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Abstract

Schur polynomials are special cases of Schubert polynomials, which in turn are
special cases of dual characters of flagged Weyl modules. The principal specialization
of Schur and Schubert polynomials has a long history, with Macdonald famously ex-
pressing the principal specialization of any Schubert polynomial in terms of reduced
words. We prove a lower bound on the principal specialization of dual characters of
flagged Weyl modules. Our result yields an alternative proof of a conjecture of Stan-
ley about the principal specialization of Schubert polynomials, originally proved by
Weigandt.

Mathematics Subject Classifications: 05E05, 05E10

1 Introduction

Schubert polynomials &,, were introduced by Lascoux and Schiitzenberger in [12] as
distinguished polynomial representatives for the cohomology classes of Schubert cycles in
the flag variety. Schubert polynomials generalize Schur polynomials, a classical basis of
the ring of symmetric functions.
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The principal specialization of Schur polynomials has a long history: s\(1,...,1)
counts the number of semistandard Young tableaux of shape A, a number famously enu-
merated by the hook-content formula, see for instance [22]. Macdonald [14, Eq. 6.11]
famously expressed the principal specialization S,,(1,...,1) of the Schubert polynomial
S, in terms of the reduced words of the permutation w. Fomin and Kirillov [8] placed
this expression in the context of plane partitions for dominant permutations, while after
two decades Billey et al. [2] provided a combinatorial proof. Principal specialization of
Schubert polynomials has inspired a flurry of recent interest [9,16,17,19,23,24]. A major
catalyst for the current line of study into &,,(1,..., 1) is the following result of Weigandst,
which generalizes a conjecture of Stanley ([23, Conjecture 4.1]).

Theorem 1 (|24, Theorem 1.1]). For any permutation w € S,,
Gw(l, cey 1) >1 +p132(w),
where piga(w) is the number of 132-patterns in w.

Weigandt’s proof of Theorem 1 works by exploiting the structure of pipe dreams, one of
the earliest combinatorial models for Schubert polynomials [1,7]. We give an alternative
proof of Theorem 1 by generalizing its statement to the setting of dual characters of
flagged Weyl modules of diagrams:

Theorem 2. For any diagram D, the dual character xp of the flagged Weyl module of
D satisfies
xp(1,...,1) > rank(D) + 1.

We show in Corollary 19 that Theorem 2 specializes to Theorem 1. Additionally,
Theorem 2 implies an analogous result for key polynomials (Corollary 20).

Outline of this paper

In Section 2 we define dual characters of flagged Weyl modules of diagrams, and we
provide necessary background. In Section 3, we define the rank of a diagram and prove
Theorem 2. We characterize the case of equality in Theorem 2 and connect to zero-one
polynomials. We conclude in Section 4 by describing a simple upper bound version of
Theorem 2, and conjecturing a characterization for when equality holds.

2 Background

We first define flagged Weyl modules and their dual characters. We then recall the
definition of Schubert polynomials and the connection between Schubert polynomials and
dual characters. The exposition of this section follows that of [6].

By a diagram, we mean a sequence D = (Cy, Cs, ..., C,) of finite subsets of [n], called
the columns of D. We interchangeably think of D C [n] x [n] as a collection of boxes (i, j)
in a grid, viewing an element i € C; as a box in row ¢ and column j of the grid. When
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we draw diagrams, we read the indices as in a matrix: ¢ increases top-to-bottom and j
increases left-to-right.

Let G = GL(n,C) be the group of n x n invertible matrices over C and B be the
subgroup of G consisting of the n x n upper-triangular matrices. The flagged Weyl
module is a representation of B associated to a diagram D. The flagged Weyl module of
D will be denoted by M p. We will use the construction of Mp in terms of determinants
given in [15].

Denote by Y the n xn matrix with indeterminates y;; in the upper-triangular positions
and zeros elsewhere. Let C[Y] be the polynomial ring in the indeterminates {y;; }i<;. Note
that B acts on C[Y] on the right via left translation: if f(Y') € C[Y], then a matrix b € B
acts on f by f(Y)-b = f(b"'Y). For any R, S C [n], let Y& be the submatrix of ¥
obtained by restricting to rows R and columns S.

For R, S C [n], we say R < S if #R = #S5 and the kth least element of R does not
exceed the kth least element of S for each k. For any diagrams C' = (C,...,C,) and
D = (Dy,...,D,), wesay C < D if C; < D, for all j € [n].

