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Abstract— We study online privacy-preserving anomaly detec-
tion in a setting in which the data are distributed over a network
and locally sensitive to each node, and a probabilistic data model
is unknown. We design and analyze a data-driven solution scheme
where each node observes a high-dimensional data stream for
which it computes a local outlierness score. This score is then per-
turbed, encrypted, and sent to a network operator. The network
operator then decrypts an aggregate statistic over the network
and performs online network anomaly detection via the proposed
generalized cumulative sum (CUSUM) algorithm. We derive an
asymptotic lower bound and an asymptotic approximation for
the average false alarm period of the proposed algorithm. Addi-
tionally, we derive an asymptotic upper bound and asymptotic
approximation for the average detection delay of the proposed
algorithm under a certain anomaly. We show the analytical
tradeoff between the anomaly detection performance and the
differential privacy level, controlled via the local perturbation
noise. Experiments illustrate that the proposed algorithm offers
a good tradeoff between privacy and quick anomaly detection
against the UDP flooding and spam attacks in a real Internet of
Things (IoT) network.

Index Terms— Network anomaly detection, online, data-driven,
distributed differential privacy, privacy-anomaly detection
tradeoff.

I. INTRODUCTION

IN REAL-TIME monitoring of safety-critical systems,
anomalies should be quickly identified for a timely

response [1], [2]. Moreover, in distributed networks where
each node/user/device has privacy-sensitive data, data-driven
statistical inference should not violate the confidentiality of
data providers [3], [4]. Further, since real-world data often
exhibit arbitrary statistical characteristics [5], [6], this study
aims to develop an effective online privacy-preserving net-
work anomaly detection scheme that is free of data model

Manuscript received February 27, 2021; revised November 1, 2021;
accepted December 21, 2021. Date of publication January 21, 2022; date
of current version February 17, 2022. This work was supported in part by
the U.S. National Science Foundation under Grant ECCS-2040500 and Grant
ECCS-2040572. (Corresponding author: Mehmet Necip Kurt.)

Mehmet Necip Kurt was with the Department of Electrical Engi-
neering, Columbia University, New York, NY 10027 USA (e-mail:
m.n.kurt@columbia.edu).

Yasin Yılmaz is with the Department of Electrical Engineering, University
of South Florida, Tampa, FL 33620 USA (e-mail: yasiny@usf.edu).

Xiaodong Wang is with the Department of Electrical Engineering, Columbia
University, New York, NY 10027 USA (e-mail: wangx@ee.columbia.edu).

Pieter J. Mosterman is with MathWorks, Natick, MA 01760 USA (e-mail:
pmosterm@mathworks.com).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JSAC.2022.3142302.

Digital Object Identifier 10.1109/JSAC.2022.3142302

assumptions and hence applicable to a variety of real-world
networks such as vehicular [7], power (i.e., smart grid) [8],
Internet of Things (IoT) [9], and cellular networks [10]. For
example, in distribution smart grids, smart meters are subject
to false data injection (FDI) attacks [11]. The network operator
needs early detection of the FDI attacks for the security and
reliability of the network, however, raw smart meter data reveal
privacy-sensitive user electricity consumption patterns [8].
This study proposes a generic solution that can be used to
timely detect FDI attacks in the smart grid while effectively
maintaining the privacy of the smart meter data of users.

A. Background

To process privacy-sensitive data, various techniques have
been developed such as homomorphic encryption, secure
multi-party computation, federated learning, and differential
privacy (DP) [4], [12]. Homomorphic encryption [13] trans-
forms the data such that arithmetic operations performed on
the encrypted data correspond to the same arithmetic opera-
tions on the raw data. This enables processing encrypted data
directly without having access to the raw data. In a distributed
setting, this method requires a coordination among multiple
parties, particularly a centralized key management authority.
Moreover, homomorphic encryption is computationally inten-
sive, which might limit its practical use. Alternatively, secure
multi-party computation [14] enables a set of nodes to compute
a desired function collaboratively without revealing their own
raw data. Although promising, this method also requires a
coordination among nodes via peer-to-peer communication,
which might be costly in practice, especially over large-scale
networks.

Federated learning is an iterative distributed learning proce-
dure where a set of nodes is coordinated by a central node with
the goal of learning a common model in a privacy-preserving
manner [15]. The central node sends the latest model to the
nodes and each node feeds back a model update computed
through its own data. The central node then updates the model
by fusing the local updates. In [15], a deep neural network
model is trained where at each iteration the nodes compute
the local gradients and the central node updates the neural
network weights via the average of local gradients. In terms
of privacy, the main concern is that the local updates may still
reveal privacy-sensitive information to the central node [16].

DP [3] is a probabilistic framework based on the notion
of indistinguishability. In particular, observing the output of
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a differentially private algorithm, one cannot infer if any
specific node/user/device contributed to the data. This ensures
roughly the same level of privacy to each data provider.
More specifically, change or removal of the data of any
single node does not significantly alter the output likelihood.
In this framework, privacy is achieved by randomizing the
released statistics from a database, where the worst-case
privacy risk can be quantified and calibrated with the level
of randomization. The randomization can be achieved in many
manners such as input perturbation (via additive noise), output
perturbation, objective function perturbation, and exponential
selection mechanism [4].

B. Related Work

There has been a growing research interest in differentially
private machine learning and signal processing [4], [17]–[24].
For a differentially private algorithm, mainly the effect of
privacy constraints on the algorithm performance should be
analyzed, which allows the computation of achievable per-
formance given the desired privacy level. The DP literature
commonly presumes a centralized trusted data collector that
has access to all the raw data and releases statistics from this
database privately.

Albeit to a lesser extent, distributed DP has been also stud-
ied. In [25], distributed implementation of privacy-preserving
databases through distributed noise generation has been stud-
ied where each node generates a share of overall random
noise. This scheme requires cooperation and coordination
among nodes. In [12], privacy-preserving aggregation of dis-
crete time-series data is studied and a differentially private
stream aggregation algorithm is presented, where a group
of nodes periodically send encrypted randomized messages
to an untrusted data aggregator. This mechanism achieves
aggregator obliviousness, that is, the aggregator is not able to
obtain any unintended information about the individual nodes
other than the intended aggregate statistic over the network.
Similarly, in [26] a private stream aggregation algorithm is
presented where, different from [12], neither coordination
among nodes nor a centralized key management authority is
required to achieve the aggregator obliviousness.

Privacy-preserving change and anomaly detection have also
been studied recently. A subset of these studies claim prac-
tical privacy benefits without rigorous privacy analysis. Such
algorithms can be mainly motivated by the data processing
inequality, that is, the processed or transformed form of data
carry less information than the raw data. For instance, in [27]
a privacy-preserving anomaly detection scheme is presented
where the raw sensitive data is firstly transformed for privacy
concerns and then an anomaly detection algorithm is employed
based on the Gaussian mixture model and the Kalman filter,
however, no theoretical privacy analysis is provided.

Federated learning-based anomaly detection algori-
thms [28]–[35] also provide practical privacy benefits as they
only allow the exchange of model updates while keeping
the raw data private. However, local model updates are still
subject to leakage of privacy-sensitive information [16].
In [28], a federated learning-based algorithm is proposed,

which depends on a local gated recurrent unit (GRU) model
at every node and a global GRU model at the network center.
The network center aggregates the local model weights
shared by the nodes and updates the global model for
attack detection and classification in IoT networks. In [29],
a network anomaly detection algorithm is proposed based on
the federated learning and transfer learning mainly against
data scarcity, which is motivated by the fact that deep
learning models usually require a large dataset for training.
In [30], a distributed self-learning system is proposed
for the detection of compromised devices (e.g., by the
Mirai malware) in an IoT network. The algorithm detects
anomalous communication behaviors of IoT devices and
uses federated learning to aggregate anomalous behavior
profiles privately. In [32], a federated learning-based intrusion
detection scheme is proposed based on the convolutional
neural network (CNN) and the GRU models along with
a secure communication protocol using the homomorphic
encryption. The secure communication protocol requires a
centralized key management authority and the communication
overhead associated with this protocol might be prohibitive
for a real-time implementation.

Another subset of studies provide provable privacy guaran-
tees, particularly DP, but with restrictive assumptions such as
fully-known data models or bounded log-likelihood ratios. For
instance, in [21] a window-based differentially private variant
of the cumulative sum (CUSUM) algorithm is presented in
a setting where the pre- and post-change data models are
known. In this method, the log-likelihood ratio is perturbed
to provide a private estimate of the change-point. It is a
centralized detection method as the entire raw data is assumed
to be available at the decision maker. Similarly, in [22] the
differentially private hypothesis testing problem is studied in
a model-based centralized setting and a window-based private
change detection algorithm is presented.

