LORENTZIAN POLYNOMIALS FROM POLYTOPE PROJECTIONS

KAROLA MESZAROS AND LINUS SETIABRATA

ABSTRACT. Lorentzian polynomials, recently introduced by Brdndén and Huh, generalize the notion of
log-concavity of sequences to homogeneous polynomials whose supports are integer points of generalized
permutahedra. Brandén and Huh show that normalizations of integer point transforms of generalized per-
mutahedra are Lorentzian. Moreover, normalizations of certain projections of integer point transforms of
generalized permutahedra with zero-one vertices are also Lorentzian. Taking this polytopal perspective fur-
ther, we show that normalizations of certain projections of integer point transforms of flow polytopes are
Lorentzian.

1. INTRODUCTION

The classical notion of log-concavity of sequences is often either a very easy or a notoriously difficult
property to prove. A sequence ag,aq,...,a, is said to be log-concave if af > a;_1a;41 fori € [n—1]. In
groundbreaking recent work Brandén and Huh [BH20| introduced Lorentzian polynomials (see Section
for definition), which generalize the notion of log-concavity. Just one of their theory’s many consequences
are the celebrated Alexandrov-Fenchel inequalities on mixed volumes of Minkowski sums of polytopes; these
inequalities follow from the Lorentzian property of the volume polynomial [BH20, Theorem 9.1]. In [BES19],
Lorentzian polynomials were used to give a generalization of Postnikov’s formula for the volume of a general-
ized permutahedron, a beautiful polytope studied extensively in [Pos09]. In [EH19|, Lorentzian polynomials
were also used to prove a generalization of Mason’s conjecture on the f-vectors of independent subsets of
matroids.

Our motivation for the present paper is simple: we want to understand Lorentzian polynomials polytopally.

Recall that for a polytope P C R", the integer point transform of P is defined as

(1.1) op(x1,...,oy) = Z xP where xp:HIfl.

pEPNZ" i=1
Define the normalization operator N on R[zy,...,2,] by
XO(
(1.2) N(x®) = ol
where for a vector a = (a1, ..., a,) of nonnegative integers we write a! to mean [}, a;!.

By definition, the support of a Lorentzian polynomial forms the integer points of a generalized permu-
tahedron. Bréndén and Huh show that the normalization of the integer point transform of a generalized
permutahedron is always Lorentzian [BH20, Theorem 7.1(4),(7)]. When these generalized permutahedra have
vertices in {0,1}", certain projections of their integer point transforms are also Lorentzian, by |[BH20, The-
orem 2.10] and [BH20, Corollary 6.7]. In joint work with Huh, Matherne and St. Dizier, the first author
showed that the normalization of certain projections of the integer point transforms of Gelfand-Tsetlin poly-
topes are Lorentzian [HMMS19, Theorem 1]. The question lurking in the background of the present work
is:

Question 1.1. Which polytope/projection pairs give rise to normalized projected integer point transforms
that are Lorentzian?
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The current paper adds a natural class of polytope/projection pairs yielding Lorentzian polynomials: flow
polytopes, with projection onto a coordinate subspace.

The flow polytope Fg(a) associated to a loopless graph G on vertex set [n+ 1] with edges directed from
smaller to larger vertices and to the netflow vector a = (ay, ...,a,+1) € Z""! is:

(1.3) Fola)={f eRED: Maf =al,

where M is the incidence matrix of G; that is, the columns of M¢ are the vectors e; — e; for (i,7) € E(G),
i < j, where e; is the i-th standard basis vector in R"*!. The points f € Fg(a) are called (a-)flows (on G).

Observe that the number of integer points in Fg(a) is the number of ways to write a as a nonnegative
integral combination of the vectors e; — e; for edges (4, j) in G. This number is the Kostant partition
function Kq(a).

We define two natural projections ¢ and ¢ of Fg(a) onto generalized permutahedra in Propositions
and in Section [3, The projections ¢ and ¢ induce projections on the integer point transform oz (a)(x)
of F¢(a), acting on monomials via x/ x?) and x/ — x¥(f). The resulting projected polynomials are
denoted

(1.4) 0w (¥) 3 x?(P),
pEFc(a)NZIE@)]

and
(1.5) Tl (X) € 3 x?(P)

pPEFc(a)NZIEG)I

While the normalization of the integer point transform of Fg(a) is not Lorentzian in general, we prove
that the normalizations of its projections ag(a) and ag(a) are always Lorentzian:

Theorem Let G be a loopless directed graph on the vertex set [n + 1] with a unique sink, and let
a=(ai,...,an41) € Z%, X Z<o. The polynomials N(o'g(a)) and N(og(a)) are Lorentzian.

Theorem implies that the Kostant partition function is log-concave along root directions (Corol-
lary [5.2)). We remark that log-concavity of the Kostant partition function along root directions is also a
corollary of volume polynomials (of flow polytopes) being Lorentzian (Theorem .

Roadmap of the paper. Section [2] contains the necessary background on Lorentzian polynomials, gen-
eralized permutahedra and flow polytopes. Section [3| introduces the projections ¢ and ¥ of Fg(a) onto
generalized permutahedra that we are interested in, while Section [d]studies their fibers. Section [5]establishes
our main result, Theorem Section [6] prods Question [I.1

2. BACKGROUND

In this section we give background on the main players of the paper: Lorentzian polynomials, generalized
permutahedra and flow polytopes.

