AN ORTHODONTIA FORMULA FOR GROTHENDIECK POLYNOMIALS

KAROLA MESZAROS, LINUS SETIABRATA, AND AVERY ST. DIZIER

ABSTRACT. We give a new operator formula for Grothendieck polynomials that generalizes Magyar’s De-
mazure operator formula for Schubert polynomials. Our proofs are purely combinatorial, contrasting with
the geometric and representation theoretic tools used by Magyar. We apply our formula to prove a necessary
divisibility condition for a monomial to appear in a given Grothendieck polynomial.

1. INTRODUCTION

Schubert polynomials &,, and Grothendieck polynomials &,, are multivariate polynomials associated
to permutations w € S,. Schubert (resp. Grothendieck) polynomials were introduced by Lascoux and
Schiitzenberger in [16,/17] as a set of distinguished representatives for the cohomology (resp. K-theoretic)
classes of Schubert cycles in the cohomology ring (resp. K-theory) of the flag variety of C™. Since their
introduction, Schubert polynomials have become central objects in algebraic combinatorics. Their rich
combinatorial structure is evident from the myriad formulas, such as [1}[2}|8410L/14}/19,[26]. Many formulas
for Schubert polynomials generalize to Grothendieck polynomials. Recent work [3}(4,25] has uncovered novel
formulas for Grothendieck polynomials and their generalizations.

In this paper, we focus on the following algebraic formula for Schubert polynomials due to Magyar [20]:

(1) G = wi' W iy (W (Wi, (W] ).

The formula uses combinatorial data
i(w) = (i1,...,00), k(w)=(ki,...,k,), and m(w)=(my,...,my)

associated to Rothe diagrams to write Schubert polynomials in terms of the Demazure operators 7; and
monomials w; = x;---x;. Unlike the usual recursive definition of Schubert polynomials through divided
difference operators, Magyar’s formula is “ascending”: the degree weakly increases at each step of the
formula. We generalize Magyar’s formula to Grothendieck polynomials, consequently giving a new proof
for Schubert polynomials in the process. We now state our main theorem; for the necessary definitions see
Section

Theorem 1.1. For any w € S,, the Grothendieck polynomial &, is given by
G = Wi W Ty (W Ty (Wi - T, (Wi ) ),
where (¢(w), k(w), m(w)) is the orthodontic sequence of w, w; = x1 -~ x;, and T;(f) = m;((1 — x;41)f).

Our proof of Theorem is purely combinatorial, and yields a combinatorial proof of as well —
contrasting with the geometric and representation theoretic tools used in [20]. We apply Theorem and
the inductive tools developed for its proof to derive Theorem [1.2] a new divisibility restriction for monomials
appearing in a Grothendieck polynomial. We refer to Section [] for notation and details.

Theorem 1.2. For any permutation w € Sy, all monomials appearing in &, divide zP™).

Outline of this paper. Section [ gives background on Schubert and Grothendieck polynomials, and ex-
plains the machinery behind Magyar’s orthodontia formula. In Section [3] we define the class of sorted
permutations and introduce a projection onto this class. In Section [d] we track changes in orthodontia upon
sorting or moving up in weak Bruhat order. In Section [5 we construct some inductive tools and prove The-
orem In Section [6] we apply Theorem to study the supports of Grothendieck polynomials, proving
Theorem We conclude with a brief discussion of strongly-separated diagrams in Section [7]
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2. BACKGROUND

2.1. Conventions. For m,n € N, we use the notation [m,n] to mean the set {m,m + 1,...,n}, and the
notation [n] to mean {1,2,...,n}. For j € [n—1], s; will denote the adjacent transposition in the symmetric
group S,, swapping j and j + 1. Throughout, we will take permutations as acting on the right, switching
positions, not values. For example ws; equals w with the numbers w(1) and w(2) swapped.

2.2. Difference Operators on Polynomials. We recall the definitions of four types of operators on poly-
nomial rings.

Definition 2.1. Fix any n > 0. The divided difference operators 0; for j € [n — 1] are operators on the
polynomial ring Z[z1, ..., z,] defined by

8(f) _ fﬁ ('S] ) f) _ f(xlv' "7‘I7l) B f(zla"'7$j—1axj+17xjvzj+2a"'7x7l).
J Tj — Tj4+1 Tj — Tj41
The Demazure operators m;, the isobaric divided difference operators 5j, and the Demazure—Lascoux operators
7; are defined on Z[z1,. .., x,] respectively by

mi(f) = 0;(x; [),
9;(f) = 9;((1 = aj41) f),
7 (f) = 0;(x;(1 — wj41) f).
The following lemmas collect several basic properties of divided and isobaric divided difference operators

which will be used frequently.

Lemma 2.2. The divided difference operators satisfy the following properties.
0;0; =0 for all j.

0,0, = 0,0; whenever |j — k| > 1.

9j0j+10; = 034100541

0;(f) =0 if and only if f is symmetric in x; and T;11.

If 0;(f) =0, then 9(fg) = fO(g)-

Lemma 2.3. The isobaric divided difference operators satisfy the following properties.

L gjgj = gj for all 3.

° gjgk = gkgj whenever |j — k| > 1.
® 9j0j110; = 9j110;0;41.

o 0,(f) is symmetric in x; and T11.

2.3. Schubert and Grothendieck Polynomials.

Definition 2.4. The Schubert polynomial &,, of w € S, is defined recursively on the weak Bruhat order.
Let wg =nn—1--- 21 € S,, the longest permutation in S,. If w # wq then there is j € [n — 1] with
w(j) <w(j+1) (called an ascent of w). The polynomial &,, is defined by

S — 2l if w = w,
R S if w(j) < w(j+1).

Definition 2.5. The Grothendieck polynomial &, of w € S, is defined analogously to the Schubert poly-
nomial, with

& — x?71$§72 ey i w = wo,
Y958, if w(j) < w(j+1).

Proposition 2.6. Let w € S, with w(j) < w(j+1). Then
Gj(in) =0 and gj(ﬁw) = st-

Proof. The conclusions follow readily from the basic properties of 9 and 9y, together with the recursive
definition of &,,. O
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It can be seen from the recursive definitions that &, is homogeneous of degree equal to the number of
inversions of w, and equals the lowest-degree nonzero homogeneous component of &,,. See |21] for a deeper
introduction to Schubert polynomials.

2.4. Orthodontia of Diagrams. We describe the orthodontia algorithm for diagrams due to Magyar in
[20]. We closely follow the exposition of [7].

By a diagram, we mean a subset D C [n]?, the n x n grid. We view D from a column perspective as
D = (C1,Cy,...,C,), where each C; is a subset of [n]. The subsets C; are naturally called the columns of
D. Graphically, we draw D as a collection of boxes (,7) in a grid, viewing an element i € C; as a box in
row i and column j (reading the indices in the same way as matrix notation). There is a canonical diagram
associated to any permutation.

