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Abstract—Characterization and classification of cyber attacks
in smart grids are crucial for situational awareness and mitiga-
tion of their effects. Graph signal processing (GSP) framework
for the analysis of energy data, provides new perspectives and
opportunities for such characterization by capturing topology,
interconnections, and interactions among the components of
smart grids. In this work, several forms of cyber stresses on power
system’s measurements and state estimation have been analyzed
using the local smoothness of their graph signals. Using the
local smoothness, characteristics of different cyber stresses are
described analytically and evaluated by simulations. Moreover,
the local smoothness features are used in machine learning
models to classify multiple random and clustered cyber stresses
and determine attack center and radius in case of clustered
attacks.

Index Terms—Graph Signal Processing, cyber-physical stress,
smart grid, local smoothness, classification.

I. INTRODUCTION

Situational awareness of large, complex, and dynamic cyber-
physical infrastructures, such as smart grids, has been a salient
concern for researchers and practitioners to ensure their reli-
able and efficient operation. Functions supporting situational
awareness rely on the measurement data communicated from
measurement devices and sensors through the communication
system. However, the cyber layer of smart grids including
the sensing, communication, and computing components, are
vulnerable to various forms of cyber attacks and stresses.

Cyber attacks can be launched in the smart grid by hamper-
ing the availability (e.g., denial-of-service aka DoS attack), or
the integrity (e. g., false data injection attack - FDIA [1]) of the
measurement data, which are crucial for situational awareness
and consequently for proper operation and timely maintenance
of smart grids. Moreover, the cyber attacks can be coordinated
or random depending on the intention and available resources
of the attackers. As such, proper characterization of the nature
and types of cyber attack is necessary.

Graph signal processing (GSP) [2], [3] is an emerging
and fast-growing domain that enables analyzing structured
data over graphs. The tools and techniques from GSP are
particularly suitable for analyzing data that are topologically
distributed as well as represent and embed the interactions and
interconnections among the components of a system, such as
smart grids. By extending the concepts and the tools from the
classical signal processing to non-Eucleadian signals defined

in the irregular graph domain, GSP provides an opportunity
to incorporate the hidden information about the structures,
interconnectivity, and interrelations among the components in
the analysis of the system data. GSP tools have been recently
adopted in various fields for analysis of structured and inter-
correlated data including analysis of the brain data [4], struc-
tural health monitoring by the sensor networks [5], and crime
data analysis [6]. The measurement data from power systems
bear structures by nature due to the physics of electricity
and the structural and operating conditions governing these
systems. These properties suggest that GSP can be a suitable
framework for the analysis of the energy data.

Graph signals in power systems can be defined over the
structural topology of the system with buses as the vertices
and the transmission lines as the edges of the graph. In
our earlier works [7], [8], different types of cyber attacks
and their signatures on the graph spectrum were analyzed
using voltage angle measurements as the time-varying graph
signals. In addition, a local smoothness-based technique was
proposed to detect and locate a single cyber attack in the
system, which showed superior performance. In the current
paper, the study and techniques in [7], [8] are extended to
detect and locate multiple and coordinated cyber attacks in
smart grids with an analytical derivation of the conditions and
simulations to show the performance. Specifically, it has been
shown analytically that the attackers can bypass the detection
technique by designing a coordinated cyber attack using the
local smoothness properties of the vertices. Furthermore, graph
signal smoothness features are used to classify random and
clustered cyber attacks in the system.

The main contributions of this paper are as follows:

o The effects of a single cyber attack, multiple random
cyber attacks, and multiple clustered/coordinated cyber
attacks on the local smoothness of graph signals have
been analyzed assuming no load demand changes in the
system. By analytical evaluation of the effects of attacks,
characterization of the stresses (i.e., determining the type
of the attack, number of the attacked buses, size of the
area under attack) has been enabled.

e A neural network-based technique for the classifica-
tion of multiple random cyber attacks, and the clus-
tered/coordinated cyber attacks has been proposed.

e The effectiveness and the limitation of the local
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smoothness-based detection technique has been evaluated
analytically based on the analysis of the attack strategies
and the available information to the attackers.

