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Abstract—We consider decentralized detection (DD) of an un-
cooperative moving target via wireless sensor networks (WSNs),
measured in zero-mean unimodal noise. To address energy and
bandwidth limitations, the sensors use multi-level quantizers. The
encoded bits are then reported to a fusion center (FC) via binary
symmetric channels. Herein, we propose a generalized Rao (G-Rao)
test as a simpler alternative to the generalized likelihood ratio
test (GLRT). Then, at the FC, a truncated one-sided sequential
(TOS) test rule is considered in addition to the fixed-sample-size
(FSS) manner. Further, the asymptotic performance of a trajectory-
clairvoyant (multi-bit) Rao test is leveraged to develop an offline
and per-sensor quantizer design. Detection gain measures are also
introduced to assess resolution improvements. Simulations show
the appeal of G-Rao test with respect to the GLRT, and the gain
in detection by using multiple bits for quantization, as well as the
advantage of the sequential detection approach.

Index Terms—Decentralized detection, generalized Rao test,
multibit quantizer, sequential detection, wireless sensor networks.

I. INTRODUCTION

A. Motivation and Related Works

THE study on Decentralized Detection (DD) started from
1980s [1], [2] and has received significant attention in

Wireless Sensor Networks (WSNs) area by the scientific com-
munity over the last two decades [3]–[11]. Nowadays, DD is
the object of renewed interest with the advent of the Internet
of Things (IoT) paradigm. Indeed, billions of tiny devices with
sensing, computation, and communicating capabilities are ex-
pected to be used in numerous areas of everyday life, such as
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surveillance, environmental monitoring, smart cities and grids,
connected cars, precision-agriculture and healthcare.

A WSN with a centralized architecture typically consists of a
large number of spatially-distributed sensors and a Fusion Center
(FC). The sensors collect measurements of a given physical
process (temperature, humidity, etc.) or, in case of DD, are in
charge of detecting (together) some specific events in a region of
interest [12]. These may correspond to target/signal presence or
anomalies, e.g. deviations from normal behavior attributed to un-
foreseen changes in the system/environment. Last but not least,
sensor nodes are usually subject to energy and/or bandwidth
limitations. Therefore, they may be compelled to quantize their
measurements (into one or more bits), before reporting them to
the FC [13].

In DD case, the optimal per-sensor digital compression (un-
der Bayesian/Neyman-Pearson frameworks) corresponds to a
quantization of the local Likelihood-Ratio (LR) [14], [15].
Unfortunately, incomplete knowledge of the parameters of the
event to be detected precludes the sensors from computing
local LRs. Additionally, the search for quantization thresholds is
exponentially complex [16]. Thus the bit sent is either the result
of a “dumb” quantization [17] or embodies the estimated binary
event, based on a sub-optimal rule [18].

In both cases sensors’ bits are sent to the FC, where they
are fused via an intelligently-designed rule meant to overcome
sensors’ limited detection capabilities. Therein a system-wide
decision (based on a so-called fusion rule) is taken [18], [19],
which is object of design efforts. Sadly, the target (or event) to be
detected depends on some unknown parameters. This precludes
(global) LR implementation at FC [16], which is then faced to
test a composite hypothesis.

A commonly-adopted fusion rule in such cases corresponds
to the Generalized LR Test (GLRT) [20]–[22]. Due to its wide
applicability, GLRT-based fusion rules have been also devised
in a number of different scenarios, such as arbitrarily-permuted
quantized data [23] and sparse signals [24]. On the other hand,
one appealing alternative (suited to two-sided tests1) is repre-
sented by the adoption of Rao-based fusion rules [17], [26], [27],
which usually incurs lower computational costs. For instance,
in [17], a one-bit Rao fusion rule is proposed as a simpler (from

1Instead, for one-sided tests, (generalized) locally most-powerful detectors
are usually preferred [11], [25].
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a computational viewpoint) alternative to the one-bit GLRT for
detection of an unknown signal. More recently, a Rao test is
applied to fusion rule design in the case of collision-aware
reporting channels [26] and vector-valued measurements [27],
respectively. We remark that an alternative (appealing) path for
designing effective distributed detectors is also represented by
the exploitation of invariance properties, see e.g., [28], [29].

Referring to an unknown two-sided signal and both rationales,
quantizer threshold(s) design can be performed via their common
(weak-signal) asymptotic performance [30]. In the one-bit case,
it has been shown that the optimal threshold value corresponds
to zero in many practical cases, except for some heavy-tailed
distributions, such as the Generalized Gaussian Distribution
(GGD) [17], [20], [31]. In the latter case, the study in [32]
provided a threshold optimization algorithm for GGD noise with
polynomial-time guarantees.

Yet, in the case of an unknown static (resp. moving) target
with unknown location (resp. trajectory), the GLRT requires a
grid search on both the target location (trajectory) and emitted
signal domains. Hence, the search for simpler fusion rules is
even exacerbated. Accordingly, recent works have devised a
generalized Rao test for one-bit DD of uncooperative targets
in finite-sample [33] and sequential [34] setups. The aforemen-
tioned generalized forms overcome the technical issue of uniden-
tifiable nuisance parameters under H0, and corresponding to the
location (resp. trajectory) of the target to be detected. Also, the
corresponding quantizer design can be obtained via the opti-
mization of location- (resp. trajectory-) clairvoyant performance
which, remarkably, does not depend on the aforementioned
(unknown) parameters [33], [34].

There is however a tangible loss of useful information when
only one-bit quantizers are adopted and a notable performance
gap can be observed with respect to unquantized observa-
tions [35]. Accordingly, multi-level quantization can be adopted
to achieve performance gains at the expenses of a mild com-
plexity increase. Based on this idea, multi-bit DD has been
recently considered for the simpler scenario of an unknown
(two-sided) signal in Gaussian [36] and zero-mean unimodal
symmetric noise [37], respectively. Therein multi-bit GLR (not
in closed-form) and Rao tests (in closed-form), respectively,
have been devised and an asymptotically-optimal thresholds’
design obtained, via a Particle Swarm Optimization (PSO) [38].
Numerical results therein have demonstrated that 2/3-bit quanti-
zation suffices for both fusion rules to approach the performance
of their unquantized counterparts. Accordingly, it is of interest
investigating (a) multi-bit quantizers, (b) their corresponding
design and (c) the derivation of computationally-efficient fusion
rules for the challenging case of a non-coooperative (moving)
target. This is the objective of the present work.

B. Contributions and Paper Organization

The main contributions of this paper are summarized as
follows:
� We study the problem of DD of a non-cooperative moving

target buried in noise via WSNs [11], [33], [39]. To cope
with WSNs stringent energy & bandwidth budgets, we

consider multi-level quantized sensors. Also, we assume
the quantized data to be transmitted through (error-prone)
Binary Symmetric Channels (BSC) to the FC, similarly as
in [36], [37]. However, as opposed to [36], [37], we tackle
the (challenging) task of detecting a target with unknown
location. Additionally, similarly to [37], we only constrain
the noise to be zero-mean unimodal-symmetric. The re-
sulting test is two-sided with nuisance parameters present
only under hypothesis H1, thus making inapplicable the
standard Rao test [37].