Definition 2.7. The Rothe diagram D(w) of a permutation w € S,, is the diagram
D(w) ={(i,j) € [n]* | i <w™'(j) and j < w(i)}.

D(w) can be visualized as the set of boxes left in the n x n grid after you cross out all boxes weakly below
(i,w(7)) in the same column, or weakly right of (¢,w(¢)) in the same row for each i € [n].

Example 2.8. If w = 31542, then

D(w) = . o ({1}7 {17 374}7@7 {3}7®)7

il

where we indicate the boxes removed with red lines.

We now explain Magyar’s orthodontia algorithm. For a column C' C [n], let the multiplicity multp(C) be
the number of columns of D which are equal to C'. Let D be the Rothe diagram of a permutation w € S,
with columns C1,Cs, ..., C,. We describe an algorithm to produce vectors

(w) = (i1,...,00), k(w)=(ki,..., k), and m(w)= (my,...,my)

from D. To begin the first step, for each j € [n] let k; = multp([j]), the number of columns of D of the
form [4]. Replace all such columns by empty columns for each j to get a new diagram D_.

Given a column C C [n], a missing tooth of C is a positive integer i such that i ¢ C, but i + 1 € C. The
only columns without missing teeth are the empty column and the intervals [i]. Hence the first nonempty
column of D_ (if there are any) contains a smallest missing tooth ;. Switch rows iy and ¢; + 1 of D_ to
get a new diagram D’.

In the second step, repeat the above with D’ in place of D. Specifically, let m; = multp/([i1]) and replace
all columns of the form [i;] in D’ by empty columns to get a new diagram D’ . Find the smallest missing
tooth 5 of the first nonempty column of D’ , and switch rows i and i5 +1 of D’ to get a new diagram D".
Continue in this fashion until no nonempty columns remain.

Definition 2.9. The triple (é(w), k(w), m(w)) constructed in the preceding algorithm is called the orthodon-
tic sequence of w.

Example 2.10. If w = 31542, then the orthodontic sequence algorithm produces the diagrams shown in
Figure The sequence of missing teeth gives i(w) = (2,3,1), k(w) = (1,0,0,0,0), and m = (0, 1,1).

Remark 2.11. Magyar’s orthodontia algorithm applies more generally to any strongly separated diagram
D, after possibly changing the order of the columns. See Section [7| for a brief summary, or [20] for further
details.

Our interest in orthodontia stems from the following orthodontic operator formula for Schubert polyno-
mials, which we generalize to Grothendieck polynomials in Section [5]
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FIGURE 1. Execution of the orthodontic sequence algorithm on D(w) for w = 31542.

Theorem 2.12 ([20, Proposition 15]). Let w € S,, have orthodontic sequence
t(w) = (i1,...,10), k(w)=(k,...,k,), and m(w)=(my,...,my).

If w;j denotes the monomial w; = T1x2 - -z, then

S = s (W (27, W) )

Example 2.13. For w = 31542, one can check that
Gw = $1W2W3($1£E2$37T1(.’L'1))

3 3 3 2, 2 2. .2 2. .2 2., .2 2
= T2x3%7] + ToXax| + T3T4T] + ToX3x] + T3X3T] + THT4XT] + T3T4T] + ToT3T4T7.

3. SORTED PERMUTATIONS AND GROTHENDIECK POLYNOMIALS

We define a special class of permutations, called sorted permutations. We introduce a projection map
onto this class called sort. We then relate the Grothendieck polynomials of any permutation and its image
under sort.

Definition 3.1. A standard interval is a set of the form [j] for some j > 0.

Recall (see for instance ) that a permutation w is called dominant if it satisfies any of the following
equivalent conditions.

e There are no indices 7 < j < k with w(i) < w(k) < w(j) (called 132-patterns).
e The Rothe diagram D(w) is the Young diagram of a partition.
e All columns of D(w) are standard intervals.

Definition 3.2. Fix a permutation w € S,,. We define quantities (h, C, «, i1, 8) associated to w, collectively
called the primary column data of w. Assume first that w is not dominant, so that D(w) has a column which
is not a standard interval. Let h be the smallest integer such that the column D(w)p41 is not a standard
interval. Denote by C the column C' = D(w)p4+1 C [n]. Define a to be the largest integer such that [a] C C.
Denote by i; the smallest missing tooth of C. Lastly, set § = i; — «, the size of the “uppermost gap” of C.
If w is dominant, simply set h =n, C =0, « =0, iy =n, and § = n.

Example 3.3. The permutation w = 68432751 has diagram shown in Figure 2} The leftmost column that
is not a standard interval is column five, so h = 4 and C = D(w)s = {1,2,6}. From C, we read off a = 2,
i1:5,andﬂ:3.
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FI1GURE 2. The diagram of w = 68432751.

Lemma 3.4. Any permutation w restricts to a bijection
[Oé+ 177;1] - [h_ﬁ_'_ 1ah]
Moreover, the corresponding permutation o € Sg is dominant.

Proof. If w is dominant, then ¢ = w and there is nothing to prove. Assume w is not dominant. For any
k € [a+ 1,41], we have w(k) < h since the (h + 1)-th column C of D(w) has no box in row k, but has a box
inrow iy +1 > k.

Suppose there exists k € [a + 1,41] with w(k) < h — 8+ 1. Then we can find p € [h — 5+ 1, h] with
p & w([a+ 1,41]). Consider w~t(p). By assumption, w=t(p) & {a+1,...,i1}. Since [a] C C, all columns
left of C also contain [a]. In particular, [a] C D(w), so w™(p) ¢ [a]. Since i1 +1 € C, w™t(p) # i1 + 1.
Thus w™!(p) > i1 + 1. Since i1 + 1 € C, this implies i1 + 1 € D(w),.

As w(k) < h— 841 < p, it must be that ¥ ¢ D(w),. However, this implies that D(w), is not a
standard interval, a contradiction to the definition of h. The assertion that the induced permutation o € Sg
is dominant follows since all columns left of C' are standard intervals containing [«]. O

Definition 3.5. Given w € S, define o(w) € Sz to be the dominant permutation obtained by restricting
w to [+ 1,i1]. We say w is sorted if o(w) is the identity permutation. The sorting of w, denoted wgqyt, is
the permutation obtained from w by reordering the numbers w(a + 1),...,w(é1) to be in increasing order.

Example 3.6. The permutation w = 68432751 has o(w) = 321. This implies wgo,y = 68234751. The
diagrams of w and wgey are

and  D(wsot) =

il

Note that any permutation wge¢ is always sorted, and that the primary column data of wgot is always
the same as the primary column data of w. Observe also that wg., is the identity permutation whenever w
is dominant.

We now describe the relation between Grothendieck polynomials and the sort operation on permutations.
We will write (ab) for the transposition in S,, swapping a and b. We first recall a formula due to Lenart for
the multiplication of a Grothendieck polynomial by a variable.