Definition 3. For a diagram D = (Dy, ..., D,), the flagged Weyl module Mp is defined

by
Mp = Spang {Hdet (ng) C < D} :
i=1

Mp is a B-module with the action inherited from the action of B on C[Y].

Note that since Y is upper-triangular, the condition C' < D is technically unnecessary
since det (ngj) = 0 unless C; < D;. Conversely, if C; < D, then det <YDC;> # 0.
For any B-module N, the character of N is defined by

char(N)(z1,...,x,) =tr (X : N — N)

where X is the diagonal matrix with diagonal entries x1,...,z,, and X is viewed as a
linear map from N to N via the B-action. Define the dual character of N to be the
character of the dual module N*:

char*(N)(z1,...,x,) =tr (X : N* — N¥)
= char(N)(z; %, ...,z 1).
Definition 4. For a diagram D C [n]| x [n], let xp = xp(21,...,x,) be the dual character
Xp = char* Mp.

Example 5. Let D be the diagram

D = ({1?3}7{273}) =
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Then the diagrams C' with C' < D are

The corresponding products of determinants are

y11y22y§37 Y11Y12Y23Y33 — Y11Y13Y22Y33, y11y121/§37
Y11Y22Y23Y33, y11y12yg3_?/11913922y23a Y11Y12Y23Y33-

These determinants are all linearly independent eigenvectors of X, so

_ 2 2 2,2 2 2,.2
XD (T1, T2, T3) = T1X0m5 + 2070k + T1T5 + T1X5T3 + TIX5.

Definition 6. For any diagram D C [n] x [n] with columns Dy, ..., D,,, we write 2 for
the monomial .
D — .
=TT 1 =
j=1ieD;

The following two easy results describe the supports and coefficients of dual characters
of diagrams.

Theorem 7 (cf. [5, Theorem 7]). For any diagram D C [n]x[n], the monomials appearing
i xp are exactly

{xC}CSD}.

Corollary 8. Let D C [n] x [n] be a diagram. Fiz any diagram CY < D and set
m = 2. Suppose CV ... C") are all the diagrams C < D such that x¢ = m. Then,
the coefficient of m in xp s equal to the number of linearly independent polynomials over

n )
C among {Hdet (YDC; ) | i€ [r]}
j=1
2.1 Schubert Polynomials

Recall the divided difference operators 0; for j € [n — 1] are operators on the polynomial
ring Clxy, ..., z,] defined by

@](f) = f_(sj.f) — f(xlw"axn)_f(xb...,l’j+1,l‘j,...,xn)'

Lj— Tjt1 Lj = Tj+1
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Definition 9. The Schubert polynomial S, of w € S,, is defined recursively on the weak
Bruhat order. Let wg =nn—1--- 21 € §,, the longest permutation in S,. If w # wy
then there is j € [n — 1] with w(j) < w(j + 1) (called an ascent of w). The polynomial
S, is defined by

& el i w = wy,
956 if w(j) < w(j+1).
Definition 10. The Rothe diagram D(w) of a permutation w € S,, is the diagram
D(w) ={(i,5) € [n] x [n] | i <w™(j) and j < w(i)}.

The diagram D(w) can be visualized as the set of boxes left in the n x n grid after you
cross out all boxes weakly below (i, w(i)) in the same column, or weakly right of (i, w(7))
in the same row for each i € [n].

Example 11. If w = 31542, then

D(QU) = r ({1}7{17374}’97{3}7®)

The Schubert polynomial of w is computed by
Gw == 8281838284(1‘4111’31‘31'4).

Via Rothe diagrams, Schubert polynomials occur as special cases of dual characters
of flagged Weyl modules:

Theorem 12 ([11]). Let w be a permutation with Rothe diagram D(w). Then,

Sy = XD(w)-

2.2 Key Polynomials

Key polynomials were first introduced by Demazure for Weyl groups [3], and studied in
the context of the symmetric group by Lascoux and Schiitzenberger in [12,13]. Recall the
key polynomial k, of a composition o« = (aq, ag, ...) is defined as follows. When « is a
partition, k., = x®. Otherwise, suppose a; < a;y1 for some i. Then

Ko = 0;(z;kg), where 8 = (ai,..., 041,04, ...).
Definition 13 ([10,18]). Fix a composition «, and set
l=max{i|a; #0} and n=max{l,a,...,q}.
The skyline diagram of « is the diagram D(«) C [n] X [n] containing the leftmost «; boxes

in row ¢ for each i € [n].
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Example 14. If o = (3,2,0,1,1), then

D(a) = = ({1,2,4,5},{1,2}, {1}.0,0).