2.1. Lorentzian polynomials and generalized permutahedra. Let N = {0,1,2,...}, and denote by ¢;
the ith standard basis vector of N”. A subset J C N” is called M-convex if for any index i and any «, 5 € J
whose ith coordinates satisfy «; > f3;, there is an index j satisfying

a; <Bj, a—e+e;€J, and f—e;+e €J

The convex hull of an M-convex set is a polytope also called a generalized permutahedron. A special
class of generalized permutahedra consist of Minkowski sums of scaled coordinate simplices: for a subset
S C [n], the coordinate simplex Ag C R™ is the convex hull of the coordinate basis vectors {e;};cs.
Minkowski sums of scaled coordinate simplices are called y-generalized permutahedra.

Let H? be the space of degree d homogeneous polynomials with real coefficients in the n variables
T1,...,7,. For f € HY we write supp(f) C N" for the support of f. For f € HZ, denote by a%if the
partial derivative of f relative to ;. The Hessian of a homogenous quadratic polynomial f € H2 is the
symmetric n x n matrix H = (H;); jen) defined by H;; = 0;0; f. The set L¢ of Lorentzian polynomials
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with degree d in n variables is defined as follows. Set L. C H! to be the set of all linear polynomials with

nonnegative coefficients. Let L2 C H2 be the subset of quadratic polynomials with nonnegative coefficients

whose Hessians have at most one positive eigenvalue and which have M-convex support. For d > 2, define
L C HY recursively by

0

L =3 feMi:
= {rems
where M¢ C H? is the set of polynomials with nonnegative coefficients whose supports are M-convex.
Since f € M¢ implies 22~ f € M4~1, we have

feLd! for all z} .

o 0 0
Li =< feM?: e L2 for all iy,49,...,iq-2 € [n] }.
n {f n 6337;1 8$1‘2 axid72 f n 1,02 5 bd—2 [ }
Recall the normalization operator N on R[zy,...,z,]:
XO(
oy T
where for a vector a = (a1,...,®,) of nonnegative integers we write a! to mean [[;_; o;!.

For a quadratic polynomial
f(X) = Z CijTiTj € Mi,
1<i<j<n
observe that the ij-th entry of the Hessian of N(f), namely the quantity 0;0; N(f), is the coefficient ¢;; of
x;x; in f. Thus, asking whether N(f) is Lorentzian, equivalently whether the Hessian of N(f) has at most
one positive eigenvalue, can be phrased purely in terms of the coefficients of f. For arbitrary polynomials
f € M¢ we use the following lemma:

Lemma 2.2. The linear operator N’la%iN acts on polynomials by

(2.1) <NlaiiN> : za:caxo‘ — Z 1caxafei.

@ o>

We arrive at the following criterion for Lorentzian polynomials.

Lemma 2.3. Let f be a homogeneous polynomial of degree d > 2, and suppose
flx)= anxo‘ e Ml
[e%

For each d = (dy,...,d,) withdy +---+d, =d —2 and d; € Z>q fori € [n], define the n x n matriz
Hqa = (Hij.d)ij€eln); Hij.a = cdye;te,

consisting of coefficients of f. Then N(f) € L if and only if Hq has at most one positive eigenvalue for
each d.

Proof. Note that normalization and differentiation preserve M-convexity of the support of a polynomial. By
Lemma we obtain
NT'9aN(f) = Y cax*"de M.
a: a>d
Because the Hessian of N(N 104N (f)) = 0aN(f) is Hqa, by definition N(f) is Lorentzian if and only if Hq
has at most one positive eigenvalue for each d. O

The coefficients of Lorentzian polynomials satisfy a log-concavity inequality as in Proposition below.
It is in this sense that Lorentzian polynomials generalize the notion of log-concavity.

Proposition 2.4 ([BH20, Proposition 9.4]). If f(x) = > caX® is a homogeneous polynomial on n variables
so that N(f) is Lorentzian, then for any o € N™ and any i,j € [n] the inequality

2
Cq 2 Coz—&-ei—ej Coc—e,;+ej

holds.



This proposition can be seen as a consequence of Cauchy’s Interlacing Theorem. We recall below a special
case of Cauchy’s Interlacing Theorem, which we will use later.

Proposition 2.5 (Cauchy’s Interlacing Theorem, [Par98, Theorem 10.1.1]). Let A be a symmetric n X n
matriz, and let S C [n], and m = |S|. Let B = Ag be the m x m principal submatriz of A given by
B = (a;j)ijes- Let a1 < --- < o, be the eigenvalues of A and let B1 < --- < B, be the eigenvalues of B.
Then for every j € [m],

&%} < ﬁj < Op—m+j-
In other words, the jth smallest eigenvalue of A is at most the jth smallest eigenvalue of B, and the jth
largest eigenvalue of A is at least the jth largest eigenvalue of B.

We recall two important theorems about Lorentzian polynomials here:

Theorem 2.6 (|BH20, Theorem 2.10]). If f € L¢ is a Lorentzian polynomial in n variables, and A is an
n X m matriz with nonnegative entries, then f(Av) € L& is a Lorentzian polynomial in the m wvariables
Vv =(01,...,0m).

Theorem 2.7 (|BH20, Theorem 9.1]). Let K = (K7, ..., K,) be convex bodies in R%. The volume polynomial
(wi, ... wp) = vol(w Ky + -+ + w, Ky,)
is a Lorentzian polynomial.