Let w € S, and j € [n]. Denote by (ab) the transposition in S, swapping the numbers a and b. For
J € [n], define the set P;(w) to consist of all permutations

v=w-(a1f) - (apj)(jbr) - (3bg) € Sn
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such that p,g >0, p+q > 1,
ap < ap_1 < <jJ<by<bg_1 <---<by,

and the length increases by exactly 1 upon multiplication by each transposition. For v € Pj(w), define
&(w,v) = (1),
Theorem 3.7 ([18, Theorem 3.1]). For any w € S, and j € [n],

Z &(w,v)®

vEP;(w)
Denote by des(w) the descent set of w, des(w) = {j | w(j) > w(j+1)}.

Lemma 3.8. Let w € S, be a nonidentity permutation with primary column data (h,C, .41, ). Set
a =max (des(w) N[a+1,41]) and b=max({p|w(p) <w(a)}N]a+1,i1]).
Then Gy = 266Gy (ab) -

Proof. The lemma can be proved by a straightforward but lengthy case analysis, using Theorem [3.7] to show
P,(w- (ab)) = {w}. Alternatively, observe that the particular choice of a and b implies D(o(w - (ab))) equals
D(o(w)) with the rightmost box in row a (which will be the bottommost row) removed. The box removed in
D(w) is bottomost in its column and rightmost in the dominant part of D(w) (the collection of contiguous
boxes in the northwest corner of D(w)). The reader familiar with pipe dreams may note that this lemma is
now a consequence of the simplicial complex perspective of [12], together with the ladder moves of [1]. O

Proposition 3.9. Let w € S,, and suppose o(w) has Rothe diagram equal to the Young diagram of A =
(M,...,A8). Then

u = 2041 7 Bu
Proof. 1t is enough to work inductively and use that the choice of a and b in Lemma [3.8] implies o(w - (ab))
equals o(w) - (¢ — a b — «), which has one fewer inversion than o(w). O

Proposition implies the following well-known property of dominant permutations.
Corollary 3.10. If w € S,, is dominant with D(w) equal to the Young diagram of X\, then

)\1 A —1
By =x7" 2, T

4. ORTHODONTIA AND WEAK BRUHAT ORDER

We track how orthodontic sequences of permutations change with the application of certain adjacent
transpositions and the sort operation. Lemma [£.2] deals with the case of sorted permutations, from which
we move up in weak Bruhat order. Lemma handles the unsorted case, in which we move down in weak
Bruhat order. We offer an example first to help illustrate the sorted case and its proof.

Example 4.1. Consider w = 68432751 with wg, = 68234751. Recall the primary column data of wge is
h=4,C=1{1,2,6}, a =2,4 =5, and 8 = 3. The diagrams of Wsort, WsortS5, WsortS5S4, and WsortS55453
are shown in Figure [3] The orthodontic sequence of wgert, is
i(wsort) = (5a4»371)7 k(wsort) = (07370a0707071)3 m(wsort) = (Ovoala]-)v
and the orthodontic sequence of wgortS55483 1S
i(wsorts5s453) == (]-)7 k(wsorts58433) = (07 0343 070707 ]-)a m(wsort555453) = (1)

Lemma 4.2. Let w € S, be a nonidentity sorted permutation, and suppose w has orthodontic sequence
t(w) = (i1,...,10), k(w)=(k,...,ks), and m(w) = (mq,...,my).
Let (h,C, «,i1, ) be the primary column data of w. Then:
(i) Forj € [B], we have ij =iy —j + 1.
(ii) If a >0, then ko > 5.
(ii) For j € [a+ 1,41], we have k; = 0.
(iv) Forje B 1}, we have m; = 0.
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D (wsort) =

D(wsort 55) =

D(wsort5584) = D(wsort558453) =

FIGURE 3. The diagrams of wgort, Wsort S5, Wsort S554, and WseryS5S483 when w = 68432751.

(v) The permutation ws;, « -+ Sq+1 has orthodontic sequence

t(wsiy - - Sat1) = (ig415---,00), M(ws;, -+ Saq1) = (Mat1,. .., M),
and
ki,... ka—1,ka — B, ykot2y .k if >0,
k(ws;, - Sat1) = (ks ats ke = B, g, Kata ") Z.fa
(B+mg,ka,... . ky) if a=0.
Proof. By definition, C' contains [o] U {i1 + 1} and does not contain any of aw+1,...,4;. It follows that the
orthodontic sequence begins (41,47 — 1,...,a 4+ 1). This proves (i). To prove (ii), observe that since w is

sorted, the 8 columns immediately left of C' are all equal to [«]. Thus if a > 0, then k., > 3.

For (iii), suppose there is a column C” equal to [j] for j € [ + 1,i1]. Let C’ be column p of D(w). Since
[a] € C but a+1 ¢ C, it follows that p < h. Since w is sorted, the 8 columns left of C' all equal a. Thus
p < h—p. Consider w(j +1). Since j+1¢ C', w(j+1) <p<h-p3. Asw(la+1,41]) =[h— B+ 1,h] and
j+1€[a+2,i + 1], it follows that j + 1 = i; + 1. But w(iy + 1) < h — § contradicts that i1 +1 € C, so
there can be no such C’.

For (iv), consider the diagram D(w)_ obtained by removing any standard intervals from D(w). The
first 8 — 1 steps of the orthodontia algorithm amount to permuting rows (o +1,...,i; + 1) of D(w)_ to
(a+1,41+1,a+2,...,41). Since w is sorted, the 8 many rows e+ 1,...,4; of D(w)_ are all empty. Thus,
m; =0 for j € [8—1].

Lastly, we prove (v). Cousider the columns of D(w). Columns 1,2...,h — 3 are standard intervals that
strictly contain [«]. Since w is sorted, columns h — 8+ 1,..., [ are each exactly [a]. Let E denote the
diagram whose columns are the columns of D(w) weakly to the right of C', with the same indices. Note that
E may contain standard intervals [j] with j < «, but E has no boxes in rows oo+ 1,...,47.

Let k(ws;, -+ Sat+1) = (K, ..., k). We analyze the columns of D(ws;, -+ $q41). Columns 1,2,....h —f
of D(ws;, -+ Sq+1) agree with those of D(w). Columns h — 5+ 1,...,h are each [@ + 1]. The remaining
columns are exactly sq41--5i; - E.