II. RELATED WORKS

Cyber attacks in smart grids have been studied intensively
over the past two decades. The majority of the works in
this domain are on the detection of different types of cyber
attacks in power systems using various techniques including
dimensionality reduction methods and principal component
analysis (PCA) [9], signal processing and statistical analysis-
based methods [10]-[12], neural network and reinforcement
learning-based methods [13]-[15], and graph neural network-
based method [16]. In addition, some works, such as the ones
in [16]-[18], addressed the problem of locating the attacks
along with the detection. The work by Khalafi et al. [19]
provides a comparative discussion and summary of the false
data injection attack (FDIA) literature on the basis of detection
techniques, types of data used, the ability to locate attacks, the
ability to detect concurrent random attacks, and determining
the number of attacks. Along with the detection and locating
the cyber stresses, the current paper proposes a technique for
determining the number of cyber attacks. While there is a large
body of research pertaining to the security of smart grids, new
perspectives provided by the GSP tools and techniques can
present new opportunities for improving the security of these
critical systems.

The application of GSP to smart grid problems is fairly
recent. For instance, Ramakrishna and Scaglione in [20]
developed a graph signal model for the time-varying voltage
phasor measurements in the smart grid capturing the spatio-
temporal dynamics among the grid’s components. The model
in [20] was proposed to be utilized for the problems of
detecting stresses, recovering the measurement values, and
optimal placement of the PMUs in the smart grid. Kroizer
et al. in [21] proposed a graph filter model for the non-linear
measurement functions in the power system and proposed to
utilize the inverse system of the graph filter for the recovery
of the grid signal. Drayer and Routtenberg [22] proposed an
FDIA detection technique using graph Fourier transform based
on the assumption that bus voltage angles in normal conditions
are smooth over the grid and thereby do not contain high
graph-frequency components. Shi et al. [23] also proposed
a GSP-based anomaly detection technique in the smart grid.
Although the global graph spectral quantities (e.g., GFT) are
used widely for anomaly detection, the direct use of local
smoothness values of graph signals is limited in the literature.
Dwivedi and Tajer in [24] proposed a technique for detecting
line outages in the smart grid based on the global smoothness
of graph signals and locating the outages based on the local
smoothness of the graph signals associated with the power
grid. In the latter work, the conformity of the data with a
model, which is based on a known topology, was used to detect
the topological changes, i.e., line outages in the grid.

III. CYBER ATTACK CHARACTERIZATION

A. Power System Model and Graph Signals

The power system is modeled as an undirected weighted
graph, G = (V,€), where V = {v1,va, ..., un } is the set of all
the vertices representing the buses and £ is the set of links (i.e.,
& ={eij : (1,7) € VxV}) representing the transmission lines
connecting the buses. The cardinality of the sets are |V| = N
and || = M, respectively. The weight corresponding to the
edge e;; is defined as w;; = fj, if there is an edge between
node ¢ and node j (i.e., ¢;; = 1) and w;; = 0, otherwise (if
there is no edge between node ¢ and node j, i.e., e;; = 0).
Here, d;; is the geographical distance between the buses, i and
j. The graph Laplacian matrix L, with elements [;;, is defined
as li; = >,y wij if i = j and l;; = —w;, otherwise.

In this work, the voltage angles of the buses at a particular
time are considered as the graph signal (v, ) : V — R defined
over the vertices of the graph, G. For simplicity, x(v,) will
be further denoted as x(n) and x would be considered as a
N x 1 column vector containing the values of z(n). Since the
voltage angle of the buses changes with time, we denote the
time-varying graph signal as z(n,t).

B. Cyber Attack Model

In this work, the cyber attack models described in our earlier
work [7] are adopted. Specifically, according to [7], the cyber
attack on the measurement or the estimated value of the signal
associated with the buses can be expressed by the following
generalized model:

x(na,t) =c(t), for tstart <t <tena, and na € Vg,

1
where V4 C V is set of all buses under cyber attack from time
tstart tO tenq. Different expressions for the corrupted signal
¢(t) has been used to model the effect of DoS attack, FDIA,
data-replay attack, ramp attack, and delay attack on the time-
varying graph signals associated with the bus voltage angles
of the smart grid. A detailed description of the models can be
found in [7].

