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Abstract 36 

This study examines the free-tropospheric quasi-equilibrium at different global climate 37 

model (GCM) resolutions using the simulation of tropical convection by a cloud-resolving model 38 

during the Tropical Western Pacific International Cloud Experiment. The simulated dynamic and 39 

thermodynamic fields within the model domain are averaged over subdomains of different sizes 40 

equivalent to different GCM resolutions. These coarse-grained fields are then used to compute 41 

CAPE and its change with time, and their relationships with simulated convection. Results show 42 

that CAPE change with time is controlled predominantly by variations of thermodynamic 43 

properties in the planetary boundary layer for all subdomain sizes ranging from 64 km to 4 km. 44 

Lag correlation analysis shows that CAPE generation by the free-tropospheric dynamical 45 

advection (dCAPEls) leads convective precipitation but is in phase with convective mass flux at 46 

600 mb and 500 mb vertical velocity for all subdomain sizes. However, the correlation coefficients 47 

and regression slopes decrease as the subdomain size decreases for subdomain sizes smaller than 48 

16 km. This is probably due to increased randomness of convection and more scale-dependence 49 

of the relationships when the subdomain size reaches the grey zone. By examining the sensitivity 50 

of the relationships of convection with dCAPEls to temporal scales in different subdomain size, it 51 

shows that the quasi-equilibrium between dCAPEls and convection holds well for timescales of 30 52 

min or longer at all subdomain sizes. These results suggest that the free tropospheric quasi-53 

equilibrium assumption may still be useable even for GCM resolutions in the grey zone.  54 

 55 

  56 
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1. Introduction 57 

 Convection occurs on spatial scales from sub-kilometer for shallow cumulus to tens of 58 

kilometers or larger for organized mesoscale convective systems. Despite its small scales, the role 59 

of deep convective towers in maintaining the atmospheric thermodynamic structure, atmospheric 60 

circulation and tropical energy balance was recognized more than half a century ago (Riehl and 61 

Malkus 1958; Manabe and Strickler 1964). Global climate models (GCMs) in the past and up till 62 

now typically have a horizontal grid spacing of ~100 km or larger. Within such a GCM grid box, 63 

the collective effect of convection is parameterized. In doing so, various assumptions were made 64 

to relate convection to grid-scale fields. Kuo (1965, 1974) proposed a moisture convergence 65 

closure, which related convection to column moisture convergence in the atmosphere. This closure 66 

was later modified by Tiedtke (1989) to determine cloud base updraft mass flux using moisture 67 

convergence in the subcloud layer. However, moisture convergence-based closure has been faulted 68 

for causing grid-point storms (Yano et al., 1998) and artificial CISK (conditional instability of the 69 

second kind) (Ooyama, 1982). Arakawa and Schubert (1974) proposed a convective quasi-70 

equilibrium, which assumed that the removal of convective instability by a population of 71 

convective clouds of different sizes within a GCM grid box equals the generation of convective 72 

instability by GCM-resolved processes. The convective quasi-equilibrium is probably the most 73 

fundamental assumption among many assumptions involved in convective parameterization 74 

schemes. From the tropical circulation point of view, Emanuel et al. (1994) showed that under the 75 

convective quasi-equilibrium framework the tropical atmospheric systems such as the Hadley 76 

circulation, tropical cyclones and Madden-Julian oscillation (MJO), are much easier to understand. 77 

The variation of the thickness of the convecting layer is entirely governed by the surface entropy 78 

fluxes into the atmosphere.  79 
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Other closures have also been proposed since then, including CAPE (convective available 80 

potential energy) relaxation-based closure (Fritsch and Chappell 1980; Kain and Fritsch 1993; 81 

Kain 2004; Zhang and McFarlane 1995), boundary layer turbulent kinetic energy (TKE) and 82 

convective inhibition (CIN)-based closure (Mapes 2000), boundary layer quasi-equilibrium 83 

closure (Raymond 1995), and free tropospheric quasi-equilibrium closure (Zhang 2002). Yano et 84 

al. (2013) provides a thorough review of different closure assumptions and their merits. CAPE is 85 

an approximation of cloud work function used in the Arakawa-Schubert (1974) convection scheme. 86 

It assumes that convective instability in the atmosphere is removed by convection within a 87 

relaxation time scale of a few hours. Based on the concept of activation control of convection by 88 

Mapes (1997), Mapes (2000) proposed a closure relating convection to boundary layer TKE and 89 