The only columns of D(w) that can be of the form [j] with j > [a + 2] are columns 1,2,...,h — 3. No
new such columns are created by the action of sq441---$;,, SO k; = kj for j > a4+ 1. Any standard intervals
occurring in F are weakly contained in [a], and so are unaffected by the action of sq41 -+ s;,. Thus, k} = k;

for j € [a —1].
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The 8 columns [a] of D(w) become [ copies of [« + 1] in D(ws;, - - - Sa+1), but no other columns [a] are
changed. Thus (if « > 0) &k, = k, — 8. From (iii), no columns [« + 1] can occur in D(w). However, 8 more
columns [a + 1] appear in D(ws;, - - - Sa+1) from the 8 columns [«a] left of C'in D(w). The mg columns in E
that were standardized to [a+ 1] by orthodontia all equal [« + 1] as well in D(ws;, -+ Sa+1). Thus, we have
ko1 =B+ mg.

The proof of (v) is completed by noting that columns h+1,...,n of D(ws;, - - - Sa+1) equal 441 - - - 85, (F).
This implies that D(ws;, - - - Sq4+1)— occurs in the execution of the orthodontia algorithm on D(w) after g
steps. Hence

t(wsiy - - Sat1) = (ig+15- -+, 1), and m(ws;, -« - Sat1) = (Ma41, ..., Me). O
Note that when o = 0, Lemma [4.2] (v) implies

k(ws;, - - Sat+1) = (B+mg, ka, ..., kn).
The following example illustrates this case.

Example 4.3. Consider the sorted permutation w = 12845376 with primary column data h = 2, C =
{3,4,5}, a =0, iy = 2, and 8 = 2. The diagrams of w and wsys; are

‘

D(w) = , D(wsys1) = l

]
e

The orthodontic sequence of w is
i(w) =(2,1,3,2,4,3,6,5,4,3,2), k(w)=(0,0,0,0,0,0,0), m(w)=(0,3,0,0,0,1,0,0,0,0,1),
and the orthodontic sequence of wsss is
i(wsaesy) = (3,2,4,3,6,5,4,3,2), k(wsssass) = (5,0,0,0,0,0,0), m(wssssss) =(0,0,0,1,0,0,0,0,1).
We now connect the orthodontic sequence of any permutation w to that of wggyt-

Lemma 4.4. Fiz w € S,,, and let w have primary column data (h,C,a,i1, ). Let 0 = o(w) € Sg. Suppose
Wsory has orthodontic sequence

i(wsort) - (il, e »il)a k(wsort) - (kh B kn)a and m(wsort) - (mh e ,m6)~

Then w has orthodontic sequence

t(w) = t(Wsort), M(w) = m(Wsort), and k(w) = (i, kb, ... k),
where
kj ifj<a-—1,
po— JRi— k@)1= —k(o)s ifj=a,
T Y by + K(0)j—a ifj € la+1,i,
k; if j >4+ 1.

Proof. This result follows since D(wsot) is obtained from D(w) by removing D(c) from the square [« +
1,41] x [h = B+ 1, h] inside D(w). The only columns of D(w) affected by this are standard intervals, and
they stay standard intervals after the removal. a
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5. AN ORTHODONTIA FORMULA FOR GROTHENDIECK POLYNOMIALS

We extend the orthodontic operator formula from Schubert polynomials to Grothendieck polynomials by
replacing Demazure operators m; by Demazure-Lascoux operators 7;. We first construct a partial order on
S, which we will induct over to prove the extension.

Definition 5.1. For w € S, define fb(w) to be the set of fallen bozes of w, the pairs
{(i.5) € D(w) [ {(1,4),(2,5),..., (i = L)} € D(w)}.

Example 5.2. The sorted permutation w = 58134726 has diagram

Thus, fb(w) = {(2,6),(2,7), (4,2),(5,2),(6,2),(6,6)}.
Lemma 5.3. For any permutation w € Sy,
fb(w) = tb(wsort ).
If w is nonidentity and sorted with primary column data (h,C,«, i1, 3), then
#ib(ws;, - - - Sa+1) < F#ib(w).

Proof. The claim fb(w) = fb(wset) is immediate since D(wgort) is obtained from D(w) by removing any
boxes lying in [+ 1,41] X [h — 8+ 1, h]. The boxes removed constitute a bottommost and rightmost subset
of the dominant part of D(w) (the collection of contiguous boxes in the northwest corner of D(w)).

For w nonidentity and sorted, the assertion #fb(ws;, - - - sq+1) < #fb(w) follows from Lemma parts
(i), (iv), and (v). O

Example 5.4. In Example we saw the sorted permutation w = 23854716 had #fb(w) = 6. The primary
column data of wis h =1, C ={1,2,4,5,6}, « = 2,43 = 3, and 8 =1, so ws;, * - - Sat1 = wsz = 58314726.
Then

D(wss) = E'

so #tb(wss) = #{(2,6),(2,7), (5,2), (6,2),(6,6)} = 5.

Definition 5.5. Suppose w € S,, has primary column data (h, C, «, i1, 3). Define the orthodontic sort order
<os on S, as the reflexive and transitive closure of the relations

—®

() Wsort < W, and

<
1) WS, Sat+1 < W Whenever w is nonidentity and sorted.

Proposition 5.6. The relation <. is a partial order on Sy, and the identity is the minimum element.
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Proof. Reflexivity and transitivity follow from the definition. It remains to show antisymmetry. Assume we
have u,v € S,, with u <,5 v and v <,5 u. Then there are chains

u=w KWy X Xwg =0, and
v=w] S wh < S w, = u.
By Lemma applying #fb to both chains yields
#b(u) < #fb(wn) < -+ < #fb(v) and #b(v) < #b(w)) < - < Hb(uw).
Thus, #fb(u) = #fb(v), so the function #fb(-) is constant on both =< chains. Consequently, all relations

appearing in either chain of x’s must be of type (f). This implies u = v, since wgoy = w whenever w is
sorted. That the identity permutation is the minimum follows from an analogous argument. O

Recall the Demazure-Lascoux operators 7, defined by

7 (f) = 0j(x;(1 — wj41) f).
We use 7; to define an orthodontia polynomial G, .

Definition 5.7. Pick any w € S,,, and suppose w has orthodontic sequence
i) = (i1, i), k(W) = (K1, ko), and m(w) = (my, ..., me).