1) Denial-of-service (DoS Attack): In this work, the DoS
attack has been modeled as the suspension of updating the
graph signal values corresponding to compromised buses. For
DoS attack, c(t) = z(na,tstart) + q(t), where ¢(t) is the
additive white Gaussian noise (AWGN) with zero mean and
variance o7 , .

2) False Data Injection Attack (FDIA): In this paper, the
FDIA is modeled according to the following expression of the
corrupted signal: ¢(t) = z(na,t)+(—1)%’, where d € {0,1},
|#’| < 7, and T is the residue threshold used in the traditional
bad data detector of the smart grid.

3) Ramp Attack: In the ramp attack, the attacker gradually
inserts falsified measurements into the data corresponding to
the compromised buses according to the equation: c¢(t) =
x(na,tsiart) +m X (t — tsiart) + q(t), where m is the slope
of the linear change.
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4) Replay Attack: In general, the replay attack can be
modeled using the following expression of the corrupted
signal: ¢(t) € {z(nr,tp)}, tp < tstart, nr € Vg, where
Vr C V is the set of all vertices from which the the attackers
can record data at t < tg 4. In this work, a special type of
replay attack has been proposed according to the expression:
c(t) = xz(na, —t).

5) Delay Attack: The delay attack involves loss of synchro-
nization in the time stamped measurements and modeled as:
c(t) = x(na,t —ty), where ty is the amount of delay.

C. Effects of Cyber Attacks on Local Smoothness of Graph
Signals

The local smoothness [25] of the graph signal x(n) associ-
ated with the bus voltage angles is described by:

s(n,t) = l;”((:::)), x(n,t) # 0, (2)
where [, (n,t) is the n—th element of the vector Lz and z is
the vector form of the graph signal x(n,t). In our previous
works [7], [8], it has been shown that cyber stresses in the
smart grid can be detected and located using GSP techniques
based on the local smoothness of the graph signals. In this
approach, the probability distributions of the second time-
derivative of the local smoothness values associated with the
voltage angle measurements of each bus p,/(() are esti-
mated from the past data. If the likelihood of the second
time-derivative of the local smoothness value at any time
instant at bus/vertex n falls below the threshold 05% (e.,
psy (8" (n,t)) < B4r), a cyber stress is declared at bus n at that
time. The time instant at which the attack is detected is denoted
as tgetect. It is worth mentioning that the cyber stresses affect
the local smoothness values significantly. The second time-
derivative of the local smoothness is considered to cancel the
effect of non-stationarity in s(n,t) originated from the non-
stationarity in the graph signal x(n,t) due to the variation
of the load demand in the grid. Our experiments showed
that the proposed local smoothness-based methods outperform
other GSP-based detection and locating methods in terms of
accuracy, especially for detecting cyber attacks with no sharp
changes of values at the attack onset. In the current paper,
the effects of cyber attacks on the local smoothness values
are inspected analytically to evaluate the effectiveness of the
detection and locating method in case of multiple, clustered,
and coordinated cyber attacks.

In this paper, by utilizing the sparse nature of the graph
Laplacian matrix, L, we express l,.(n, t) alternatively as:

> luilist), 3)

ie{n}U.A(n)

lo(n,t) =

where 4} (n) is the set of all vertices in the k—hop neigh-
borhood of n. Next, the effects of cyber attacks on the local
smoothness s(n) will be illustrated.

a) Single Cyber Attack Case with Fixed Load: Let us
consider a single cyber attack at bus n4 € V4. According
to equation (3), this single attack will affect I, (n, tgetect) for
n € {na} U A(na). According to equation (2), the local
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Fig. 1. Changes in the local smoothness values due to different types of false
data injection attack assuming no load changes in the system: (a) single attack
at bus 100 affects bus 100 and its 1—hop neighbors i. e. {100} U .41 (100),
(b) multiple attacks at bus 12, 27, 41, 63, 111 affect those buses and their
1—hop neighbors i.e. {12,27,41,63,111} U4 (12) U7 (27)U A7 (41) U
A1(63) U A1 (111) (c) clustered attack centered at bus 100 and radius 1
affects {100} U .41 (100) U .4#2(100).

