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Inclusion-exclusion on Schubert polynomials

Karola Mészáros & Arthur Tanjaya

Abstract. We prove that an inclusion-exclusion inspired expression of Schubert polynomials

of permutations that avoid the patterns 1432 and 1423 is nonnegative. Our theorem implies a
partial affirmative answer to a recent conjecture of Yibo Gao about principal specializations of

Schubert polynomials. We propose a general framework for finding inclusion-exclusion inspired

expression of Schubert polynomials of all permutations.

1. Introduction

Schubert polynomials, introduced by Lascoux and Schützenberger in [15], represent cohomology
classes of Schubert cycles in the flag variety. They are also multidegrees of matrix Schubert varieties
[12] and wield an impressive collection of combinatorial formulas [1, 2, 7, 9, 14, 16, 19, 25]. Yet,
only recently have their supports been established as integer points of generalized permutahedra
[5,20]. There has also been several exciting recent developments about the coefficients of Schubert
polynomials: (1) they are known to be log-concave along root directions in their Newton polytopes
[11]; (2) the set of permutations whose Schubert polynomials have all their coefficients less than or
equal to a fixed integer m is closed under pattern containment [6]. Recall that π = π1 . . . πk ∈ Sk

is a pattern of σ = σ1 . . . σn ∈ Sn if and only if there are indices 1 ⩽ i1 < i2 < · · · < ik ⩽ n so that
the relative order of π1, . . . , πk and of σi1 , . . . , σik are the same.

1.1. Nonnegative linear combinations of Schubert polynomials with monomial coef-
ficients.. In this paper we investigate nonnegativity properties of linear combinations of Schubert
polynomials with monomial coefficients in Z[x1, . . . , xn] associated to patterns of a fixed permuta-
tion. A first step in this direction is a recent result by Fink, St. Dizier and the first author of the
present paper:

Theorem 1.1. [6, Theorem 1.2] Fix σ ∈ Sn and let π ∈ Sn−1 be the pattern of σ with Rothe
diagram D(π) obtained by removing row k and column σk from D(σ). Then

Sσ(x1, . . . , xn)−Mσ,π(x1, . . . , xn)Sπ(x1, . . . ,ˆ︂xk, . . . , xn) ∈ Z⩾0[x1, . . . , xn](1)

where

Mσ,π(x1, . . . , xn) =

⎛⎝ ∏︂
(k,i)∈D(σ)

xk

⎞⎠⎛⎝ ∏︂
(i,σk)∈D(σ)

xi

⎞⎠ .

In particular, Theorem 1.1 implies that the set of permutations whose Schubert polynomials have
all their coefficients less than or equal to a fixed integer m is closed under pattern containment.

The first result of this paper is a broad extension of Theorem 1.1 for 1432 and 1423 avoiding
permutations:
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Theorem 1.2. Let w ∈ Sn be a 1432 and 1423 avoiding permutation and let u be a subword of w.
Then

(2)
∑︂

u⩽v⩽w

(−1)|w|−|v|Mw,vSperm(v)(xw−1(v)) ∈ Z⩾0[x1, . . . , xn],

where
Mw,v :=

∏︂
(i,j)∈D(w)∖ˆ︂D(w)|v

xi.

In Theorem 1.2 we use the relation of containment on words: for words u, v, we say u ⩽ v if
u occurs as a subword in v. Moreover, for a word v of length n, π = perm(v) is the permutation
in Sn such that the relative order of π1, . . . , πn and of v1, . . . , vn are the same. For these and
other definitions used in Theorems 1.1 and 1.2 see Sections 2 and 3 which lay them out in detail.
Here we give an example of Theorem 1.2 for illustration. For w = 1342 and u = 42 we have
{v | u ⩽ v ⩽ w} = {1342, 142, 342, 42}, so the alternating sum in (2) becomes

Mw,1342S1342(x1, x2, x3, x4)−Mw,142S132(x1, x3, x4)−Mw,342S231(x2, x3, x4) +Mw,42S21(x3, x4)

= 1 · (x1x2 + x1x3 + x2x3)− x2 · (x1 + x3)− 1 · (x2x3) + x2 · (x3)

= x1x3,

which indeed has nonnegative coefficients. See Figure 3 for an illustration.

An immediate corollary of Theorem 1.2 is the following theorem:

Theorem 1.3. Let w ∈ Sn be a 1432 and 1423 avoiding permutation. If u is a subword of w, then

(3)
∑︂

u⩽v⩽w

(−1)|w|−|v|Sperm(v)(1) ⩾ 0,

where Sperm(v)(1) denotes the value of the Schubert polynomial Sperm(v) with all its variables set
to 1.

Theorem 1.3 is closely related to a recent conjecture of Gao [10, Conjecture 3.2] regarding the
principal specialization of Schubert polynomials as we now explain. We also conjecture (Conjecture
5.1) in Section 5 that Theorem 1.3 holds for all permutations w ∈ Sn.

1.2. Principal specializations of Schubert polynomials.. Macdonald [17, Eq. 6.11] fa-
mously expressed the principal specialization Sσ(1) of the Schubert polynomial Sσ in terms of the
reduced words of σ. Fomin and Kirillov [8] placed this expression in the context of plane partitions
for dominant permutations, while after two decades Billey et al. [3] provided a combinatorial proof.
In 2017, Stanley [23] considered the asymptotics of Sσ(1) as well as the role pattern containment
plays in its value. The asymptotics question was partially answered by Morales, Pak and Panova
[21], while the pattern avoidance question inspired Weigandt [24] and Gao [10], among others, to
seek an understanding of Sσ(1) in terms of the permutation patterns of σ. Weigandt showed that
Sσ(1) ⩾ 1 + p132(σ), where pπ(σ) is the number of patterns π in the permutation σ, while Gao
improved this to Sσ(1) ⩾ 1 + p132(σ) + p1432(σ). Gao conjectured that there exist nonnegative
integers cw, for w ∈ S∞, such that

Sσ(1) =
∑︂

π∈S∞

cπpπ(σ).

Equivalently:

Conjecture 1.4. ([10, Conjecture 3.2]) There exist nonnegative integers cw, for w ∈ S∞, such
that

Sw(1) =
∑︂
v⩽w

cperm(v),

where v ⩽ w denotes that v occurs as a subword in w.