Define a polynomial G, by

gu)—wl ’ wk 7TZ1(W le(wrzz"'ﬂiz(wge)"'))’

where w; = 1 - ;.
The following five lemmas form the technical heart of the proof that §,, = ®,, (Theorem [5.13)).
Lemma 5.8. Let g € Z[x1,...,2,] be any polynomial, and fix j € [n — 1]. For any § > 1,

0j(x59) = 0;(9) (234, — m;35,, +g<2$3 j& ‘I> _g<zxq+1 jﬁ Q>,

q=0
Proof. If § = 1, we have

9j(x;9) = 0; (1 — xj41)z59) = 9; (x;9) — 0; (TT419) -
It is easy to check
9j(xjg) = xj4+10;(9) + g9 and  0;(2;zj119) = zj25410;(9).
Thus,
9j(zj9) = 2j+10;(9) + 9 — 2j2;410;(9) = 95(9)(j+1 — jzj41) + 9.
For § > 1, expand out gj to get
9;(x5g) = 0;(x39) — 9;(xw;119)-

Straightforward computations show that

) 5 5—1—
(2) 9;(x39) = x5,10;(g) + 92333 iy !
and
5— 5—
0;(x0wj419) = ga) ' + x535,,05(x) 2g).
Thus,
5—1
5008 s 5—1— 5—1 5—2
3j(33j9) = fﬂj+1aj(9) +g (Z 553%41 q) —g%; Tj41 — xjm?Jrlaj(xj 9)-
q=0

Using , we can expand 0; (x?ng) as
53
5— s 5—3—
5]-(;5], 29) — mﬁjﬁ (9) + gngxj_H a
q=0
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This implies

6—1
a ) 5 q 6—1—q 5—1 2 q 0—3—q
aj(%‘g) —xj+1aj(g)+g (ijxj+1 ) —gx; T Tj41 T XjT54 ( ]+1 +QZ% Tiq )

=0
1 —

q,,0-1—¢q 5—1 5 a+1 _6—1—q
T — 9Ty Tjp1 — xjxj+18j(g)+gZ:rj T
O —
6—3

9 d—1—gq -1 a+1,, §—1—gq
x] i1 —gz Tit1— ij Tit1

=0
qélq q+161q
x] j+1 >—9<Zx L1 ) =

S

=25.110;(9) + 9 (

q=

5 5
= aj(g)(zj-&-l - $jxj+1

5 5
= 8j(9)($j+1 - mjxj-u

Lemma 5.9. Let g be a polynomial with

djr1(9) == jr-1(9) =9 and 9j11(9) =+ = j1,-1(9) =0
for some v > 2. Then for any § > 0,

Ojiy-1--0j11 (253419) = 9.

Proof. We work by induction on §. The base case 6 = 0 follows from the assumptions on g. Assume the
result holds for all ' < §. From Lemma we obtain

5—1 6—2
5 P ) s S5—1— +1 _5—1—
63’-&-1(%4-19) = aj+1(9)(37j+2 - $j+137j+2) +9 (Z x?‘+1xj+2 q) -9 <Z m?Jrlﬂ’fyrz q)
a=0

q=0
d—2
> otoeid) - (Sopiiel
=9 j+1 J+2 g j+1 ]+2
q=0

since ;41(g) = 0 by assumption. Plugging into 91— - x +1g) yields

D ER g - 9. d—1—gq q+1_6—1—¢q
Ojty-1+-0j41 (¥5419) = Djpr-1- Dy <ny+1xﬂ+2 ) Drre O <Z ST )

9
—

5—
) q+1 _6—1—q
E : J+y—1" 6J+2< Lit1Tj42 9)

M

q

jy—1""Oj+2 ( y+1373+2

T
= o
°”ﬁ
[V

q 3 9 —1—q
Ti41054y-10j42 (xj+2 g J+v Le aj+2 ( Ljto 9) :

Q
Il
<
<

q=

Applying the induction assumption to each summand gives
_ 1
Djay—1-- 8]+1 g+19 ijJrlg Zﬂcg+1g =g O

Lemma 5.10. Let g be a polynomial with
5j+1(9) == 7j+7—1(9) =g and Ojui(g) =-- ji+y—1(9) =0
for some v >2. Set ¢ =7;(g), i’ =j+1, andy =~ —1. Then,
Fpalg) = =0jry(g) =g and j41(g) =+ = djrey—1(g) = 0.
Proof. We need to show

j12(Tj(9)) =+ = 0j14-1(T(9)) = Ti(g) and  8;42(T;(g)) =+ = 0j44-1(T;(g)) = 0.
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Let k € [j +2,j +~ — 1]. Since |k — j| > 1, it follows that 0;,0; = 9;0). This yields
O (T;(9)) = 9(9;(x;9)) = 0;(0u(x;9)) = 9;(x;0k(g)) = 7;(Ik(g)) = T;(9)-

By identical argument replacing ) by O, one obtains 9x(7;(g)) = 0. |

Lemma 5.11. Let g be a polynomial with

djr1(9) =+ = jur-1(9) =g and 0j11(9) =+ = j14-1(9) =0
for some v > 2. Then,
Djy—1-+0; (2]9) =Tjin-1-+ 75 (9)-
Proof. We work by induction on ~, with the base case v = 1 simply being the identity
9j (zj9) =7; (9) -
From Lemma we obtain

y—

1

qvqu q+171q
TiTip1 ) g(Zx iyt )
=0

9;(z]9) = 9;(9)(x] 1 — xj2] 4, +9<

q=
By linearity and Lemma

Ojny—1--0j (ng) = jty—1-0j41 (aj(g)(xj-“ T _]-I—l)) +g
(3) = 5jﬂ—l - '5j+1 (5j(9)($}+1 - j+1) + 9) .

Note the second equality follows from the assumptions on g.
On the other hand, Lemma [5.8] implies

lellﬁj(g) J+1a (2;9)
(4) = 03(9)(wj1 = wjmi4n)7] ) + 97)
We claim that
Djin—1-0j41 (3 (z79) - 7;1173(9)) =0.
Using and 7 we compute
Djy—1"+Oj41 (éj (z]9) - 33;7;11@'(9)) = 0jy-10j41 (9 = xﬁfg) :

Then by Lemma and the assumptions on g,

_ _ L B B
Djty—1-0j11 (3j (z]9) — 2]y (9)) = 0jty—1""0j11 (9 — i 9)
5 3 ) ) —1
= 0jty—1"0j31(9) = Ojr—1--- 011 (x?H g)
=g—g
=0.
This establishes the claim, which implies
Fjiy-1-+-05 (¥]9) = 0jy—1-0jn1 (%ﬁf@(a)) :

By Lemma the polynomial ¢’ = 7;(g) satsifies the assumptions of the induction hypothesis with
j =47+ 1and ~ =~ — 1. Then by induction,

—_ — = | —1—
aj‘i”Y*l e a] (ng) = 8j+771 e a]Jrl (x_’jy—‘,-l WJ(Q))
= 3 —1
= 0jiyy1- 0411 (x}Hg’)
= fj’—!—’y/—l . 'fj/_kl (gl)
et (9). 0
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Lemma 5.12. Let w € S,, be any sorted permutation. Suppose w has primary column data (h,C, i1, ).

Setgzx;_flﬁwsil. Letv=p0 and j =a+ 1. Then

8o
9jr1(9) =+ =jiy-1(9) =g and 9j11(g) =+ = Jjsr—1(9) = 0.

Proof. The choice of j and v make j +1=a+2 and j +v — 1 =4;. Since w is sorted, wo41 < -+ < w;,.
Then ws;, - -+ Sq+1 has ascents at positions a + 2, ...,41. Fix k € [ + 2,41]. By Proposition we obtain
x§+15k(g) = gk(xg-ug) = 5k(@wsil»usaH) = Gus;, 50t

and
al 10k(9) = Ok(2h19) = O(Bus,, 50sy) = 0.