2.8. Flow polytopes. Recall the definition of flow polytopes in (1.3]). We record several properties of them
here which we will be using in later sections.

Lemma 2.9 (|Sch03|). For any graph G on the vertex set [n+ 1], the vertices of the flow polytope Fg (e —
ent1) are unit flows with support equal to p, where p is an increasing path from vertex 1 to vertex n + 1.

Proposition 2.10 ([BV08| Section 3.4]). For nonnegative integers ay,...,a, and G a graph on the vertex
set [n + 1] we have that

(2.2) Fa(a) = a1Fg(er — ent1) + aaFgles —epy1) + -+ anFa(en — ent1).

The following explicit formula for the volume of a flow polytope, combined with Theorem [2.7] and
Lemma [2.3] give many matrices with at most one positive eigenvalue. The proof of Theorem [5.1] will
then proceed by applying Lemma [2.3|in the opposite direction.

Theorem 2.11 (Baldoni—Vergne volume formula, [BVO8| Theorem 38]). Let G be a directed graph on the
vertex set [n+ 1] with a unique sink, so that edges are oriented from a smaller vertex to a larger vertex. Let
X = (T1,..Tn, — 21y Xi), T € L>o. Then

J
vol Fg(x) = ZKG(jl —outy,...,Jn — outn,O);_i',
j :

for out; = outdeg; — 1, where outdeg; denotes the outdegree of vertex i in G. The sum is over weak
compositions j = (j1,...,Jn) of |E(G)| —n that dominate (outy,...,out,), that is, for every i € [n] we have
J1+ -+ Ji = outy + -+ out;.
In the above x3 = [/, #J* and j! = [, ji!.

Remark 2.12. Suppose G is a directed graph on the vertex set [n + 1] with a unique sink. Then the
Kostant partition function K (v) is nonzero only when v dominates 0. Thus, Baldoni—Vergne’s formula
(Theorem [2.11f) could be stated as
. ‘ x
vol Fa(x) = ZKg(jl —outy, ..., jn — outy,, O)j—!,
J

where the sum runs over weak compositions j = (j1,...,Jj,) of |E(G)| —n.
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3. PROJECTIONS OF FLOW POLYTOPES ONTO GENERALIZED PERMUTAHEDRA

In this section, we define the projections ¢: Fg(a) — P(G;a) and ¢: Fg(a) — Q(G;a), where P(G;a)
and Q(G; a) are y-generalized permutahedra (see Propositions[3.4/and[3.6). We study their fibers in Section [4]
leading us to explicit expressions for the polynomials Ug(a) and Ug(a); see Corollary In Section 5| we use
these expressions to prove Theorem [5.1]
Notational Conventions for Sections and Unless specified otherwise, G denotes a loopless
directed graph on the vertex set [n 4+ 1] with a unique sink. Every edge of G is oriented from its smaller
vertex to its larger vertex. All flow polytopes F¢(a) have netflow vector a € Z%, x Z<o. For a finite set S,

we denote by R the real vector space consisting of R-linear combinations of elements in S; in particular,
for sets S C T, the vector space R is a coordinate subspace of RT. We write R” to denote RI".

Definition 3.1. For i,j € V(G) = [n + 1], we denote by M(i,j) € N>¢ the number of edges from i to j,
and by {(4,7; k) }repnmig) € E(G) the set of edges of G connecting i to j.

Definition 3.2 (see Example . We denote by S the set of all edges incident to the sink, that is,

Se {e€ E(G): e = (i,n+ 1; k) for some i € [n],k € [M(i,n + 1)]}.

For i € [n], let Sg,; C Sg be the set of edges incident to n + 1 which can be reached from vertex 4, that is,
if G denotes the transitive closure of GG, then
Sai € {e € Sq: e = (j,n+ 1;k) and (i,5) € E(G)}.
Denote by T the set of all vertices incident to the sink, that is,
Te € i e V(G): M@i,n+1) > 1}.
For i € [n], let T,; C T be the set of vertices adjacent to n + 1 which can be reached from vertex %, that is,

Ta: © {j € Ts: (i,5) € E@)}.

Example 3.3. Let G be as in Figure[l] The set Sg € E(G) consists of the blue edges, while Sg > consists of

the four blue edges emanating from vertices 2 and 4. If G’ denotes the graph obtained from G by removing

the edge (2,3;1) € E(G), then Sgv 2 would only consist of the two blue edges emanating from vertex 2.
The set T C V(G) = [5] is equal to {1,2,4}, and Tg 3 = {4}.

G

1 2 3 4 Y

FIGURE 1. A graph G satisfying the conventions of this section, with edge orientations
suppressed.

Proposition 3.4. Let ¢ denote the map sending a flow in Fg(a) to the coordinates corresponding to edges
in Sg. Then ¢ is a projection

¢: Fa(a) » P(G;a),
where P(G;a) C RS is the y-generalized permutahedron defined by

P(G;a) of Z AN

1€[n]
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Proof. Proposition [2.10] asserts that

fG(a) = Z ai}"g(ei — €n+1).