� To circumvent this issue, we devise a multi-bit form
of the generalized Rao test (G-Rao), representing (i) a
(computationally-) simpler alternative fusion rule to the
GLRT and (ii) comprising the one-bit G-Rao devised
in [33] as a special case, although it does not represent a
trivial extension of the above simplified scenario. Indeed,
the main advantage is that it requires a reduced estimation
procedure [30] even in the considered general model. At
the FC, we consider both Fixed-Sample-Size (FSS) and se-
quential test rules, to exhibit their properties and highlight
the advantage of the latter (thus generalizing the findings
of [34] for the one-bit case).

� We provide the asymptotic (weak-signal) performance of
the trajectory-clairvoyant (TC) Rao test. Leveraging its
explicit expression, we adopt a quantizer design approach
for the sensors which aims at maximizing the correspond-
ing non-centrality parameter. Such design is per-sensor,
accounts for sensor-FC channel status, and requires neither
the target signal nor its trajectory. Hence, the proposed
design is feasible and can be computed offline via PSO
(following [36], [37]). Then, in the FSS setup, the TC
asymptotic performance is capitalized to define asymptotic
detection gains (ADGs), which concisely allow to quantify
the gain on WSN system performance achieved by increas-
ing the bit resolution of sensors within the network.

� Finally, the G-Rao test is compared to the GLRT through
simulations (pertaining to relevant Gaussian and General-
ized Gaussian noise cases) showing that it achieves practi-
cally the same performance for a finite number of sensors
in the considered scenarios2.

We highlight that the present work extends our earlier confer-
ence paper [40], which provided (i) only a preliminary analysis
of PSO-based quantizer optimization, (ii) considered only the
FSS setup and (iii) did not introduce ADGs of TC Rao test (as
well as TC GLRT) versus resolution. Besides, we also clarify that
our previous work [37] focuses on the DD of an unknown signal
with known observation coefficients (able to accommodate only
targets with known position/trajectory) with a multi-bit Rao test.

The rest of the manuscript is organized as follows. Section II
introduces the model; in Section III the multi-bit G-Rao (resp.
GLR) test is derived (resp. recalled), and the fusion rule is
formulated under both FSS and sequential setups; in Section IV,

2Actually, in most of the cases, the G-Rao test slightly outperforms the
GLRT (see Section VI). This is not counterintuitive, as the finite-sample relative
performance of GLR and Rao tests varies from case to case, even in the simpler
two-sided testing (i.e. without nuisance parameters under H1). Indeed, in the
latter case, their performance is only asymptotically equivalent, see [30].

Authorized licensed use limited to: Columbia University Libraries. Downloaded on December 29,2021 at 18:29:29 UTC from IEEE Xplore.  Restrictions apply. 



742 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 7, 2021

Fig. 1. WSN system model with multi-bit and error-prone sensors detecting a non-cooperative moving target.

an asymptotic analysis of the multi-bit TC Rao (GLR) detector is
presented, and PSO-based multi-level quantizers are developed;
performance analysis versus resolution of quantization is inves-
tigated in Section V, while numerical results are provided in
Section VI. Finally, concluding remarks and further avenues of
research are given in Section VII. Additional proofs are deferred
to dedicated appendices.

Notation - vectors are denoted with lower-case bold letters,
with an being the nth element of a; finite sets are denoted with
upper-case calligraphic letters, e.g.A; transpose and expectation
are denoted with (·)T and E{·}, respectively; probability mass
functions (pmfs) and probability density functions (pdfs) are
denoted with P (·) and p(·), respectively, while P (·|·) and p(·|·)
their corresponding conditional counterparts; the complemen-
tary cumulative distribution function (ccdf) is denoted withF (·);
the symbols ∼ and

a∼ mean “distributed as” and “asymptotically
distributed as”; N (μ, σ2) denotes a Gaussian pdf with mean μ
and variance σ2; GN (μ, α, ε) denotes a generalized normal pdf
with mean μ, scale α and shape ε; χ2

k (resp. χ
′2
k (ξ)) denotes a

chi-square (resp. a non-central chi-square) pdf with k degrees
of freedom (resp. and non-centrality parameter ξ).

II. PROBLEM STATEMENT

The system model is illustrated in Fig. 1 and described in what
follows. We consider a binary hypothesis test where a collection
of sensors k ∈ K � {1, . . . ,K} are deployed in a surveillance
area to monitor the absence (H0) or presence (H1) of a target
of interest having a partially-specified spatial signature. In the
latter case (i.e. H1), the target moves along a fixed direction
with constant velocity and continuously radiates an unknown
deterministic isotropic signal θ. Such model potentially de-
scribes scenarios including the detection of movements of troop,
vehicle, equipment in battlefield surveillance, movements of
birds, small animals, and insects in environmental monitoring,
and car thefts in community security protection [41]. The emitted
signal experiences distance-dependent path-loss and additive
noise, before reaching individual sensors. The problem can be
summarized as follows:{

H0 : mt
k = wt

k,

H1 : mt
k = θ g(xt, sk) + wt

k

;
k ∈ K,

t = 1, 2 . . . , T
(1)

In Eq. (1), mt
k ∈ R denotes the kth sensor measurement at

instant t and wt
k ∈ R indicates the corresponding noise Random

Variable (RV). The RVs wt
k are assumed (a) statistically inde-

pendent over space (sensors) and (b) i.i.d. over time. In detail we
assume each noise RV has E{wt

k} = 0 and unimodal symmetric

pdf3 pwk
(·). We underline that reliable estimation of the sensor

noise pdf(s) can be achieved based on training data.
By denoting with x0 ∈ Rd and v ∈ Rd the initial target

location and the corresponding velocity, respectively, the tar-
get location at time t is given by the parametric expression
xt = x0 + vt. Accordingly, the functional model does not con-
sider potential fluctuations in the velocity of the target, i.e. our
model assumes a constant-velocity target to be detected. Still,
we highlight that the present model could easily accommodate
any other kind of deterministic trajectories (e.g. constant turn or
two-leg trajectory models). On the contrary, the presence of a
non-negligible process noise invwould require the more flexible
nearly-constant velocity model [42]. In the latter case, we expect
a detection performance degradation for both G-Rao and GLR
tests based on a constant-velocity assumption (due to model
mismatch).

In this paper, we make the reasonable assumption that both
x0 and v are unknown. On the other hand, sk ∈ Rd denotes the
knownkth sensor position, as a result of a sensor self-localization
procedure [43], [44]. The pair (xt, sk) uniquely determines
the value of g(xt, sk), here denoting the amplitude attenuation
function (AAF)4, which models how the signal emitted from
the target at t decays as it reaches kth sensor. For instance,
one relevant AAF is given by the power-law decay, namely
g(xt, sk) � 1/

√
1 + (‖xt − sk‖/ a)b, where a and b control

the (approximate) spatial signature extent and the rapidity of
signal decay, respectively.

When the noise is modelled as wt
k ∼ N (0, σ2

w,k), the
measurement mt

k is distributed under H0 as mt
k |H0 ∼

N (0, σ2
w,k). Correspondingly, under H1, it holds mt

k |H1 ∼
N (θ g(xt, sk), σ

2
w,k).