Thus,
Ok(g) =g and Jx(g) =0. O

Theorem 5.13. For any w € S,,, G = By,

Proof. We prove the theorem by induction over the orthodontic sort order <. For the base case, let w be
the identity permutation. By Proposition [5.6] w is the minimum element of S,, under <,;. We observe that

gw:1:®w-

Now, assume that G, = &, for all v <o w. Let (h,C,a,i1,3) be the primary column data of w. We first
dispense with the case that w is not a sorted permutation.
Suppose that o(w) has Rothe diagram equal to the Young diagram of A = (A1,...,Ag). It follows from
Lemma F.4] that
A
Sw = 2241 25 Gugore-

The defining relation of <.s implies that wsory <os w. Then by induction,

Swsort = 6wsort'
Applying Proposition [3.9] yields

A1 Ag
Ty ®

= &,.

Wsort

This completes the case that w is not sorted.
Now, assume that w is a sorted permutation. Parts (i) — (iv) of Lemma [4.2] imply

_ Lk ko, Fii+1 kpn=. (= = mg — = m
(5) Gw =wi" - rwatw W T (T -1 (- Tt (Wt (Ripay (- Tag (Wi ) -+ ))) = +))-
The fundamental weights w1, ...,wq, Wi 41, .., w, are fixed under the actions of s;,, si;—1,..., Sa+1, SO We

may rewrite as

J _ ki — _
Su = iy (i1 (- T (7 ol ol (o, o T W) )) 00 -2 )).

On the other hand, part (v) of Lemma[£.2] asserts that

k a—B, Bt ki " (= =
9w311"‘8a+1 = wll e w(li ﬁwa—'r;nﬁwilb«lﬁl o 'wa (ﬂ-ia+1 ( T Ty (wZM) e ))

Thus, we obtain
Gw =T, (fhfl(' : 'ﬁa+l(x;£19w8il-~sa+1) T ))
The defining relation of <,s implies that ws;, - - - s4+1 <os w. Then by induction,
Swsiy - sap1 = Ows; 5041
Consequently, we obtain
(6) Gw =Ty (Fiy—1(-- 'ﬁoﬁl(x;fl@wsl'1 cesarr) )

If =1, then iy = o+ 1 and @ reduces to

gw = ﬁoHrl(-’17;.}.1QSU)SQ+1) = anrl(@wsaJrl) = Q5w7

completing the proof.



14 KAROLA MESZAROS, LINUS SETIABRATA, AND AVERY ST. DIZIER

Otherwise, § > 2. Set g = x;fléﬁwsil...saH. By Lemma g satisfies the assumptions of Lemma m
with v = 8 and j = o + 1. Hence,

Guw =04, Oat1(Bus,, -cos0ir)-
Since w is sorted, each permutation in the list
'LU, w5i17 w811811,1 PR ] wsil"'5a+1

covers the previous in the weak Bruhat order. Thus, the recursive definition of &,, implies

51‘1 e 'aa-&-l(@wsn "‘5a+1) =6y. U
As an immediate corollary, we obtain Theorem [I.T] restated here for convenience.

Theorem Let w € S,, have orthodontic sequence
t(w) = (i1,...,40), k(w)=(ki,...,kn), and m(w) = (my,...,my).
Then
By = wit - W T, (W (W2 - T (W) ),
where w; is the fundamental weight w; = x1 - - x;.

By taking the lowest degree homogeneous component of both sides, we recover the orthodontia formula
for Schubert polynomials.

Theorem (|20, Proposition 15]) Let w € S,, have orthodontic sequence
t(w) = (i1,...,3), k(w)=(ki,...,kn), and m(w) = (mq,...,my).

Then

Gw = w’fl .. ~w7’fb"7ril(w:?17ri2 (wgz ce TG, (wxl) s ))

6. APPLICATION TO THE DEGREE AND SUPPORT OF GROTHENDIECK POLYNOMIALS

We present some consequences of Theorem [I.1] for the degree and support of Grothendieck polynomials.
Little is known regarding the support of Grothendieck polynomials in general, though special cases have
been addressed in [6,22]. Conjectures such as [23, Conjecture 5.5], [22, Conjecture 5.1], and [11, Conjecture
22] currently remain open.

There has been recent interest in combinatorial formulas for the degree of a Grothendieck polynomial.
For instance, [24] gives a combinatorial formula for the degree of any symmetric Grothendieck polynomial.
This formula is applied to obtain an expression for the Castelnuovo-Mumford regularity of the corresponding
Schubert determinantal ideal.

Theorem yields the following combinatorial upper bound for the degree of any Grothendieck polyno-
mial.

Proposition 6.1. Let w € S,, and i(w) = (i1,...,i¢). Then
deg &, < degS,, + /¢
Proof. Each operator 7; in Theorem increases the degree of its input by at most one. O

We propose a possible refinement of Proposition [6.1] in Conjecture We now work towards proving
Theorem a new divisibility restriction on the monomials that can appear in a Grothendieck polyno-
mial. We then deduce Corollary another combinatorial upper bound on the degree of a Grothendieck
polynomial.

For any diagram D, denote by D the upper closure of D, the diagram

D =1{(i,7) | j = j and i <4’ for some (7', ;') € D}.

Denote by ” the monomial
n

zP = H xiznnﬂvi,

(i,J)€D j=14€D;
where D1, ..., D, are the columns of D.
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Lemma 6.2. Let w € S,, be a nonidentity sorted permutation with primary column data (h,C,«,i1,[5). Let

v=#{j€h+1,n] | max(D(w);) =i + 1} (taking max(() := 0).

The diagrams D(w) and D(ws;, - - Sq+1) are related via the equation

D(w) _ ,D(wsi; - Sat1),.—B .7 T Y
x = VT a1 TagaTaqs T4

Moreover, if c; denotes the exponent of x; appearing in mD(wsil”'s&“)zgfl, then

Catl =Cat2 +V="=Cy+1+7.

Proof. The argument is similar to that of Lemma Denote D(ws;, - -+ Sq+1) by D’ for compactness. Let
D(w) have columns Dy, ..., D, and D’ have columns D/, ..., D!. Then D(w) has columns Dy, ..., D,, and
similarly for D’.

