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Abstract—Real-time wide-area monitoring of smart grids de-
mands a low latency data processing of power system data.
To enable the low latency requirements and to avoid the large
overhead of communicating a large volume of time-sensitive data
to central processing units, distributed and local processing of
data is a promising approach that can improve system monitoring
functions. Data-driven state estimation in power systems is an
example of functions that can benefit from distributed processing
of data and enhance the real-time monitoring of the system. In
this paper, distributed state estimation is considered over multi-
region, identified based on geographical distance and correlations
among the state of the power system’s components. Bayesian
Multivariate Linear Regression (BMLR) combined with Auto-
Regressive AR(p) process for distributed state estimation is
considered over the multi-region power system. The performance
of the distributed data-driven state estimation method and the
role of regions are evaluated using the IEEE 118 test case under
normal conditions as well as partially unobservable scenarios.

Index Terms—Distributed State Estimation, Smart Grid, Pha-
sor Measurement Units, Cyber and Physical Stresses.

I. INTRODUCTION

An important function of the wide-area monitoring systems
(WAMS) in power grids is monitoring the state of opera-
tional conditions of the system. The information provided by
these systems to operators and other control and management
functions is essential for well-informed decision making and
reliable and efficient operation of power systems. The con-
ventional state estimators, which have been widely deployed
in utility control centers, have been in use to help with
monitoring the state of the system. In addition to conventional
model-based state estimators, data-driven state estimation (SE)
methods have been proposed to use the large volume of data
collected from the large deployed monitoring sensors, such as
Phasor Measurement Units (PMUs).

Many of the data processing and computations related to
monitoring the power systems have been traditionally per-
formed centrally in utility-owned servers or cloud platforms.
Communicating the large volume of data and their processing
in central units, inevitably adds delay and inaccuracies in the
SE and monitoring of the system. For certain time-sensitive
functions, such delays could cost the reliability and stability
of the system. To address this issue, distributed and local
processing of data can provide a good solution, especially
for time-sensitive functions. Data-driven SE is one of such
functions that can improve the response time of the system,
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particularly, to critical conditions, such as failures or cyber-
stresses. The data-driven distributed SE can provide a faster
and more accurate estimation of current conditions in the local
regions as well as predicting future trends in state changes
to identify abnormal conditions. New technologies, such as
Edge or Fog computing, can provide a platform to enable
these functions by local and distributed processing of data to
enhance system monitoring in power grids [1], [2].

To enable local processing of data for distributed state
estimation (DSE), local neighborhoods or regions need to be
defined over the physical layout of the power system. This
will also allow for provisioning the computational resources
required for each region and their placement (for example in an
edge computing platform). While the partitioning of the power
system to regions can be dictated by physical, geographical, or
economical constraints due to the layout of the power system
and the communication and computing systems’ resources, the
physics of the system and relations and interactions among the
components can also be considered in defining the regions as
they can affect the accuracy of the estimations. In this work,
we consider the geographical properties and the correlations
among the PMU time series when the regions are defined over
the power system for DSE purposes.

In this paper, a Bayesian Multivariate Linear Regression
(BMLR) approach combined with the auto-regressive AR(p)
process is considered and evaluated for DSE. The estimation
method is applied to the local measurements in the defined
regions to obtain the local estimates that collectively will
form the SE of the whole system. The performance of the
local estimates has been compared with the performance of
the same method if it was to be deployed centrally using
the data from the whole system. It has been shown that the
local estimates can provide faster and better accuracy in the
estimations compared to the case that all the information
was used centrally for the estimates. We have evaluated the
performance of the estimation model under normal operating
conditions and partially unobservable scenarios. In this paper,
partially unobservable scenarios refer to cases in which the
data from a subset of PMUs become unavailable due to, for
example, cyber stresses such as the denial of service (DoS)
attack or physical failures of the PMUs.

The rest of the paper is organized as follows. Section II
presents a brief literature review on data-driven SE. Section
IIT presents the strategy to partition the grid into multiple
regions. Section IV presents the distributed estimation model.
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Finally, Sections V and VI present the numerical results and
conclusion, respectively.