By looking at Eq. (1) we observe that the test is two-sided,
namely {H0,H1} corresponds to {θ = θ0, θ �= θ0} (θ0 = 0).
More important, the unknown time-varying target position xt

(equivalently the nuisance parameters {x0,v}) can be estimated
at the FC only when θ �= θ0, i.e. when the signal is present
(H1). This corresponds to a set of nuisance parameters which
are present only under the alternative hypothesis [45].

Then, to address bandwidth- and energy-limited budget in
WSNs, we assume that the kth sensor employs a (multi-level)
q(k)-bit quantizer5, in which the observation mt

k is compared

3Noteworthy examples of such pdfs are the Gaussian, Laplace, Cauchy and
generalized Gaussian distributions with zero mean [30].

4We underline that our results apply to any suitably-defined AAF describing
the spatial signature of the target to be detected.

5Herein, for simplicity, we focus on deterministic quantizers, leaving the more
general case of probabilistic quantizers [10] to future studies.
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with a set of quantization thresholds {τk(i)}2
q(k)

i=0 , determin-
ing 2q(k) non-intersecting intervals covering the whole R. We
stress that τk(0) = −∞ and τk(2

q(k)) = +∞ are two dummy
thresholds used in what follows to keep the notation compact.
Precisely, the corresponding quantizer outcome is mapped into a
binary codeword btk ∈ {0, 1}q(k), where k = 1, 2, . . . ,K. The
non-overlapping quantization intervals are associated to q(k)-

bit binary codewords c(i) =
[
c1(i) · · · cq(k)(i)

]T
, where

ct(i) ∈ {0, 1}.
Hence, the q(k)-bit quantizer of kth sensor at instant t outputs

a codeword defined as:

btk �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
c(1) −∞ < mt

k < τk(1)

c(2) τk(1) ≤ mt
k < τk(2)

...
...

c(2q(k)) τk(2
q(k) − 1) ≤ mt

k < +∞

(2)

We observe that herein raw measurement quantization (as op-
posed to other local sensor processing, e.g. quantization of
energy statistic [11]) is pursued to keep the signal polarity
in case an estimate of θ is required after detection. Still, we
stress that analogous design issues would arise (i.e. nuisance
parameters observable only under H1) in case of sensor energy
quantization, with corresponding non-feasibility of the com-
mon locally most-powerful tests and the need for generalized
statistics, based on Davies’ approach [45]. The codeword of kth
sensor is then reported to the FC via an error-prone reporting
link. The communication process of each bit is represented by
an independent BSC with (known) Bit-Error Probability (BEP)
Pe,k.

A distorted codeword yt
k will be then received by the FC

from kth sensor at time t, whose conditional probability obeys
P (yt

k = ck(i)|btk = ck(j)) = Gq(k)(Pe,k, di,j), where

Gq(k) (Pe,k, di,j) � P
di,j

e,k (1− Pe,k)
(q(k)−di,j), (3)

and di,j � d(ck(i), ck(j)) denotes the Hamming distance be-
tween codewords ck(i) and ck(j).

For notational compactness, we collect the noisy codewords
(viz. soft-quantized measurements) received from the sensors at
time t in the setY t � {yt

1 · · · yt
K} (recall thatyt

k ∈ {0, 1}q(k)
and thus codewords from sensors may differ in length). Simi-
larly, the accumulated noisy codewords received from the sen-
sors up to time t̄ are denoted as Y 1:t̄ � {Y 1, . . . ,Y t̄}.

Accordingly the pmf of all the observations as a function of
the set of unknown parameters ξ � {θ,x0,v}, up to a generic
time t̄ (i.e. Y 1:t̄), is then given by

P (Y 1:t̄; θ,x0,v︸ ︷︷ ︸
ξ

) =
t̄∏

t=1

K∏
k=1

P (yt
k; θ,x

0,v). (4)

Clearly, P (Y 1:t̄; θ0,x
0,v) = P (Y 1:t̄; θ0) denotes the pmf un-

der H0.

The corresponding pmf of the contribution from kth sensor at
generic time t can be expanded as

P (yt
k; ξ) =

2q(k)∑
i=1

P (yt
k|btk = c(i))P (btk = c(i); ξ). (5)

The quantizer law reported in Eq. (2) implies the following pmf
expression for P (btk = c(i); ξ)

P (btk = c(i); ξ) = Pr{τk(i− 1) ≤ mt
k < τk(i)} =

Fwk
(τk(i− 1)− θ g(xt, sk))− Fwk

(τk(i)− θ g(xt, sk)),
(6)

where Fwk
(·) denotes the ccdf of wt

k.
The problem of interest in this work is (a) to formulate a

computationally-efficient test rule based on a corresponding
fusion statistic (indicated with δ and Λ, respectively) to detect
the uncooperative target (as quick as possible) under constraints
on error probabilities and (b) the design of quantizers for the
whole WSN. Indeed, upon receiving Y 1,Y 2 . . ., the FC can
make a global decision in either (i) a FSS (waiting up to time
Tf , based on a fusion statistic which capitalizes the whole batch
Y 1:Tf ) or in a (ii) sequential manner (at each time instant t,
based on Y 1:t, until some exit condition is met). The aim of this
paper is to investigate both setups, as detailed in what follows.

We highlight that the fusion rules and the (multi-bit) quantizer
design obtained in this paper rely on the knowledge of the
noise (through P (btk = c(j); ξ)) and channel models (through
Gq(k)(Pe,k, di,j)), with optimization benefits reduced in the case
of mismatch.

III. FUSION RULES DESIGN

The aim of this paper is the derivation of a (computationally)
simple test deciding forH1 (resp.H0) when the statistic is above
(resp. below) the threshold γ, and the design of quantizers for
the whole WSN.

Accordingly, Section III-A details the formulation of test rules
based on FSS and sequential setups (with corresponding relevant
performance metrics). Then, in Section III-B, we delve into
fusion statistic design, whereas in Section III-C we focus on their
corresponding computational costs. Conversely, the quantizer
design is tackled in later Section IV.

A. Test Rule Design

1) FSS Approach: Given a test statistic, the FC can make
its decision either in a FSS or sequential fashion. In the former
case, the FC first collects a specific (fixed) number of samples
and then makes a final decision by the following decision rule:

δTf
�
{
1 ifΛTf ≥ γf ,

0 otherwise .
(7)

where Tf denotes the number of samples, ΛTf represents the
generic fusion statistic evaluated at t̄ = Tf , and γf denotes
the decision threshold. Accordingly, the performance will be
evaluated in terms of the well-known system false-alarm P f

F
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and detection P f
D probabilities, defined as:

P f
F � Pr{δTf

= 1|H0} = Pr{ΛTf ≥ γf |H0}, (8)

P f
D � Pr{δTf

= 1|H1} = Pr{ΛTf ≥ γf |H1}, (9)

where γf represents the usual system (decision) threshold,
needed to ensure a desired false-alarm rate.6

2) Sequential Approach: Though a multi-bit quantization
has the potential advantage of better detection performance, it
increases the computational burden as well. It is well known
that, in many cases, the sequential test procedure can reduce the
required data sample size compared to its FSS counterpart while
ensuring the same detection performance. Unfortunately, both
the GLR and (generalized) Rao statistics are always nonnegative
in two-sided hypothesis testing. As a result, tests including both
lower and upper stopping thresholds (such as the generalized
sequential probability ratio test in [46]) are not applicable here.
Furthermore, typical sequential tests with no upper bound on
stopping time may require an excessively large number of
samples in certain unfavorable realizations. To overcome these
two drawbacks, following the idea in [34], herein we employ
a Truncated One-sided Sequential (TOS) multi-bit test to deal
with the described detection problem.