1€[n]

Because linear maps factor through Minkowski sums, we obtain

p(Fo(@) = 3 aip(Folei — entr)):

1€[n]

Observe that o(Fg(e; — eny1)) = Asg,, because their vertex sets coincide: Lemma asserts that the
vertices of Fi(e; — ent1) are unit flows on paths p from i to n + 1; under ¢, the vertex of Fg(e; — €nt1)
corresponding to p is mapped to the vertex of Ag, , corresponding to the (unique) edge in p that is incident
to n+ 1. The claim ¢(Fg(a)) = P(G;a) follows. O

We note that a special case of Proposition was considered in [MS20, Section 4].

Definition 3.5. For i € [n], let I; denote the set of M (i,n+1) coordinates in RF(%) corresponding to an edge
connecting i to n+1. For a flow z € F(a), define the escaping flow vector ef (z) = (ef (z)1,...,ef(x),) € R"
coordinatewise by

ef(x)l déf Z Zj.
Jj€EI;

For x € Fg(a), and ¢ as in Proposition define

ef (p(z)) ' ef ().

Note that ef(x) depends only on coordinates of z € Fg(a) C RP(?) indexed by an edge e € Sg. Hence

ef(p(z)) Aot of (x) is well defined since ¢ leaves the coordinates of x corresponding to edges in Sg unchanged.

Note also that if i & T, or equivalently that if I; = (), then ef(x); = 0. Thus, we may regard ef(z) as
a vector in R7¢ (however, it will be useful to regard them as elements of R™ whose coordinates indexed by
[n] \ Tg are zero).

Proposition 3.6. Let ¢ denote the map sending x — ef(x). Then 1 is a projection
¥: Fal(a) » Q(G;a),

where Q(G;a) C RTc is the y-generalized permutahedron defined by

9(G;a) Lef Z a;iArg -

i€[n]
The map ¢ factors through ¢, that is, the following diagram commutes:

Fola) —2 5 P(G;a) 27 oG )
W

Proof. As in the proof of Proposition it will suffice to show 9 (Fg(e; — ent1)) = Ar,,. Lemma
asserts that that the vertices of Fi(e; — e,+1) are unit flows on paths p from i to n + 1; under 9, the vertex
of Fg(e; — eny1) corresponding to p is mapped to the vertex of Ar, ; corresponding to the (unique) vertex

t of G for which p contains an edge from ¢ to n + 1.

The statement that the diagram commutes boils down to the fact that ef(¢(x)) def ef(x) is well defined,

as discussed after Definition 3.5 O
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4. THE FIBERS OF ¢ AND

In order to study O'g(a) and O'g(a) as defined in and , we rewrite them as in equations
and below; these equations follows from Propositions and Equations and make it
evident that in order to explicitly compute the coefficients of the monomials appearing in U(";(a) and ag(a)
(Corollary we need to compute the fibers of ¢ and 1, which is what we accomplish in Theorem and
Corollary respectively.

For brevity of notation, we index the coordinates of a point x € R%¢ with (i;k), which is shorthand for
the edge (i,n + 1; k) € Sg. We define the polynomials

(4'1) Ug(a)(xi;k) = Z |9071(p) N ZE(G)|xpa
pEP(G;a)NZ3G

and

(4-2) Ué(a)(m) = Z Wfl(P) n ZE(G)|XP'
peQ(G;a)nZTc

Theorem 4.1. Given a point p € P(G;a), the preimage Sp def 0~ 1(p) is a translation of the flow polytope
Felay — ef(p)1,...,a, — ef(p),,0). For p € Z5¢, the polytope Sy is integrally equivalent to Fg(ar —
ef(p)la ceey p — ef(p)rw O)

We emphasize that a = (a1, ...,an, — Y 1, a;) with a; > 0, and that for any p € P(G;a) we have

Doefmhi=> > pi= D pi=) a
i=1 i=1jel; j€Sa i=1

with the second equality by the fact that | |, I; = S and the last equality by the definition of P(G;a).

Proof of Theorem[].1 Let o RF(G) 5 RE(G) denote the projection sending components corresponding to
edges in S¢ to zero. Note that ¢ and o1 project RE(@) to orthogonal complements, so pr is necessarily an
injection from S, onto its image (since points in S, are all mapped to p by ¢). To clean up notation, we
write z; = a; — ef(p);.

Restricting an a-flow in S, onto the edges in G|, gives a (nonnegative) flow with netflow precisely a; —
ef(p); on vertex i. Hence, o+ is a map Sp < Fg(z1,.. ., 2, 0); furthermore, the inverse Fg (21, ..., 25,0) —
S, is translation by

P = (Pe)ecE(G) €

. de e ifeeS
RP@);  p, L P ¢
0 otherwise

Hence, Sy, is equal to Fg(z1, ..., 2n,0) up to translation by p. Furthermore, if p € 754, then translation by
p € ZP(©) is an integral equivalence S, = Fa(21, .-, 2n,0). O

Corollary 4.2. Given a point p € Q(G;a), the preimage T}, def P~ 1(p) is equal to Fa(ay — p1y...,an —
pnvo) X HiETG JIYAVES