CIN. Fletcher and Bretherton (2010) and Hohenegger and Bretherton (2011) further tested it using 90 

a cloud-resolving model and single column model.  91 

Zhang (2002) analyzed the observational data from the U.S. DOE Atmospheric Radiation 92 

Measurement (ARM) program and found that the net variation of convective instability as 93 

measured by CAPE is significant in both convective and non-convective situations. This variation 94 

is largely controlled by boundary layer temperature and moisture fluctuations. Further analyses of 95 

tropical and midlatitude observational data by Zhang (2003) and Donner and Phillips (2003) 96 

reached similar conclusions. This indicates that contributions to the net CAPE variation from 97 

temperature and moisture changes in the troposphere above the planetary boundary layer are 98 

insignificant. Based on this finding, Zhang (2002) proposed a free-tropospheric quasi-equilibrium 99 

(FTQE), in which CAPE generation by free-tropospheric large-scale processes is balanced by the 100 

removal of CAPE from convective heating. By design, a positive CAPE generation by the free 101 
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tropospheric large-scale processes was also used as a trigger condition1 for convection onset. A 102 

similar trigger condition was used in Xie et al. (2004, 2019). An evaluation of trigger conditions 103 

in many convective parameterization schemes using observational data showed that this trigger 104 

condition is among the best performing trigger functions (Suhas and Zhang 2014). The application 105 

of the FTQE in the Zhang-McFarlane convection scheme (Zhang and McFarlane 1995) in the 106 

National Center for Atmospheric Research Community Atmosphere Model version 3 (NCAR 107 

CAM3), Community Climate System Model version 3 (CCSM3) and Community Earth System 108 

Model version 1 (CESM1) has shown improved simulations of some features of tropical 109 

convection, including MJO and intertropical convergence zone (ITCZ) (Zhang and Mu 2005a, b; 110 

Zhang and Wang 2006; Song and Zhang 2009; Zhang and Song 2010; Song and Zhang 2018). 111 

Wilcox and Donner (2007) implemented it into the Donner (1993) scheme in the Geophysical 112 

Fluid Dynamics Laboratory (GFDL) Atmospheric Model AM2. They showed, among other 113 

improvements, that the free tropospheric quasi-equilibrium closure greatly improved the 114 

simulation of the frequency of extreme precipitation events in the AM2. Benedict et al. (2013) 115 

showed that a version of the GFDL AM3 with the FTQE closure produced a better simulation of 116 

MJO than in the standard AM3 model. The FTQE closure was also implemented into the Finite-117 

volume Atmospheric Model of IAP/LASG (FAMIL) GCM (Zhou et al. 2015) and tested in single 118 

column models of the NCAR CAM4 and CAM5 (Wang and Zhang 2013). Bechtold et al. (2014) 119 

incorporated this free-tropospheric quasi-equilibrium, with modifications to include some non-120 

equilibrium elements from the planetary boundary layer, into the European Centre for Medium-121 

 
1 Here and in the rest of this paper trigger condition means a set of conditions that the atmospheric state or processes 

must satisfy before the call to convective parameterization is triggered.  
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range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS) and showed that it 122 

improved the forecast of the diurnal variation of convection.  123 

Both observational and GCM evaluations of FTQE are for GCM grid-spacings of ~200 km 124 

or larger. As GCM resolutions increase, is FTQE still a good assumption? Developing a convection 125 

scheme that can adapt to different GCM resolutions, i.e., scale-aware, has been an active research 126 

topic in recent years since Arakawa et al. (2011) proposed it (Arakawa and Wu 2013, Grell and 127 

Freitas 2014, Kwon et al. 2017). However, all these studies are concerned with how to factor in 128 

the fact that convective cloud fraction will no longer be negligible as GCM resolution increases to 129 

the grey zone (~10 km or less). Not as much has been explored on whether the closures of 130 

convective schemes are still useable as the GCM resolution approaches the grey zone. Suhas and 131 

Zhang (2015) evaluated several closure assumptions including CAPE-based, moisture 132 

convergence-based, and boundary layer turbulent kinetic energy (TKE)-based closures using a 133 

cloud-resolving model (CRM) simulation for different GCM resolutions. They found that the 134 

moisture convergence closure of Tiedtke (1989) is well correlated to convective precipitation and 135 

convective cloud mass flux at the 600 hPa level for a large range of grid spacings from 128 km to 136 

4 km. To what extent is the FTQE assumption still applicable or appropriate for use in convective 137 

parameterization at high horizontal resolutions? We will address this issue in the paper.  138 