II. RELATED WORK

Power system state estimation has been the focus of re-
searchers for several decades. Conventional power system
SEs rely heavily on the power system models including the
connectivity, attributes, and operating conditions of the com-
ponents. A review of various methods for model-based power
system SE can be found in [3], [4]. Many of the model-based
SE techniques are based on steady-state analyses. However,
steady-state analyses cannot be accurate for modern power
systems due to highly dynamic and stochastic variations intro-
duced by, for instance, Distributed Energy Generations (DEGs)
and fast-changing loads. Besides, the deployment of PMUs
and the availability of a large volume of measurement data,
introduce new opportunities for improving and complementing
the conventional model-based SE in power systems. As such,
data-driven and machine learning-based SE techniques are
gaining more attention in the literature [5]-[8]. Some of the
benefits of data-driven approaches include robustness against
frequent topology changes and missing or inaccuracies in sys-
tem information, dynamic security assessments, and situational
awareness against cyber/physical stresses [9]-[12]. As the
focus of the current paper is on data-driven SE, next, we briefly
review some of the data-driven SE methods in the literature.

In the data-driven SE context, some techniques are cen-
tralized and use the data from the entire system. Many of
the centralized SE techniques are focused on addressing the
challenges regarding data quality issues, such as non-Gaussian
measurement noise, bad data, cyber-stresses, missing data, and
also frequent topology changes. Examples of such techniques
based on forecasting aided and predictive information filters
are [9]-[14]. In [12], [14], the authors have proposed a
centralized data-driven dynamic SE based on component’s
state correlations over the continuous data-streams from the
PMUs. They also showed strategies to detect and locate cyber
and physical stresses by observing the instantaneous changes
in the cross-correlation of the PMU measurements. The works
in [10], [11] address the challenge of partially unobservable
systems under the influence of joint cyber and physical stresses
using a minimum mean square estimator and a Bayesian
linear regression framework, respectively. Among centralized
techniques, Kalman Filters (KF) and its variants have also been
widely adopted to address the state estimation problem [8],
[15]. For instance, in [8] a variation of KF based on the
Koopman Operator-Theoretic Framework has been proposed,
which can capture the nonlinear dynamics of the power system
on a centralized data-driven SE framework.

Communicating and centralized processing of the large
volume of data generated in the system may not satisfy
the response-time requirements of time-sensitive functions
such as those for WAMS. To enhance the centralized data-
driven SE in accuracy, robustness, and response time, various
distributed data-driven SE methods have been proposed. These

techniques can be considered as fully distributed or multi-
region distributed SE. An example of a fully distributed SE can
be found in [16], which uses predictive information filtering.
The work in [17] uses diffusion-based KF also for fully
distributed SE in which a selected set of nodes in the system
are allowed to share a subset of intermediate estimates to their
neighbors using information propagation strategies.

Some distributed SE techniques divide the system into
multiple regions/areas for SE based on various factors, such as
geographical distance, operational similarity, communication
resources, etc. For instance, the work in [1] discusses an early
distributed stress detection and locating mechanism based on
a linear predictive filter, which can be implemented over an
edge computing platform for multi-area smart grids defined
based on geographical distances. The authors in [18] propose a
multi-area distributed SE approach with the integration of edge
computing in which the local estimates have been computed
using the Belief Propagation (BP) algorithm over geograph-
ically defined areas. Variants of artificial neural networks
(ANNs) have also been considered for distribution system SE
problems in multi-area distributed fashion [19]. Distributed
cubature KF has also been studied for the SE problem in the
multi-area framework for large-scale power systems in [20].
In addition to data-driven methods, distributed SE based on
other techniques has also been proposed. For instance, the
work in [21] presents a k-means approach that was used to
partition the grid into regional subsections, and then SE was
solved as a distributed convex optimization problem utilizing
the Alternating Direction Method of Multipliers (ADMMs)
algorithm and evaluated the performance under cyber and
physical stresses.

The work in the current paper stands among the data-driven
SE methods that use the local information in the defined
regions over the system to provide fast and accurate state
estimates. This work can enable the detection of stresses and
state information recovery after stresses. Moreover, partial
unobservability of the system, which can be due to cyber
attacks or physical failure, has also been considered.

III. SMART GRID PARTITIONING FOR DSE

In this paper, we have considered multi-region DSE for
smart grids. As such, the first step is to define and identify
partitions in the system that facilitate the DSE using the local
information within each region. We assume that the system
consists of /N buses connected using transmission lines.

As computations are supposed to be local, the geographical
proximity of the PMUs is one criterion in defining the regions.
To incorporate the dynamics and properties of the power
system, which can affect the DSE performance, we consider
the cross-correlations of PMU time series at buses as the
second criterion in defining the regions. This criterion will
result in more inter-related feature space for the estimation
model, which can improve the estimation performance.