Proof. Observe that gpl(Tp) = Fa(ar — p1,---,an — Pp,0), since an a-flow in T, restricted onto just the
edges in G|, gives a flow with netflow precisely a; — p; on vertex i. The fiber 1»~*(q) N Fe(a) of any point

q € Fg(ar = p1,.--,an — pn,0) is equal to {g} x [[;cr, pid1,. The claim follows. O
Corollary 4.3. We have
Ug(a)(xi;k) = Z Kg(ar —ef(p)1,...,an — ef(p)p, 0)xP,
peEP(G;a)nZsc
and
Yooy Kolan — B I +p1— 1 L] +pn — 1\ _,
O—G(a)(zz) Z clar —p1,...,a, pna0)< ‘Ill_l ‘In|_1 X"

peQ(G;a)nZTc

Proof. The number of integer points of Fg(a) is given by the Kostant partition function K¢ (a). Combining
this fact with Theorem [£.1] and Corollary [.2] gives the desired result. O
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5. NORMALIZED PROJECTIONS OF INTEGER POINT TRANSFORMS ARE LORENTZIAN

In this section, we show that N (Ug(a)) and N (ag ) are Lorentzian; see Theorem In order to prove
this we begin with a series of reductions (Proposition and Lemma. Then, a combinatorial symmetry
(Lemma allows us to realize Hessians of repeated partial derivatives of O'g(a) as Hessians of repeated
partial derivatives of volume polynomials.

We begin by formally stating the main result of this section.

Theorem 5.1. The polynomials (N(crg(a)))(:ci;k) and (N(O'g(a)))(l}i) are Lorentzian.

Corollary 5.2 (cf. [HMMS19, Proposition 11]). For any directed graph G on the vertez set [n] and for any
v € Z™ we have:

(5.1) I(G(V)2 ZKg(V—‘y-ei —ej)Kg(v—ei—Fej)
for every i,j € [n].
Proof. As N(of, a)) is Lorentzian, the coefﬁ(:lents of O’G(a) satisfy a log-concavity inequality (see Proposi-

tion [2.4). This inequality is precisely Equation (5 . O

Note that Corollary also follows from the classical Alexandrov-Fenchel inequalities for mixed volumes,
since K¢ (v) can be seen as mixed volumes of Minkowski sums of flow polytopes.
A first stepping stone towards Theorem s to reduce to the problem of showing N (Ug(a)) is Lorentzian

for all G; this is the content of Proposition In order to do this we introduce the following construction.

Definition 5.3. For a graph G, we denote by G™ = (V*, E®*) the graph obtained from G by adding formal
vertices i°* for each vertex i € T, by replacing edges (i,n + 1;7) € S with edges (i,i%; j), and by adding
edges (i**,n + 1;1) for each i®* € Tz, Formally, we have

Ve Ui i e Teh U {n+1},

B (BN S6) U{(5,i™;): (in+1;5) € Sa} U{(i*™,n+131): i € Ta}.

See Figure [2| for an example. The graph G can be recovered from G** by a series of contractions, so we call
G** the extension of G.

(N (L7

1(‘ 2(‘X _1(‘X

F1GURE 2. The graph G in Figure |1} along with G**, defined in Definition

Definition 5.4. For any two vectors p = (p1,...,pm) € R™ and q = (q1,...,¢n) € R™, we denote by
P ® q € R™" their concatenation, that is,

Pda= (pla"'upqul,“'vqn) € Rm-ﬁ—n.
For a netflow a for G satisfying the conventions of this paper, we denote by a® the netflow for G°* given by
a\[n] S OTceX D —apy1 = (al, ey Qp, 0, ey 0 ,—an+1);
——
|Tgex | many

note that a®* also satisfies the conventions of this paper.
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Lemma 5.5. The bijection Tg <> Sgex given by i <> (i, n+1;1) induces an isomorphism on the real vector
spaces RT¢ and R5¢* by renaming basis elements according to the bijection. This isomorphism restricts to
an integral equivalence Q(G;a) = P(G™;a®™).
Proof. By definition,
QGia) =Y aiAr,, and P(Ga™) = > aPAgge,
i€ [n] 1€ [n]UTgex
Since for every i € Tgex we have a$* = 0, and for every i € [n] we have af* = a;, we may write
P(Gex; an) = Z aiASGex,i;
i€[n]
furthermore, we have Sgex; = {(j**,n + 1;1): j € Tg,;}. Thus, the isomorphism sends Ar, , to Aggex ,;
passing to the Minkowski sum, we obtain the integral equivalence Q(G;a) = P(G*; a™). O
Lemma 5.6. The bijection E(G) <> E(G™)\ Sgex given by sending an edge (i,n+1;k) € Sg to (i,ik) €
E(G*)\ Sgex and an edge (i,j; k) € E(G) \ Sa to (i,j;k) € E(G®) \ Sgex induces an isomorphism on the

real vector spaces spanned by E(G) and E(G®*)\ Sgex by renaming basis elements according to the bijection.
For every q € Q(G;a), this isomorphism restricts to an integral equivalence

(52) ]:G‘[n] (a|[n] - q) X H inIi = ]:Gexl[n]uTGex (a|[n] @ (_q))
i€Ta

In light of Corollary [4.2} note that the left side of Equation is the fiber of q under Fg(a) — Q(G;a).
For brevity of notation, let us temporarily denote by q € Z°¢* the image of q € Z”¢ under the isomorphism
in Lemma In this notation, Theorem implies that the right side of Equation is (integrally
equivalent to) the fiber of q € Z%¢** under Fgex(a™) — P(G*; a™).

We emphasize here that there is an integral equivalence Fg (@l —a) = Fel(aly — q,0).