Finally, in [24] a differentially private distributed intrusion
detection scheme is proposed for vehicular networks based on
the alternating direction method of multipliers. In this method,
vehicles collaborate via vehicle-to-vehicle communications to
train a network-wide classifier for attacks or intrusions while
protecting the privacy of training data.

C. Contributions

We propose a generic privacy-preserving data-driven online
network anomaly detection algorithm. Our main contributions
are in analyzing the performance of the proposed algorithm.
In particular,

• We derive an asymptotic approximation and an
asymptotic lower bound for the average false alarm
period (FAP) of the proposed algorithm.

• We derive an asymptotic approximation and an asymp-
totic upper bound for the average detection delay (ADD)
of the proposed algorithm under a certain given anomaly.
Additionally, we derive the worst-case asymptotic upper
bound on the ADD of the proposed algorithm without
needing any knowledge about the anomaly.

• We show the analytical tradeoff between the DP level and
the network anomaly detection performance, where the
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TABLE I

COMMON SYMBOLS AND PARAMETERS

tradeoff is controlled via the variance of local perturbation
noise.

D. Organization

The remainder of the paper is organized as follows.
Section II describes the problem. Section III explains our
solution approach. Section IV presents analysis of the pro-
posed solution. Section V presents numerical evaluation of the
proposed solution over an IoT network. Finally, Section VI
concludes the paper. Boldface letters denote vectors and
matrices, all vectors are column vectors, and ·T denotes the
transpose operator. P and E denote the probability and
the expectation operators, respectively. Table I summarizes the
common symbols and parameters in the paper.

II. PROBLEM DESCRIPTION

Consider a distributed network with N nodes and each
node n ∈ {1, 2, . . . , N} has a high-dimensional observation
xt,n ∈ R

mn at time t ≥ 1, where mn � 1 denotes the data
dimensionality of node n. At an unknown time τ , called the
change-point, an anomaly happens over the network, such as
a cyber attack, a cyberphysical attack, or a random fault, and
the network deviates from its nominal operation. Anomalies
can be attributed to a change in the statistical properties of
the data generating process and hence for the network data
xt � [xT

t,1,x
T
t,2, . . . ,x

T
t,N ]T, we can write

xt ∼
�
fx
0 , if t < τ,

fx
1 �= fx

0 , if t ≥ τ,
where fx

0 denotes the probability density function (pdf) of xt

under nominal conditions and fx
1 denotes the pdf of xt after

the anomaly.
Our goal is to detect network anomalies timely and reliably

based on the observed data sequence, corresponding to a
sequential change detection problem [1], [36], [37], where at
each time t, after new observations, a decision is made: either
a change (anomaly) is declared or it is continued to observe

Fig. 1. A graphical description of the problem.

more data in the next time interval. The design goal is to detect
the changes as quickly as possible while limiting the risk of
false alarm.

The Lorden’s minimax formulation aims to minimize the
worst-case ADD subject to a lower bound on the FAP [38].
In particular, letting Γ be the stopping time at which a change
is declared and J(Γ) be the worst-case ADD, given by

J(Γ) � sup
τ

ess sup
Fτ

Eτ

�
(Γ− τ)+ |Fτ

�
,

where (·)+ = max{0, ·}, Fτ denotes the set of observations
up to the change-point τ , and ess sup denotes the essential
supremum, the minimax problem can be stated as [38]

inf
Γ

J(Γ) subject to E∞[Γ] ≥ ζ, (1)

where E∞[Γ] denotes the FAP and ζ denotes the desired lower
bound on the FAP.

If the data models fx
0 and fx

1 are known and the network
data {xt}t are fully available at a decision maker, the CUSUM
algorithm is the optimal solution to the minimax problem
in Eq. (1) [39]. If the data models are known except for
some unknown fixed parameters, the generalized likelihood
ratio (GLR) test, making use of the estimates of unknown
parameters, has asymptotic optimality properties [1, Sec. 5.3].
However, for high-dimensional real-world data streams, usu-
ally the nominal pdf fx

0 is difficult to model or intractable
to estimate. For example, in a large-scale real network it
is difficult to model complex interactions between nodes.
Moreover, the anomalous pdf fx

1 might take arbitrary unknown
and time-varying forms depending on the type and cause
of anomalies [40], [41]. Hence, in this study, we assume
both fx

0 and fx
1 are unknown and we look for a model-free

(i.e., data-driven) solution.
In distributed networks with privacy-sensitive data, data-

driven change/anomaly detection procedure should not violate
the data privacy. Basically, if the local data are sensitive
to a node, no other entity should be allowed to access the
raw local data. In this case, since the network anomaly
detection is critical for the network security and reliability,
the network operator may only request from nodes to disclose
some minimal information aligned with the anomaly detection
task. Considering such a setting, let every node n, based on its
local data xt,n at time t, send a univariate message zt,n to the
network operator, as illustrated in Fig. 1. The decision maker
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Fig. 2. An overview of the proposed solution approach.

(network operator) then receives zt � [zt,1, zt,2, . . . , zt,N ]
from all nodes and decides on the anomaly based on the
sequence of {zt}t. Using this general architecture, we aim
to design an effective solution scheme that achieves

• model-free online processing of the local data streams
and disclosure of minimal task-oriented information from
each node,

• differentially private aggregation of node messages at the
network operator, and

• quick and reliable low-complexity network anomaly
detection.

III. SOLUTION APPROACH

Our solution consists of three functional modules: local data
processing, private stream aggregation, and online anomaly
detection (see Fig. 2). In the first module, sensitive data is
analyzed and processed locally at the node it belongs to
and some useful information is extracted for the anomaly
detection task. In the second module, for DP, instead of
releasing the extracted information directly, it is first per-
turbed via additive noise and then a form of cryptographic
communication is utilized between the nodes and the network
operator to ensure that the network operator can only decrypt
an aggregate statistic over the network but not the individual
node information. In the third module, the network operator
performs online anomaly detection. The local data processing,
perturbation, and encryption are carried out at the nodes while
the decryption and online anomaly detection are performed
at the network operator. Next, we explain these functional
modules in more detail.

A. Local Data Processing

At time t, after acquiring a new sample xt,n, node n
computes a local outlierness score pt,n ∈ [0, 1] corresponding
to xt,n. Since the data models are unknown, a model-free
(i.e., nonparametric) method is used to compute the local out-
lierness score. In our solution, we describe a generic method,
where each node can use a different (e.g., distance-based,
neural networks-based, or subspace-based) method under this
generic scheme based on the local data characteristics.

We assume each node n stores a local historical dataset
Xn � {x1,n,x2,n, . . . ,xWn,n} of size Wn consisting of
nominal (anomaly-free) samples. The local data processing at
node n consists of offline and online phases. In the offline
phase, a set of useful univariate summary statistics is extracted
from Xn. These statistics are used to represent the nominal
behavior of node n. In the online phase, when a new sample
xt,n is acquired, the online summary statistic corresponding
to xt,n, denoted with st,n, is computed and the corresponding

TABLE II

SPACE AND TIME COMPLEXITY OF THE

PCA-BASED PROCEDURE AT NODE n

p-value estimate pt,n is computed as the local outlierness
score based on how likely it is to observe st,n under nominal
conditions. As a useful and illustrative example, Algorithm 1
explains a subspace-based local data processing method based
on the principal component analysis (PCA). We next briefly
explain the principle behind the proposed local data processing
method in Algorithm 1.

If the observed high-dimensional data stream at node n
exhibits a low intrinsic dimensionality, we can write:

xt,n = yt,n + rt,n,

where yt,n is the representation of xt,n in a lower-dimensional
subspace and rt,n is the residual term. The PCA is a
well-known nonparametric method to learn linear mani-
folds [42, Sec. 12.1]. If the local nominal data can be well
represented in a linear subspace, we can use the PCA to learn
a nominal subspace for node n using Xn. Since anomalous
data are expected to deviate from the nominal subspace, the
magnitude of the residual term, that is, �rt,n�2, is expected to
take higher values for anomalous data compared to the nominal
data. We can hence use the magnitude of the residual term as
a useful summary statistic (i.e., st,n = �rt,n�2) to make a
distinction between anomalous and nominal data. First, in an
offline phase, we employ the PCA [42, Sec. 12.1] to determine
a representative nominal subspace and compute a set of resid-
ual magnitudes. From this set of nominal summary statistics,
we then form a nominal empirical distribution function (edf).
In the online phase, we estimate the p-value pt,n corresponding
to a new sample xt,n based on the nominal edf of summary
statistics, as summarized in Algorithm 1. The space and time
complexity of Algorithm 1 is provided in Table II (for both
offline and online phases).

