q ∈ Q(G;a), this isomorphism restricts to an integral equivalence

(5.2) FG|[n]
(a|[n] − q)×

∏︂
i∈TG

qi∆Ii ≡ FGex|[n]⊔TGex
(a|[n] ⊕ (−q)).

In light of Corollary 4.2, note that the left side of Equation (5.2) is the fiber of q under FG(a) → Q(G;a).
For brevity of notation, let us temporarily denote by ˜︁q ∈ ZSGex the image of q ∈ ZTG under the isomorphism
in Lemma 5.5. In this notation, Theorem 4.1 implies that the right side of Equation (5.2) is (integrally
equivalent to) the fiber of ˜︁q ∈ ZSGex under FGex(aex) → P(Gex;aex).

We emphasize here that there is an integral equivalence FG|[n]
(a|[n] − q) ≡ FG(a|[n] − q, 0).

Proof of Lemma 5.6. A point f ∈ FG|[n]
(a|[n]−q)×

∏︁
i∈TG

qi∆Ii can be interpreted as a flow in FG(a) with
outflow qi at each vertex i ∈ TG, by Corollary 4.2. Under the isomorphism in Lemma 5.6, f gets mapped
to a flow in Gex|[n]⊔TGex with netflow ai at each vertex i ∈ [n] and netflow −qi at each vertex iex ∈ TGex . In
other words, the image is in FGex|[n]⊔TGex

(a|[n] ⊕ (−q)).

Conversely, the preimage of a flow FGex|[n]⊔TGex
(a|[n] ⊕ (−q)) is a flow in FG(a) with netflow qi at each

vertex i ∈ TG; hence by Corollary 4.2 the preimage of f is in FG|[n]
(a|[n] − q)×

∏︁
i∈TG

qi∆Ii . □

Lemma 5.7. The bijection TG ↔ SGex given by i↔ (iex, n+1; 1) induces an isomorphism on the polynomial
rings R[(xi)i∈TG

] and R[(xi)i∈SGex ] by renaming variables according to the bijection. Under this isomorphism,

the polynomial N(σψG(a)) is sent to N(σφGex(aex)).

Proof. Explicitly, we need to show that the polynomials

(5.3) N(σψG(a)) =
∑︂

q∈Q(G;a)∩ZTG

(ψ−1(q) ∩ ZE(G))
xq

q!

and

(5.4) N(σφGex(aex)) =
∑︂

p∈P(Gex,aex)∩ZSGex

(φ−1(p) ∩ ZE(Gex))
xp

p!

agree after renaming variables according to the bijection. We stress that the map ψ in Equation (5.3) is the
projection FG(a) → Q(G;a), whereas the map φ in Equation (5.4) is the projection FGex(aex) → P(Gex;aex).

By Lemma 5.5, the monomials xq appearing in Equation (5.3) and the monomials xp appearing in
Equation (5.4) correspond to each other under the isomorphism R[(xi)i∈TG

] ∼= R[(xi)i∈SGex ].
By Lemma 5.6, the fibers ψ−1(q) appearing in Equation (5.3) and the corresponding fibers φ−1(p) ap-

pearing in Equation (5.4) are integrally equivalent. Hence the coefficients of the monomials appearing in
Equations (5.3) and (5.4) match. □

Proposition 5.8. Suppose N(σφG(a)) is Lorentzian for every G. Then N(σψG(a)) is Lorentzian for every G.

9



Proof. Lemma 5.7 asserts that up to renaming variables, we have the equality

N(σψG(a)) = N(σφGex(aex)).

By assumption, N(σφGex(aex)) is Lorentzian. □

Lemma 5.9. Let d ∈ (
∑︁n
i=1 ai − 2)∆SG

∩ ZSG be an integer point in the scaled coordinate simplex of SG.
Suppose that the |SG| × |SG| matrix

Kd
def
= (ki,j)i,j∈SG

; k(i1;k1),(i2;k2)
def
= KG|[n]

(a|[n] − ef(d)− ei1 − ei2)

has at most one positive eigenvalue. Then N(σφG(a)) is Lorentzian.

Proof. The support of N(σφG(a)) is M-convex by Proposition 3.4.