It follows readily via inclusion-exclusion that for w ∈ S∞:

(4) cw =
∑︂
v⩽w

(−1)|w|−|v|Sperm(v)(1).

Thus, Theorem 1.3 settles Gao’s conjecture 1.4 for 1432 and 1423 avoiding permutations w ∈
S∞ when we specialize it to the empty word u = (). Moreover, we also provide a combinatorial
interpretation of the numbers cw for 1432 and 1423 avoiding permutations w ∈ S∞:
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Theorem 1.5. For 1432 and 1423 avoiding permutations w ∈ S∞ the value of cw is the number

of diagrams C ⩽ D(w) that cannot be written as ˆ︁Caug for some ˆ︁C = ˆ︁Ck,wk
⩽ ˆ︂D(w) = ˆ︂D(w)k,wk

,
k ∈ Z>0. .

See Section 3.3 for more details.

1.3. Extending Theorems 1.1 & 1.2.. Both Theorem 1.3 and Theorem 1.5 are byproducts of
our main Theorem 1.2. It is thus most natural to ask in what generality Theorem 1.2 holds. While
Theorem 1.3 is conjectured by Gao to hold for all permutations, Theorems 1.2 and 1.5 as stated do
not. Theorem 1.2 fails already for w = 1432. However, the reason it fails leads to other possibilities:
the monomials Mw,v we used to formulate Theorem 1.2 are inspired by Theorem 1.1 and are one of
many choices we might have made. While Fink, Mészáros, and St. Dizier [6] only constructed one
monomial Mσ,π for the pair of permutations (σ, π) in Theorem 1.1, there is a family of monomials
each of which would make (1) true. We are lead to wonder whether for an appropriate choice of such
monomials Theorem 1.2 could be generalized to any permutation. We take the first step towards
this goal via the following generalization of Theorem 1.1 showing that a family of monomials,
including Mσ,π could work:

Theorem 1.6. Fix σ ∈ Sn and let π ∈ Sn−1 be the pattern of σ with Rothe diagram D(π) obtained
by removing row k and column σk from D(σ). If K ∈ Pk,σk

(D(σ)), then

Sσ(x1, . . . , xn)−M(x1, . . . , xn)Sπ(x1, . . . ,ˆ︂xk, . . . , xn) ∈ Z⩾0[x1, . . . , xn],

where

M(x1, . . . , xn) =
∏︂

(i,j)∈K

xi.

See Section 4 for the definition of the set of diagrams Pk,σk
(D(σ)) used in the statement of

Theorem 1.6 above and Section 5 for a discussion of how Theorem 1.6 could be used to generalize
Theorem 1.2 as well as Conjecture 5.4 examining the strength of Theorem 1.6.

Outline of this paper. Section 2 lays out the general background on Schubert polynomials
that we rely on. Section 3 contains the setup and proofs of Theorem 1.2, 1.3 and 1.5. Section 4
provides a proof of Theorem 1.6 and its generalization Theorem 4.1, while Section 5 concludes with
conjectures and open problems.

2. Background on Schubert polynomials

Schubert polynomials were originally defined via divided difference operators. We will instead
define them as dual chatacters of flagged Weyl modules for Rothe diagrams. This section follows
the exposition of [5, 6].

2.1. Definition of dual characters of flagged Weyl modules.. A diagram is a sequence
D = (C1, C2, . . . , Cn) of finite subsets of [n], called the columns of D. We interchangeably think of
D as a collection of boxes (i, j) in a grid, viewing an element i ∈ Cj as a box in row i and column j
of the grid. When we draw diagrams, we read the indices as in a matrix: i increases top-to-bottom
and j increases left-to-right.

The Rothe diagram D(w) of a permutation w ∈ Sn is the diagram

D(w) = {(i, j) ∈ [n]× [n] | i < (w−1)j and j < wi}.
Note that Rothe diagrams have the northwest property : If (r, c′), (r′, c) ∈ D(w) with r < r′ and
c < c′, then (r, c) ∈ D(w).

Let G = GL(n,C) be the group of n × n invertible matrices over C and B be the subgroup of
G consisting of the n× n upper-triangular matrices. The flagged Weyl module is a representation
MD of B associated to a diagram D. The dual character of MD has been shown in certain cases
to be a Schubert polynomial [13] or a key polynomial [22]. We will use the construction of MD in
terms of determinants given in [18].

Denote by Y the n × n matrix with indeterminates yij in the upper-triangular positions i ⩽ j
and zeros elsewhere. Let C[Y ] be the polynomial ring in the indeterminates {yij}i⩽j . Note that B
acts on C[Y ] on the right via left translation: if f(Y ) ∈ C[Y ], then a matrix b ∈ B acts on f by
f(Y ) · b = f(b−1Y ). For any R,S ⊆ [n], let Y R

S be the submatrix of Y obtained by restricting to
rows R and columns S.
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For R,S ⊆ [n], we say R ⩽ S if #R = #S and the kth least element of R does not exceed the
kth least element of S for each k. For any diagrams C = (C1, . . . , Cn) and D = (D1, . . . , Dn), we
say C ⩽ D if Cj ⩽ Dj for all j ∈ [n].

Definition 2.1. For a diagram D = (D1, . . . , Dn), the flagged Weyl module MD is defined by

MD = SpanC

⎧⎨⎩
n∏︂

j=1

det
(︂
Y

Cj

Dj

)︂ ⃓⃓⃓⃓
⃓⃓ C ⩽ D

⎫⎬⎭ .

MD is a B-module with the action inherited from the action of B on C[Y ].

Note that since Y is upper-triangular, the condition C ⩽ D is technically unnecessary since

det
(︂
Y

Cj

Dj

)︂
= 0 unless Cj ⩽ Dj . Conversely, if Cj ⩽ Dj , then det

(︂
Y

Cj

Dj

)︂
̸= 0.

For any B-module N , the character of N is defined by char(N)(x1, . . . , xn) = tr (X : N → N),
where X is the diagonal matrix diag(x1, x2, . . . , xn) with diagonal entries x1, . . . , xn, and X is
viewed as a linear map from N to N via the B-action. Define the dual character of N to be the
character of the dual module N∗:

char∗(N)(x1, . . . , xn) = tr (X : N∗ → N∗)

= char(N)(x−1
1 , . . . , x−1

n ).