At this point, it is necessary to clarify a nomenclature. In relating convection to large-scale 139 

fields through a closure, the large-scale fields are often referred to as “forcing”, by which it implies 140 

a causality, that is, the large-scale forcing causes convection. Since the FTQE involves 141 

atmospheric circulation, it can be equally valid to argue that the large-scale circulation is a result 142 

of convection. More discussion on this will be presented in Section 3. In the paper, we will refrain 143 
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from using the word “forcing” to describe the circulation unless it is specified from observations 144 

to drive the CRM, in which case it is indeed used as forcing in the CRM setup. 145 

The paper is organized as follows. In section 2, the CRM simulation data used for the 146 

evaluation will be described, along with a brief description of the free-tropospheric quasi-147 

equilibrium and the analysis method. Section 3 will present the results. Section 4 will conclude the 148 

paper with a summary and some discussions.  149 

2. Data and analysis method 150 

The use of the cloud-resolving model (CRM) output for evaluating or developing 151 

convective parameterization schemes has been explored in the past (Xu et al. 1992; Plant and Craig 152 

2008; Jones and Randall 2011). Although there are deficiencies in simulating the detailed structure 153 

of convective systems and the intensity of convective updrafts (Bryan et al. 2003; Varble et al. 154 

2011), the macroscopic behavior of convection under a given large-scale condition is realistically 155 

simulated. Therefore, CRM data are still suitable for evaluating convective parameterization 156 

schemes. 157 

The data used in this study are the same as those used in Suhas and Zhang (2015). They are 158 

from a CRM simulation of convection (Zeng et al. 2011) during the intensive observation period 159 

(IOP) of Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program’s 160 

Tropical Warm Pool International Cloud Experiment (TWP-ICE) in Darwin Australia during the 161 

northern Australian summer monsoon season of 2006 (May et al. 2008). The model is the three-162 

dimensional Goddard Cumulus Ensemble (GCE) model (Tao and Simpson 1993). It has 41 vertical 163 

levels from the surface to 21 km height, with a vertical resolution varying from 42.5 m at the 164 

bottom to 1 km at the top, and a horizontal resolution of 1 km. The simulation covers the monsoon 165 

break period from 2100 UTC 4 February 2006 to 2100 UTC 10 February 2006. The model domain 166 
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covers an area of 256 km × 256 km over the ARM Darwin site. The model simulation is output at 167 

6-min interval.  168 

To evaluate the free tropospheric quasi-equilibrium assumption for different subdomain sizes 169 

equivalent to various GCM resolutions, the raw data is averaged over different spatial and temporal 170 

scales. For spatial averaging, subdomain sizes of 64 km, 32 km, 16 km, 8 km and 4 km are used. 171 

Within each subdomain, we first identify convective grid points at the native CRM resolution of 1 172 

km. A grid point is considered convective if its vertical velocity is greater than 1 m/s or less than 173 

-1 m/s and the sum of the mixing ratios of cloud liquid water and ice water exceeds 1x10-5 kg/kg. 174 

The GCM-equivalent domain-averaged convective mass flux (𝑀𝑐 = ∑ 𝜌𝑤/𝑁𝑖 ) is calculated to 175 

measure convective activity in each subdomain. Here w is vertical velocity at a CRM grid point, 176 

the summation is over all convective grid points within the subdomain, and N is the total number 177 

of CRM grid points for the subdomain. For convective precipitation, if a CRM column contains 178 

any convective grid point, then the surface precipitation is classified as convective, and the 179 

subdomain-mean convective precipitation is given by 𝑃𝑐 = ∑ 𝑃𝑗 /𝑁. Here the summation is over 180 

all convective columns. For temporal averaging, 1, 2, and 3 hours are chosen.  181 

Before going into the details of methodology of evaluating the free tropospheric quasi-182 

equilibrium, we first define CAPE and its time rate of change resulting from subdomain-scale 183 

processes. CAPE is defined by the vertical integral of buoyancy of a parcel lifted from the most 184 

unstable level in the planetary boundary layer (PBL) to the level of neutral buoyancy: 185 