By Corollary 4.3, the ij-th element of Kd is the coefficient of xd+ei+ej in σφG(a); equivalently, Kd is the

Hessian of ∂dN(σφG(a)). Since, by assumption, Kd has at most one positive eigenvalue, Lemma 2.3 asserts

that N(σφG(a)) is Lorentzian. □

Definition 5.10. For a graph G as in the conventions of this section, denote by G− the graph with vertex
set [n+ 1] and edge set

E(G−) = E(G|[n]) ⊔ {e ∈ SG : e = (i, n+ 1; 1)}.
In other words, G− is obtained from G by replacing, for each i ∈ [n] with M(i, n+ 1) ≥ 1, the set of edges
connecting i to the sink with a single edge connecting i to the sink. See Figure 3 for an example. Note that
since G− has at most one edge connecting i to n + 1 for any i, we have SG− = TG− = TG; we index the
variables appearing in σφG−(a) with (xi)i∈TG

.

G G−

1 1 2 3 4 52 3 4 5

Figure 3. The graph G from Figures 1 and 2. The graph G− constructed from G is shown
beside it; see Definition 5.10.

Lemma 5.11. Suppose (N(σφG−(a)))(xi) is Lorentzian. Then (N(σφG(a)))(xi;k) is also Lorentzian.

Proof. The support of N(σφG(a)) is M-convex by Proposition 3.4.

By Lemma 5.9, we need to show that for every d ∈ (
∑︁n
i=1 ai − 2)∆SG

∩ ZSG , the |SG| × |SG| matrix

Kd = (ki,j)i,j∈SG
; k(i1;k1),(i2;k2) = KG|[n]

(a|[n] − ef(d)− ei1 − ei2)

has at most one positive eigenvalue. The matrix Kd is obtained from the |TG| × |TG| matrix

K−
ef(d)

def
= (k−i,j)i,j∈TG

; k−i,j
def
= KG|[n]

(a|[n] − ef(d)− ei − ej)

first by repeating the ith row M(i, n + 1) many times for each i, and then by repeating the ith column
M(i, n+ 1) many times for each i. Note that the rank of K−

ef(d) is equal to the rank of Kd; we write

r
def
= rank(K−

ef(d)) = rank(Kd).
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Observe, by Corollary 4.3 that the ij-th entry of K−
ef(d) is the coefficient of xef(d)+ei+ej in σφG−(a). By

assumption, N(σφG−(a)) is Lorentzian; hence, Lemma 2.3 asserts that K−
ef(d) has at most one positive eigen-

value for any ef(d) ∈ (
∑︁n
i=1 ai − 2)∆TG

∩ZTG . In particular it has at least r− 1 negative eigenvalues. Note

also that K−
ef(d) is a principal submatrix of Kd; by Cauchy’s Interlacing Theorem (Proposition 2.5), the

eigenvalues α1 ≤ α2 ≤ · · · ≤ α|SG| of Kd and the eigenvalues β1 ≤ · · · ≤ β|TG| of K
−
ef(d) satisfy

αi ≤ βi for all 1 ≤ i ≤ |TG|.
Since K−

ef(d) has at least r − 1 negative eigenvalues,

αi ≤ βi < 0 for all 1 ≤ i ≤ r − 1,

so Kd also has at least r− 1 negative eigenvalues. Furthermore, Kd has rank r. Hence, Kd also has at most
one positive eigenvalue, and (N(σφG(a)))(xi;k) is Lorentzian. □

Example 5.12. Let G be as in Figure 3 and a = (2, 1, 1, 1,−5). Let d ∈ 3∆SG
∩ ZSG be the vector

e2;1 + e2;2 + e4;2; this integer vector takes the value 1 on the edges (2, 5; 1), (2, 5; 2), (4, 5; 2) ∈ SG and takes
the value 0 everywhere else. Thus a|[n] − ef(d) = (2,−1, 1, 0). The matrix Kd is given by⎡⎢⎢⎢⎢⎣

k(1;1),(1;1) k(1;1),(2;1) k(1;1),(2;2) k(1;1),(4;1) k(1;1),(4;2)
k(2;1),(1;1) k(2;1),(2;1) k(2;1),(2;2) k(2;1),(4;1) k(2;1),(4;2)
k(2;2),(1;1) k(2;2),(2;1) k(2;2),(2;2) k(2;2),(4;1) k(2;2),(4;2)
k(4;1),(1;1) k(4;1),(2;1) k(4;1),(2;2) k(4;1),(4;1) k(4;1),(4;2)
k(4;2),(1;1) k(4;2),(2;1) k(4;2),(2;2) k(4;2),(4;1) k(4;2),(4;2)