Definition 2.2. For a diagram D ⊆ [n]× [n], let χD = χD(x1, . . . , xn) be the dual character

χD = char∗MD.

2.2. Results about dual characters of flagged Weyl modules. A special case of dual
characters of flagged Weyl modules of diagrams are Schubert polynomials:

Theorem 2.3 ([13]). For w a permutation and D(w) its Rothe diagram we have that the Schubert
polynomial Sw is

Sw = χD(w).

Theorem 2.4 (cf. [5, Theorem 7]). For any diagram D ⊆ [n] × [n], the monomials appearing in
χD are exactly ⎧⎨⎩

n∏︂
j=1

∏︂
i∈Cj

xi

⃓⃓⃓⃓
⃓⃓ C ⩽ D

⎫⎬⎭ .

Theorem 2.5 ([6]). Let D ⊆ [n]× [n] be a diagram. Fix any diagram C(1) ⩽ D and set

m =

n∏︂
j=1

∏︂
i∈C

(1)
j

xi.

Let C(1), . . . , C(r) be all the diagrams C such that C ⩽ D and
∏︁n

j=1

∏︁
i∈Cj

xi = m. Then, the

coefficient of m in χD is equal to

[m]χD = dim

⎛⎝SpanC

⎧⎨⎩
n∏︂

j=1

det

(︃
Y

C
(i)
j

Dj

)︃ ⃓⃓⃓⃓
⃓⃓ i ∈ [r]

⎫⎬⎭
⎞⎠ .

In particular,

[m]χD ⩽ #

⎧⎨⎩C ⩽ D

⃓⃓⃓⃓
⃓⃓ ∏︂
(i,j)∈C

xi = m

⎫⎬⎭ .

In light of the last inequality, it is natural to wonder when equality holds. This is what Fan &
Guo [4] did:

Theorem 2.6 ([4]). Given a diagram D ⊆ [n]× [n], let

xD =
∏︂

(i,j)∈D

xi.

Then, for a permutation w ∈ Sn,

Sw(x1, . . . , xn) =
∑︂

C⩽D(w)

xC
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if and only if w avoids the patterns 1432 and 1423.

In particular, Theorem 2.6 implies:

Corollary 2.7 ([4]). If w ∈ Sn avoids the patterns 1432 and 1423, then the coefficient of m in
Sw = χD(w) is equal to

[m]Sw = #

⎧⎨⎩C ⩽ D(w)

⃓⃓⃓⃓
⃓⃓ ∏︂
(i,j)∈C

xi = m

⎫⎬⎭ .

3. Proof of Theorems 1.2, 1.3 and 1.5

In this section we prove Theorems 1.2, 1.3 and 1.5. We start by giving the necessary definitions
and lemmas.

3.1. Setup for Theorems 1.2, 1.3 and 1.5..

Definition 3.1. For words u, v, we write u ⩽ v if u is a subword of v (and u < v if u ⩽ v
and u ̸= v). In other words, u ⩽ v if there is a sequence 1 ⩽ i1 < · · · < i|u| ⩽ |v| such that
u = v(i1) · · · v(i|u|). The empty word () is a pattern in all words.

Example 3.2. Let u = 792 and v = 37952. Then u ⩽ v, because u = v(2) v(3) v(5).

Definition 3.3. For a word v of length n, let i1, i2, . . . , in be indices such that v(i1) < v(i2) <
· · · < v(in). Then perm(v) is the permutation that sends ij ↦→ j, that is, perm(v) = (i1i2 · · · in)−1.
Equivalently, π = perm(v) is the permutation in Sn such that the relative order of π1, . . . , πn and
of v1, . . . , vn are the same.

Example 3.4. Let v = 37952. Note v(5) < v(1) < v(4) < v(2) < v(3), so (i1, i2, i3, i4, i5) =
(5, 1, 4, 2, 3). Thus perm(v) = (51423)−1 = 24531. Notice that we can obtain perm(v) from v by
replacing the smallest character of v with 1, the second smallest with 2, and so on.

Definition 3.5. Let w ∈ Sn and let v be a subword of w. We define

xw−1(v) := (xw−1(v(1)), xw−1(v(2)), . . . , xw−1(v(|v|))).

Example 3.6. Let w = 134265 and v = 3265. Then

xw−1(v) = (xw−1(3), xw−1(2), xw−1(6), xw−1(5)) = (x2, x4, x5, x6).

Notice that the resulting indices will always be in ascending order. See Figure 1 for an illustration.

1

3

4

1

2

3

2

6

5

4

5

6

32

2

6

5

4

5

6

w vw−1(v)

Figure 1. The left diagram is the Rothe diagram of the permutation w = 134265
(the permutation w is noted in red to the left of the diagram). The row indices are
noted in blue to the left of the diagram. The right diagram shows the subword v =
3265 of w = 134265 graphically: it is obtained by removing the yellow highlighted
rows and columns from the Rothe diagram of w. The indices w−1(v) shown in
blue to the left of the diagram are simply the row indices corresponding to this
graphical presentation of the subword v = 3265 of w = 134265.

Definition 3.7. Given a diagram D ⊆ [n]× [n] and sets of indices K,L ⊆ [n] with #K = #L, letˆ︁D |K,L denote the diagram obtained from D by keeping only the boxes in rows K and columns L:ˆ︁D |K,L= {(i, j) ∈ D | i ∈ K, j ∈ L}.
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K. MÉSZÁROS & A. TANJAYA

Definition 3.8. Suppose C ⩽ D(w) for some permutation w ∈ Sn. Then, for any sub-

word v ⩽ w, we define ˆ︁C |v to be the diagram obtained by keeping only the boxes in the

rows corresponding to v. That is, ˆ︁C |v:= ˆ︁C |K,L, where L = {v(1), v(2), . . . , v(|v|)} and
K = {w−1(v(1)), w−1(v(2)), . . . , w−1(v(|v|))}.

3.2. Theorem 1.2 and its proof..

Theorem 1.2. Let w ∈ Sn be a 1432 and 1423 avoiding permutation and let u be a subword of w.
Then

(5)
∑︂

u⩽v⩽w

(−1)|w|−|v|Mw,vSperm(v)(xw−1(v)) ∈ Z⩾0[x1, . . . , xn],

where

Mw,v :=
∏︂

(i,j)∈D(w)∖ˆ︂D(w)|v

xi.