Since w is sorted, the columns Dj_gi1,...,D; all equal [a], while the columns D;L—BH’ ..., Dj all
equal [a + 1]. For j € [h — ], we have D; = Dj. The diagram (D}, ,,...,D;) is obtained from the
diagram (Dp41,...,Dy) by permuting the rows by s;, -+ sq41. For j > h 4+ 1, we have E = D_; unless
max(D;) = i; + 1. In this case, D; = [i; + 1] and D_; = [a 4+ 1]. There are exactly 7 such columns among
Dhsty- vy Dy

We conclude

Dw) _ D ,.—B
P =z xa+1xl+2xl+3 T 33?1_,_1.
Since w is sorted, the exponents of T4 y1,..., 2,41 in £ (w) are all equal. The last statement of the lemma
follows. O

Example 6.3. Consider w = 923854761, so w is sorted with primary column data h = 3, C' = {1,4,5},
a=1,4 =3, and § = 2. The diagrams of w and wsssy are

D(w) = I and D(ws3sy) =

il

with upper closures

and  D(ws3se) =

Clearly,

D(wsiy —Sa+1) — .7,.7,.3.3,3 2 2 D(w) _ ,8,5,5.5,.3.2 2~ _ —2.2 2
aPlwsi +1)—m1w2x3m4x5x6m7x8 and )—x1x2x3x4x5x6w7x8—x2 T3TLT

D(U}Sil ---Sa+1).
Lemma 6.4. Let X = :r‘lil -~z be any monomial. Each monomial appearing in 7;(X) divides

dy dj—1 max(dj,d;y1) max(d;,djt1) djia dy,
9 x5 @ T T4 o
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Proof. We compute 7;(x§ :E]_H) in four separate cases on (a, b).
If @ > b, then

= (a,.b _ a—1 b+1 a_ b+1 a—1 b+2 b+1 a
mi(afal ) = (2aly +af el + o+ afagy) - (efalf) +af T e e i e,
If a <b—1, then

b _ a+1 b a+2 b—1 b a+1 a+1 b—1 a+2 b—2 b—1 a+t+1
Tj(afal,) = (af el Faf el b adat ) - (2§ ey e e 4 b el )

If a = b, then
ﬁj(x?x?-u) =z $1+1
If a =b—1, then

b b
J(‘T x]Jrl) = $?+1x]+1

Note that in each case, all monomials occurring in 7; (2%, ) divide J;max(a b)x?ff (@9 Since
— dp d; d
7 (X) :( H zy )ﬂ](xj x4,
p#5,J+1
the lemma follows. O

Theorem For any permutation w € S,, all monomials appearing in &, divide &)

Proof. We prove the theorem by induction over the orthodontic sort order <,s. The base case consists of
the identity permutation, for which the theorem is vacuous.

Now, assume that the theorem holds for all v <5 w. Let (h,C, @, i1, ) be the primary column data of w.
If w is not sorted, then the defining relation of <, shows that wsert <os w. The theorem then follows
from Proposition [3.9] and Lemma [£.4]

Suppose mbtead that w is sorted. By Theorem and Lemma [4.2]

G =i, (Fir—1( Tar1 (Tah 1 Busy, s )+ ))-

The defining relation H of <,s shows that ws;, - - - Sa41 <os w. Thus, any monomial appearing in :c;leSwsil Sad1

divides x;fleD(ws’il"'SO‘“).
Let X’ be any monomial appearing in &,,. Suppose X’ appears in 7;, -+ - Ta41(X), where X = acl cogpdn
appears in x;flﬁwsil...saﬂ. Repeated application of Lemma implies that X’ divides

dy de Mo+ My +1 dij+2 d,,
Ty T Tt Ty 41 Tipqo TR

where each M, satisfies M,, < max(da+1,...,di+1)-

Let ¢, denote the exponent of x, appearing in xD(

wsil'“saﬂ)x;fl for each p. Since X appears in

x;fléﬁwsil...saﬂ, it follows that d, < ¢, for each p. Hence Lemma implies

max(daH, . 7di1+1) S max(ca_H, ey Ci1+1) = Ca+1

since ¢o41 = ¢p +y for any p € [a + 2,41 + 1] (with 7 as defined in Lemma . Thus, X’ divides the

monomial
dy do Mot Mij+1 dij+2 d
Ty T Taqq T Typr Tipo TR

which in turn divides the monomial

dl d Ca+1 _Cat2t+7Y Ciy+1+Y _dij42 dn _ . D(wsiy-Sat1) -8 . vy 2l
Tym T T 1 T4 Ty g Ty Xyt =X TR, 1T g 2T a3 Ty 4

Hence, we have shown that X’ divides £P®) as needed. O

Corollary 6.5. For any w € S,
deg &, < #D(w).

Example 6.6. Let w = 14532, so
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[T ]

D(w) =

| and xP®) = 2222227,

Direct computation shows
Gy = x%xgxg + x%x%m + m%x%m + x%x%m + x%xgxgm + xlm%xg + x1x2x§x4 + xlxgxgm + x%m%m
—2x3x323 — 3:125w3Ty — 3T 53Ty — 3T TTTITy + ST TITIT,.
We conclude this section with a conjectural refinement of Proposition in the spirit of Theorem [I.2}

Definition 6.7. Let w € S, and suppose D(w) has columns D, ..., D,. Taking max(Q)) := 0, define
O(w) = (01,...,0,), where

0; = #{p € [n] | j <max(D,)} for each j € [n].
For ¢(w) = (i1,...,1¢), define &(w) = (&1, .., &), where
& =#{pell|i, =y} for each j € [n].

Conjecture 6.8. For any permutation w € Sy, all monomials appearing in &, divide ?(W)+&w),

7. STRONGLY SEPARATED DIAGRAMS

We briefly address the full generality in which Magyar’s formula applies. We define a general family of
diagrams and explain how orthodontia assigns to each diagram a polynomial, similar to the case of Rothe
diagrams.

For nonempty R, S C [n], we write R < S if max(R) < min(S). We set @ < S for all S C [n].

Definition 7.1. A diagram D C [n]? is strongly separated if for every pair of columns C,C’ of D, either
C\C'xC'\C or C'\C=xC\C".

Whenever the columns Dy, ..., D, of a strongly separated diagram D are ordered so that D;\ D; < D;\ D;
whenever ¢ < j, the orthodontic sequence

(D) = (i1,...,10), k(D)= (k1,...,kn), and m(D)= (my,...,my)
is defined exactly as it was for Rothe diagrams of permutations (Definition .
Example 7.2. Consider the diagrams D and D’ given by

The diagram D is strongly separated, while D’ is not. Since the columns Dy and Dy of D satisfy D; \ Dy <
Dy \ Dy, the orthodontic sequence of D is

i(D)=(4,3,2,1,2,4,3), k(D)=1(0,0,0,0,0), and m(D)=(0,0,1,0,0,0,1).
Definition 7.3. Let D C [n]? be any strongly separated diagram with orthodontic sequence
(D) = (i1,...,i0), k(D)= (ki,...,kn), and m(D) = (my,...,my).