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
0 0 0 1 1
0 0 0 1 1
0 0 0 1 1
1 1 1 2 2
1 1 1 2 2

⎤⎥⎥⎥⎥⎦
It is obtained from the matrix K−

ef(d) given by⎡⎣k−1,1 k−1,2 k−1,4
k−2,1 k−2,2 k−2,4
k−4,1 k−4,2 k−4,4

⎤⎦ =

⎡⎣0 0 1
0 0 1
1 1 2

⎤⎦
first by repeating the second rowM(2, 5) = 2 times and repeating the third rowM(4, 5) = 2 times, to obtain⎡⎢⎢⎢⎢⎣

0 0 1
0 0 1
0 0 1
1 1 2
1 1 2

⎤⎥⎥⎥⎥⎦
and then repeating the second column M(2, 5) = 2 times and repeating the third column M(4, 5) = 2 times,
to obtain ⎡⎢⎢⎢⎢⎣

0 0 0 1 1
0 0 0 1 1
0 0 0 1 1
1 1 1 2 2
1 1 1 2 2

⎤⎥⎥⎥⎥⎦
The spectrum for K−

ef(d) is {−
√
3 + 1, 0,

√
3 + 1} (which has at most one positive eigenvalue).

In this example, the ranks of K−
ef(d) and Kd are both equal to 2, thus they both have a total of 2 nonzero

eigenvalues. The matrix K−
ef(d) is the principal submatrix of Kd corresponding to the 1st, 2nd, and 4th

rows and columns of Kd. Cauchy’s Interlacing Theorem says that the smallest eigenvalue of Kd is at most
−
√
3 + 1 < 0. Hence Kd has at most one positive eigenvalue.

Definition 5.13. For a graph G as in the conventions of this section, denote by Gr the graph obtained by
“flipping” G|[n], that is, V (Gr) = [n] and

(i, j) ∈ E(Gr) ⇐⇒ (n+ 1− j, n+ 1− i) ∈ E(G|[n]).
Equivalently, Gr is obtained by relabeling the vertices of G|[n] by the map i ↦→ n + 1 − i and reversing the
orientation of edges. See Figure 4 for an example.
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G|[4]

1 2 3 4

Gr

1234

Figure 4. The graphs G|[4] and Gr are shown, for G as in Figure 3 and Example 5.12.

The symmetry between G|[n] and Gr underpins the following lemma, crucial for the proof of Theorem 5.1:

Lemma 5.14 ([MM19, Corollary 2.4]). For every c1, . . . , cn ∈ Z, the formula

KG|[n]
(c1, c2, . . . , cn−1, cn) = KGr (−cn,−cn−1, . . . ,−c2,−c1)

holds.

Definition 5.15. Denote by PT the permutation matrix corresponding to the order-reversing permutation
i ↦→ |TG|+ 1− i; this is the matrix consisting of 1’s on the antidiagonal and 0 everywhere else.

Observe that ˜︁K−
ef(d)

def
= PTK

−
ef(d)PT

has the same spectrum as K−
ef(d) since it is obtained by conjugation. We index the rows and columns of˜︁K−

ef(d) by {i : n+ 1− i ∈ TG} (in increasing order). See Example 5.16.

Example 5.16. Let G be as in Figure 3, Example 5.12, and Figure 4. The entries of Kef(d)− are given by⎡⎣k−1,1 k−1,2 k−1,4
k−2,1 k−2,2 k−2,4
k−4,1 k−4,2 k−4,4

⎤⎦ =

⎡⎣0 0 1
0 0 1
1 1 2

⎤⎦ .
Then the matrix ˜︁K−

ef(d) = PTK
−
ef(d)PT is given by⎡⎢⎣˜︁k−1,1 ˜︁k−1,3 ˜︁k−1,4˜︁k−3,1 ˜︁k−3,3 ˜︁k−3,4˜︁k−4,1 ˜︁k−4,3 ˜︁k−4,4

⎤⎥⎦ =

⎡⎣0 0 1
0 1 0
1 0 0

⎤⎦⎡⎣0 0 1
0 0 1
1 1 2

⎤⎦⎡⎣0 0 1
0 1 0
1 0 0

⎤⎦ =

⎡⎣2 1 1
1 0 0
1 0 0

⎤⎦ .
Proposition 5.17. The entries of ˜︁K−

ef(d) are given by the following formula. Let

z = (ef(d)n − an, ef(d)n−1 − an−1, . . . , ef(d)2 − a2, ef(d)1 − a1).