The key polynomial of « is computed by
Ko = O3(130, (w4 (23 050314))).
Theorem 15 ([4]). Let a be a composition with skyline diagram D(«). Then

Ra = XD(a)-

3 A Lower Bound for xp(1,...,1)
We prove a lower bound for the principal specialization of the dual character of any

diagram. We then specialize this bound to Schubert and key polynomials.
Definition 16. Fix a diagram D. For each box (i,j) € D, the rank of that box is

rankp(i,j) = #{k | 1 < k <iand (k,j) ¢ D}.

The rank of D is
rank(D) = Z rankp (i, 7).
(1,3)€D
Lemma 17. Let D be a diagram and let r = rank(D). Then there are diagrams
CCY ..., C" Y such that C° < C' < - < C" ' < D and rank(C*) = k.

Proof. If r = 0 then the chain consists of just D and there is nothing to prove. Assume
r > 0. We begin with the case that D has a single nonempty column. Without loss
of generality, we may write D = (D;) = ({a1,...,a,}). Since rank(D) > 0, D; #
{1,...,m}. Let k be the largest integer less than a,, such that k ¢ D;. Choose i so that
a; = k + 1 (which must exist by definition of k). Define

C1 = (D1 \ {a;}) U {k}.

Then C; < Dy, and rank(C;) = rank(D;) — 1. By induction, the result follows whenever
D has a single nonempty column. Since

rank((Dy,...,D,)) = Z rank((Dy)),
JE[n]

the general case follows from the single column case by performing the above construction
to one column at a time. 0

THE ELECTRONIC JOURNAL OF COMBINATORICS 27 (2020), #P00 6



Recall the inverse lexicographic order on monomials: 2% <inwex 2 if there exists
1 <i<nsuchthat a; =b; fori+1<j < n, and a; < b;.

Lemma 18. If C < D, then 2¢ # .

Proof. Let C' = (C4,...,C,) and D = (D4,...,D,), so C; < D; for all j € [n]. Fix a
column j. Then C; < D; means we can write C; = {ay,...,a,} and D; = {by,... b}
with a; < b; for all i € [m]. Consequently,

H X ginvlex | | Xy

iGCj iEDj

Since C' < D, we know C; < D; for at least one j € [n]. For any such j, we have

H Ti <invlex H Ty,

iECj iEDj
S0
n n
c D
=11 = <imiec ]T 1] @i =
J=1ieC; j=1ieD;
In particular 2% # 2P. O

We now prove Theorem 2.

Proof of Theorem 2. By Theorem 7,
ol 1) > # {2 | C < D).

By Lemma 17, there exists a chain of r = rank(D) + 1 diagrams C* < C' < --- < C"! <
D. Thus, by Lemma 18,

#{2¢|C<D}>#{a“|Ce{C’,C",....C"" D} =r+1=rank(D) + 1.
O
By specializing Theorem 2 to Rothe diagrams, we obtain a new proof of Theorem 1:
Corollary 19 ([24, Theorem 1.1]). For any permutation w € Sy,
Suw(l,...,1) =14 p13a(w),
where p13a(w) is the number of 132-patterns in w.

Proof. 1t is enough to show that pjz(w) = rank(D(w)). By viewing 132-patterns of w
graphically in D(w), one easily observes that 132-patterns are in transparent bijection
with tuples (i, 7, k) such that (i,j) € D(w), 1 < k < i, and (k,j) ¢ D(w). The quantity
rank(D(w)) exactly counts these tuples. O

THE ELECTRONIC JOURNAL OF COMBINATORICS 27 (2020), #P00 7



By specializing Theorem 2 to skyline diagrams, we obtain an analogous result for key
polynomials. For a composition «, let rinv(a) denote the set of right inversions of a, the
pairs ¢ < j such that a; < «;.

Corollary 20. For any composition «,

Kol D) 214 ) (a5 —ay).

(4,7)Erinv(a)
We now characterize the case of equality in Theorem 2.

Definition 21. Let D be any diagram. A pair of boxes (i,7),(i',7') € D is called an
unstable pair if

e rankp(i,j) > 1;
e rankp(7,j') > 1;
e If i =14 or j =7, then rankp(i, j) + rankp(i, j') > 3.

Proposition 22. A diagram D satisfies xp(1,...,1) = rank(D)+1 if and only if D does
not contain an unstable pair.