In the TOS test setup, the FC sequentially updates its test
statistic based on the newly received information, until either
the test statistic exceeds a prescribed threshold γs or the time
horizon passes a deadline Ts. Specifically, the stopping rule for
the TOS test based on the G-Rao (GLR) test statistic can be
represented as

T � min
{
inf
{
t > 0 : Λt ≥ γs

}
, Ts

}
, (10)

and the decision function at the stopping time is

δT �
{
1 ifΛT ≥ γs,

0 otherwise.
(11)

Clearly, the decision of the TOS test rule is delayed and equal
to Ts when the target is absent (i.e. the case H0). In such a case,
other than the system false-alarm and detection probabilities,
also the expected detection delay under H1 is of interest, and
their expressions are respectively given by [34]

P s
F � Pr{δT = 1|H0}

= Pr{∃ 1 ≤ t ≤ Ts, s.t.Λ
t ≥ γs|H0}, (12)

P s
D � 1− Pr{δT = 0|H1}

= 1− Pr{∀ 1 ≤ t ≤ Ts, Λ
t < γs|H1}, (13)

and

T̄1 � E[T |H1]

= 1 +

Ts−1∑
t=1

Pr{Λ1 < γs, . . . ,Λ
t < γs|H1} (14)

6Alternatively, the threshold γf can be also set to minimize the fusion error-
probability [9].

To this point, we provide some quantative insights into the
proposed TOS test rule. First, the expected decision delay under
H1 is smaller than the deadline Ts, which is a generic feature
of sequential test rules. Then considering the FSS test rule as
a benchmark and let Ts = Tf , the TOS scheme may require a
larger threshold to achieve an equivalent false-alarm probability,
thus resulting in a larger miss-detection probability. In light of
this, we prefer to set Ts to be slightly larger than Tf to avoid
performance loss in miss detection. However, a larger Ts may
bring about a longer decision delay when the decision is H0.

Compared with its FSS counterpart, the TOS test rule acceler-
ates the detection speed when the target is present while always
deferring the decision of H0, since when the decision is H0, the
sampling time reaches Ts that is usually larger than the sample
size of the FSS scheme. The TOS test rule appears attractive for
surveillance applications, such as the noncooperative moving
target detection problem considered in this work, which seeks
to make a quick decision under H1 (which usually corresponds
to the existence of an illegal object), but makes little of the
importance to stop rapidly under hypothesis H0 (i.e., normal
condition). Finally, some non-asymptotic behavior of the error
probabilities and the expected decision delay of the sequential
G-Rao-statistic based detector will be evaluated via simulations
in Section VI.

B. Test Statistic Derivation

A common approach to handle detection in the presence of
unknown parameters (viz. composite hypothesis testing) resorts
to the GLR [30]. For the DD problem at hand, the corresponding
decision statistic is obtained by replacing the unknown param-
eters {θ,x0,v} with their ML estimates {θ̂, x̂0, v̂} (under H1)
in the LR, i.e.

p(Y 1:t̄; θ̂, x̂0, v̂)

p(Y 1:t̄; θ0)
, (15)

where θ0 = 0, and the ML estimates {θ̂, x̂0, v̂} are respectively
the relevant solution of the following equation, i.e.

{θ̂, x̂0, v̂} � arg max
θ,x0,v

p(Y 1:t̄; θ,x0,v). (16)

Clearly, leveraging the explicit expression of the likelihood in
Eq. (4), the test statistic in Eq. (15) can be equivalently recast
into its logarithmic form as

Λt̄
G �

t̄∑
t=1

K∑
k=1

ln
P (yt

k; θ̂, x̂
0, v̂)

P (yt
k; θ0)

. (17)

Note that the MLEs of unknown parameters in Eq. (17) do not
ensure a closed-form solution. In other words, searching for the
solution of {θ̂, x̂0, v̂} in Eq. (16) may require a huge amount
of computations and consequently increases the computational
burden of its implementation.

Conversely, inspired by the approach employed in [33], [34],
the G-Rao test statistic is considered here. The reason for our
choice is that the typical Rao test is known to be asymptotically
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equivalent to the GLRT under the condition of weak signal 7,
but with a lower computational complexity than the latter one.
As to the problem in Eq. (1), if xt (or {x0,v}) was known,
the original Rao test statistic could be readily computed [30].
Unfortunately, the target trajectory xt (or {x0,v}) is unknown.
However, based on the G-Rao test proposed in [33], a family of
Rao test statistics can be calculated for different values of xt

(or {x0,v}). Then by maximizing such family of statistics (i.e.
following a “GLRT-like” approach), the G-Rao test statistic can
be obtained as

Λt̄
R � max

x0,v

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

∂ ln[p(Y 1:t̄;θ,x0,v)]
∂θ

∣∣∣
θ=θ0

)2

It̄ (θ0,x0,v)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (18)

where It̄(θ0,x
0,v) denotes the Fisher Information (FI),

i.e. It̄(θ,x
0,v) � E

{
(∂ ln[p(Y 1:t̄;θ,x0,v)]

∂θ )2
}

evaluated at θ0.

We remark that the FI obtained satisfies the regular-

ity condition8E
{
(∂ ln[p(Y 1:t̄;θ,x0,v)]

∂θ )
}
= 0. Hereinafter, we

briefly describe the key steps needed to obtain the explicit form
of the G-Rao test.

First, the numerator term in Eq. (18) (before evaluation at
θ = θ0) can be expressed as shown in Eq. (19) shown at the
bottom of this page (the proof is given in Appendix A), where
the auxiliary definition

ρ(btk = c(i); θ,x0,v) � pwk

(
τk(i− 1)− θg

(
xt, sk

))
− pwk

(
τk(i)− θg

(
xt, sk

))
, (20)

has been employed.
Secondly, exploiting the result for multi-bit quantized mea-

surements in [37], the explicit form of the FI is obtained by
replacing hk with g(xt,xk), which provides It̄(θ,x

0,v) in
closed Eq. (21), shown at the bottom of next page, where the
definition in Eq. (20) has been again exploited.