Then the i, j-th entry ˜︁k−i,j of ˜︁K−
ef(d) is KGr (z+ ei + ej).

Proof. The i, j-th entry ˜︁k−i,j of ˜︁K−
ef(d) is the (n+ 1− i, n+ 1− j)-th entry of K−

ef(d). This is equal to

k−n+1−i,n+1−j = KG|[n]
(a|[n] − ef(d)− en+1−i − en+1−j) = KGr (z+ ei + ej),

where the last equality is an application of Lemma 5.14. □

The final piece required to prove Theorem 5.1 is the existence of a quadratic Lorentzian polynomial whose

Hessian is ˜︁K−
ef(d). We are ready to accomplish this now:

Proof of Theorem 5.1. By Proposition 5.8, it suffices to show that (N(σφG(a)))(xi;k) is Lorentzian, and by

Lemma 5.11, it suffices to show that (N(σφG−(a)))(xi) is Lorentzian. By Lemma 5.9 applied to G−, we need

to show that Kd = K−
ef(d) has at most one positive eigenvalue for every d ∈ (

∑︁n
i=1 ai − 2)∆SG

∩ ZSG =

(
∑︁n
i=1 ai − 2)∆TG

∩ ZTG . In light of the discussion following Definition 5.15, it suffices to show, for every

lattice point ef(d) ∈ (
∑︁
ai − 2)∆TG

∩ ZTG , that the matrix ˜︁K−
ef(d) has at most one positive eigenvalue.
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For brevity of notation, we introduce

z = (z1, . . . , zn) = (ef(d)n − an, . . . , ef(d)1 − a1); zmin
def
= min

i∈[n]
zi.

Note that zmin < 0, since
∑︁
zi = −2. Let ˜︁G be the graph on the vertex set [n+ 1− zmin] with edges

E( ˜︁G) = E(Gr) ∪ {(i, j) : i ≤ j and n+ 1 ≤ j}.
Set

N
def
= n− zmin; ˜︁z def

= (z1, . . . , zn, 0, . . . , 0⏞ ⏟⏟ ⏞
−zmin

);

˜︁x def
= (x1, . . . , xN+1); ˜︁o def

= (outd1 − 1, . . . , outdN − 1),

where outdi denotes the outdegree of ˜︁G at vertex i. The Baldoni-Vergne formulas, Theorem 2.11 (see also

Remark 2.12), applied to ˜︁G says that

volF ˜︁G(˜︁x) = ∑︂
j : j≥0

j1+···+jN=|E( ˜︁G)|−N

K ˜︁G(j− ˜︁o) (˜︁x|[N ])
j

j!

=
∑︂

j : j+˜︁o≥0
j1+···+jN=0

K ˜︁G(j) (˜︁x|[N ])
j+˜︁o

(j+ ˜︁o)! .
(Here, we stress that the v ≥ w means that vi ≥ wi for all i.) By Theorem 2.7, volF ˜︁G(˜︁x) is Lorentzian.

Note that ˜︁z+ ˜︁o ≥ 0, since for i ≤ n we have˜︁oi = outdi − 1 ≥ |{(i, j) : n+ 1 ≤ j ≤ N + 1}| − 1 = N − n = −zmin,

and for i ≥ n + 1 we have ˜︁zi = 0. Thus, the partial derivative ∂˜︁z+˜︁o is well defined. We conclude that the
polynomial

∂˜︁z+˜︁ovolF ˜︁G(˜︁x) = ∑︂
j : j≥˜︁z

j1+···+jN=0

K ˜︁G(j) (˜︁x|[N ])
j−˜︁z

(j− ˜︁z)! ,

is Lorentzian. (The equality is an application of Lemma 2.2.)
Let A be the N × N diagonal matrix whose ith diagonal entry is 1 if i ∈ {n + 1 − j : j ∈ TG} and 0

otherwise; by Theorem 2.6 applied to f = ∂˜︁z+˜︁ovolF ˜︁G(˜︁x) and A as above, the quadratic polynomial

∂˜︁z+˜︁ovolF ˜︁G(A˜︁x)
is Lorentzian and its Hessian has at most one positive eigenvalue. The rows and columns of this Hessian are
naturally indexed by {n+1− j : j ∈ TG}, and its i, j-th entry is the coefficient of

xixj

(ei+ej)!
in ∂˜︁z+˜︁ovolF ˜︁G(A˜︁x).