Proof. Suppose D contains an unstable pair {(7, j), (¢, 7')}. A simple case analysis shows
one can move boxes in D upwards to create diagrams C,C" < D of the same rank with
x¢ # ¢ This implies xp(1,...,1) # rank(D) + 1.

Assume D contains no unstable pair. If rank(D) = 0, then the result follows. Pick
(1,7) € D with rankp(é,j) > 1. If rankp(i,j) > 1, then any other positive rank box would
form an unstable pair with (7, j). Hence (4, ) is the only positive rank box of D, and the
result follows easily.

Suppose rankp (7, j) = 1. To avoid unstable pairs, all other positive rank boxes of D
either lie in row ¢, or they all lie in column j. In either case, they must all have rank
exactly 1. If all positive rank boxes of D lie in column ¢, then one observes there is a
unique diagram C' < D with rank k for each £ =0, 1, ..., rank(D), implying the result.

If all positive rank boxes of D lie in row j, then one observes that all diagrams C' < D
of a fixed rank have the same monomial ¢, and their determinants span an eigenspace
of dimension one in the flagged Weyl module. O

We now relate equality in Theorem 2 with the question of when xp is zero-one. Recall
a polynomial f is called zero-one if all nonzero coefficients in f equal 1.

Proposition 23. If a diagram D satisfies xp(1,...,1) = rank(D) + 1, then xp is zero-
one.

Proof. In order for xp(1,...,1) =rank(D) + 1, it must happen that all diagrams C' < D
with a fixed rank induce the same monomial ¢ and have dependent determinants in the
flagged Weyl module. Since all diagrams C,C’ < D with 2¢ = ¢ must have the same
rank, it follows that all eigenspaces in the flagged Weyl module of D have dimension
one. 0
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We now provide a conjectural characterization of diagrams D such that xp is zero-one.
Consider the six box configurations shown in Figure 1. In each configuration, an x (red)
indicates the absence of a box; a shaded square (gray) indicates the presence of a box;
and an unshaded square (white) indicates no restriction on the presence or absence of a
box.

Definition 24. Let D be any diagram. We say D contains a multiplicitous configuration
if there are r; < ro < r3 < rq and ¢; < ¢y so that D restricted to rows {ry,ra, 73,74}
and columns {c1, c2} equals one of the configurations shown in Figure 1, up to possibly
swapping the order of the columns.

Figure 1: The six multiplicitous configurations.

Example 25. Consider the diagrams D and D’ shown in Figure 2. The diagram D
does not contain instances of any multiplicitous configurations. The diagram D’ contains
instances of each of the multiplicitous configurations.

Figure 2:

Proposition 26. If a diagram D contains a multiplicitous configuration, then xp is not
zero-one.

Proof. Tt follows immediately from [6, Theorem 5.8] that if the restriction of a diagram
D to rows {i,...4,} and columns {ji,...,Jj,} equals a diagram D', then the largest
coefficient appearing in xp is bounded below by the largest coefficient appearing in xp.
One can check that the dual characters of each of the multiplicitous configurations are
not zero-one. [
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Conjecture 27. If D is a diagram such that yp is not zero-one, then D contains a
multiplicitous configuration.

Together, Proposition 26 and Conjecture 27 specialize to known results for Schubert
and key polynomials: [6, Theorem 1] when D is the Rothe diagram of a permutation, and
[21, Theorem 1.1] when D is the skyline diagram of a composition.

4 An Upper Bound for xp(1,...,1)

We recall a trivial upper bound for the principal specialization of the dual character of
any diagram. We make a conjecture for the case of equality. From Corollary 8, it follows
immediately that if ¢, is the coefficient of x* in yp, then

ca <H#{C <D | 2% =2}

In particular,

xo(l,...,1) < #{C| C < D}.

Fan and Guo gave the following characterization for equality when the diagram D is
northwest. Recall a diagram D is northwest if whenever (i, 5), (¢, ') € D with ¢ > ¢ and
j <j',onehas (¢,j) € D.

Theorem 28 ([20]). For any northwest diagram D,
xp(l,...,1)=#{C | C < D}

if and only if D contains no instance of the configuration shown in Figure 3.

Figure 3:

We conjecturally extend Theorem 28 to all diagrams.

Conjecture 29. Let D be any diagram. Then xp(1,...,1) = #{C | C < D} if and only
if D contains no instance of the configuration shown in Figure 4.
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Figure 4:
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