The p-value estimate pt,n given in Algorithm 1 almost
surely converges to the actual p-value as the sample size
grows to infinity, that is, as Wn → ∞. This is because the
nominal edf formed by {�ri,n�2 : xi,n ∈ Xn} pointwise
almost surely converges to the nominal cumulative distribution
function (cdf) as the sample size grows, by the Glivenko-
Cantelli theorem [43]. Under nominal conditions (no anom-
aly), the p-value is uniformly distributed U [0, 1]. The p-value
estimate pt,n is hence asymptotically (as Wn → ∞) uniform
for t < τ . Moreover, the p-value is expected to take smaller
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Algorithm 1 PCA-Based Procedure at Node n
Offline Phase
1: Compute the sample mean x̄n = 1

Wn

�
xi,n∈Xn

xi,n.
2: Compute the sample data covariance matrix Qn =

1
Wn

�
xi,n∈Xn

(xi,n − x̄n)(xi,n − x̄n)T.
3: Compute the eigenvalues {λi,n : i = 1, 2, . . . ,mn} and the

eigenvectors {vi,n : i = 1, 2, . . . ,mn} of Qn.
4: Determine the dimensionality of the submanifold, rn, based

on the desired fraction of data variance retained in the
linear manifold, written by

�rn

i=1 λi,n/
�mn

i=1 λi,n, where
λ1,n, λ2,n, …, λrn,n denote the rn largest eigenvalues Qn.

5: For a chosen dimensionality rn < mn, form the matrix
Vn � [v1,v2, . . .vrn ].

6: for i : xi,n ∈ Xn do
7: ri,n = (Imn −VnVT

n )(xi,n − x̄n).
8: Compute �ri,n�2.
9: end for

10: Sort the nominal summary statistics {�ri,n�2 : xi,n ∈ Xn}
in ascending order and store them in the local memory.

Online Phase
1: Initialization: t← 0
2: while t < Γ do
3: t← t+ 1
4: Acquire a new sample xt,n.
5: rt,n = (Imn −VnVT

n )(xt,n− x̄n) and compute �rt,n�2.
6: Compute the local outlierness score: pt,n =

1
Wn

�
xi,n∈Xn

11{�ri,n�2 > �rt,n�2}.
7: Perturbation: p̃t,n = pt,n + vt,n.
8: Encryption: zt,n = p̃t,n + kt,n.
9: Send zt,n to the network operator and kt,n to the auxiliary

node.
10: end while

(close to zero) values for anomalous samples, and hence we
expect smaller pt,n for t ≥ τ .

The output of the local data processing module, that is,
the p-value estimate, while useful to infer possible anomalies,
is not quite as informative to interpret the raw local data. This
is because, irrespective of the local data processing method and
the observed data, the p-value estimate is always (asymptoti-
cally) a uniform random variable under nominal conditions.
Hence, for network anomaly detection, on the one hand,
releasing this task-oriented statistic from the nodes can be
useful to preserve the data privacy. On the other hand, this
does not provide any privacy guarantee as releasing such
summary statistics is still subject to side information leakages
and reconstruction attacks [3]. To further improve the data
privacy and to provide provable privacy guarantees, we next
present our private stream aggregation module.

B. Private Stream Aggregation

This module ensures that the network operator privately
aggregates the local outlierness scores at nodes for a differen-
tially private network anomaly detection.

1) Perturbation: Each node n perturbs its local outlierness
score pt,n via additive white Gaussian noise (AWGN), i.i.d.
over time and space (i.e., between the nodes). Denoting the

Fig. 3. A graphical illustration of the proposed solution scheme.

perturbed statistic by p̃t,n yields

p̃t,n = pt,n + vt,n,

where vt,n ∼ N (0, σ2) is zero-mean AWGN with variance σ2.
Higher σ2 increases uncertainty of the released statistic. Note
that each node employs the output perturbation for DP as the
output of the local data processing is pt,n at each node n.

2) Cryptographic Communication: The purpose of cryp-
tographic communication between nodes and the network
operator is that the network operator can only decrypt the
noisy mean of the local outlierness scores, given by

yt � 1
N

N�
n=1

p̃t,n. (2)

To achieve this without coordination between nodes in both
static and dynamic networks,1 we make use of an auxiliary
node [26], as illustrated in Fig. 3. In this mechanism, each node
n generates a private key kt,n > 0 at each time t and obtains
the encrypted message to be sent to the network operator as
follows:

zt,n = p̃t,n + kt,n.

The key generation process is specific to each node, kept
secret, and independent from the other nodes. Ideally, it should
be difficult to track the generated key pattern and hence to infer
p̃t,n from zt,n. Moreover, the private keys should not carry
any information relevant to the local data. The generated keys
are also sent to an auxiliary node that computes the negative
average of the received keys from the nodes:

at � − 1
N

N�
n=1

kt,n,

and sends the result to the network operator. The auxiliary
node does not share any other information with the network

1In dynamic networks, new nodes can join and leave in time, which is
especially relevant to the case of node failures and to networks dynamic in
nature such as mobile and vehicular networks.
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Algorithm 2 Procedure at the Auxiliary Node
1: Initialization: t← 0
2: while t < Γ do
3: t← t+ 1
4: Receive {kt,n, n = 1, 2, . . . , N} from the nodes.
5: at = − 1

N

�N
n=1 kt,n

6: Send at to the network operator.
7: end while

TABLE III

SPACE AND TIME COMPLEXITY OF THE PROPOSED

PROCEDURE AT THE AUXILIARY NODE

operator or any other node. The proposed procedure at the
auxiliary node is summarized in Algorithm 2. The auxiliary
node is employed only in the online phase. The space and
time complexity of Algorithm 2 is provided in Table III.

After receiving {zt,n, n = 1, 2, . . . , N} from the nodes, and
at from the auxiliary node, the network operator takes the
average of the node messages, then sums the average with at,
and obtains yt, see Eq. (2):

yt = at +
1
N

N�
n=1

zt,n = at +
1
N

N�
n=1

(p̃t,n + kt,n)

= at +
1
N

N�
n=1

kt,n� �	 

0

+
1
N

N�
n=1

p̃t,n =
1
N

N�
n=1

p̃t,n.

Note that we assume ideal (i.e., error-free) communications
within the network (i.e., between the nodes, the auxiliary node,
and the network operator).

Remark 1: The sole aim of the cryptographic communi-
cation is that the network operator learns only an aggregate
statistic over the network but nothing else about the individual
nodes. This is useful to achieve distributed DP. The details
of the key management and the security analysis of the
cryptographic communication protocol are out of the scope of
our paper. We refer interested readers to [12], [26], [44]–[48]
for details.

Remark 2: An alternative cryptographic communication pro-
tocol can be designed with secret key sharing without needing
the auxiliary node [26]. However, it requires coordination and
peer-to-peer communication between nodes. Furthermore, it is
not robust to node failures and dynamic networks, since it
needs a redesign when any node joins or leaves.

C. Online Network Anomaly Detection

We first analyze the distribution of the aggregated statistic yt

at the network operator in both the nominal and anomaly
cases. Next, we present the proposed online network anomaly
detection method.

1) Distribution of yt: The information aggregated at the
network operator at time t can be rewritten as

yt =
1
N

N�
i=1

p̃t,n =
1
N

N�
i=1

(pt,n + vt,n)

=
1
N

N�
i=1

pt,n� �	 

p̄t

+
1
N

N�
i=1

vt,n� �	 

v̄t

= p̄t + v̄t, (3)

where v̄t ∼ N (0, σ2/N).
Recalling that pt,n ∼ U [0, 1], ∀n ∈ {1, 2, . . . , N} for t < τ

and assuming pt,n is i.i.d. over time and space,2 the central
limit theorem yields, asymptotically

p̄t ∼ N
�

0.5,
1

12N

�
, t < τ. (4)

Then, since p̄t and v̄t are independent, we can write

yt ∼ N
�

0.5,
σ2 + 1/12

N

�
, t < τ. (5)

Further, if σ2 � 1/12, it holds that approximately

yt ∼ N (0.5, σ2/N), t < τ. (6)

In case of a network anomaly (i.e., for t ≥ τ ), it is
expected that anomalous nodes observe more frequent outliers,
correspondingly smaller p-values, which leads to a decrease in
the mean of yt. Hence, we can argue that the mean of yt is
0.5 − γt for t ≥ τ , where γt ≥ 0 denotes the unknown and
possibly time-varying mean decrease. Moreover, in case of an
anomaly, we no longer have pt,n ∼ U [0, 1]. In fact, the pdf
of pt,n is unknown for t ≥ τ . Nevertheless, pt,n is always
between 0 and 1 and for a random variable taking values in
this range, its variance can at most3 be 1/4. Hence, for t ≥ τ ,
pt,n has a mean μt,n ∈ [0, 0.5] and a variance σ2

t,n ∈ [0, 1/4],
∀n ∈ {1, 2, . . . , N}.