This coefficient is KGr (˜︁z+ ei + ej). By Proposition 5.17, its Hessian is precisely ˜︁K−
ef(d).

We have thus shown that ˜︁K−
ef(d) has at most one positive eigenvalue, completing the proof. □

6. On projections of polytopes in general

Recall the question stemming from Theorem 5.1, as well as other examples mentioned in the Introduction:

Question 1.1. Which polytope/projection pairs give rise to normalized projected integer point transforms
that are Lorentzian?

Note that φ is a projection onto a coordinate subspace and the flow polytope FG(a) we are projecting
lives in the nonnegative orthant. It is worth noting that if a Lorentzian polynomial f equals the normalized
projection onto a coordinate subspace of an integer point transform of a polytope which belongs to the non-
negative orthant, then any derivative of f is (1) Lorentzian, (2) the normalized projection onto a coordinate
subspace of an integer point transform of a polytope which belongs to the nonnegative orthant. We formalize
this observation here.
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Definition 6.1. A polytope/projection pair (P,φ) is said to be admissible if the polytope P ⊆ Rm has
vertices in Zm and lives in the nonnegative orthant

Hm
+

def
= {(x1, . . . , xm) : xi ≥ 0 for all i ∈ [m]};

we also require that φ is a projection onto a coordinate n-dimensional subspace. Without loss of generality,
we may assume φ is projection onto the first n components.

Observe that φ(P ) ⊆ Hn
+ lives inside the nonnegative orthant of Rn and also has integral vertices.

To an admissible pair, we associate a polynomial σφP obtained by projecting the integer point transform
of P according to φ; specifically,

σφP (x)
def
=

∑︂
p∈P∩Zm

xφ(p) =
∑︂

p∈φ(P )∩Zn

(φ−1(p) ∩ Zm)xp,

where x = (x1, . . . , xn), and φ
−1(p) is interpreted as a subset of P . (Note that φ(P ) ⊆ Hn

+ implies σφP is
actually a polynomial.)

Proposition 6.2. Let f(x1, . . . , xn) be a Lorentzian polynomial so that f = N(σφP ) for some admissible pair
(P,φ). Then we have

∂

∂xi
f = N(σφPi

), where Pi
def
= (P ∩Hm

+i) + {−ei},

where Hm
+i = {(x1, . . . , xm) : xi ≥ 1, and xj ≥ 0 for all j ∈ [m]}.

Proof. By Lemma 2.2, it suffices to show that if

(6.1) σφP (x) =
∑︂
α

cαx
α, then σφPi

(x) =
∑︂

α : αi≥1

cαx
α−ei .

Since ei ∈ Rn = imφ, we have φ(Pi) = φ(P ∩Hm
+i) + {−ei} = φ(P ) ∩Hn

+i + {−ei}. A point β ∈ φ(Pi) if

and only if α
def
= β + ei ∈ φ(P ) ∩Hn

+i. Furthermore, the fiber φ−1(β) ∩ Pi is equal, up to translation by ei,

to the fiber φ−1(α) ∩ P . Thus

σφPi
(x) =

∑︂
β∈φ(Pi)∩Zn

(φ−1(β) ∩ Pi ∩ Zn)xβ =
∑︂

α∈φ(P )∩Zn

αi≥1

(φ−1(α) ∩ P ∩ Zn)xα−ei .

Comparing the above expression to the definition of σφP , we have verified Equation (6.1) holds. □

Remark 6.3. We emphasize that the pair (Pi, φ) is admissible when (P,φ) is admissible. Furthermore, as
discussed in the proof of Proposition 6.2,

φ(Pi) = φ(P ) ∩Hn
+i + {−ei}.

We conclude by another intriguing question stemming from our work: which Lorentzian polynomials arise
naturally as normalized projections of integer point transforms of polytopes?
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