Example 3.9. Let w = 2143 and u = 43. Then

{v | u ⩽ v ⩽ w} = {2143, 143, 243, 43},

so the alternating sum in (5) becomes

Mw,2143S2143(x1, x2, x3, x4)−Mw,143S132(x2, x3, x4)−Mw,243S132(x1, x3, x4) +Mw,43S21(x3, x4)

(6)

= 1 · (x2
1 + x1x2 + x1x3)− x1 · (x2 + x3)− x1 · (x1 + x3) + x1 · (x3)

= 0,

which indeed has nonnegative coefficients. See Figure 2 for an illustration.

2

1

4

3

x1 ·Sperm(43)(x3, x4)1 ·Sperm(2143)(x1, x2, x3, x4) − − +

1

4

3

x1 ·Sperm(143)(x2, x3, x4) x1 ·Sperm(243)(x1, x3, x4)

2

4

3

1

2

3

4

2

3

4

1

3

4

4

3

3

4

Figure 2. The four diagrams in this figure correspond left to right to the subwords
{v | u ⩽ v ⩽ w} = {2143, 143, 243, 43} for w = 2143 and u = 43 as in Example
3.9. These in turn yield the Schubert polynomials in the expression (6). The red
numbers on the left of the diagrams signify these subwords; the blue numbers are
the row numbers yielding the variables of the corresponding Schubert polynomials
in the expression (6). The purple boxes correspond to the boxes of the Rothe
diagram of w = 2143 that are removed in order to obtain v; graphically these
are the boxes struck by yellow if the yellow highlighted rows and columns are
extended; the row indices of these boxes yield the monomials Mw,v.

Example 3.10. Let w = 1342 and u = 42. Then

{v | u ⩽ v ⩽ w} = {1342, 142, 342, 42},

so the alternating sum in (5) becomes

Mw,1342S1342(x1, x2, x3, x4)−Mw,142S132(x1, x3, x4)−Mw,342S231(x2, x3, x4) +Mw,42S21(x3, x4)

(7)

= 1 · (x1x2 + x1x3 + x2x3)− x2 · (x1 + x3)− 1 · (x2x3) + x2 · (x3)

= x1x3,

which indeed has nonnegative coefficients. See Figure 3 for an illustration.

To aid the proof of Theorem 1.2 we extend Corollary 2.7 to words:
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1

3

4

2

1

4

2

x2 ·Sperm(142)(x1, x3, x4)

4

2

1 ·Sperm(342)(x2, x3, x4)

3

4

2

x2 ·Sperm(42)(x3, x4)1 ·Sperm(1342)(x1, x2, x3, x4) − − +

1

2

3

4

1

3

4

2

3

4

3

4

Figure 3. The four diagrams in this figure correspond left to right to the subwords
{v | u ⩽ v ⩽ w} = {1342, 142, 342, 42} for w = 1342 and u = 42 as in Example
3.10. These in turn yield the Schubert polynomials in the expression (7). The red
numbers on the left of the diagrams signify these subwords; the blue numbers are
the row numbers yielding the variables of the corresponding Schubert polynomials
in the expression (7). The purple boxes correspond to the boxes of the Rothe
diagram of w = 1342 that are removed in order to obtain v; graphically these
are the boxes struck by yellow if the yellow highlighted rows and columns are
extended; the row indices of these boxes yield the monomials Mw,v.

Lemma 3.11. Let w ∈ Sn be a 1432 and 1423 avoiding permutation, and let v be a subword of w.
Then the coefficient of m in Sperm(v)(xw−1(v)) is equal to

#

⎧⎨⎩C ⩽ ˆ︂D(w) |v

⃓⃓⃓⃓
⃓⃓ ∏︂
(i,j)∈C

xi = m and C’s boxes all lie in rows K

⎫⎬⎭ ,

where K = {w−1(v(1)), w−1(v(2)), . . . , w−1(v(|v|))}.

Proof. Fix m, and let

A =

⎧⎨⎩C ⩽ ˆ︂D(w) |v

⃓⃓⃓⃓
⃓⃓ ∏︂
(i,j)∈C

xi = m and C’s boxes all lie in rows K

⎫⎬⎭ .

If m is divisible by some xi where i /∈ K, then the coefficient of m in Sperm(v)(xw−1(v)) is 0, and
no diagram C with boxes only in rows K can ever satisfy

∏︁
(i,j)∈C xi = m, so |A| = 0 and we are

done.
Let k1 < k2 < · · · < k|v| be the elements of K. By the previous discussion, we may as well

assume that we can write

m =

|v|∏︂
i=1

xαi

ki

for some nonnegative integers αi. Define

m′ =

|v|∏︂
i=1

xαi
i ,

which is simply m under the reindexing xki
↦→ xi. Since w is 1432 and 1423 avoiding, so are v and

perm(v), thus by Corollary 2.7, the coefficient of m′ in Sperm(v)(x1, . . . , x|v|) is equal to |B|, where

B =

⎧⎨⎩C ⩽ D(perm(v))

⃓⃓⃓⃓
⃓⃓ ∏︂
(i,j)∈C

xi = m′

⎫⎬⎭ .

Consider the function f : B → A given by

f(C) = {(ki, v(j)) | (i, j) ∈ C}.

Notice that the boxes of f(C) all lie in rowsK, and since
∏︁

(i,j)∈C xi = m′, we have
∏︁

(i,j)∈f(C) xi =

m. Furthermore, from the definition of Rothe diagrams, if (i, j) ∈ D(perm(v)) then (ki, v(j)) ∈
D(w), so f(D(perm(v))) ⩽ ˆ︂D(w) |v. For C,C ′ ∈ B, observe that if C ⩽ C ′ then f(C) ⩽ f(C ′), so

it follows that f(C) ⩽ ˆ︂D(w) |v for all C ∈ B and f is well-defined.
f is clearly injective by construction. To see that it is surjective, note that if C ∈ A, then

C ⩽ ˆ︂D(w) |v, so every box in C is of the form (ki, v(j)) and the diagram

C ′ = {(i, j) | (ki, v(j)) ∈ C}
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is easily seen to be a member of A, with f(C ′) = C. Therefore,

[m]Sperm(v)(xw−1(v)) = [m]Sperm(v)(xk1
, xk2

, . . . , xk|v|)

= [m′]Sperm(v)(x1, x2, . . . , x|v|)

= |B|
= |A| .