The grid is partitioned into R regions, where the set of
regions are denoted by S = {S1, S5, ..., Sg}. In this paper,
the role of the number of regions R on the performance of
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the approach has been evaluated. To solve the partitioning
problem, a density-based clustering algorithm, specifically, k-
means, is adopted to find the optimal non-overlapping regions
given the total number of regions R. The k-means clustering
partitions the PMUs while minimizing the sum of squares of
distances within a region. We use the geographical coordinates
of the buses as well as the cross-correlation values in the
feature space for the k-means algorithm.

This method will lead to non-homogeneous partitions. How-
ever, large differences in sizes of regions may not be suitable,
for example, due to limitations of the local computing and
communication resources (e.g., communication bandwidth,
storage, and computational power). To address this point and
to evaluate the role of homogeneous and non-homogeneous re-
gions in DSE performance, we use a size-constrained k-means
algorithm that helps in generating more homogeneous regions
in size. In the first step, the k-means algorithm as discussed
earlier will divide the grid into R non-homogeneous regions
(assuming N >> R). Note that | % | represents the approximate
ideal size of the homogeneous partitions. In the next step,
the largest partition will be identified and L%J PMUs that
are closest to the center of the region will be selected and
assigned to this region. This region will be marked as complete
and temporarily removed from the graph. This process will be
repeated for the reduced graph. Specifically, in the next step
k-means is applied to the reduced graph to identify R — 1
non-homogeneous partitions, and then the assignments for the
largest partition will be finalized, and so on. This process will
be repeated until R homogeneous regions are obtained. If there
are PMUs left out in the last step (due to (N mod R) # 0),
they will be assigned to their closest region.

’ Edge Unit
Region 1
@ Region 2
@ Region3
© Region 4
O Region 5
--Wireless Link
Fig. 1: Schematics of the proposed multi-region DSE frame-
work enabled by distributed edge computing over the IEEE

118 bus system.

IV. ESTIMATION MODEL

The PMUs sample the state of the power grid’s components
and provide a sequence of phasor measurement observations in
a form of time series. We denote the phase angles of buses in
the system at time ¢ by 8, = [0+, 0at, .., O n¢] and bus voltages
by V, = [Vit, Vat, .., Vt]. In this paper, we will focus on

phase angle time series, while the study can be applied to
other collected attributes from the system.

Measurements from the PMUs are multivariate time se-
ries while the consecutive measurements have high auto-
correlation among themselves. To capture this property of time
series, we have expanded our feature space with an AR(p)
process such that 0; = f(0,_,,0,_,,..,0,_p), where 0,_, is
the past observation at time ¢ — i in the time series. Then
the SE problem may be described by linear regression as
0: = 870} + e, with coefficients as (3, where the goal is to
find maximum likelihood (ML) estimate at node ¢, éit, for 6;;
while minimizing frobenius norm | 876} — 6;; ||.

However, the computed weight vector [ in the linear
regression may not be able to capture all uncertainties, es-
pecially in the case of noisy measurements, since it only
gives the ML estimate. One solution to address this issue
is to adopt the Bayesian approach to regression, which will
learn the probability distribution of all possible /3 values that
describe the relations between ¢, and éit. The Bayesian linear
regression with AR(p) can be realized as 0;; ~ N (870}, 02).
Unlike linear regression, which finds the ML estimate for
coefficients 3 that describe the relationship between the inputs
and the outputs, we are interested in computing a probability
distribution for 8 values that describe this relationship. This
can be calculated by defining prior distributions for 3, and later
applying the Bayes rule to calculate the posterior distribution
of 3. There are several choices for the prior distribution of
the coefficients. In this work, we follow the Bayesian regres-
sion model described in [22]. The authors in [22] assumed
conjugate normal inverse-gamma prior for 3,02, and used
variational inference that makes the computations faster. Under
this assumption, the likelihood of the éit can be written as
P(eit@v B, 02) = N(G'Ltm;? B, 02)'

Note that in the Bayesian approach a general assumption is
that the individual data streams from the PMUs have Gaussian
distribution, which may not be accurate and valid in all cases.
Modeling individual time series with their true distribution
may improve the estimation performance. However, in this
case, the mathematical model may become intractable and will
have a higher computational cost.