𝐶𝐴𝑃𝐸 = ∫ 𝑅𝑑(𝑇𝑝𝑣 − 𝑇̅𝑣)𝑑𝑙𝑛𝑝𝑝𝑏𝑝𝑡   (1) 186 

where 𝑇𝑝(1 + 0.608𝑞𝑝 − 𝑞𝑙) and 𝑇̅𝑣 = 𝑇̅(1 + 0.608𝑞̅) are virtual temperatures of the air parcel 187 

and the domain average. pb and pt are pressure values at the parcel's originating level and the 188 

neutral buoyancy level, respectively. Rd is gas constant for dry air and ql is liquid water condensed 189 
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following the reversible moist adiabat of the air parcel. Subscript p stands for parcel's properties 190 

and overbar for domain average. Thus, CAPE change with time can be rewritten as: 191 𝜕𝐶𝐴𝑃𝐸𝜕𝑡 = 𝜕𝐶𝐴𝑃𝐸𝑝𝜕𝑡 + 𝜕𝐶𝐴𝑃𝐸𝑒𝜕𝑡   (2) 192 

where 
𝜕𝐶𝐴𝑃𝐸𝑝𝜕𝑡 = 𝑅𝑑 𝜕𝜕𝑡 ∫ 𝑇𝑝𝑣𝑝𝑏𝑝𝑡 𝑑𝑙𝑛𝑝  and 

𝜕𝐶𝐴𝑃𝐸𝑒𝜕𝑡 = −𝑅𝑑 𝜕𝜕𝑡 ∫ 𝑇̅𝑣𝑑𝑙𝑛𝑝𝑝𝑏𝑝𝑡  represent contributions to 193 

CAPE change from changes of the parcel's thermodynamic properties and its environment in the 194 

free troposphere, respectively. For an undiluted parcel, its virtual temperature is determined by the 195 

temperature and moisture at its originating level in the PBL. With simple manipulation it can be 196 

shown (Zhang et al. 1998) that 
𝜕𝐶𝐴𝑃𝐸𝑝𝜕𝑡  is related to surface entropy flux, and 

𝜕𝐶𝐴𝑃𝐸𝑒𝜕𝑡  is the change 197 

of the thickness of the convective layer. Using ARM observations, Zhang (2002, 2003) and Donner 198 

and Phillips (2003) found that CAPE variation is largely controlled by boundary layer 199 

thermodynamic changes, that is, 
𝜕𝐶𝐴𝑃𝐸𝜕𝑡 ≈ 𝜕𝐶𝐴𝑃𝐸𝑝𝜕𝑡  and 

𝜕𝐶𝐴𝑃𝐸𝑒𝜕𝑡 ≈ 0. Based on this finding, Zhang 200 

(2002) further decomposed 
𝜕𝐶𝐴𝑃𝐸𝑒𝜕𝑡  into contributions from large-scale and convective scale 201 

processes,  202 𝜕𝐶𝐴𝑃𝐸𝑒𝜕𝑡 = (𝜕𝐶𝐴𝑃𝐸𝑒𝜕𝑡 )𝑐 + (𝜕𝐶𝐴𝑃𝐸𝑒𝜕𝑡 )𝑙𝑠 ≈ 0.  (3) 203 

This leads to the free tropospheric quasi-equilibrium assumption, which states that CAPE 204 

generation by large-scale advection in the free troposphere is in equilibrium with the CAPE 205 

removal by convective heating: 206 (𝜕𝐶𝐴𝑃𝐸𝑒𝜕𝑡 )𝑐 ≈ − (𝜕𝐶𝐴𝑃𝐸𝑒𝜕𝑡 )𝑙𝑠.  (4) 207 

This assumption was used to devise a closure to determine convective mass flux at the cloud base 208 

(Zhang, 2002; Zhang and Mu, 2005). In fact, the left-hand side of Eq. (4) is proportional to the 209 

cloud-based convective mass flux (𝑀𝑏): 210 



 10 

(𝜕𝐶𝐴𝑃𝐸𝑒𝜕𝑡 )𝑐 = 𝑀𝑏 ∫ (1 + 0.608𝑞) (−𝜂 𝜕𝑆𝜕𝑝) + 0.608𝑇 [−𝜂 𝜕𝑞𝜕𝑝 + 𝛿(𝑞𝑠 − 𝑞)] 𝑑𝑙𝑛𝑝𝑝𝑏𝑝𝑡          (5) 211 

where 𝜂 is the net cloud mass flux normalized by the cloud base mass flux, i.e., 𝜂 = 𝑀𝑐/𝑀𝑏. The 212 

vertical integral on the rhs of Eq. (5) represents the consumption rate of CAPE per unit cloud-base 213 

mass flux [see Eq. (8) of Zhang (2002)]. Thus,  214 𝑀𝑏 = 𝑚𝑎𝑥{−(𝜕𝐶𝐴𝑃𝐸𝑒 𝜕𝑡⁄ )𝑙𝑠, 0}/𝐹  (6) 215 