The central limit theorem has variants, ensuring conver-
gence to the normal distribution for non-identical or dependent
distributions under certain conditions. In large-scale networks
(i.e., large N ), for t ≥ τ , we can consider pt,n as nearly
independent but non-identically distributed across the nodes.
Then, we can use the Lindeberg central limit theorem [49,
p. 369] stating that given

s2t,N �
N�

n=1

σ2
t,n,

2An i.i.d. pt,n stream can be achieved through local data processing. For
example, in the PCA-based method, if the linear subspace well represents the
local data, the residual term mostly corresponds to noise, that can be assumed
i.i.d. over time and space. Furthermore, in large-scale networks, data of any
single node can be assumed nearly independent from the vast majority of
network nodes, except the node’s immediate neighborhood.

3For a random variable x ∈ [0, 1], its variance can be written as σ2
x �

E[x2]− (E[x])2 ≤ E[x]− (E[x])2, where the inequality is because x2 ≤ x
for x ∈ [0, 1]. Denoting m � E[x], we have σ2

x ≤ f(m) � m− m2 where
m ∈ [0, 1]. Since the maximum value of the function f(m) is 1/4 at m =
1/2, we have σ2

x ≤ 1/4.
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if for every ε > 0, the condition

lim
N→∞

1
s2t,N

N�
n=1

E[(pt,n−μt,n)2 11{|pt,n−μt,n|>ε st,N}]=0

(7)

is satisfied, then

1
st,N

N�
n=1

(pt,n − μt,n)

converges to the standard normal distribution N (0, 1). Equiv-
alently stating, under the condition above, it asymptotically
holds that

p̄t =
1
N

N�
n=1

pt,n ∼ N

�N

n=1 μt,n

N
,
s2t,N
N2

�
.

Noticing further that

0 ≤
N�

n=1

μt,n ≤ N/2,

and

0 ≤ s2t,N ≤ N/4,
the mean of p̄t is between 0 and 0.5 and the variance of p̄t

is between 0 and 1
4N . Then, if σ2 � 1/4, it approximately

holds that, see Eq. (3),

yt = p̄t + v̄t ∼ N (0.5− γt, σ
2/N), t ≥ τ. (8)

Note that the condition in Eq. (7) is satisfied in our case, as the
indicator in Eq. (7) tends to 0 as N → ∞. This is because
the term |pt,n−μt,n| is bounded because of pt,n, μt,n ∈ [0, 1],
whereas st,N →∞ as N →∞.

Finally, if σ2 � 1/4 we can write, see Eq. (6) and Eq. (8),

yt ∼
�
N (0.5, σ2/N), if t < τ,

N (0.5− γt, σ
2/N), if t ≥ τ. (9)

Notice that the high-dimensional network anomaly detection
problem reduces to the sequential detection of a mean decrease
over a univariate Gaussian data stream, see Eq. (9). Hence,
at this point we can make a transition from the originally
nonparametric setting to a parametric setting, as detailed next.

2) Online Anomaly Detection: Denoting the nominal and
anomalous pdfs of yt by fy

0 and fy
1 , respectively, and defining

θ � σ/
√
N , we have fy

0 ∼ N (0.5, θ2) and fy
1 ∼ N (0.5 −

γt, θ
2), where fy

1 has an unknown and possibly time-varying
parameter γt, see Eq. (9). Then, we propose the following
generalized CUSUM algorithm for online anomaly detection
at the network operator:

Γ = inf
�
m ∈ N : max

1≤j≤m

m�
t=j

log
supγt≥δ f

y
1 (yt | γt)

fy
0 (yt)� �	 


βt� �	 

gm

≥ h
�
,

(10)

Algorithm 3 Procedure at the Network Operator
1: Initialization: t← 0, g0 ← 0
2: while gt < h do
3: t← t+ 1
4: Receive {zt,n, n = 1, 2, . . . , N} from the nodes, and at

from the auxiliary node.
5: yt = at + 1

N

�N
n=1 zt,n

6: Compute the GLLR βt using Eq. (12).
7: gt ← (gt−1 + βt)+
8: end while
9: Γ← t, declare a network anomaly.

TABLE IV

SPACE AND TIME COMPLEXITY OF THE PROPOSED

PROCEDURE AT THE NETWORK OPERATOR

where η denotes the minimum change of interest, indicat-
ing the detector sensitivity, and h denotes the test thresh-
old. Further, βt and gt denote the generalized log-likelihood
ratio (GLLR) and the decision statistic at time t, respectively,
where the decision statistic can be written in the following
recursive form, see [1, Sec. 2.2]:

gt = (gt−1 + βt)+. (11)

Moreover, the GLLR βt can be computed as follows:

βt =
1

2θ2
sup
γt≥δ

(1 − 2 yt)γt − γ2
t

=

⎧⎪⎨
⎪⎩

1
2θ2

(0.5− yt)2, if yt ≤ 0.5− η,
1

2θ2
(1− 2 yt)η − η2

2θ2
, if yt > 0.5− η.

(12)

Note that η is only a detector parameter and not part of
an anomaly model. Between the conventional CUSUM algo-
rithm [1, Sec. 2.2] and the proposed algorithm, the only
difference is the online estimation of γt. We summarize the
proposed procedure at the network operator in Algorithm 3.
The network operator is employed only in the online phase.
The space and time complexity of Algorithm 3 is provided
in Table IV.

Remark 3: The proposed generalized CUSUM algorithm is
different from the well-known GLR test [1, Sec. 5.3]. In the
GLR test, the unknown pdf parameters are assumed to be fixed
over time and the GLR test cannot be written in a recursive
form. In the proposed algorithm, the unknown pdf parameter
γt is assumed to be time-varying because of unknown anomaly
and it is estimated at each time t separately. The proposed
algorithm can thus be written in a recursive form.

IV. ANALYSIS

In this section, we first analyze the DP of the proposed algo-
rithm. We next analyze the anomaly detection performance,
particularly the FAP and the ADD. Finally, we characterize the
effect of DP constraints on the anomaly detection performance.
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A. Differential Privacy (DP)

First, we state the definition of (�, δ)-DP below.
Definition: Let � > 0, δ < 1, and φ(·) be a randomized

function taking a dataset as its input. Moreover, let im(φ)
denote the image of φ, that is, the set of all output values
it can take. The function φ(·) is (�, δ)-differentially private if

P(φ(D1) ∈ S) ≤ e�
P(φ(D2) ∈ S) + δ

for all datasets D1 and D2 differing in only a single entry and
over all subsets S of im(φ).

The definition above mainly states that the outcome of a
differentially private function does not vary significantly if any
single entry in the database is changed, where the amount of
significance is captured with � and δ parameters. Here, � and
δ represent the worst-case privacy loss where lower values of
them imply stronger privacy guarantees. Furthermore, if δ = 0,
it is called �-DP.

Next, we state the definition of sensitivity of a function
below.

Definition: Let D be a collection of datasets and d be a
positive integer. The sensitivity of a function φ : D → R

d is
defined by

Δφ � max
dist(D1,D2)=1

�φ(D1)− φ(D2)�1,

over all datasets D1 and D2 in D differing in a single entry,
denoted by dist(D1, D2) = 1.

Computing the sensitivity of a function enables easy cal-
ibration of the level of randomization to achieve the desired
privacy level. A common randomization technique is perturba-
tion via additive noise. Particularly, the Gaussian mechanism
achieves the DP by adding Gaussian noise to the output of
a function operating on a database. The following lemma is
useful to calibrate the amount of Gaussian perturbation noise
to obtain (�, δ)-DP [3]:

Lemma 1: Let the information released from a database D
be

φ̃(D) = φ(D) + ωt,

where ωt is the perturbation noise. If

ωt ∼ N
�

0,
Δ2φ 2 log (1.25/δ)

�2

�
,

then (�, δ)-DP is achieved.
As we observe through Lemma 1, a stronger privacy level,

equivalently lower � and/or δ, requires a higher level of
perturbation noise. This is intuitive as the noise variance
increases uncertainty of the released information from the
database. The following theorem specifies the variance of
the local perturbation noise at each node so that the pro-
posed online network anomaly detection scheme achieves
the (�, δ)-DP.