□

Proof of Theorem 1.2. We must show that for every monomial m,

[m]
∑︂

u⩽v⩽w

(−1)|w|−|v|Mw,vSperm(v)(xw−1(v)) ⩾ 0;

equivalently,

(8)
∑︂

u⩽v⩽w

(−1)|w|−|v|[m]Mw,vSperm(v)(xw−1(v)) ⩾ 0.

Fix m. For any subword v ⩽ w, let Kv := {w−1(v(1)), w−1(v(2)), . . . , w−1(v(|v|))} (the ‘rows
corresponding to v’). Using Lemma 3.11, we find that

[m]Mw,vSperm(v)(xw−1(v)) =

[︃
m

Mw,v

]︃
Sperm(v)(xw−1(v))

= #

⎧⎨⎩C ⩽ ˆ︂D(w) |v

⃓⃓⃓⃓
⃓⃓ ∏︂
(i,j)∈C

xi =
m

Mw,v
and C’s boxes all lie in rows Kv

⎫⎬⎭ .

Consider the two families of sets

Av :=

⎧⎨⎩C ⩽ ˆ︂D(w) |v

⃓⃓⃓⃓
⃓⃓ ∏︂
(i,j)∈C

xi =
m

Mw,v
and C’s boxes all lie in rows Kv

⎫⎬⎭ ,

Bv :=

⎧⎨⎩C ⩽ D(w)

⃓⃓⃓⃓
⃓⃓ ∏︂
(i,j)∈C

xi = m, C ∖ ( ˆ︁C |v) = D(w)∖ (ˆ︂D(w) |v) and C’s boxes all lie in rows Kw

⎫⎬⎭ .

Since v ⩽ w, Kv ⊆ Kw, and also the boxes of D(w)∖ (ˆ︂D(w) |v) all lie in rows Kw ∖Kv. Thus,

D(w)∖ (ˆ︂D(w) |v) is disjoint from every C ∈ Av, and so there is an obvious injection f from Av to
Bv defined by

f(C) := C ⊔ (D(w)∖ (ˆ︂D(w) |v)).

We claim f is surjective. Indeed, given C ∈ Bv, the diagram C ′ = C∖ (D(w)∖ (ˆ︂D(w) |v)) is easily
seen to be a member of Av, and of course f(C ′) = C.

Therefore,

(9) [m]Mw,vSperm(v)(xw−1(v)) = |Av| = |Bv| ,
and so it suffices to show that

(10)
∑︂

u⩽v⩽w

(−1)|w|−|v| |Bv| ⩾ 0.

Notice that, if u ⩽ v ⩽ v′ ⩽ w, then Bv ⊆ Bv′ , and for all u ⩽ v, v′ ⩽ w, Bu∩Bv = Bu∧v, where
u ∧ v denotes the maximal word contained in both u and v. Let I = {v | u ⩽ v ⩽ w and |v| =
|w| − 1}. Then, using inclusion-exclusion, we find that∑︂

u⩽v⩽w

(−1)|w|−|v| |Bv| = |Bw| −
∑︂
v1∈I

|Bv1 |+
∑︂

v1,v2∈I

|Bv1 ∩Bv2 | − · · ·(11)

= |Bw| −
⃓⃓⃓⃓ ⋃︁
v∈I

Bv

⃓⃓⃓⃓
(12)

=

⃓⃓⃓⃓
Bw ∖

⋃︁
v∈I

Bv

⃓⃓⃓⃓
.(13)

This quantity is necessarily non-negative, as desired. □

By setting all xi’s to 1 in Theorem 1.2 we obtain:
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Theorem 1.3. Let w ∈ Sn be a 1432 and 1423 avoiding permutation. If u is a subword of w, then∑︂
u⩽v⩽w

(−1)|w|−|v|Sperm(v)(1) ⩾ 0.

We conjecture (Conjecture 5.1) that Theorem 1.3 generalizes to all permutations w ∈ Sn.

3.3. Gao’s conjecture 1.4, Theorem 1.5 and its proof.. Gao [10] defined a sequence of
integers {cu}m⩾1,u∈Sm recursively, as follows:

(14) cw := Sw(1)− 1−
∑︂

|u|<|w|

cupu(w),

where |u| = m if u ∈ Sm, and pu(w) is the number of occurrences of u as a pattern in w.
Gao showed that cw = 0 whenever w(n) = n, so the definition of cw can be extended to all

w ∈ S∞. In the same paper, he conjectured the following:

Conjecture 3.12. ([10, Conjecture 3.2]) We have cw ⩾ 0 for all w ∈ S∞.

Notice that pu(w) = #{words v such that u = perm(v) and v ⩽ w}. Thus, we can rewrite (14)
as

(15) cw = Sw(1)−
∑︂
v<w

cv,

where the −1 has been absorbed into the sum as c(). Note that this perspective explains the
equivalence of Conjectures 1.4 and 3.12.

By inclusion-exclusion, (15) is equivalent to

(16) cw =
∑︂
v⩽w

(−1)|w|−|v|Sv(1).

Thus, Theorem 1.3 immediately implies:

Theorem 3.13. Conjecture 3.12 (equivalently, Conjecture 1.4) holds for 1432 and 1423 avoiding
permutations w ∈ S∞.

Moreover, Theorem 1.5 below provides a combinatorial interpretation for cw when w is 1432
and 1423 avoiding.

Definition 3.14. Given diagrams C,D ⊆ [n] × [n] and k, l ∈ [n], let ˆ︁Ck,l and ˆ︁Dk,l denote the
diagrams obtained from C and D by removing any boxes in row k or column l. When the indexes

k, l are clear from the context we simply write ˆ︁C and ˆ︁D in place of ˆ︁Ck,l and ˆ︁Dk,l. Fix a diagram

D. For each diagram ˆ︁C, let its augmentation with respect to the diagram D be:ˆ︁Caug = ˆ︁C ∪ {(k, i) | (k, i) ∈ D} ∪ {(i, l) | (i, l) ∈ D} ⊆ [n]× [n].