Define

Sp = wfl ~--w§"ﬂi1(w?flﬂi2(wzz e W) )
and

Sp = w’fl ...wsnﬁil(w;?lfiz(wzz ...ﬁ”(w;;”) ),

where w; is the fundamental weight w; = x1 - - - x;.
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Starting from the geometry of Bott—Samelson varieties, Magyar proves that the polynomials 8p are
exactly the dual-characters of the flagged Weyl modules of strongly separated diagrams [20, Corollary 13].
In particular, Sp is a Schubert polynomial whenever D is a Rothe diagram [13], and a key polynomial
whenever D is left-aligned in each row [5].

What are the polynomials §p? Theorem identifies them as the Grothendieck polynomials when D is
a Rothe diagram. It is easy to check that whenever D is left-aligned, the polynomials Gp are the Lascoux
polynomials [15], inhomogeneous analogues of the key polynomials.

Is there a K-theoretic analogue of the flagged Weyl module unifying these partial results?

ACKNOWLEDGMENTS

We are grateful to Allen Knutson, Ricky Ini Liu, and Alex Yong for helpful discussions, and to Alex Fink
for a careful reading.

REFERENCES

[1] N. Bergeron and S. Billey. RC-graphs and Schubert polynomials. Ezperiment. Math., 2(4):257-269, 1993.

[2] S. Billey, W. Jockusch, and R. P. Stanley. Some combinatorial properties of Schubert polynomials. J. Algebraic Combin.,
2(4):345-374, 1993.

[3] B. Brubaker, C. Frechette, A. Hardt, E. Tibor, and K. Weber. Frozen pipes: Lattice models for Grothendieck polynomials,
2020. larXiv:2007.04310.

[4] V. Buciumas and T. Scrimshaw. Double Grothendieck polynomials and colored lattice models, 2020. jarXiv:2007.04533.

(5] M. Demazure. Une nouvelle formule des caracteres. J. Combin. Theory Ser. A, 70(1):107-143, 1995.

[6] L. Escobar and A. Yong. Newton polytopes and symmetric Grothendieck polynomials. C. R. Math. Acad. Sci. Paris,
355(8):831-834, 2017.

[7] A. Fink, K. Mészdros, and A. St. Dizier. Zero-one Schubert polynomials. Math. Z., 2020.

(8] S. Fomin, C. Greene, V. Reiner, and M. Shimozono. Balanced labellings and Schubert polynomials. European J. Combin,
18:373-389, 1997.

[9] S. Fomin and A. N. Kirillov. The Yang-Baxter equation, symmetric functions, and Schubert polynomials. Discrete Math.,
153(1):123-143, 1996. Proceedings of the 5th Conference on Formal Power Series and Algebraic Combinatorics.

[10] S. Fomin and R. P. Stanley. Schubert polynomials and the nilCoxeter algebra. Adv. in Math., 103(2):196 — 207, 1994.

[11] J. Huh, J. Matherne, K. Mészédros, and A. St. Dizier. Logarithmic concavity of Schur and related polynomials, 2019.
arXiv:1906.09633.

[12] A. Knutson and E. Miller. Grobner geometry of Schubert polynomials. Ann. of Math. (2), 161(3):1245-1318, 2005.

[13] W. Kraskiewicz and P. Pragacz. Foncteurs de Schubert. C. R. Acad. Sci. Paris Sér. I Math., 304(9):209-211, 1987.

[14] T. Lam, S. Lee, and M. Shimozono. Back stable Schubert calculus, Jun 2018. arXiv:1806.11233,

[15] A. Lascoux. Transition on Grothendieck polynomials. In Physics and combinatorics, 2000 (Nagoya), pages 164-179. World
Sci. Publ., River Edge, NJ, 2001.

[16] A. Lascoux and M.-P. Schiitzenberger. Polynémes de Schubert. C. R. Acad. Sci. Paris Sér. I Math., 294(13):447-450,
1982.

[17] A. Lascoux and M.-P Schiitzenberger. Structure de Hopf de I’anneau de cohomologie et de I'anneau de Grothendieck d’une
variété de drapeaux. C. R. Acad. Sci. Paris Sér. I Math., 295(11):629-633, 1982.

[18] C. Lenart. A K-theory version of Monk’s formula and some related multiplication formulas. J. Pure Appl. Algebra, 179(1-
2):137-158, 2003.

[19] C. Lenart. A unified approach to combinatorial formulas for Schubert polynomials. J. Algebraic Combin., 20(3):263-299,
2004.

[20] P. Magyar. Schubert polynomials and Bott-Samelson varieties. Comment. Math. Helv., 73(4):603-636, 1998.

[21] L. Manivel. Symmetric functions, Schubert polynomials and degeneracy loci, volume 6 of SMF/AMS Texts and Monographs.
American Mathematical Society, Providence, RI; Société Mathématique de France, Paris, 2001. Translated from the 1998
French original by John R. Swallow, Cours Spécialisés [Specialized Courses], 3.

[22] K. Mészdros and A. St. Dizier. From generalized permutahedra to Grothendieck polynomials via flow polytopes. Algebr.
Comb., 3(5):1197-1229, 2020.

[23] C. Monical, N. Tokcan, and A. Yong. Newton polytopes in algebraic combinatorics. Selecta Math. (N.S.), 25(66), 2019.

[24] J. Rajchgot, Y. Ren, C. Robichaux, A. St. Dizier, and A. Weigandt. Degrees of symmetric Grothendieck polynomials and
Castelnuovo—-Mumford regularity. Proc. Amer. Math. Soc., 2020. to appear.

[25] A. Weigandt. Bumpless pipe dreams and alternating sign matrices, 2020. arXiv:2003.07342,

[26] A. Weigandt and A. Yong. The prism tableau model for Schubert polynomials. J. Comb. Theory, Ser. A, 154:551-582,
2018.


http://arxiv.org/abs/2007.04310
http://arxiv.org/abs/2007.04533
http://arxiv.org/abs/1906.09633
http://arxiv.org/abs/1806.11233
http://arxiv.org/abs/2003.07342

AN ORTHODONTIA FORMULA FOR GROTHENDIECK POLYNOMIALS 19
KAROLA MESZAROS, DEPARTMENT OF MATHEMATICS, CORNELL UNIVERSITY, ITHACA, NY 14853.
karola@math.cornell.edu

LINUS SETIABRATA, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO, CHICAGO, IL, 60637.
linus@math.uchicago.edu

AVERY ST. DIZIER, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, URBANA, IL 61801.
stdizie2@illinois.edu



	1. Introduction
	Outline of this paper

	2. Background
	2.1. Conventions
	2.2. Difference Operators on Polynomials
	2.3. Schubert and Grothendieck Polynomials
	2.4. Orthodontia of Diagrams

	3. Sorted Permutations and Grothendieck Polynomials
	4. Orthodontia And Weak Bruhat Order
	5. An Orthodontia Formula for Grothendieck Polynomials
	6. Application to the Degree and Support of Grothendieck Polynomials
	7. Strongly Separated Diagrams
	Acknowledgments
	References