Thus, combining Eq. (19) and Eq. (21), we obtainΛt̄
R in closed

form, shown at the bottom of next page Eq. (22). Despite the
seemingly difficulty in its evaluation,Λt̄

R can be easily evaluated
as all the involved terms can be pre-computed off-line. Then,
comparing Eq. (22) to Eq. (17), we notice that the G-Rao test

7That is |θ1 − θ0| = c/
√
K for some constant c > 0, where θ1 denotes the

actual parameter value under H1.
8Indeed, the regularity condition can be rewritten∑K

k=1

∑t̄

t=1
E
{
(
∂ ln[p(yt

k
;θ,x0,v)]

∂θ )

}
due to time and space statistical

independence. After some manipulations, each of these terms can be

rewritten as g(xt,sk)
∑2q(k)

i=1
ρ(btk = c(i); θ,x0,v). Accordingly,

each term can be shown to be zero as a consequence of the result∑2q(i)

i=0
ρ(btk = c(i); θ,x0,v) = pwk

(τk(0))− pwk
(τk(2

q(k))) = 0.

statistic is more computationally efficient than the GLRT, since
the former does not need to estimate θ and only requires a grid
search on the domains of the target initial location (x0) and
velocity (v).

Remarks: The target model considered in this paper contains
as a special case the scenario of a static target with known posi-
tion. In such a case, capitalizing the target location knowledge
(i.e. no nuisance parameters in the corresponding two-sided
test) and its time-invariance, the AAF can be simplified of
its dependence on sensor-target distance. As a consequence,
replacing g(xt, sk)with a generic coefficienthk in Eq. (22) (and
simplifying the maximization over (x0,v)) leads to exactly the
same result as (13) of [37], i.e. a multi-bit Rao fusion rule for
detecting a real-valued unknown signal θ.

C. Computational Complexity

Despite the seemingly evaluation difficulty, ΛR can be more
easily evaluated than its counterpart ΛG, since G-Rao only
requires a grid search on the initial location and velocity (no
need for estimating θ, cf. Eq. (17) and Eq. (18)).

This is confirmed by the big-O notation complexity expres-
sions reported in Table I, where t̄ denotes the generic num-
ber of samples used in the evaluation of the fusion statistic
at the FC. Specifically, in a FSS test rule t̄ = Tf (a single
test evaluation is carried out only after all the samples in the
batch have been collected) whereas in a TOS setup it holds
t̄ = 1, . . . T (i.e. the statistic is re-evaluated at each time step
till the exit time). As a result, the involved complexity of G-Rao
in FSS setup is O(Nx0Nv Tf

∑K
k=1 2

q(k)) based on a 2-D
grid, where Nx0 (resp. Nv) is the number of initial position
(resp. velocity) bins used. Conversely, the GLR requires a 3-
D grid-based implementation, which leads in the same setup
to O(Nθ Nx0Nv Tf

∑K
k=1 2

q(k)), with a consequent Nθ-fold
saving for G-Rao. Indeed, a complexity O(t̄

∑K
k=1 2

q(k)) is
associated to a single evaluation of both fusion statistics within
the maximization (i.e. fixing (x0,v) and (x0,v, θ) for Rao and
GLR, respectively) when t̄ samples have been collected by each
sensor, and q(k)-bit quantization is employed by kth sensor.
Indeed, the latter assumption implies 2q(k) different codeword
values for kth sensor at the FC.

The same complexity savings hold in the TOS case, since the
complexity of GLR is O(Nθ Nx0Nv

1
2T (T + 1)

∑K
k=1 2

q(k)),
whereas for G-Rao it holds O(Nx0Nv

1
2T (T +

1)
∑K

k=1 2
q(k)). Indeed, recall that

∑T
t=1 t = (1/2) T (T + 1).

Accordingly, the computational complexity of both rules scales
linearly in both the number of sensors (K) and exponentially
in the bit resolution. Conversely, the complexity scales linearly
(resp. quadratically) with number of samples in the FSS (resp.
TOS) setup. Finally, we remark that the complexity associated

⎛⎝∂ ln
[
p(Y 1:t̄; θ,x0,v)

]
∂θ

⎞⎠2

=

⎛⎜⎜⎜⎝
t̄∑

t=1

K∑
k=1

g (xt, sk)
2q(k)∑
i=1

P (yt
k|btk = c(i)) ρ(btk = c(i); θ,x0,v)

2q(k)∑
i=1

P (yt
k|btk = c(i))P (btk = c(i); θ,x0,v)

⎞⎟⎟⎟⎠
2

. (19)
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TABLE I
THE COMPUTATIONAL COMPLEXITY OF G-RAO AND GLR RULES IN FSS AND TOS SETUPS

to the quantizer design in the following section is not included
in the aforementioned analysis. Indeed, as shown in later
Section IV, the proposed quantizer design can be carried out
offline and thus does not contribute to the aforementioned
(per-sample) cost.

IV. QUANTIZER DESIGN

It is worth noticing that (asymptotically-)optimal determin-
istic quantizers cannot be obtained for the proposed G-Rao
test statistic, because no performance expressions are known
in the literature for tests based on the Davies approach [45].
To this end, as done in [33], we adopt a modified version of
the rationale in [17] and [20]. Specifically, it is known that the
TC (i.e. knowing xt for t = 1, . . . , t̄) Rao statistic Λ̃t̄

R (together
with the corresponding TC GLR statistic), is asymptotically (and
assuming a weak signal) distributed as [30]

Λ̃t̄
R

a∼
{
χ2
1 under H0

χ
′2
1 (λQ

(
x1:t̄
)
) under H1

(23)

where the non-centrality parameter is defined as λQ(x
1:t̄) �

(θ1 − θ0)
2 It̄(θ0,x

0,v) (underlining dependence onx1:t̄ via the
pair (x0,v)). Hereinθ1 denotes the true value underH1, whereas
θ0 = 0. In detail, the above parameter is explicitly given as

λQ

(
x1:t̄
)
= θ21

t̄∑
t=1

K∑
k=1

{
g2
(
xt, sk

)
×

2q(k)∑
i=1

{
2q(k)∑
j=1

Gq(k) (Pe,k, di,j) ρ (b
t
k = c(j); θ0)

}2

2q(k)∑
j=1

Gq(k) (Pe,k, di,j)P (btk = c(j); θ0)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, (24)

where we have omitted both x0 and v in the terms
ρ(btk = c(j); θ0) and P (btk = c(j); θ0), since θ0 = 0 implies
θ0 g(x

t,v) = 0 (cf. Eq. (6) and Eq. (20)).
Clearly, the larger λQ(x

1:t̄), the better the x1:t̄-clairvoyant
GLR and Rao tests will perform when the target to be de-
tected depicts a trajectory x1:t̄. Since this property holds for
each accumulated time t̄, this observation applies to both FSS
and sequential variants. Also, from inspection of Eq. (24),
we observe that the non-centrality parameter λQ(x

1:t̄) is a
function of the set of thresholds vectors τ t

k, k ∈ {1, . . . ,K},
t ∈ {1, . . . , t̄}. We highlight that the generic vector is defined
as τ t

k � {τ tk(i)}2
q(k)−1

i=1 , where the two boundary thresholds are
obviously fixed as τ tk(0) = −∞ and τ tk(2

q(k)) = +∞.
As a consequence, the asymptotic detection performance of

the G-Rao test (as well as the GLRT) can be optimized by solving
the following optimization problem

max
{{τ t

k}Kk=1}t̄

t=1

λQ

(
x1:t̄,

{
{τ t

k}Kk=1

}t̄
t=1

)
. (25)