Theorem 1: If at each node n ∈ {1, 2, . . . , N}, the variance
of the perturbation noise vt,n is set as

σ2 =
2 log (1.25/δ)

N�2
, (13)

then the proposed anomaly detection scheme is (�, δ)-
differentially private.

Proof: The proof of Theorem 1 is based on the parallel
composition rule [50] and the post-processing invariance rule
of DP [4]. See Appendix A. �

Theorem 1 gives the variance of local perturbation noise to
achieve the desired DP level. It further shows the relationship
between the network size N and the required noise level.
Particularly, for a smaller network (smaller N ), to achieve
the same level of DP, we need to add a higher level of
noise (higher σ2). This is intuitive as for a small network
consisting of a few nodes, it is usually more difficult to
mask individual node information via an aggregate statistic,
compared to masking in a large-scale network. Finally, since
the desired DP level can be achieved by calibrating σ2,
we hereafter refer to σ2 (equivalently θ2) as the DP parameter.

Remark 4: In addition to being task-oriented (see
Sec. III-A), another advantage of using the p-value as the
output of the local data processing module is that the p-value
is always bounded in the range of [0, 1]. We use this property
to prove the DP of the proposed scheme (see Appendix A).

B. Anomaly Detection Performance

The average run length (ARL), denoted by Eτ [Γ], is the first
time, on average, that the decision statistic gt exceeds the deci-
sion threshold h of the proposed detector (see Algorithm 3).
The ARL can be used for both FAP and ADD computations.
In particular, if there is no anomaly at all (τ = ∞), the
ARL corresponds to the FAP, that is, E∞[Γ]. Furthermore,
setting τ = 1, the ARL corresponds to the worst-case ADD,
E1[Γ]. This is because the proposed detector is a CUSUM-type
detector for which the decision statistic being zero just before
the change-point essentially describes the worst-case scenario
in terms of detection delay. In other words, for any z ≥ 0 with
gτ−1 = z, and expressing the ADD as a function of z, we have
ADD(z) ≤ ADD(0) for the proposed detector. Note that for
τ = 1, we always have gτ−1 = 0 since g0 = 0.

In the following, we derive the Wald’s approximations
for both the FAP and the worst-case ADD of the proposed
detector as well as performance bounds, particularly a lower
bound on the FAP and an upper bound on the ADD to
obtain performance guarantees. Note that our approximations
and bounds are asymptotic as we use both the central limit
theorems and the Glivenko-Cantelli theorem to asymptotically
characterize the distribution of the aggregated statistic at the
network operator, that is, {yt}t, (see Sec. III-C.1).

1) Average False Alarm Period (FAP): For reliable anomaly
detection, false alarm events should be infrequent, equivalently
the FAP should be large. For a given set of system and
algorithm parameters, the following theorem gives the Wald’s
approximation for the FAP of the proposed detector. This
approximation is useful to choose the system and algorithm
parameters to control the false alarm rate of the proposed
detector.

Theorem 2: Let ρ � η/θ. If ρ > 0.61, then the Wald’s
approximation to the FAP is given by

E∞[Γ] ≈ 2h+ 2(e−w0h − 1)/w0

Q(ρ)− ρ2Q(−ρ)
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Fig. 4. The FAP of the proposed detector, the theoretical lower bound
on the FAP, and the Wald’s approximation to the FAP for various test
thresholds h.

where Q(·) denotes the Q-function, that is, Q(x) �
1√
2π

�∞
x
e−u2/2 du, and −1 < w0 < 0 is the unique solution

to

f(w0)�
1√

w0 + 1
Q(ρ)+Q(−ρ) e0.5ρ2(w0+w2

0) =1. (14)

Proof: See Appendix A. �
In Theorem 2, w0 is computed by solving Eq. (14) numeri-

cally [51], which is straightforward since we look for a unique
w0 in the range of (−1, 0) for which f(w0) = 1. Next, the
following theorem provides a lower bound on the FAP of the
proposed detector. A lower bound on the FAP is equivalent
to an upper bound on the false alarm rate. Hence, Theorem 3
can be used to choose the system and algorithm parameters
to limit the false alarm rate of the proposed detector with a
desired value.

Theorem 3: If ρ > 0.61, a lower bound for the FAP is given
by

E∞[Γ] ≥ e−w0h,

where w0 is as given in Eq. (14).
Proof: See Appendix B. �

Next, to illustrate Theorem 2 and Theorem 3, we assume
τ = ∞, yt ∼ N (0.5, θ2), t ≥ 1 and plot in Fig. 4 the actual
FAP of the proposed detector as well as the derived lower
bound and the Wald’s approximation as the test threshold h
varies. In this experiment, we choose η = 0.06 and θ = 0.08.
We observe through Fig. 4 that the Wald’s approximation
underestimates the FAP. Note that this is because the Wald’s
approximation ignores the excess over the boundary for the
random walk driven by the GLLR βt, see Eq. (11), and in
the nominal case usually the lower threshold 0 is exceeded
frequently during the random walk. Nevertheless, the derived
approximation can still be useful, at least to achieve a per-
formance guarantee (i.e., a lower bound on the FAP) in most
cases.

2) Average Detection Delay (ADD): For quick anomaly
detection, detection delay should be small. Hence, the ADD
analysis is useful to evaluate the expected performance of a

detector. However, since anomalies can happen because of
many reasons, it is practically hard to fully specify the anom-
aly. Specifically, for our detector, it is difficult to characterize
the mean decrease γt for t ≥ τ . But, in a special case where
the mean decrease is constant after the change-point, that is,

γt = γ, t ≥ τ,
we can provide an analysis for the worst-case ADD of our
detector. The following theorem states the Wald’s approxima-
tion to the worst-case ADD of the proposed detector under
this special condition.

Theorem 4: The Wald’s approximation to the worst-case
ADD is given by

E1[Γ] ≈ h+ e−w1h−1
w1

γ2+θ2

2θ2 Q
�

δ−γ
θ

�
+ 2δγ−δ2

2θ2 Q
�

γ−δ
θ

� ,
where w1 > 0 is the unique solution to

g(w1) � Q

�
η − γ
θ

�
e

−w1γ2

2θ2(w1+1)

√
w1 + 1

+Q

�
γ − η
θ

�
e

(γ2−2γη)w1+γ2w2
1

2θ2 = 1. (15)

Proof: See Appendix C. �
As before, we can compute w1 by solving Eq. (15) numer-

ically. An upper bound on the ADD provides a performance
guarantee. Next, given the system and algorithm parameters,
the following theorem provides a theoretical upper bound on
the ADD of the proposed detector.

Theorem 5: If γ > η/2, an upper bound on ADD is given
by

E1[Γ] ≤ h+Q
�

δ−γ
θ

�
γ2+θ2

2θ2 +Q
�

γ−δ
θ

�
ψ(a, b)

γ2+θ2

2θ2 Q
�

δ−γ
θ

�
+ 2δγ−δ2

2θ2 Q
�

γ−δ
θ

� ,

where

ψ(a, b) � a+
√
b e

−a2
2b√

2πQ(−a/√b) ,

a � (2γη − η2)/(2θ2), and b � η2/θ2.
Proof: See Appendix D. �

Recall that our derivation for the theoretical upper bound
on the ADD is based on the assumption that the post-change
mean decrease satisfies γt = γ for t ≥ τ . Using the result in
Theorem 5, we can also derive the worst possible upper bound
on the ADD without needing this assumption. Particularly,
we can use the fact that the Kullback-Leibler (KL) divergence
is a measure of separability between the pre- and post-change
data distributions and hence a measure of detectability in the
sequential detection theory such that as the KL divergence
between the pre- and post-change pdfs decreases, then the
ADD increases. Hence, if γt, t ≥ τ takes values minimizing
the KL divergence between the pre- and post-change pdfs,
then the ADD is maximized. Given that our generalized
CUSUM detector is designed with the detector sensitivity
parameter η such that γt ≥ η, t ≥ τ , see Eq. (10), then γt =
η, t ≥ τ , minimizes the KL divergence between pre- and post-
change pdfs, see Eq. (9), and hence maximizes the ADD of
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Fig. 5. The worst-case ADD of the proposed detector, the Wald’s approxima-
tion to the ADD, the theoretical upper bound on the ADD, and the worst-case
upper bound on the ADD for various levels of test threshold h.

our detector. Then, we derive the worst-case upper bound on
the ADD irrespective of the unknown and time-varying γt

by replacing γ in Theorem 5 with η, as presented in the
Corollary 1 below.