Proof of Lemma[5.6. A point f € FGim (aln) —a) X [ i, ¢iA1, can be interpreted as a flow in Fg(a) with
outflow ¢; at each vertex ¢ € T, by Corollary Under the isomorphism in Lemma f gets mapped
to a flow in G|, ju7e With netflow a; at each vertex i € [n] and netflow —g; at each vertex i € Tgex. In
other words, the image is in ‘FGe"I[n]uTch (@l @ (—q))-

Conversely, the preimage of a flow Feex| .. (aljn) ® (—q)) is a flow in Fg(a) with netflow ¢; at each
vertex i € Tg; hence by Corollary the preimage of f is in Fgy, , (aljn) —a) x HieTG giAg,. a

Lemma 5.7. The bijection Tg <> Sgex given by i <> (i, n+1;1) induces an isomorphism on the polynomial
rings R{(x;)iery] and R[(2;)icsqex | by renaming variables according to the bijection. Under this isomorphism,
the polynomial N(o’é(a)) is sent to N(O’éex(aex)).

Proof. Explicitly, we need to show that the polynomials

(5.3) N(ogw) = >, (@ 1(q)ﬁZE(G))E
qeQ(G;a)nzTc ’
and
_ exy, XP
(5.4) N(0G (o)) = > (¢7H(p)N L)

PEP(Gex,a°x)NZIGex

agree after renaming variables according to the bijection. We stress that the map 1 in Equation is the
projection Fg(a) — Q(G;a), whereas the map ¢ in Equation is the projection Fgex (a®™) — P(G™; a®™).

By Lemma the monomials x9 appearing in Equation and the monomials xP appearing in
Equation correspond to each other under the isomorphism R[(z;)iere] = R[(%:)icsqex]-

By Lemma the fibers 1 ~1(q) appearing in Equation and the corresponding fibers ¢~!(p) ap-
pearing in Equation (5.4]) are integrally equivalent. Hence the coefficients of the monomials appearing in
Equations and (5.4)) match. O

Proposition 5.8. Suppose N(O'g(a)) is Lorentzian for every G. Then N(O'g(a)) is Lorentzian for every G.
9



Proof. Lemma asserts that up to renaming variables, we have the equality
N(08(a) = N(0Fn (aer))-

By assumption, N(0f.. ( ) is Lorentzian. O

aex)
Lemma 5.9. Letd € (3, a; — 2)Ag, NZ5¢ be an integer point in the scaled coordinate simplex of Sc.
Suppose that the |Sq| x |Sq| matriz

def def
Ka = (kij)ijesqs Ky k) (inska) = K, (@l —ef(d) —es —e,)

has at most one positive eigenvalue. Then N(O'g(a)) is Lorentzian.

Proof. The support of N (ag(a)) is M-convex by Proposition

By Corollary the ij-th element of K4 is the coefficient of x9+¢:+¢ in ag(a); equivalently, Kgq is the
Hessian of 9q N (O'(a)). Since, by assumption, Kq has at most one positive eigenvalue, Lemma asserts
that N(ag(a)) is Lorentzian.

Definition 5.10. For a graph G as in the conventions of this section, denote by G~ the graph with vertex
set [n 4 1] and edge set

E(G™) = E(G|y)U{ec Sg:e=(i,n+1;1)}.
In other words, G~ is obtained from G by replacing, for each i € [n] with M (i,n + 1) > 1, the set of edges
connecting i to the sink with a single edge connecting i to the sink. See Figure [3| for an example. Note that

since G~ has at most one edge connecting ¢ to n + 1 for any i, we have Sqg- = To- = Tg; we index the

variables appearing in Ug,(a) with (z;)ier, -

G G~

1 2 3 4 ) 1 2 3 4 o

F1GURE 3. The graph G from Figures and The graph G~ constructed from G is shown
beside it; see Definition

Lemma 5.11. Suppose (N(Ug,(a)))(sci) is Lorentzian. Then (N(Ug(a)))(l‘i;k) is also Lorentzian.

Proof. The support of N (Ug(a)) is M-convex by Proposition
By Lemma we need to show that for every d € (3, a; — 2)Ag, N Z5¢, the |Sg| x |S¢| matrix

Ka = (kij)ijesa: K(ivikr) (iaihs) = K, (@ln) — ef(d) —es — €45)
has at most one positive eigenvalue. The matrix Kq is obtained from the |T¢| x |T¢| matrix
— def _ _ def
ey — (Kij)ijers; ki; = Kgy,, (aln) — ef(d) —e; —¢))

first by repeating the ith row M (i,n + 1) many times for each 4, and then by repeating the ith column
M (i,n + 1) many times for each i. Note that the rank of K ay 1s equal to the rank of Kg; we write

r & rank(K 4 ) = rank(Kq).