For this reason, with a slight abuse of notation, we
will use λQ(x

1:t̄, {{τ tk}Kk=1}t̄t=1) and choose the thresholds
{{τ t

k}Kk=1}Tt=1 to maximize the aforementioned objective. In
other words, by optimally choosing the quantizer thresholds τ t

k

for the set of sensors, we can optimize the detection performance
of both TC Rao and TC GLR tests. Indeed, their asymptotic
performance coincides and solely depends on the non-centrality
parameter (i.e. λQ(x

1:t̄)) reported in Eq. (24). Accordingly, the
optimized thresholds {{(τ t

k)
�}Kk=1}Tt=1 based on the considered

rationale will be the same for both G-Rao and GLR tests.
In general, such choice would lead to optimized thresholds

that will be dependent on x1:t̄ (and thus not practical), and
also imply a design coupled over space (viz. sensors) and time.
However, the objective in Eq. (24) can be rewritten in the

It̄(θ,x
0,v) =

t̄∑
t=1

K∑
k=1

g2
(
xt, sk

) 2q(k)∑
i=1

{
2q(k)∑
j=1

Gq(k) (Pe,k, di,j) ρ
(
btk = c(j); θ,x0,v

)}2

2q(k)∑
j=1

Gq(k) (Pe,k, di,j)P (btk = c(j); θ,x0,v)

. (21)

Λt̄
R = max

(x0,v)

1

It̄ (θ0,x0,v)

⎛⎜⎜⎜⎝
t̄∑

t=1

K∑
k=1

g (xt, sk)
2q(k)∑
i=1

P (yt
k|btk = c(i)) ρ(btk = c(i); θ0)

2q(k)∑
i=1

P (yt
k|btk = c(i))P (btk = c(i); θ0)

⎞⎟⎟⎟⎠
2

. (22)
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following form

λQ

(
x1:t̄,

{{
τ tk
}K
k=1

}t̄

t=1

)
= θ21

t̄∑
t=1

K∑
k=1

g2
(
xt, sk

)
Ak(τ

t
k)

(26)

where the explicit expression of Ak(τ
t
k) is given as follows:

Ak(τ
t
k) �

2q(k)∑
i=1

{
2q(k)∑
j=1

Gq(k) (Pe,k, di,j) ρ (b
t
k = v(j); θ0)

}2

2q(k)∑
j=1

Gq(k) (Pe,k, di,j)P (btk = v(j); θ0)

.

(27)
Accordingly, by observing that both θ21 and g2(xt,xk) are posi-
tive terms and are independent on the thresholds, the considered
optimization can be decoupled into the following set of t̄×K
independent threshold design problems, which are independent
of x1:t̄(

τ t
k

)� � argmax
τ t

k

Ak(τ
t
k), k = 1, . . . ,K; t = 1, . . . , t̄;

(28)
We remark that each problem is subject to the ordered constraints
τ tk(i) < τ tk(i+ 1), for i = 1, . . . 2q(k) − 1. Remarkably, given
the independence of the objective Ak(·) w.r.t. the time index t,
the optimized quantizer design for kth sensor arises from a static
solution and does not need to be changed online (i.e. (τ t

k)
� =

τ �
k). Accordingly, only K (decoupled) quantization problems

need to be solved.
Finally, since the optimization problem described via Eq. (28)

has the same form as [37, Eq. (17)], we can capitalize the
same method used therein, i.e. the PSO, to search the optimal
quantization thresholds in Eq. (28).

V. ASYMPTOTIC DETECTION GAINS VERSUS RESOLUTION

We now establish the TC asymptotic detection gain provided
by multi-bit quantization in the FSS case. To this end, by relying
on Eq. (23), we express the asymptotic detection probability P f

D

as a function of the asymptotic probability of false-alarm P f
F :

P f
D(λ(q→s)(x

1:Tf ), P f
F ) = Q

(
Q−1(P f

F /2)
√

λ(q→s)(x1:Tf )
)

+Q
(
Q−1(P f

F /2)

+
√

λ(q→s)(x1:Tf )
)
, (29)

where the subscript “(q → s)” indicates the adoption of sen-
sors with s-bit resolution for quantizer. To be specific, q → 1
denotes one-bit quantizer and q → n with n > 1 represents
the multi-level one. Also, we recall that the above asymptotic
P f
D expression relies on the same assumptions required for the

quantizer design in Section IV, i.e. knowledge of both (sensing)
noise and (communication) channel statistics.

Based on these explicit quantities, we introduce the Asymp-
totic Detection Gain (ADG) defined in [37] to quantify the gain
between a WSN employing s-bit resolution and one employing

Fig. 2. P f
D vs. P f

F for GLRT and G-Rao with a batch size Tf = 20;
WSN with K = 9 sensors, wk ∼ N (0, 1), SNR = −3dB, and (a): Pe = 0;
(b): Pe = 0.1.

t-bit resolution (t > s) as

Gd(P
f
F ,x

1:Tf ) �

P f
D(λ(q→t)(x

1:Tf ), P f
F )− P f

D(λ(q→s)(x
1:Tf ), P f

F ) , (30)

to measure the increase in detection rate arising from the use of
finer quantizers. Additionally, we also introduce the Asymptotic
Normalized Detection Gain (ANDG) [37] as

Ḡd(P
f
F ,x

1:Tf ) �

P f
D(λ(q→t)(x

1:Tf ), P f
F )− P f

D(λ(q→s)(x
1:Tf ), P f

F )

P f
D(λ(q→t)(x1:Tf ), P f

F )
, (31)

to assess the corresponding relative increment. Obviously, both
these measures can be employed to quantify the (normalized)
detection gain when increasing the bit resolution from s > 0 to
t bits. Qualitative profiles of ADG and ANDG in the above rel-
evant cases will be analyzed and commented later in Section VI
for a given trajectory.

VI. NUMERICAL RESULTS

In this stage, we will resort to simulations to assess the
performance of the proposed multi-bit G-Rao test, and also
show some non-asymptotic properties of the multi-bit TOS
approach. Specifically, we consider a 2-D space (xT ∈ R2)
where a WSN of size K = 9 is deployed to reveal the presence

Authorized licensed use limited to: Columbia University Libraries. Downloaded on December 29,2021 at 18:29:29 UTC from IEEE Xplore.  Restrictions apply. 



748 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 7, 2021

Fig. 3. P f
D vs.P f

F for GLRT and G-Rao with a batch sizeTf = 20; WSN with
K = 9 sensors, wk ∼ N (0, 1), SNR = 0dB, and (a): Pe = 0; (b): Pe = 0.1.

of an unknown moving target with its initial position located
in the (square) surveillance area L � [0, 1]2 and moving with
velocity within V � [−0.1, 0.1]2. Without loss of generality,
sensors are displaced in a regular grid covering L. Concerning
the sensing model, we consider a power-law AAF: g(xt, sk) �
1/
√

1 + (‖xt − sk‖/ 0.2)4. The latter AAF model well-suits
to a number of relevant WSN-based DD cases, such as electro-
magnetic or acoustic signatures [47].