V. DISTRIBUTED MULTI-REGION STATE ESTIMATION

For the local processing of data in distributed computing
units, we consider edge computing as an example supporting
platform of multi-region distributed SE. First, the smart grid
is divided into regions and the center of each region p, (based
on its geographical coordinates) is adjusted to its nearest PMU
for optimal placement of edge computing unit. Each edge
computing unit is connected via wireless links to PMUs in the
region. It collects the associated regional PMU measurements
(such as V. 0) and processes the data for one step ahead SE
using the model discussed in section IV. Since data is being
processed by local edge nodes instead of being transferred to
the central cloud servers, the overall communication latency
will be reduced and faster decision making can be achieved
from the local estimations [1]. Finally, local estimates can be
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Fig. 2: Stacked representation of different region sizes for,
a) non-homogeneous partitioning, and b) homogeneous parti-
tioning. Each color represents a different region. For example
when the number of regions is ten then different colors
represent the ten regions.

used locally for responding to a situation identified or can be
communicated to the central systems and also be combined to
achieve the overall system estimate. Figure 1 shows the general
schematics of the multi-region SE on the IEEE 118 bus system.
In this figure, each colored node of the graph represents a bus
in the system and the black solid lines represent a transmission
line. Different colors assigned to the nodes specify the regions
defined over the system. Note that in this paper, we do not
consider the coordinated and collaborative SE among the edge
servers of different regions. We assume that the central system
is also not helping with the distributed estimations. However,
such methods and the communication among the edge servers
of different regions and the central system in a distributed
manner can also be considered in DSE estimation [19]-[21].
These aspects are some of our current ongoing research.

VI. RESULTS

In this paper, the IEEE 118 bus system has been used to
demonstrate the performance of the proposed technique. We
have simulated a large dataset of PMU time series in both
normal and also under partially unobservable scenarios using
MATPOWER [23] simulation toolbox. The considered unob-
servable scenarios (due to physical failures or DoS stresses)
are described in detail later in this section. We have used real
load profiles from the New York Independent System Operator
(NYISO) and sampled at 30Hz to generate quasi-static PMU
time series by solving power flow at each sample. From the
simulation, the bus phase angle time series have been recorded
as the state variable.

Using the simulated data the spatial cross-correlations of
state variables have been calculated. Using the partitioning
strategy discussed in Section III, the grid topology is divided
into non-overlapping regions. We have solved the partitioning
in both non-homogeneous and homogeneous partition sizes
using 1) geographical distance (G), 2) geographical distance
and cross-correlation (GC), 3) geographical distance in homo-
geneous partitioning (GS), and 4) geographical distance and
cross-correlation in homogeneous partitioning (GCS). We have
compared the performance of estimation for these partitioning
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Fig. 3: Average MSE over all the buses compared for different
partitioning strategies and for different number of regions.
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Fig. 4: a) MSE at each bus for five regions, R = 5, and b)
average MSE as a function of added noise (SNR) for central
estimation and multi-region estimation for R in the range of
2 to 10 and GCS partitioning technique.

scenarios. Figure 2 represents the region sizes (i.e., number
of buses inside each region) as a function of the number
of regions. It can be seen from figure 2(a) that in non-
homogeneous case the size of regions are not consistent and
some regions have almost twice the number of components
of others. In figure 2(b) homogeneous partitioning results in
more size consistency.

The performance of DSE in terms of average mean square
error (MSE) is depicted in figure 3 as a function of the
number of regions for different partitioning strategies in both
homogeneous and non-homogeneous partition sizes. The av-
erage MSE is taken over all the buses of the system. In this
figure, the dashed line is the estimation error if the model
was to be applied centrally using the data from the whole
system. From the figure, we see that partitioning the grid can
improve the overall estimation performance depending on the
number/size of partitions. As the defined regions consider the
cross-correlation among the PMUEs, in the smaller region sizes
the feature space for the model is more densely correlated thus
improving the overall average estimation accuracy. However,
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Fig. 5: Average MSE for different stress sizes (number of
unobservable buses) in two different stress scenarios (scattered
and grouped). The results are shown for the central estimation
and averaged multi-region estimation for 12 from 2 to 10 and
GCS partitioning technique.

as the number of regions increases the model will have access
to less information compared to the larger partition sizes thus
the overall estimation error increases again. The variation of
estimation error among different partitioning is small but the
results show that incorporating correlation into the partitioning
process slightly improves the overall estimation accuracy. The
best estimation accuracy occurs when the number of partitions
is homogeneous and small (less than ten). As such, we will
focus on a small number of GCS-based partitions for the rest
of the analyses.