smoothness values for these vertices are affected because of
the single cyber attack at the vertex n 4. For instance, Fig.1(a)
illustrates the difference between the local smoothness values
of each vertex before and after a single cyber attack at bus
100.

b) Multiple Random Cyber Attack Case with Fixed
Load: Let us consider p number of cyber attacks at buses
NA,MA,,---Na, € V. According to equation (3), this
multiple attack will affect l,.(n, tgetect) and thereby the lo-
cal smoothness s(n,tgetect) for n € {na,,na,,...na,} U
MN(na,) U M(na,) ... H(nap). For instance, Fig. 1(b)
illustrates the effect of FDIA at buses 12, 27, 41, 63, 111.

c) Clustered Cyber Attack Case with Fixed Load: In a
clustered cyber attack case, we assume the attacker attacks a
central node and its K —hop neighbors. The parameter K is
called the radius of the attack. In the clustered cyber attacks,
the attacker can inject false data at any vertex within the radius
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K. For example, in a clustered cyber attack with attack center
nc € V and radius 1, the attacker changes the graph signal
z(n) for n € {nc} U A1 (na,). According to equation (3),
due to the changes of the signal values in the attack center
nc, the value of [,,(n) would change for n € {nc} U4 (n¢)
and due to the changes of the value at each of the vertices
ng € M(ne), the value of l;(n,tgerect) would change
for n € M(ng), ¥nl, € Ai(nj). Therefore, a clustered
attack centered at nc and radius 1 would affect the values of
(N, taetect) for the vertices n € {nc} U A (ne) U As(ne).
According to equation (2), the local smoothness s(n, tgetect )
changes for these vertices. A clustered attack centering at bus
100 and radius 1 has been considered as an example at Fig.
1(c). In general, a clustered cyber attack, with attack center
ne and radius K, can affect the local smoothness values of
the vertices: {nc} U{U;_; A;(nc)}-

The above discussion provides an insight for detecting,
locating, and characterizing cyber attacks in power grids based
on the local smoothness of the associated graph signals.
However, the assumption of no-load change does not hold in
real-life scenarios. Therefore, due to the perpetual changes of
load demands, the graph signal z(n,t) and thereby the local
smoothness s(n, t) change continuously over time. It is a chal-
lenge to distinguish the changes in local smoothness due to the
cyber attack from the regular changes in local smoothness due
to the load changes. To overcome this problem, we propose
to estimate the probability distribution of the second time-
derivative of the local smoothness values for each of the buses
under the load changes from the past data. If the likelihood
of the second time-derivative of the local smoothness at any
bus falls below a certain threshold, an attack is declared at
that vertex at that time instant. This technique is able to detect
and locate sophistically designed cyber attacks very accurately.
However, the main focus of the current article is to characterize
the attacks based on the local smoothness features.

D. Classification between Multiple Random Attack and Clus-
tered Attack

Based on the discussions in the previous subsection, we can
conclude that single random attacks, multiple random attacks,
and clustered cyber attacks have distinctive signatures in the
pattern of local smoothness values at the time of detecting the
attack, tgetect- However, under the load change at different
buses, the voltage angle graph signals and thereby the local
smoothness values associated with the signals vary in time. As
a result, the rule-based decision-making from the signatures of
multiple random cyber attacks and the clustered cyber attacks
becomes difficult. Therefore, we propose a neural network-
based classification between the two types of attacks.