Here F denotes the vertical integration on the rhs of Eq. (5). Note that the diagnostic relationship 216 

in Eq. (4) is well-known in large-scale tropical dynamics through scale analysis (e.g. Yano and 217 

Bonazzola, 2009) and is the basis of weak temperature gradient approximation of tropical 218 

circulation (Sobel et al., 2001). But it was not formally used in the context of convective 219 

parameterization until Zhang (2002). 220 

To evaluate the free tropospheric quasi-equilibrium closure for a given subdomain size 221 

mimicking a corresponding GCM resolution, the following procedure is taken to calculate CAPE 222 

changes due to subdomain-scale advection. First, CAPE is computed using Eq. (1) and subdomain-223 

mean fields, and we call it CAPE0. Second, we compute advective tendencies of temperature (−𝑣̅ ∙224 ∇𝑠̅ − 𝜔̅ 𝜕𝑠̅𝜕𝑝) and moisture (−𝑣̅ ∙ ∇𝑞̅ − 𝜔̅ 𝜕𝑞̅𝜕𝑝) using subdomain-mean temperature, moisture and 225 

velocity fields from neighboring subdomains and finite difference as if they were representing 226 

GCM grid point variables. Here s is dry static energy normalized by heat capacity of air, 𝑠 = 𝑇 +227 𝑔𝑧 𝑐𝑝⁄ . The forcing from observations used to drive the CRM is also added uniformly to each 228 

subdomain, as was done in the CRM simulation. These advective tendencies are then used to 229 

update the subdomain-mean temperature and moisture fields at all levels above the parcel's 230 

originating level, so that the parcel’s properties are not affected by this update: 231 

𝑇̅1 = 𝑇̅0 + (−𝑣̅ ∙ ∇𝑠̅ − 𝜔̅ 𝜕𝑠̅𝜕𝑝) ∆𝑡 + 𝐹𝑎𝑑𝑣𝑠∆𝑡  (7𝑎) 232 
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𝑞̅1 = 𝑞̅0 + (−𝑣̅ ∙ ∇𝑞̅ − 𝜔̅ 𝜕𝑞̅𝜕𝑝) ∆𝑡 + 𝐹𝑎𝑑𝑣𝑞∆𝑡  (7𝑏) 233 

where ∆𝑡 is 6 minutes, the time interval for CRM model output, and 𝑇̅0 and 𝑞̅0 are temperature and 234 

moisture used to compute CAPE0. 𝐹𝑎𝑑𝑣𝑠  and 𝐹𝑎𝑑𝑣𝑞  are observed forcing of temperature and 235 

moisture that is used to drive the CRM. Next, CAPE is recomputed using Eq. (1) with the updated 236 

temperature 𝑇̅1 and moisture 𝑞̅1, and we call it CAPE1. Thus, CAPE1 is equivalent to CAPE in the 237 

atmosphere after the dynamics core but before convection parameterization is called in GCMs 238 

such as the NCAR CAM5. Finally, we obtain the CAPE change due to subdomain-scale (or GCM 239 

grid-scale) advection: 240 

(𝜕𝐶𝐴𝑃𝐸𝑒𝜕𝑡 )𝑙𝑠 = 𝐶𝐴𝑃𝐸1 − 𝐶𝐴𝑃𝐸0∆𝑡   (8) 241 

Hereafter we will use the shorthand dCAPEls for (𝜕𝐶𝐴𝑃𝐸𝑒𝜕𝑡 )𝑙𝑠 . Note that neither (𝜕𝐶𝐴𝑃𝐸𝑒𝜕𝑡 )𝑐  nor 242 

(𝜕𝐶𝐴𝑃𝐸𝑒𝜕𝑡 )𝑙𝑠 has contributions from changes of thermodynamic properties at and below the parcel’s 243 

initiation level in boundary layer. Thus, this closure is decoupled from the surface and boundary 244 

layer processes that affect the convective parcel’s properties. While this may seem unconventional 245 

since it is well known that convection is rooted in the boundary layer, it should be pointed out that 246 

heating and moistening, such as those from surface turbulent fluxes, in the boundary layer often 247 

do not directly affect deep convection. They first deepen the boundary layer, which subsequently 248 

leads to the development of shallow convection. Many previous observational and modeling 249 