Note that the estimation accuracy values are different at var-
ious buses of the system as shown in figure 4(a). Specifically,
the state of some buses is difficult to estimate, which can be
due to their complex interaction dynamics with other compo-
nents. The dotted line shows the average performance for all
buses. Figure 4(b) shows the average estimation performance
as a function of added Gaussian white noise to the PMU time
series data. This added noise represents measurement noise or
communication channel noise. As expected the performance
increases with the increase in Signal to Noise Ration (SNR).
The results also show that the estimator maintains good
performance for SNR values larger than 40db. Since our results
show small variations of estimation error under noise for
different partition sizes, figure 4(b) only depicts the MSE for
the central case and for averaged over the number of regions
in the range 2 to 10.

To evaluate the performance of the DSE under partial unob-
servability, we have considered scenarios that can be resulted
from cyber stresses (such as DoS stresses) or the physical
failure of PMU devices or disconnections in their communi-
cation links. In such cases, the local and the central servers
will not receive any data or only receive the channel noise
instead of the actual measurements from the PMU. We have
considered two different scenarios of partial unobservability:
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Fig. 6: Average MSE of unobservable buses for different stress
sizes (number of unobservable buses) in two different stress
scenarios (scattered and grouped). The results are shown for
the central estimation and averaged multi-region estimation for
R from 2 to 10 and GCS partitioning technique.

a) when the unobservable PMUs are scattered throughout
the grid randomly, and b) when the unobservable PMUs are
localized geographically (for instance due to localized events
such as earthquakes or attacks). We have simulated 100 stress
scenarios for each case and each stress size (i.e., number of
unobservable PMUs). The average MSE over all the buses
under different stress scenarios for different stress sizes is
represented in figure 5. As the variations of estimation error are
very small for different numbers of partitions, in this figure, we
have presented MSE for the central estimator and for the multi-
area estimator averaged over the number of regions in the
range 2 to 10. It can be observed that the estimation error rises
as the number of unobservable buses increases in both stress
scenarios. However, the grouped stress cases impose more
strain on the estimator as the number of correlated features
becoming unavailable increases in a region. In the simulations,
we have considered less than ten percent of the buses may
become unobservable as a result of the stress; however, these
results can be extended to any number of stressed buses.
Overall the estimator retains promising performance under a
small number of unobservable buses in both scenarios. Figure
6 shows similar results for the MSE of recovering the state
of unobservable buses from other PMU data streams in both
stress scenarios.

The estimation error of our proposed approach, which is
=~ 8.6 x 10~* (averaged over all buses for the number of
partition < 10), is comparable to the state of the art physics-
driven estimation techniques. For instance, the performance
(the average estimation error over all the buses) of the adap-
tive multi-area distributed Quasi-newton (A-DQN) algorithm
presented in [24] is = 5.8 x 10~*, which is slightly better
than the proposed technique in the current paper due to
collaboration consideration between the regions. However,
the proposed technique in the current paper outperforms
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the physics-driven hybrid linear multi-area state estimation
techniques [25], which is based on the traditional weighted
least square approach, with a performance of = 1.38 x 102
for average estimation error over all the buses.

VII. CONCLUSION

In this work, we discussed a data-driven, multi-region
distributed SE framework for the smart grid. We applied
a multivariate Bayesian linear regression method combined
with AR(p) for one step ahead state prediction. We dis-
cussed that for multi-region distributed SE the grid needs
to be partitioned into regions with geographical and power
system considerations (such as correlation among the PMU
time series). We considered both homogeneous and non-
homogeneous region sizes in our study. We showed that
the distributed SE can achieve better estimates compared to
its central counterpart when the grid is partitioned into few
regions. We also discussed that the proposed method can be
implemented over a distributed computing platform, such as
edge computing. The proposed framework can lead to low
latency and faster data processing, which results in improved
wide-area monitoring for smart grids. We also considered
partially unobservable scenarios that can result from cyber or
physical stresses on PMUs and showed that the distributed
estimation approach can handle the estimations under such
scenarios well. The future goal is to provide a distributed
SE framework with communication and coordination among
the regions to improve situational awareness and robustness
against different cyber and physical stresses.
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