Corollary 1: The worst-case upper bound on ADD is given
by

E1[Γ] ≤ 2h+ a∗ + 0.5 + ψ(a∗, b∗)
b∗ + 0.5

,

where a∗ � η2/(2θ2), and b∗ � η2/θ2.
To illustrate Theorem 4, Theorem 5, and Corollary 1,

we assume τ = 1, yt ∼ N (0.5 − γ, θ2), t ≥ τ , γ = 0.1,
θ = 0.08, and η = 0.06, and we plot in Fig. 5 the ADD of the
proposed detector as well as the presented upper bounds and
the approximation for the ADD, as the test threshold h varies.
As we observe through Fig. 5, the Wald’s approximation
well approximates the ADD as the excess over the lower
boundary 0 does not frequently happen in case of an anomaly,
unlike the nominal case leading to an underestimation of the
FAP, as discussed in Sec. IV-B.1.

Finally, note that there is an inherent tradeoff between the
ADD and the FAP and this is controlled by the decision thresh-
old h and the detector sensitivity parameter η. Particularly,
increasing h and/or η leads to a larger FAP (i.e., lower false
alarm rate) but also a larger ADD, and vice versa.

C. Analytical Privacy-Anomaly Detection Tradeoff

We next present the tradeoff between the DP level and
the anomaly detection performance based on the theoretical
results derived in Sec. IV-A and Sec. IV-B. If the proposed
anomaly detection scheme is employed in security applications
such as attack detection or fraud detection over safety-critical
networks, this tradeoff can also be termed as the privacy-
security tradeoff. Recall that for any chosen system and
algorithm parameters including the DP parameters � and δ,
we provide theoretical approximations to both the FAP and
ADD of our network anomaly detector. We can hence obtain
the analytical privacy-anomaly detection tradeoff based on the

Fig. 6. The Wald’s approximation to the worst-case ADD vs. the Wald’s
approximation to the FAP of the proposed detector as the test threshold h
varies, for various DP levels.

Wald’s approximations to the FAP and ADD (see Theorem 2
and Theorem 4).

For an illustration, consider a simple example where

yt ∼
�
N (0.5, θ2), if t < τ,

N (0.5− γ, θ2), if t ≥ τ,
γ = 0.2, and η = 0.08. We plot in Fig. 6 the Wald’s
approximations to the ADD and the FAP, as the test threshold
h varies and for various DP levels. We assume N = 300 and
for a linearly spaced set of θ values in the range of [0.07, 0.13],
we obtain various DP levels as � ≈ 1/(100 θ) assuming
δ = 0.0139 and recalling that θ = σ/

√
N , see Eq. (13).

Fig. 6 illustrates that at the same levels of FAP, we obtain
larger ADDs as � decreases. This implies that the anomaly
detection performance degrades for stronger DP guarantees,
clearly showing the privacy-anomaly detection tradeoff.

V. PERFORMANCE EVALUATION

In this section, we evaluate the proposed privacy-preserving
anomaly detection scheme against botnet attacks over a real
IoT network consisting of 9 nodes: a thermostat, a baby
monitor, a webcam, two doorbells, and four security cameras.
We use the network-based detection of IoT botnet attacks
(N-BaIoT) dataset [52] in the UCI Machine Learning Reposi-
tory [53], where the data dimensionality at each node n is 115,
that is, xt,n ∈ R

115. The data are the network traffic statistics
of each node, particularly, the number of data packets received
and sent, time intervals between packet arrivals, packet sizes,
and so forth. The dataset contains both nominal data and
anomalous data obtained under IoT botnet attacks. We employ
the PCA-based local data processing (see Algorithm 1) at
each node since the local nominal data at each node can be
well represented in a linear subspace. Particularly, almost all
the data variance is retained in the 5-dimensional principal
subspace, that is rn = 5, for the local nominal data of each
node n.

We consider the UDP flooding attacks and the spam attacks
by the BASHLITE botnet against the IoT network [52]. As the
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performance metrics, we use the worst-case ADD, E1

�
(Γ −

τ)+
�
, the FAP, E∞[Γ], and the false alarm rate (FAR), which

is the reciprocal of the FAP:

FAR � 1
E∞[Γ]

.

We present the ADD vs. FAR curves of the proposed detector
for various levels of the DP to illustrate the privacy-anomaly
detection tradeoff. Moreover, we compare our theoretical
lower bound and approximation to the FAP with the actual
FAP of the proposed detector obtained with the real-world
data. Furthermore, we compare our theoretical worst-case
upper bound on the ADD with the actual ADD of the proposed
detector. Here, we note that we compare the ADD only
with the worst-case upper bound since in this experiment,
γt, t ≥ τ are unknown and possibly time-varying. Finally,
we present the nonparametric sliding-window chi-squared test
as a benchmark detector and compare its performance with
the proposed detector.

In our experiments, since we set the DP parameter σ2 to
values comparable to 1/12, we use θ2 = (σ2 +1/12)/N , that
is, we do not ignore the 1/12 term here (see Sec. III-C.1).
This is mainly because of the small network size (N = 9).
Moreover, although the maximum variance of each of the pt,n

is 1/4 in the post-change regime as argued before, their actual
variance can be much smaller than the maximum value, and
hence we consider the same variance (θ2 = (σ2 + 1/12)/N )
for both the nominal and anomaly cases in our experiments.

As an example, we choose the detector sensitivity parameter
as η = 0.08. For the reliability of the proposed detector as well
as the presented FAP lower bound and the approximation to
be valid, we need ρ > 0.61 (see Theorem 2), or equivalently,
0.1311 > θ and

0.13112 >
σ2 + 1/12

N
,

that finally leads to σ2 < 0.0715. Hence, we vary σ2 in this
range to obtain several different DP levels. Notice that the
range of possible σ2 values is, in fact, comparable to 1/12.

First, we plot in Fig. 7 the FAP of the proposed anom-
aly detection scheme as well as the presented lower bound
and the approximation. Here, we set the DP parameter as
σ2 = 1/81. Then, in case of the spam and the UDP flooding
attacks over the network, we present ADD vs. FAR curves
for various DP levels in Fig. 8 and Fig. 9, respectively.
Particularly, we choose the local noise variance σ2 from
the set {0, 1/81, 1/36, 1/24, 1/16, 1/12, 1/9}. Then, assum-
ing δ = 0.0139, we obtain various DP levels as � ≈ 1/σ,
see Eq. (13). The figures illustrate that for the same level
of FARs, the ADDs are larger for stronger DP levels
(lower �). The implication is that stronger DP guarantees
worsen the anomaly detection performance, in compliance
with the analytical tradeoff discussed in Sec. IV-C.

In case of a spam attack and with the chosen DP parameter
σ2 = 1/16, we compare in Fig. 10 the ADD of the pro-
posed detector with its worst-case upper bound presented in
Corollary 1, as the test threshold h varies. Fig. 10 validates
that even if the anomaly cannot be specified in this experiment,

Fig. 7. The FAP of the proposed network anomaly detection scheme over
the N-BaIoT dataset, the analytical lower bound, and the approximation for
the FAP.

Fig. 8. ADD vs. FAR of the proposed network anomaly detection scheme
in case of a spam attack over the network, for various DP levels.

Fig. 9. ADD vs. FAR of the proposed network anomaly detection scheme
in case of a UDP flooding attack over the network, for various DP levels.

we are still able to provide a theoretical guarantee in terms of
the worst ADD of the proposed detector.
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Fig. 10. The ADD of the proposed network anomaly detection scheme over
the N-BaIoT dataset in case of a spam attack and the theoretical worst-case
upper bound on the ADD.

We next present the sliding-window chi-squared test as a
benchmark. For this test, we first obtain a nominal statistic
that is independent of the system and algorithm parameters
so as to use the same test regardless of the parameter values.
By inspecting the pre-change model of yt given in Eq. (5),
we can write

qt � (yt − 0.5)2
σ2+1/12

N

∼ χ(1), t < τ, (16)

where χ(1) denotes a chi-squared random variable with
1 degree of freedom. Notice that qt ∼ χ(1) is true irrespective
of the network size and the DP parameter. Then, using
Eq. (16), we can evaluate whether the observed sequence of
{qt, t = 1, 2, . . . } fits to its nominal model. For this purpose,
goodness-of-fit tests such as the Kolmogorov-Smirnov test
and the Anderson-Darling test can be used [54]. We propose
to use an online version of the Pearson’s chi-squared test,
as in [55]. Particularly, we divide the range [0,∞) of qt into
L disjoint and mutually exclusive intervals I1, I2, . . . , IL, and
based on the density of χ(1), we compute the probabilities
p1 = P(qt ∈ I1), p2 = P(qt ∈ I2), …, pL = P(qt ∈ IL),
where

�L
i=1 pi = 1. Let Wt � [qt−K+1, qt−K+2, . . . , qt] be

the online sliding window of size K . The expected number of
window entries in each interval is then Kp1, Kp2, …, KpL,
respectively. Hence, we have a multinomial distribution with
the expected number of samples in the disjoint intervals as
Kp1, Kp2, …, KpL. For the observed sliding window Wt

at time t, we then count how many of its entries reside in
each interval. Let the number of entries of Wt residing in
each interval be N1,t, N2,t, …, NL,t at time t. The Pearson’s
chi-squared test is then given as follows:

Γ = inf

�
t : dt �

L�
i=1

(Ni,t−Kpi)2

Kpi
≥ ϕ

�
,

where ϕ is the test threshold that controls the false alarm rate.
Here, the decision statistic dt is asymptotically (as K → ∞)
a chi-squared random variable with L− 1 degrees of freedom
under the null hypothesis (no anomaly). Then, the decision

Fig. 11. ADD vs. FAR of the proposed generalized CUSUM detector and
the sliding-window chi-squared test in case of a spam attack over the network.

threshold ϕ can be determined using the cdf of the chi-squared
random variable with L − 1 degrees of freedom in order to
achieve the desired false alarm rate.