By tracing the proof of Theorem 1.2 for the case u = (), we can obtain an interpretation of
the coefficient of m in

∑︁
v⩽w(−1)|w|−|v|Mw,vSv(xw−1(v)) in terms of augmentations of diagramsˆ︁C ⩽ ˆ︂D(w). In particular, we readily obtain:

Theorem 1.5. For 1432 and 1423 avoiding permutations w ∈ S∞ the value of cw is the number

of diagrams C ⩽ D(w) that cannot be written as ˆ︁Caug for some ˆ︁C = ˆ︁Ck,wk
⩽ ˆ︂D(w) = ˆ︂D(w)k,wk

,
k ∈ Z>0.

We conclude this section by illustrating Theorem 1.5 for permutations 1342 and 12453.

Example 3.15. Computation yields c1342 = 0. We have that D(1342) = {(2, 2), (3, 2)} and thus
the diagrams C ⩽ D(1342) are:

C1 C2 C3
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Note that C1 = ˆ︂C1
aug with respect to D(1342) with k = 3, l = 4 (or with k = 2, l = 3); C2 = ˆ︂C2

aug

with respect to D(1342) with k = 3, l = 4; C3 = ˆ︂C3
aug with respect to D(1342) with k = 2, l = 3.

Thus, the number of diagrams C ⩽ D(1342) that cannot be written as ˆ︁Caug for some ˆ︁C ⩽ ˆ︂D(1342)
is 0 yielding c1342 = 0.

Example 3.16. Computation yields c12453 = 1. We have that D(12453) = {(3, 3), (4, 3)} and thus
the diagrams C ⩽ D(12453) are:

C1 C2 C3

C4 C5 C6

Note that C1 = ˆ︂C1
aug with respect to D(12453) with k = 4, l = 5 (or with k = 3, l = 4);

C2 = ˆ︂C2
aug with respect to D(12453) with k = 4, l = 5; C3 = ˆ︂C3

aug with respect to D(12453)

with k = 4, l = 5; C4 = ˆ︂C4
aug with respect to D(12453) with k = 3, l = 4; C5 = ˆ︂C5

aug with

respect to D(12453) with k = 3, l = 4. Note also that C6 cannot be written as ˆ︂C6
aug for someˆ︂C6 ⩽ ˆ︂D(12453). Thus, the number of diagrams C ⩽ D(12453) that cannot be written as ˆ︁Caug for

some ˆ︁C ⩽ ˆ︂D(1342) is 1 yielding c12453 = 1.

4. Proof of Theorem 1.6

The main result of this section is a generalization of Theorems 1.1 and 1.6:

Theorem 4.1. Fix a diagram D ⊆ [n]× [n] and let ˆ︁D be the diagram obtained from D by removing
any boxes in row k or column l. If K ∈ Pk,l(D), then

χD(x1, . . . , xn)−M(x1, . . . , xn)χ ˆ︁D(x1, . . . , xk−1, 0, xk+1, . . . , xn) ∈ Z⩾0[x1, . . . , xn],

where

M(x1, . . . , xn) =
∏︂

(i,j)∈K

xi.

Theorem 1.6 is a special case of Theorem 4.1 when D is a Rothe diagram of a permutation and
l = σk.

We now proceed to define the set of diagrams Pk,l(D) used in the statement of Theorem 4.1
above.

Definition 4.2. Fix a diagram D ⊆ [n]× [n] and integers k, l ∈ [n]. Define Purplek,l(D) to be the
set of boxes (i, j) such that:

• there is some C ⩽ D such that (i, j) ∈ C, but

• there is no C ⩽ D such that ˆ︁Ck,l ⩽ ˆ︁Dk,l and (i, j) ∈ ˆ︁Ck,l.

Definition 4.3. Fix a diagram D ⊆ [n] × [n] and integers k, l ∈ [n]. Define Pk,l(D) to be the
smallest set satisfying the following:

• D ∖ ˆ︁Dk,l ∈ Pk,l(D), and
• if K ∈ Pk,l(D), K ′ ⩽ K and K ′ ⊆ Purplek,l(D), then K ′ ∈ Pk,l(D).
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Example 4.4. LetD = D(15243), k = 5 and l = 3. Then Purplek,l(D) = {(1, 3), (2, 3), (3, 3), (4, 3)}
and Pk,l(D) = {{(2, 3), (4, 3)}, {(1, 3), (4, 3)}, {(2, 3), (3, 3)}, {(1, 3), (3, 3)}, {(1, 3), (2, 3)}}. As a
result, the set of monomials M produced by Theorem 1.6 is {x2x4, x1x4, x2x3, x1x3, x1x2}. In this
case, these are all the monomials M for which

χD(x1, x2, x3, x4, x5)−M(x1, x2, x3, x4, x5)χ ˆ︁D(x1, x2, x3, x4, 0) ∈ Z⩾0[x1, x2, x3, x4, x5].

See Figure 4 for an illustration.

x2x4 x1x4 x2x3 x1x3 x1x2

Figure 4. The diagram in the first row shows the Rothe dia-
gram of the permutation 15243. The yellow highlighted row and col-
umn correspond to removing row indexed k = 5 and column in-
dexed l = 3. The boxes with purple boundary are Purplek,l(D) =
{(1, 3), (2, 3), (3, 3), (4, 3)}. The second row of the figure shows Pk,l(D) =
{{(2, 3), (4, 3)}, {(1, 3), (4, 3)}, {(2, 3), (3, 3)}, {(1, 3), (3, 3)}, {(1, 3), (2, 3)}} along
with the corresponding monomials below each diagram.

Example 4.5. Let D = D(15243) and k = l = 4. Then Purplek,l(D) = {(1, 4), (2, 4), (3, 3), (4, 3)}
and Pk,l(D) = {{(2, 4), (4, 3)}, {(1, 4), (4, 3)}, {(2, 4), (3, 3)}, {(1, 4), (3, 3)}}. As a result, the set of
monomials M produced by Theorem 1.6 is {x2x4, x1x4, x2x3, x1x3}. However,

χD(x1, x2, x3, x4, x5)− (x1x2)χ ˆ︁D(x1, x2, x3, 0, x5) ∈ Z⩾0[x1, x2, x3, x4, x5],

so in this case the monomials prescribed by Theorem 1.6 are not the only monomials that could
work. See Figure 5 for an illustration.

x2x4 x1x4 x2x3 x1x3

Figure 5. The diagram in the first row shows the Rothe diagram of the per-
mutation 15243. The yellow highlighted row and column correspond to removing
row indexed k = 4 and column indexed l = 4. The boxes with purple boundary
are Purplek,l(D) = {(1, 4), (2, 4), (3, 3), (4, 3)}. The second row of the figure shows
Pk,l(D) = {{(2, 4), (4, 3)}, {(1, 4), (4, 3)}, {(2, 4), (3, 3)}, {(1, 4), (3, 3)}} along with
the corresponding monomials below each diagram.