To deeply investigate the detectors’ performance under dif-
ferent noise pdfs, we investigate two relevant scenarios. Specif-
ically, we consider the cases of (i) Gaussian noise, that is
pw(ω) =

1

(2πσ2
w)

1
2
exp(− ω2

2σ2
w
) and (ii) Generalized Gaussian

noise, that is pw(ω) = ε
2αΓ(1/ε) exp[−( |ω|

α )ε], respectively. We
observe that scenario (i) corresponds to a widely-employed
noise pdf arising due to many independent contributions (as a
result of the central limit theorem), while scenario (ii) represents
a flexible class of pdfs allowing to model long-tail behaviour,
e.g. possibly due to outliers. It is known from [17] that one-bit
quantization (q = 1) τ ∗ = 0 holds in cases of Gaussian and
Generalized Gaussian (only when 0 < ε ≤ 2) distributions. On
the other hand, when ε > 2, g(τ) becomes bimodal and τ ∗ �= 0.
For the mentioned reasons, to stress PSO capabilities and di-
versify our analysis, we will consider ε = 3 in the GGD case.
For simplicity, in what follows we assume pwk

(·) = pw(·) and
Pe,k = Pe for all sensors, and we set E{w2

k} = 1 for both noise

Fig. 4. P f
D vs. P f

F for GLRT and G-Rao with a batch size Tf = 20; WSN
with K = 9 sensors, wk ∼ GN (0, α, 3), SNR = −3dB, and (a): Pe = 0;
(b): Pe = 0.1.

pdf cases. The target signal-to-noise ratio (SNR) is defined as
SNR � θ2 /E{w2

k}. Unless otherwise stated, we set the true tar-
get values as θ = 0.7079 (thus SNR = −3 dB), x0 = [0, 0.5]T ,
v = [0.02, 0.013]T in the simulations to gain insight into detec-
tors’ performance. Finally, all experiments were carried out on
a Windows laptop with a 2.4 GHz i9-10885H CPU and 32 GB
RAM.

A. G-Rao Test Versus GLRT: Benefits of Multi-Bit
Quantization

Considering the FSS test rule with a sample size Tf = 20, we
compare multi-bit G-Rao test and GLRT performance in terms
of system false alarm (P f

F ) and detection probabilities (P f
D).

Following Section III, ΛR and ΛG are evaluated by means of
grids for x0, v and θ. Precisely, x0 and v are searched with
Nx0 = Nv = 100 grid points uniformly sampling L and V ,
respectively. Differently, the search space of θ (the target signal)
is assumed to be Sθ � [−θ̄, θ̄] (θ̄ > 0). The grid points9 are
then chosen as [−gT

θ 0 gT
θ ]

T , where gθ collects target strengths
corresponding to SNR = −10 : 1 : 10 dB.

9This grid implies Nθ = 43, hence a 43× complexity saving is achieved by
G-Rao w.r.t. GLR.
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Fig. 5. P f
D vs. P f

F for GLRT and G-Rao with a batch size Tf = 20; WSN
with K = 9 sensors, wk ∼ GN (0, α, 3), SNR = 0dB, and (a): Pe = 0;
(b): Pe = 0.1.

Then, in Figs. 2 and 3 we illustrate P f
D vs. P f

F (viz. Re-
ceiver Operating Characteristic, ROC) in a WSN under Gaus-
sian noise (i.e. wk ∼ N (0, σ2

w)), with SNR = −3 dB and 0 dB
(i.e. θ = 1), respectively,. Then in Figs. 4 and 5 we illustrate
analogous results pertaining to a WSN under GGD noise (i.e.
wk ∼ GN (0, α, 3)) with SNR = −3 dB and 0 dB, respectively.
In all figures, we report the results for the two BEP levels
Pe ∈ {0, 0.1}. All the results are based on 105 Monte Carlo
(MC) runs. Also, for each case, we report the performance
with q(k) = q ∈ {1, 2, 3} quantization bits, where thresholds
are selected following the rationale elaborated in Section IV.
We remark that q = 1 leads to the (FSS) one-bit G-Rao test
proposed in [33] (originally referring to a stationary target
though). Specifically, we use PSO with parameters M = 100,
τmax = 5 and νtol = 10−6, corresponding to the number of
particles employed, the maximum position limitation and the
stop tolerance velocity, respectively [37].

It is apparent that the ROC performance of the GLR and
G-Rao tests are practically the same for Gaussian noise scenario,
with either SNR = −3 dB or 0 dB. On the other hand, in GGD
case, the performance of GLRT and G-Rao test slightly differs.
This is reasonable since, in general, the performance of GLRT
and G-Rao test may differ in the finite sensor case. Nonetheless,
the G-Rao test has the advantage of a lower computational
burden with respect to the GLRT. Secondly, both fusion rules

Fig. 6. (a): ADG (viz. Gd vs. P f
F ) and (b): ANDG (viz. Ḡd vs. P f

F ) for a
WSN with wk ∼ N (0, σ2

w), Pe ∈ {0, 0.1} and different configurations (s, t).

enjoy a higher detection probability (than the one-bit case) when
using multi-bit quantizers. Still, the presence of channel errors
(in our example Pe = 0.1) leads to a significant performance
loss of both detectors, highlighting the need for either a higher
number of sensors (K) or a longer observation interval (Tf ).

We remark here that, other than the considered SNR values,
we have also obtained the results with SNR = −6 dB (i.e. θ =
0.5), 3 dB (i.e. θ = 1.4125) and 6 dB (i.e. θ = 2). Specifically,
the behavior of ROC curves for SNR = −6 dBmatches with the
conclusions reported above. This is expected, as this case also
falls within a low-SNR assumption. Conversely, in both cases
SNR = 3dB and 6 dB, the P f

D of all curves is close to unity
even when P f

F is set to a very low value (close to zero), showing
that both GLR and G-Rao tests perform well when the SNR is
high. Because such results are consistent with the conclusions
in [30], they are omitted for brevity.

B. Asymptotic Detection Gains in FSS Setup

Secondly, we investigate the asymptotic trends of WSN de-
tection capabilities (in a FSS setup) from increasing the bit
resolution by means of the ADG and the ANDG defined in
Section V (Eq. (30) and Eq. (31), respectively).

To this end, in Figs. 6(a) and 6(b) we draw the aforementioned
ADG (viz. Gd(P

f
F )) and ANDG (viz. Ḡd(P

f
F )), respectively, in

a WSN with K = 9 and Gaussian noise, e.g. wk ∼ N (0, σ2
w).
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Fig. 7. (a): ADG (viz.Gd vs.P f
F ) and (b): ANDG (viz. Ḡd vs.P f

F ) for a WSN
with wk ∼ GN (0, α, 3), Pe ∈ {0, 0.1} and different configurations (s, t).

Similarly, in Figs. 7(a) and 7(b) we illustrate the same metrics in a
WSN with Generalized Gaussian noise, e.g. wk ∼ GN (0, α, 3).
The two noise scenarios are considered in conjunction with the
channel cases Pe ∈ {0, 0.1}.