A total of N + 1 input features, fi, fa,... fnv41, are con-
sidered for the deep learning model. Among them, the first
N features are binary, indicating whether the likelihood of
the second time-derivative of the local smoothness value of a
particular bus at the detection instant is less than a predefined
threshold 0y (ie., fi = 1 if pgr(s”(n,taetect)) < 05 and
0 otherwise, for ¢ = 1,2,...N). The last feature, fyi1,

is a real-valued feature representing the global smoothness

of the graph signal, x(n,tgetect), Which is expressed as
XT(’mtdetect)Li(n7tdetect)
KT(nvtdetect)i(nvtdetect) :

E. Determining Attack Center and Attack Radius in Clustered
Cyber Attacks

After the identification of a cyber attack as a clustered one,
it is crucial to determine the center of the attack and the attack
radius to enhance the situational awareness and mitigate the
effect of the attack. In this work, the goal is to identify the
center of the attack, n¢c and the attack radius, K to help with
situational awareness.

In this work, the problem of locating the attack center is
formulated as an N —class classification problem consider-
ing each bus as a class. The first N features used in the
classification between multiple random and clustered attack
are proposed to be taken as the input features. A multi-class
k—nearest neighbor (kNN) technique is used to solve the
classification to obtain the location of the center of the attack.

Once the center of the attack, n¢, is detected, the radius, K
of the attack can be estimated using the fact that a clustered
attack of radius K, affects the local smoothness values of the
vertices within the K +1 neighborhood of the the attack center.
The radius K can be specified as K = max{D(n¢,np)}—1,
where Vnp € V such that Psy, (8" (np,taetect)) < HS;:P and
D(n1,n2) is the hop-distance between the vertices n; and no,
within the graph, G.

IV. SIMULATION AND PERFORMANCE ANALYSIS

The analyses and the proposed techniques described in the
previous section have been evaluated using simulations on
the IEEE 118 bus system [26]. The power flow calculations
are performed in MATPOWER 6.0 [27]. The time-varying
bus voltage angle signals are simulated by introducing time-
varying load demand. The patterns of the time variation of load
demand throughout the day have been collected from the New
York Independent System Operator (NYISO) [28] and applied
as described in [7]. Different types of cyber attacks are created
according to the attack model as described in [7]. A detailed
description of each experiment and their performances have
been presented in the following subsections.
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TABLE I
PERFORMANCE EVALUATIONS FOR DIFFERNT TYPES OF CYBER ATTACKS.
Attack Accuracy
Type | Random Vs. | Attack Center | Attack Radius

Clustered Locating Estimation
Classification (Clustered) (Clustered)

DoS 0.851 0.886 0.978

Replay 0.922 0.883 0.955
FDIA See Fig. 2 See Fig. 2 See Fig. 2

Ramp 0.858 0.849 0.973
Delay See Fig. 3 See Fig.3 See Fig. 3

A. Classification between Multiple Random and Clustered
Cyber Attacks

For the classification between multiple random and clus-
tered cyber attacks, the performance is evaluated separately for
each of the five types (i.e., DoS, FDIA, data-replay, ramp, and
delay attacks) of attacks as well as for different levels of attack
intensities. For each case, we create a data-set with 10,000
scenarios. Whether a scenario corresponds to multiple random
cyber attack or clustered cyber attack is chosen randomly
with equal probabilities. For the multiple random attacks (e.g.
p number of attacks), the attack locations (p locations) are
chosen from the 118 buses, with uniform probabilities for all
the buses. In the case of the clustered cyber attack, the attack-
center (n¢) is chosen randomly from the 118 buses with equal
probabilities.

The deep learning model for the classification between the
random and the clustered attack consists of 3 hidden dense
layers with 256,128, and 32 neurons, respectively. With the
binary cross-entropy loss function, ADAM optimizer, and an
initial learning rate of 0.5 which decreases at a rate of 0.5
exponent of the time step. The model has been trained and
tested in Sci-kit learn [29] with 10— fold cross-validation. The
performance of the classification model for the sophistically
designed cyber attacks described in equation (1) has been
summarized in Table I. The accuracy of the classification
signifies the rate of classifying in between the random attack
and clustered attack correctly. Since the performance in the
case of the FDIA and the delay attack is dependent on the
attack intensities, their performances are illustrated separately
in Fig. 2 and Fig. 3, respectively showing the variation with
the amount of change in FDIA, 2’ and amount of delay (in
samples) in delay attack.