The following lemma follows immediately from the definitions:
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Lemma 4.6. Let C,D ⊆ [n] × [n] be diagrams, k, l ∈ [n], and K ∈ Pk,l(D). If ˆ︁Ck,l ⩽ ˆ︁Dk,l, thenˆ︁Ck,l ∪K ⩽ D and ˆ︁Ck,l ∩K = ∅.

The following lemma generalizes [6, Lemma 5.7]:

Lemma 4.7. Fix a diagram D, integers k, l ∈ [n], K ∈ Pk,l(D), and let ˆ︁D denote ˆ︁Dk,l. Let

{ ˆ︁C(i)}i∈[m] be a set of diagrams with ˆ︁C(i) ⩽ ˆ︁D for each i, and denote ˆ︁C(i) ∪ K by C(i) for i ∈

[m]. If the polynomials

⎧⎨⎩ ∏︂
j∈[n]

det(Y
C

(i)
j

Dj
)

⎫⎬⎭
i∈[m]

are linearly dependent, then so are the polynomials

⎧⎨⎩ ∏︂
j∈[n]∖{l}

det(Y
ˆ︁C(i)
jˆ︁Dj
)

⎫⎬⎭
i∈[m]

.

Proof. We are given that

(17)
∑︂
i∈[m]

ci
∏︂
j∈[n]

det(Y
C

(i)
j

Dj
) = 0

for some constants (ci)i∈[m] ∈m not all zero. Since C(i) = ˆ︁C(i) ∪ K for ˆ︁C(i) ⩽ ˆ︁D we have that

C
(i)
l = Kl for every i ∈ [m]. Thus, (17) can be rewritten as

(18) det(Y Kl

Dl
)

⎛⎝ ∑︂
i∈[m]

ci
∏︂

j∈[n]∖{l}

det(Y
C

(i)
j

Dj
)

⎞⎠ = 0.

However, since det(Y Kl

Dl
) ̸= 0, we conclude that

(19)
∑︂
i∈[m]

ci
∏︂

j∈[n]∖{l}

det(Y
C

(i)
j

Dj
) = 0.

First consider the case that the only boxes of D in row k or column l are those in Dl. If this is
the case then

(20)
∏︂

j∈[n]∖{l}

det(Y
ˆ︁C(i)
jˆ︁Dj
) =

∏︂
j∈[n]∖{l}

det(Y
C

(i)
j

Dj
)

for each i ∈ [m]. Therefore,

(21)
∑︂
i∈[m]

ci
∏︂

j∈[n]∖{l}

det(Y
ˆ︁C(i)
jˆ︁Dj
) =

∑︂
i∈[m]

ci
∏︂

j∈[n]∖{l}

det(Y
C

(i)
j

Dj
).

Combining (19) and (21) we obtain that the polynomials

{︃∏︁
j∈[n]∖{l} det(Y

ˆ︁C(i)
jˆ︁Dj
)

}︃
i∈[m]

are lin-

early dependent, as desired.
Now, suppose that there are boxes of D in row k that are not in Dl. Let j1 < · · · < jp be all

indices j ̸= l such that Dj = ˆ︁Dj ∪ {k}. Then, for each i ∈ [m] and q ∈ [p], C
(i)
jq

∖ ˆ︁C(i)
jq

= Kjq . For

each q ∈ [p], let kq be the only element of Kjq ; then (19) implies that

(22)

⎡⎣ ∏︂
q∈[p]

ykqk

⎤⎦ ∑︂
i∈[m]

ci
∏︂

j∈[n]∖{l}

det(Y
C

(i)
j

Dj
) = 0.

However,

(23)

⎡⎣ ∏︂
q∈[p]

ykqk

⎤⎦ ∏︂
j∈[n]∖{l}

det(Y
C

(i)
j

Dj
) =

∏︂
j∈[n]∖{l}

det(Y
ˆ︁C(i)
jˆ︁Dj
),

as is seen by Laplace expansion on the kqth row of det(Y
C

(i)
jq

Djq
), and therefore

(24)

⎡⎣ ∏︂
q∈[p]

ykqk

⎤⎦ ∑︂
i∈[m]

ci
∏︂

j∈[n]∖{l}

det(Y
C

(i)
j

Dj
) =

∑︂
i∈[m]

ci
∏︂

j∈[n]∖{l}

det(Y
ˆ︁C(i)
jˆ︁Dj
).

Algebraic Combinatorics, draft (16th June 2022) 12



INCLUSION-EXCLUSION ON SCHUBERT POLYNOMIALS

Thus, (22) and (24) imply that

(25)
∑︂
i∈[m]

ci
∏︂

j∈[n]∖{l}

det(Y
ˆ︁C(i)
jˆ︁Dj
) = 0,

as desired. □

We are now ready to prove Theorem 4.1:

Proof of Theorem 4.1 Let M = M(x1, . . . , xn). Suppose there is some K ∈ Pk,l(D) such that

M(x1, . . . , xn) =
∏︂

(i,j)∈K

xi.

We must show that [Mm]χD ⩾ [m]χ ˆ︁D for each monomial m of χ ˆ︁D not divisible by xk. Let ˆ︁C
be the set of diagrams ˆ︁C such that ˆ︁C ⩽ ˆ︁D and

∏︁
(i,j)∈ ˆ︁C xi = m. By Corollary 5.5,

[m]χ ˆ︁D = dim

⎛⎜⎜⎜⎜⎜⎝Span⎧⎨⎩
n∏︂

j=1

det(Y
ˆ︁Cjˆ︁Dj
)

⃓⃓⃓⃓
⃓⃓ ˆ︁C ∈ ˆ︁C

⎫⎬⎭

⎞⎟⎟⎟⎟⎟⎠ .