Fig. 11 compares the proposed detector with the sliding-
window chi-squared test in case of a spam attack where the
DP parameter is chosen as σ2 = 1/16. For the chi-squared
test, we choose L = 8, p1 = p2 = · · · = p8 = 1/8, and the
window size as K = 96. Fig. 11 illustrates that the proposed
detector outperforms the chi-squared test as it achieves lower
ADD at the same levels of FAR.

VI. CONCLUDING REMARKS

We have studied online privacy-preserving data-driven net-
work anomaly detection. We have proposed a distributed
differentially private generalized CUSUM detector that infers
network anomalies based on the perturbed and encrypted
messages received from nodes. We have analyzed the anomaly
detection performance of the proposed scheme in terms of sys-
tem and algorithm parameters including the differential privacy
parameter. In particular, we have derived a lower bound and
an approximation for the average false alarm period (FAP) as
well as an upper bound and an approximation for the average
detection delay (ADD) of the proposed detector. Furthermore,
we have used the derived FAP and ADD approximations
to illustrate the analytical privacy-anomaly detection trade-
off in the network anomaly detection problem. Our experi-
ments over a real-world IoT dataset support our theoretical
findings.

In this work, we assume that the anomaly is persistent,
which means that once an anomaly happens, it lasts for a
long time period. However, if the anomaly is non-persistent
(e.g., after a short-term anomaly, the system returns back to
normal operating conditions, and then a new short-term anom-
aly happens, and so on), the proposed detector might loose its
effectiveness. Smart attackers can design such stealthy attacks
against CUSUM-type detectors [55]. Analysis of possible
privacy-preserving countermeasures against stealthy attacks
can be studied in a future work.
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APPENDIX

A. Proof of Theorem 1

Proof: In the proposed procedure, the information released
to the network operator at time t can be written by, see Eq. (3),

yt =
1
N

N�
i=1

pt,n + v̄t,

where v̄t ∼ N (0, σ2/N) corresponds to the average perturba-
tion noise over nodes. Defining a mean function

φ({pt,n}n) � 1
N

N�
i=1

pt,n,

we have

yt = φ({pt,n}n) + v̄t.

Recalling that the p-value estimate pt,n takes values in the
range of [0, 1] irrespective of the nominal or anomaly cases,
any single node n can change φ(·) by at most 1/N , for
example, considering the change from pt,n = 0 to pt,n = 1.
Hence, the sensitivity of the function φ(·) is

Δφ =
1
N
.

Since v̄t is zero-mean AWGN, we can use Lemma 1 to decide
the required noise variance for v̄t to achieve (�, δ)-DP at time t,
as follows:

σ2

N
=

2 log (1.25/δ)
N2�2

,

and hence

σ2 =
2 log (1.25/δ)

N�2
.

If every node n perturbs its output pt,n via zero-mean
AWGN with the given variance of σ2 above, we obtain a
(�, δ)-differentially private aggregation at the network operator
at time t. Moreover, since we consider a data stream, at each
time t, the incoming local data are processed and the corre-
sponding {pt,n}n are used once, and then never used again.
This, in fact, corresponds to a scheme where at each time,
a disjoint subset of the dataset is used, considering that the
data obtained over all nodes and at all times form the database.
The parallel composition rule of the DP [50] states that if
�i-differentially private mechanisms are employed over dis-
joint subsets of a database, then the overall mechanism
achieves maxi �i-DP. Then, by invoking the parallel com-
position property and since at each time t we employ a
(�, δ)-differentially private mechanism over a disjoint subset
of the entire database, the overall stream aggregation at the
network operator achieves the (�, δ)-DP.

The network operator employs the generalized CUSUM
algorithm over the privately aggregated stream of {yt}t. The
post-processing invariance rule of the DP [4] states that
for an output v of an (�, δ)-differentially private algorithm,
any non-private function ψ(v) of the output also achieves
(�, δ)-DP, as long as the post-processing does not use the
original data. Then, since the generalized CUSUM algorithm
can be considered as a non-private function, overall the
proposed online anomaly detection scheme is (�, δ)-
differentially private. �

B. Proof of Theorem 2

Proof: For the CUSUM-type detectors in the form of

Γ = inf{t : gt ≥ h},
gt = (gt−1 + βt)+, (17)

where g0 = 0, the Wald’s approximation to the ARL is given
by [1, Sec. 5.2.2]:

Eτ [Γ] ≈ 1
E[βt]

�
h+

e−w0h − 1
w0

�
, (18)

where the equation

E[e−w0βt ] = 1 (19)

has only one nonzero root w0 such that�
w0 > 0, if E[βt] > 0,
w0 < 0, if E[βt] < 0.

The proposed generalized CUSUM detector can be
expressed in the form of Eq. (17), see Eq. (10) and Eq. (11).
Then, to derive the Wald’s approximation for the ARL,
we need to compute E[βt] and also w0 from Eq. (19). To this
end, we first compute the pdf of βt for the nominal case
(t < τ ) since in the FAP computations, the assumption is that
no anomaly happens at all, that is, τ =∞.

Let E1 � {yt ≤ 0.5− η} and E2 � {yt > 0.5− η} be two
complementary events. For t < τ , we have, see Eq. (9),

P(E1) = P(yt − 0.5 ≤ −η)
= P

�
yt − 0.5

θ
≤ −η

θ

�
= Q(η/θ)

and hence P(E2) = Q(−η/θ). Moreover, if E1 is true,
we have, see Eq. (12),

βt =
1
2

�
y − 0.5
θ

�2

∼ 1
2
χ(1),

where χ(1) denotes the chi-squared random variable with
1 degrees of freedom. Furthermore, if E2 is true, we have,
see Eq. (12),

βt =
−η
θ

�
y − 0.5
θ

�
− η2

2θ2

∼ N
�
− η2

2θ2
,
η2

θ2

�
.

In summary, for t < τ , we have

βt ∼
⎧⎨
⎩
χ(1)/2, w.p. Q(η/θ)

N
�
− η2

2θ2
,
η2

θ2

�
, w.p. Q(−η/θ), (20)

where w.p. denotes “with probability”. Then, using the linear-
ity of the expectation, we can write

E[βt] =
1
2
Q(η/θ)− η2

2θ2
Q(−η/θ). (21)
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The Wald’s approximation to the FAP requires E[βt] < 0,
equivalently, after defining ρ � η/θ, we need, see Eq. (21),

g(ρ) � Q(ρ)− ρ2Q(−ρ) < 0.

Notice that since the Q-function is monotonically decreasing,
the function g(ρ) is monotonically decreasing in ρ and it takes
the value of zero when ρ ≈ 0.61. Hence, for ρ > 0.61, we have
E[βt] < 0.