First, it is apparent a different behavior for Gd(P
f
F ) (uni-

modal) and Ḡd(P
f
F ) (decreasing), respectively. This is explained

as any gain from resolution increase has its effect decreased
(resp. increased) on Gd(P

f
F ) as P f

F tends to one (resp. to zero),
since accordingly, also P f

D will tend to unity (resp. to zero),
independently on the WSN considered. On the other hand, in
Ḡd(P

f
F ), the trend for P f

F in proximity of zero is suppressed
by the normalization in Eq. (31). Secondly, compared to one-bit
quantization, the implementation of multi-bit quantization can
further improve detection performance. Finally, we observe that
a degraded channel reasonably affects in a negative fashion
because of the less informative bits received from sensors.

C. TOS Detection vs. its FSS Counterpart

Finally, we evaluate the non-asymptotic behavior of the sys-
tem probabilities (P s

F and P s
D) and the expected detection delay

(T̄1) of the proposed multi-bit G-Rao statistic in its TOS variant
(cf. Section III-A).

The following simulations are set up to guarantee that the
performance of the TOS-based test rule is at least as good as the
benchmarked FSS test rule in terms of system probabilities, thus

Fig. 8. (a): The required deadline of TOS compared with the sample size of
FSS, when achieving similar detection probabilities, (b): The expected decision
delay under H1 in TOS versus the sample size of FSS and (c): The detection
probability versus the deadline for TOS rules either based on G-Rao or GLR
test statistics.

assuring a relative fair comparison. Accordingly, for a FSS test
rule with given sample size Tf and false-alarm probability P f

F ,
we first obtain the system detection probabilityP f

D by MC simu-
lation. Next, we perform a sequence of MC simulations when the
TOS test rule is employed, where we initialize Ts = Tf and then
we gradually increase Ts until P s

D ≥ P f
D, with the threshold

adjusted to guarantee the same false-alarm probability as the
FSS test rule (i.e P s

F = P f
F ). Both FSS and TOS variants are

compared in the cases of q(k) = q ∈ {1, 2, 3} quantization bits,
arising from quantizers designed as proposed in Section IV. We
remark that q = 1 leads to one-bit G-Rao tests in [33] and [34],
referring to FSS and sequential setups, respectively. For brevity,
in this analysis we focus on the noise case wk ∼ N (0, σ2

w). To
ensure a practical false-alarm rate, we let P f

F = 10−3.
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Fig. 9. The comparison of (average) CPU runtime between different test
statistics.

First, in Fig. 8(a) we compare the sample size of the FSS
counterpart and the minimum deadline of TOS test rule required
to achieve the detection probabilities no worse than the FSS test
rule. We observe that the deadline of the TOS test rule is slightly
larger than the sample size of the FSS test rule. This is because
the TOS test rule requires a larger threshold to achieve the same
false-alarm probability as the FSS test rule; thus, more samples
are needed to attain the equivalent detection probability. Con-
versely, Fig. 8(b) depicts the relationship between the expected
detection delay underH1 when the TOS test rule is employed and
the corresponding sample size of the FSS test rule achieving the
same detection probability. It is found that the expected decision
delay of TOS grows slowly with Tf , significantly accelerating
the detection process when the target is present. Figs. 8(a)–(b)
also show a lower sample size is required by both test rules
with the increase of q, highlighting the advantage of multi-bit
quantization. Then, Fig. 8(c) compares the TOS test rule based
on the G-Rao statistic with that based on the GLR in terms of
the detection probability P s

D. The result illustrates the detection
performance of G-Rao-based TOS test rule is very close to that
of its GLR counterpart (also for different values of q considered),
verifying that the G-Rao test statistic is an attractive alternative
to the GLR because of less computational complexity required
by the former one.

Finally, while Fig. 8(a)–(c) is executed, we record the CPU
runtime spent for each test. Accordingly, Fig. 9 provides the
average CPU time of running the G-Rao and GLR tests, respec-
tively, under either FSS or TOS rules, with different quantization
bits. It can be seen that the results qualitatively coincide with the
computational complexity expressions reported in Table I.

VII. CONCLUSION AND FURTHER DIRECTIONS

We devised a G-Rao test for multi-bit DD of a non-cooperative
moving target in WSNs. The considered model encompasses
unimodal zero-mean symmetric noise, and non-identical BSCs.
Our proposal constitutes a simpler alternative to the GLRT, while
providing the same performance gains achieved via multi-bit
quantization (over a one-bit counterpart). WSN performance
was further optimized via the design of PSO-based quantizers,
maximizing the asymptotic detection rate of TC Rao statistic.
We also compared the performance of the TOS test rule with FSS

setup. Numerical results highlighted the multi-bit quantization
design, and also showed that the TOS test rule is able to achieve
the same false-alarm and miss-detection performance as its FSS
counterpart with much shorter time for declaring the presence
of a target, at the cost of a slightly longer time when declaring
H0.

Future avenues of research include the (further) reduction of
the computational burden for G-Rao test, by means of more
efficient strategies for searching the optimal x0 and v. Also, the
design of G-Rao test for alternative, more general (viz. realistic)
measurement and channel models is of clear interest, namely:
(a) unknown random signal parameters [36], (b) vector measure-
ment models [48], (c) incompletely specified noise PDFs (e.g.
unknown variance), (d) models enjoying sparsity [24], [49], (e)
energy-efficient censoring sensors [50] and (f ) time-correlated
reporting channels [51]. Finally, generalizing the present work
to detecting (and tracking) a target with time-varying velocity
is also foreseen as an interesting future topic, e.g. including the
process noise in the trajectory evolution or considering more
complicated deterministic models (e.g. two-leg trajectories).

APPENDIX A
PROOF OF EQ. (19) (SCORE FUNCTION)

Based on the factorization form in Eq. (4), the log-likelihood
function p(Y 1:t̄; θ,x0,v) is given by

ln[p
(
Y 1:t̄; θ,x0,v

)
] =

t̄∑
t=1

K∑
k=1

lnP (yt
k; θ,x

0,v) (32)

Accordingly, the derivative with respect to θ can be written as

∂ ln
[
p
(
Y 1:t̄; θ,x0,v

)]
∂θ

=

t̄∑
t=1

K∑
k=1

P ′ (yt
k; θ,x

0,v
)

P (yt
k; θ,x

0,v)
=

t̄∑
t=1

K∑
k=1

g(xt,sk)
2q(k)∑

i=1

P (yt
k |bt

k=c(i))ρ(bt
k=c(i);θ,x0,v)

2q(k)∑

i=1

P (yt
k |bt

k=c(i))P (bt
k=c(i);θ,x0,v)

, (33)

where P ′(yt
k; ·) denotes the derivative of P (yk; ·) with respect

to θ and, also, we have exploited the definition:

ρ(btk = c(i); θ,x0,v) � pwk

(
τk(i− 1)− θg

(
xt, sk

))
− pwk

(
τk(i)− θg

(
xt, sk

))
(34)

As a consequence, based on Eq. (33), the desired result
in Eq. (19) is obtained by simple squaring operation. This ends
the proof.
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