Let C = { ˆ︁C ∪K | ˆ︁C ∈ ˆ︁C}. By Lemma 4.6, every C ∈ C satisfies C ⩽ D and
∏︁

(i,j)∈C xi = Mm,

so Corollary 5.5 implies that

[Mm]χD ⩾ dim

⎛⎜⎜⎜⎜⎜⎝Span⎧⎨⎩
n∏︂

j=1

det(Y
C

(i)
j

Dj
)

⃓⃓⃓⃓
⃓⃓ C ∈ C

⎫⎬⎭

⎞⎟⎟⎟⎟⎟⎠ .

Note the inequality, which is because we have only a subset of the C.
Finally, Lemma 4.7 implies that

dim

⎛⎜⎜⎜⎜⎜⎝Span⎧⎨⎩
n∏︂

j=1

det(Y
C

(i)
j

Dj
)

⃓⃓⃓⃓
⃓⃓ C ∈ C

⎫⎬⎭

⎞⎟⎟⎟⎟⎟⎠ ⩾ dim

⎛⎜⎜⎜⎜⎜⎝Span⎧⎨⎩
n∏︂

j=1

det(Y
ˆ︁C(i)
jˆ︁Dj
)

⃓⃓⃓⃓
⃓⃓ ˆ︁C ∈ ˆ︁C

⎫⎬⎭

⎞⎟⎟⎟⎟⎟⎠ ,

so [Mm]χD ⩾ [m]χ ˆ︁D for each monomial m of χ ˆ︁D not divisible by xk.
□

5. Questions and Conjectures

The results of this paper naturally give rise to the following Conjectures and Questions.

5.1. Extending Theorem 1.3.

Conjecture 5.1. Let w ∈ Sn. If u is a subword of w, then∑︂
u⩽v⩽w

(−1)|w|−|v|Sperm(v)(1) ⩾ 0.

Theorem 1.3 confirms the above conjecture for 1432 and 1423 avoiding permutations. A special
case of Conjecture 5.1 is Gao’s conjecture 1.4. Conjecture 5.1 has been verified by computer for all
permutations in Sn for n ⩽ 8.
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5.2. Extending Theorem 1.6. The monomialsM(x1, . . . , xn) =
∏︁

(i,j)∈K xi we constructed from

diagrams K ∈ Pk,σk
(D(σ)) in Theorem 1.6 do not always characterize all monomials for which

Sσ(x1, . . . , xn)−M(x1, . . . , xn)Sπ(x1, . . . ,ˆ︂xk, . . . , xn) ∈ Z⩾0[x1, . . . , xn]

holds; recall that π ∈ Sn−1 is obtained by removing row k and column σk of D(σ). The following
example illustrates this:

Example 5.2. For the permutation σ = 1432 and its pattern π = 132 (coming from the subword
142 of 1432) obtained by removing row k = 3 and column σk = 3 of D(σ), the set of monomials of
the form

∏︁
(i,j)∈K xi constructed from diagrams K ∈ P3,σ3

(D(σ)) is {x1x3, x2x3}, yet the mono-

mial M(x1, . . . , xn) = x1x2 also yields Sσ(x1, . . . , xn) − M(x1, . . . , xn)Sπ(x1, . . . ,ˆ︂xk, . . . , xn) ∈
Z⩾0[x1, . . . , xn]. In contrast, for σ = 1432 and its pattern π = 132 (coming from the subword 143 of
1432) obtained by removing row k = 4 and column σ4 = 2 of D(σ), the set of monomials of the form∏︁

(i,j)∈K xi constructed from diagrams K ∈ P4,σ4
(D(σ)) is {x1x2, x1x3, x2x3} and these are all the

monomials for which Sσ(x1, . . . , xn)−M(x1, . . . , xn)Sπ(x1, . . . ,ˆ︂xk, . . . , xn) ∈ Z⩾0[x1, . . . , xn].

Question 5.3. Given permutation σ ∈ Sn and its pattern π ∈ Sn−1 obtained by removing row k
and column σk of D(σ), characterize all monomials M(x1, . . . , xn) for which

Sσ(x1, . . . , xn)−M(x1, . . . , xn)Sπ(x1, . . . ,ˆ︂xk, . . . , xn) ∈ Z⩾0[x1, . . . , xn]

holds.

We conjecture that for 1432 and 1423 avoiding permutations Theorem 1.6 characterizes these
monomials:

Conjecture 5.4. For 1432 and 1423 avoiding permutation σ ∈ Sn and its pattern π ∈ Sn−1

obtained by removing row k and column σk of D(σ),

Sσ(x1, . . . , xn)−M(x1, . . . , xn)Sπ(x1, . . . ,ˆ︂xk, . . . , xn) ∈ Z⩾0[x1, . . . , xn]

if and only if M(x1, . . . , xn) =
∏︁

(i,j)∈K xi, where K ∈ Pk,σk
(D(σ)).

Conjecture 5.4 has been verified by computer for all permutations in Sn for n ⩽ 8. We note
that there are permutation and pattern pairs σ ∈ Sn and π ∈ Sn−1, where σ is not 1432 and 1423
avoiding, yet Sσ(x1, . . . , xn)−M(x1, . . . , xn)Sπ(x1, . . . ,ˆ︂xk, . . . , xn) ∈ Z⩾0[x1, . . . , xn] if and only
if M(x1, . . . , xn) =

∏︁
(i,j)∈K xi, where K ∈ Pk,σk

(D(σ)). An example is σ = 1423 and any of its

patterns π obtained from D(σ) by removing row k and column σk (k ∈ [4]).

5.3. Extending Theorem 1.2. As stated, Theorem 1.2 does not hold for all permutations. How-
ever, it is natural to wonder about the following extension:

Question 5.5. Let w ∈ Sn and let u be a subword of w. Using the monomials from Theorem 1.6 (or
its extension asked for in Problem 5.3) is it possible to pick suitable monomials mw,v ∈ Z[x1, . . . , xn]
to make the expression ∑︂

u⩽v⩽w

(−1)|w|−|v|mw,vSperm(v)(xw−1(v))

belong to Z⩾0[x1, . . . , xn]?

Note that a positive answer to Question 5.5 would be an extension of Theorem 1.2 which would
readily imply Conjecure 5.1 as well as Gao’s Conjecture 1.4.
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