Next, we solve Eq. (19) to find w0. Firstly, from Eq. (20),
under E1, βt ∼ χ(1)/2 and hence the pdf of βt in this case
can be written as follows:

f(β) =
1√
πβ

e−β , β ≥ 0. (22)

Then, using Eq. (20) and Eq. (22), we can rewrite Eq. (19) as

Q(ρ)
� ∞

0

e−w0β 1√
πβ

e−βdβ� �	 

A1

+Q(−ρ)
� ∞

−∞
e−w0β 1�

2πρ2
e
− 1

2ρ2 (β+0.5ρ2)2
dβ� �	 


A2

= 1,

(23)

where

A1 �
� ∞

0

e−w0β 1√
πβ

e−βdβ

=
� ∞

0

1√
πβ

e−(w0+1)βdβ

and letting x � (w0 + 1)β, we can write

A1 =
1√

w0 + 1

� ∞

0

1√
πx
e−xdx� �	 


1

=
1√

w0 + 1
, (24)

provided that w0 + 1 > 0, or equivalently w0 > −1. In the
equation above, we use the fact that 1√

πx
e−x, x ≥ 0 represents

a pdf (particularly, the pdf of χ(1)/2).
Furthermore, we have

A2 =
� ∞

−∞
e−w0β 1�

2πρ2
e
− 1

2ρ2 (β+0.5 ρ2)2
dβ

=
� ∞

−∞

1�
2πρ2

e
− 1

2ρ2 (β2+2(0.5 ρ2+ρ2w0)β+ρ4/4)
dβ

= e0.5 ρ2(w0+w2
0)

� ∞

−∞

1�
2πρ2

e
− 1

2ρ2 (β−(−0.5 ρ2−ρ2w0))
2

dβ� �	 

1

= e0.5 ρ2(w0+w2
0), (25)

where by completing the square, we obtain a Gaussian pdf,
whose under area curve is equal to 1.

Hence, we can rewrite Eq. (19) based on Eq. (23), Eq. (24),
and Eq. (25) as follows:

f(w0)�Q(ρ)
1√

w0 + 1
+Q(−ρ) e0.5ρ2(w0+w2

0) =1, (26)

where there exists a unique −1 < w0 < 0 solving the equation
above. �

C. Proof of Theorem 3

Proof: For the CUSUM-type detectors given in Eq. (17)
and if E[βt] < 0, we have the following lower bound on
the ARL [1, Sec. 5.2.2]:

E∞[Γ] ≥ e−w0h,

where w0 < 0 is obtained from Eq. (19) and hence from
Eq. (26). �

D. Proof of Theorem 4

Proof: We can use the Wald’s approximation to the ARL
given in Eq. (18) to derive an approximation for the worst-case
ADD of the proposed algorithm provided that E[βt] > 0.
For this approximation, similar to Appendix VI-B, we need
to compute E[βt] and w1 (for the ADD calculations, we use
w1 instead of w0). To this end, we next determine the pdf of
βt for the post-change case, that is, for t ≥ τ .

Firstly, using the same event definitions E1 and E2 in
Appendix VI-B and assuming γt = γ for t ≥ τ , we have,
see Eq. (9),

P(E1) = P(yt − 0.5 + γ ≤ γ − η)
= P

�
yt − 0.5 + γ

θ
≤ γ − η

θ

�
= Q

�
η − γ
θ

�
and hence P(E2) = Q(γ−δ

θ ). Moreover, if E1 is true, we have,
see Eq. (12),

βt = 1
2

�
y−0.5

θ

�2
= 1

2 x
2,

where x ∼ N (−γ/θ, 1). Further, if E2 is true, we have, see
Eq. (12),

βt =
−(y − 0.5)η

θ2
− η2

2θ2

=
−η
θ

�
y − 0.5 + γ

θ

�
+

2ηγ − η2

2θ2

∼ N
�

2ηγ − η2

2θ2
,
η2

θ2

�
In summary, for t ≥ τ , we can write

βt ∼

⎧⎪⎪⎨
⎪⎪⎩

1
2

(N (−γ/θ, 1))2 , w.p. Q

�
η − γ
θ

�
N
�

2ηγ − η2

2θ2
,
η2

θ2

�
, w.p. Q

�
γ − η
θ

�
.

(27)

Then, we have

E[βt] =
γ2 + θ2

2θ2
Q

�
η − γ
θ

�
+

2ηγ − η2

2θ2
Q

�
γ − η
θ

�
.

(28)

To use the Wald’s approximation for the ADD, we need
E[βt] > 0, for which a sufficient condition is

2ηγ − η2 > 0,

equivalently γ > η/2. This is because all the other terms
in Eq. (28) are nonnegative. Moreover, since γ ≥ η by the
definition of the proposed detector, see Eq. (10), the sufficient
condition is satisfied.
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Next, we solve Eq. (19) to determine w1. We write Eq. (19)
based on Eq. (27) as follows:

Q

�
η − γ
θ

�� ∞

−∞
e−w1x2/2 1√

2π
e−(x+γ/θ)2/2dx� �	 


B1

+Q

�
γ − η
θ

�

×
� ∞

−∞
e−w1β 1�

2πη2/θ2
e
− 1

2η2/θ2

�
β− 2γη−η2

2θ2

�2

dβ� �	 

B2

= 1,

(29)

where for the first term in the summation, we use β =
x2/2 where x ∼ N (−γ/θ, 1). Then, we have

B1 �
� ∞

−∞
e−w1x2/2 1√

2π
e−(x+γ/θ)2/2dx

= e
− w1γ2

2θ2(w1+1)

� ∞

−∞

1√
2π
e
− 1

2

�√
w1+1 x+ γ

θ
√

w1+1

�2

dx

=
1√

w1 + 1
e
− w1γ2

2θ2(w1+1)

� ∞

−∞

1√
2π
e
− 1

2

�
y+ γ√

w1+1

�2

dy� �	 

1

=
1√

w1 + 1
e

−w1γ2

2θ2(w1+1) , (30)

where we again use the method of completing the square and
y �
√
w1 + 1x. Further, we have

B2 �
�∞
−∞ e−w1β 1√

2πδ2/θ2
e
− 1

2η2/θ2

�
β− 2γη−η2

2θ2

�2

dβ.

We determine B2 by following the same methodology to find
the A2 in Appendix B, that is, completing the square. Then,
we obtain

B2 = e
(γ2−2γη)w1+γ2w2

1
2θ2 (31)

Finally, based on Eq. (29), Eq. (30), and Eq. (31), we have

g(w1) � Q

�
η − γ
θ

�
e

−w1γ2

2θ2(w1+1)

√
w1 + 1

+Q

�
γ − η
θ

�
e

(γ2−2γη)w1+γ2w2
1

2θ2 = 1,

where there exists a unique w1 > 0 satisfying the equation.
�

E. Proof of Theorem 5

Proof: For the CUSUM-type detectors given in the
general form of Eq. (17), if E[βt] > 0 and the observation
sequence is Gaussian, we have the following upper bound on
the ARL [1, Sec. 5.2.2]:

E1[Γ] ≤ 1
E[βt]

(h+ E[βt|βt > 0]) . (32)

Since the proposed detector fits to Eq. (17) and yt is Gaussian,
we can derive an upper bound on the worst-case ADD of the
proposed detector using Eq. (32). To this end, we next compute

E[βt|βt > 0]. Notice that E[βt] is already computed and given
in Eq. (28).

Firstly, based on Eq. (27), under E1, since βt ≥ 0 is always
true, we can easily compute

E[βt|βt > 0,E1] =
γ2 + θ2

2θ2

Further, under E2, we have βt ∼ N (a, b) where a � 2δγ−δ2

2θ2

and b � δ2

θ2 . Then,

E[βt|βt > 0,E2] =
E[βt, βt > 0|E2]

P(βt > 0|E2)

=
E[βt, βt > 0|E2]
Q(−a/√b) ,

where

E[βt, βt > 0|E2] =
� ∞

0

β
1√
2πb

e−
1
2b (β−a)2dβ

=
� ∞

0

(β − a) 1√
2πb

e−
1
2b (β−a)2dβ� �	 


C1

+
� ∞

0

a
1√
2πb

e−
1
2b (β−a)2dβ� �	 


C2

Let u � (β − a)2. Then,

C1 �
� ∞

0

(β − a) 1√
2πb

e−
1
2b (β−a)2dβ

=
� ∞

a2

1
2
√

2πb
e−

u
2b du

=

√
b√

2π
e−

a2
2b .

Moreover, letting y � (x− a)/√b, we have

C2 �
� ∞

0

a
1√
2πb

e−
1
2b (β−a)2dβ

= a

� ∞

− a√
b

1√
2π
e−

1
2 y2

dy

= aQ

�
− a√

b

�
Then, we obtain the following:

E[βt|βt > 0,E2] =

√
b√
2π
e−

a2
2b + aQ

�
− a√

b

�
Q(−a/√b)

= a+

√
b e−

a2
2b√

2πQ(−a/√b)
� ψ(a, b)

Finally, we have

E[βt|βt > 0] = P(E1) E[βt|βt > 0,E1]
+ P(E2) E[βt|βt > 0,E2]

= Q

�
η − γ
θ

�
γ2 + θ2

2θ2
+Q

�
γ − η
θ

�
ψ(a, b)

(33)
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Then, in Eq. (32), by replacing E[βt] and E[βt|βt > 0] with
Eq. (28) and Eq. (33), respectively, we obtain an upper bound
on the ADD. �
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