(d)
10



Observe, by Corollary that the ij-th entry of K;f(d) is the coefficient of xef(d+eite; jp Ug,(a). By
assumption, N (ag,(a)) is Lorentzian; hence, Lemma asserts that Ke_f( d) has at most one positive eigen-
value for any ef(d) € (3, a; — 2)Ar, NZT¢. In particular it has at least 7 — 1 negative eigenvalues. Note
also that K;f( ) is a principal submatrix of Kq4; by Cauchy’s Interlacing Theorem (Proposition , the

eigenvalues a; < ap < -+ < g, of Kq and the eigenvalues 81 < -+ < B, of K;(d) satisfy
a; < B for all 1 <i < |Tg|.
Since Ke_f( a) has at least r — 1 negative eigenvalues,
a; < B; <0 foralll1 <i<r—1,
so Kq also has at least r — 1 negative eigenvalues. Furthermore, K3 has rank r. Hence, Kq also has at most

one positive eigenvalue, and (IV (O'g(a)))(l'i;k) is Lorentzian. O

Example 5.12. Let G be as in Figure |3| and a = (2,1,1,1,-5). Let d € 3Ag, N Z% be the vector
2.1 + €2:2 + €4.2; this integer vector takes the value 1 on the edges (2,5;1),(2,5;2), (4,5;2) € S and takes
the value 0 everywhere else. Thus a|j,) —ef(d) = (2, —1,1,0). The matrix Kq is given by

ko, Fan.ey ka2 ko k. 000 11
ke, Fen.en ke ke ke 000 11
koo, Feoen Feze2 Feo.wn ke =10 0 0 11
k. ke Fan.e2  Fanan ke L1122
ka),in  Faz)en Fazue2) Fa,wn k) 11122
It is obtained from the matrix Ke?( d) given by
ki ko kig 00 1
kyn kia ka4l =10 0 1
by kio Kia 11 2
first by repeating the second row M (2,5) = 2 times and repeating the third row M (4,5) = 2 times, to obtain
00 1
00 1
00 1
11 2
11 2

and then repeating the second column M (2,5) = 2 times and repeating the third column M (4,5) = 2 times,
to obtain

_— o O O

1
1
1
2

_= =0 OO
_ =0 OO
NN = = =

1 2

The spectrum for K 4, is {=v3+1,0,4/3 + 1} (which has at most one positive eigenvalue).
In this example, the ranks of Ke_f( a) and Kq are both equal to 2, thus they both have a total of 2 nonzero

eigenvalues. The matrix K;f( a) is the principal submatrix of K4 corresponding to the 1st, 2nd, and 4th
rows and columns of Kg4. Cauchy’s Interlacing Theorem says that the smallest eigenvalue of Kq is at most
—v/3 41 < 0. Hence K4 has at most one positive eigenvalue.

Definition 5.13. For a graph G as in the conventions of this section, denote by G” the graph obtained by
“flipping” G|, that is, V(G") = [n] and

(i,§) € BE(G") <= (n+1—-j,n+1—1i)c E(G|p).
Equivalently, G™ is obtained by relabeling the vertices of G|y, by the map i +— n + 1 — 4 and reversing the

orientation of edges. See Figure [f] for an example.
11



Gl G"

]
1 2 3 4 4 3 2 1

FIGURE 4. The graphs G|y and G” are shown, for G as in Figure 3| and Example

The symmetry between G|p,,; and G™ underpins the following lemma, crucial for the proof of Theorem
Lemma 5.14 ([MM19, Corollary 2.4]). For every ci,...,c, € Z, the formula
Kay,, (c1,¢2,...y¢n_1,¢n) = Kgr(—Cny—Cn—1,...,—Ca,—C1)
holds.

Definition 5.15. Denote by Pr the permutation matrix corresponding to the order-reversing permutation
i+ |Tg| + 1 — i; this is the matrix consisting of 1’s on the antidiagonal and 0 everywhere else.

Observe that

©f p K-

Ky ef(d)

ef(d) Pr

has the same spectrum as Ke_f( a since it is obtained by conjugation. We index the rows and columns of
I~(e_f(d) by {i: n+1—1i € Tg} (in increasing order). See Example
Example 5.16. Let G be as in Figure |3} Example [5.12} and Figure @ The entries of Kefq)- are given by
kl_, 1 k; 9 ki 4 0 0 1
k31 kao kau| =10 0 1
kin kio ki 11 2
Then the matrix I?;(d) = PTKe_f(d)PT is given by

by kg kg 00 1]fo o 170 0 1] [2 1 1
For Fas Fsa| =10 1 0[]0 0 1| {0 1 0/=|1 0 0
PR 100/t 12 [1oo [1o00
41 Fa3 FKag

Proposition 5.17. The entries of I~(e_f(d) are given by the following formula. Let
z = (ef(d),, — an,ef(d) -1 — an—1,...,ef(d)2 — ag,ef(d); — aq).
Then the i, j-th entry E_J of [N(e_f(d) is Kar(z + e, +¢€5).

Proof. The 1, j-th entry E;j of l?e_f(d) is the (n +1 —i,n + 1 — j)-th entry of K¢ (q)- This is equal to

kpi1—int1—; = Kayp, (@) — ef(d) — €nt1-i — ent1-5) = Kar(z + € +¢j),
where the last equality is an application of Lemma (Il

The final piece required to prove Theorem [5.1]is the existence of a quadratic Lorentzian polynomial whose
Hessian is K;f( ay We are ready to accomplish this now:

Proof of Theorem[5.1l By Proposition it suffices to show that (N(ag(a)))(xi;k) is Lorentzian, and by
Lemma it suffices to show that (N(Ug,(a)))(xi) is Lorentzian. By Lemma [5.9| applied to G~, we need
to show that Kq = Ke_f(d) has at most one positive eigenvalue for every d € (>, a; — 2)Ag, N 7% =
(>, a; — 2)Ar, NZT¢. In light of the discussion following Definition it suffices to show, for every
lattice point ef(d) € (3. a; — 2)Ar, NZT¢, that the matrix K ¢(q) has at most one positive eigenvalue.