B. Determining nc and K in Clustered Cyber Attacks

For the determination of the attack center, n¢, and the attack
radius K in case of clustered cyber attack, we have considered
10,000 clustered cyber attack scenarios. In each scenario, the
attack center, nc, has been chosen from the 118 buses and
the attack radius, K has been chosen from {1,2,3,4}, with
equal probability. Five nearest neighbors are considered in
the k—NN method for the classification for determining the
attack center. Performances are summarized in Table I, Fig.
2, and Fig. 3. The accuracy of determining the attack center

and the attack radius imply the rates of correctly determining
the location of the central bus of the clustered attack and the
radius of the attack.

1
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Fig. 3. Dependence of accuracies on amount of delay in delay attack.
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V. STRENGTH OF THE LOCAL SMOOTHNESS-BASED
DETECTION AGAINST COORDINATED ATTACK

In this section, the effectiveness of the local smoothness-
based detection of cyber attacks has been analyzed from the
attacker’s point of view for bypassing the detection scheme. It
has been shown that by launching a coordinated cyber attack in
multiple vertices, the detection techniques can be bypassed by
the attackers, although the coordination requires information
about the grid topology inside the attack area as well as past
data to estimate the distribution of the local smoothness values
at different vertices of the grid.

To establish the coordination technique for the attack at
multiple buses, let us consider that the attackers have access to
all the buses of the set 1V 4 to alter the signal values associated
with the buses. Let us denote the buses (vertices) in which
attackers do not have access (uncompromised buses) as Vi,
ie., Viy = V \ V4. From equation (2) and equation (3) the
local smoothness of the vertices can be written as:

1 .
s(n,t) = o Z lnix(i,t), €]

ie{n}UA(n)

which can be further decomposed into the following with
respect to the compromised and uncompromised buses as:

s(n, t)z(n, t) = > Lz (i, 1)
i€[({n}uAi(n))NV.a]
. (5)
+ Z lnjx(]vt)v

Jel{n}uti(n))NVu]

The relation among the signal values and local smoothness
values of the compromised buses and the uncompromised
buses at a particular time instant can be represented by a set
of equations expressed in the following matrix form:

(La —Sa)x =L, — Luxy, (6)

where L 4 is a matrix containing the a—th columns of L, Va €
V4 and Ly, is a matrix containing the u—th columns of L,
Yu € V \ V4 in the sequence of the original Laplacian matrix
L. S4 is a N X |V 4| matrix whose (i,7)—th element is s(4, t),
when i € V4, and 0 otherwise, and ¢ € [tstart, tend)- Ly, isa
N x 1 column vector whose i—th element is I, (¢) if i ¢ A,
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and 0 otherwise. x;, and x 4 are the column vector containing
the state variables i.e., the graph signal values corresponding
to the compromised and uncompromised buses, respectively,
at any t € [tstart, tend)-

Although the detection method is based on the likelihood
of the second time-derivative of the local smoothness, s”(n, t)
rather than the local smoothness, s(n,t), it can be justified
that maximizing the likelihood of s(n,t) would maximize the
likelihood of s”(n,t) and thereby have a greater probability
to bypass the detection technique. Therefore, the coordinated
attack design problem can be formulated as an optimization

problem:
minimize log(ps
pinimize ) log(p. (O)
subject to (L4 — Sa)x4 = L, — Luxy-

Solving the optimization problem to obtain the set of falsi-
fied measurement x 4 requires the knowledge of the topology
of the grid inside the attack area through L 4 and L;, and the
past data to estimate the probability distribution of the local
smoothness which is in general challenging for the attackers

to acquire.
VI. CONCLUSION

Once an event of cyber attack is detected and located in the
smart grid, its characterization and classification are crucial
for the prompt mitigation of the damage of the attack as well
as for perceiving the intention and strategy of the attacker. In
this paper, it has been shown that along with the detection and
locating of the cyber stresses in the grid, the features extracted
from the local smoothness of the graph signal associated
with the electrical attributes of the buses are effective for
their characterization and classification. The strength of the
local smoothness-based detection technique has been assessed
analytically considering the attackers’ availability of resources
and data.
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