12



For brevity of notation, we introduce

z=1(21,...,2n) = (ef(d)p, — ap, ..., ef(d)1 —a1); Zmin def m[m] Zi.
en

Note that zpmin < 0, since Y z; = —2. Let G be the graph on the vertex set [n + 1 — zyin] with edges
E(G) = E(G")U{(i,j):i<jand n+1<j}.

Set
def ~ def
N:nfzmin; Z:(Zl,...72n,0,...,0);
——
—Zmin
~ def ~ def
X = (T1,.-,TN+1); o = (outd; — 1,...,outdy — 1),

where outd; denotes the outdegree of G at vertex i. The Baldoni-Vergne formulas, Theorem (see also
Remark , applied to G says that

vol Fz(X) = > Kz(j— o)
>0
Jit e +in=|E(G)|-N
. (X|vp)ite
= 2 K
j:j+6>0
it 4in=0
(Here, we stress that the v > w means that v; > w; for all i.) By Theorem vol F5(x) is Lorentzian.
Note that z + 0 > 0, since for ¢ < n we have

o,=outd; — 1> |{(,§):n+1<j<N+1}—1=N—n=—2ypn,

(X))
!

and for ¢ > n + 1 we have z; = 0. Thus, the partial derivative 95,5 is well defined. We conclude that the
polynomial
(X))~

Bz 45vol F5(X) = Z K()( I

j j>z
j1+ ~+jn=0

is Lorentzian. (The equality is an application of Lemma )
Let A be the N x N diagonal matrix whose ith diagonal entry is 1if i € {n+1—j:j € Tg} and 0
otherwise; by Theorem applied to f = Oz4svol F5(X) and A as above, the quadratic polynomial

aergVOl fé (AX)
is Lorentzian and its Hessian has at most one positive eigenvalue. The rows and columns of this Hessian are
naturally indexed by {n+1—j: j € Tg}, and its i, j-th entry is the coefficient of + ), in 9z 5vol Fz(AX).
This coefficient is Kg-(z + e; + e;). By Proposition its Hessian is precisely Kef(d)

We have thus shown that K;f( a) has at most one positive eigenvalue, completing the proof. O

6. ON PROJECTIONS OF POLYTOPES IN GENERAL
Recall the question stemming from Theorem as well as other examples mentioned in the Introduction:

Question Which polytope/projection pairs give rise to normalized projected integer point transforms
that are Lorentzian?

Note that ¢ is a projection onto a coordinate subspace and the flow polytope Fg(a) we are projecting
lives in the nonnegative orthant. It is worth noting that if a Lorentzian polynomial f equals the normalized
projection onto a coordinate subspace of an integer point transform of a polytope which belongs to the non-
negative orthant, then any derivative of f is (1) Lorentzian, (2) the normalized projection onto a coordinate
subspace of an integer point transform of a polytope which belongs to the nonnegative orthant. We formalize
this observation here.

13



Definition 6.1. A polytope/projection pair (P, ) is said to be admissible if the polytope P C R™ has
vertices in Z™ and lives in the nonnegative orthant

HY def {(z1,...yxm): x; >0 for all i € [m]};

we also require that ¢ is a projection onto a coordinate n-dimensional subspace. Without loss of generality,
we may assume ¢ is projection onto the first n components.

Observe that ¢(P) € HY lives inside the nonnegative orthant of R™ and also has integral vertices.
To an admissible pair, we associate a polynomial o obtained by projecting the integer point transform
of P according to ¢; specifically,

def _ m
op(x) = Y xP = N (p(p)NZ™)xP,
pepPnzZ™ pPEP(P)NZ™
@

where x = (z1,...,2,), and ¢~ (p) is interpreted as a subset of P. (Note that ¢(P) C H? implies o} is
actually a polynomial.)

Proposition 6.2. Let f(z1,...,x,) be a Lorentzian polynomial so that f = N(o%,) for some admissible pair
(P, ). Then we have

a , N(o? L pdef (oo pm

axifi (op,),  where Py = (POHE)+ {—ei},

where HT; = {(x1,...,2m): x; > 1, and 2; > 0 for all j € [m]}.

Proof. By Lemma [2.2] it suffices to show that if

(6.1) oh(x) = anxo‘, then o} (x) = Z CaxX*T
el a: a;>1

Since e; € R™ = im ¢, we have p(P;) = (PN H,) + {—ei} = o(P) N HY; + {—e;}. A point 3 € o(P;) if
and only if « def B+ e; € o(P) N H?Y,. Furthermore, the fiber ¢~1(3) N P; is equal, up to translation by e;,
to the fiber ¢ ~1(a) N P. Thus

A= Y ARz = Y (e an PRz
Bep(P;)NZ™ acp(P)NZ™
ai21
Comparing the above expression to the definition of 0%, we have verified Equation (6.1]) holds. O

Remark 6.3. We emphasize that the pair (P;, ) is admissible when (P, ) is admissible. Furthermore, as
discussed in the proof of Proposition [6.2

p(Pi) = o(P) N HY; +{—ei}.

We conclude by another intriguing question stemming from our work: which Lorentzian polynomials arise
naturally as normalized projections of integer point transforms of polytopes?
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