studies have pointed out that shallow convection can serve to precondition the lower troposphere 250 

by moistening it (e.g. Kemball-Cook and Weare, 2001; Wu et al., 2009; Zhang and Klein, 2010) 251 

and can produce enhanced low-level mass convergence (Wu, 2003) before deep convection. The 252 

diabatic heating from shallow convection generates the grid-scale circulation which would 253 
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generate dCAPEls. This dCAPEls will lead to the development of deep convection if the 254 

environmental conditions are favorable for shallow to deep convection transition. In addition, 255 

although boundary layer forcing is not considered in the closure, a positive CAPE is required, 256 

which is largely controlled by the PBL properties. Therefore, deep convection is indirectly related 257 

to PBL properties in this closure. 258 

3. Results 259 

Fig. 1 shows the time series of observed precipitation during the IOP and dCAPEls due to 260 

observed/background large-scale forcing applied to the CRM. Observationally, there is a close 261 

correspondence between variations of precipitation and dCAPEls, with a correlation coefficient of 262 

0.90 for points with positive dCAPEls. Fig. 2 shows the time evolution of model precipitation and 263 

dCAPEls for selected subdomain sizes (64 km and 32 km). Also shown are contributions to 264 

dCAPEls from the imposed observed forcing and advection from model generated circulations. For 265 

a 64 km subdomain, the total dCAPEls largely comes from the contribution of model-generated 266 

circulations, and the prescribed, observed forcing is relatively small. As a result, the temporal 267 

variation of dCAPEls is largely dominated by that of the contribution from model circulation, with 268 

a correlation coefficient of 0.92 between the two, and the correlation between the total dCAPEls 269 

and the observed large-scale contribution is only 0.59. The precipitation variation clearly follows 270 

that of the total dCAPEls. In a 32 km subdomain, dCAPEls variation also predominantly comes 271 

from the model-generated contribution, with a correlation coefficient of 0.93. The contribution 272 

from the background forcing becomes much less significant, particularly during heavy 273 

precipitation events. The time series for other 64 km and 32 km subdomains are similar to those 274 

shown in the figure. This clearly demonstrates that the model-generated circulation on subdomain 275 

scale becomes more closely related to convection and the local relationship between convection 276 
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and circulation is less dependent on the imposed forcing for the CRM as the subdomain size 277 

decreases. 278 

Zhang (2002, 2003) and Donner and Phillips (2003) showed using field observational data 279 

that on spatial scales of a few hundred kilometers, variability in CAPE is mainly controlled by 280 

planetary boundary layer variability in thermodynamic fields. In tropical atmosphere, this is at 281 

least partly due to the weak temperature gradients in the free troposphere. To examine if the CAPE 282 

variation is still controlled by the PBL properties as the spatial scale decreases, Fig. 3 shows the 283 

scatter plots of net CAPE change (dCAPE) versus contributions from boundary layer changes 284 

(dCAPEp), that is, the left-hand side vs. the first term on the right-hand side of Eq. (2), using 1-285 

hour average data. For all subdomain sizes, there is a strong correlation between dCAPE and 286 

dCAPEp, with correlation coefficients greater than 0.97. The slopes show that boundary layer 287 

contribution accounts for up to 93% of the total dCAPE. Furthermore, the relative contribution 288 

from the boundary layer increases as the domain size decreases. For example, at the 64 km 289 

subdomain size the regression slope is 0.938; it increases to 0.966 at 4 km subdomain size. These 290 

results, together with earlier observational results (Zhang 2002, 2003; Donner and Phillips 2003), 291 

indicate that boundary layer control of CAPE applies to all scales from ~100 km to grey zone 292 

scales of sub-10 km. In other words, Eq. (4) is a very good approximation to relate convection to 293 

GCM grid-scale CAPE generation in the free troposphere for all GCM grid spacings down to 4 294 

km. 295 

To verify this, Fig. 4 shows the relationship between dCAPEls and convective mass flux at 296 

600 mb. The red, cyan and orange lines are median values, first and third quartiles in each dCAPEls 297 

bin, respectively. As in Suhas and Zhang (2015), the 600 mb convective mass flux is used to 298 

measure the amount of convection because it is difficult to define cloud base accurately in the 299 
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CRM. Convective mass flux increases linearly with dCAPEls for 64 km, 32 km and 16 km, 300 

indicating GCM grid-scale advective CAPE generation, as represented by dCAPEls, is closely 301 

related to convective mass flux at these subdomain sizes. The linear relationship between dCAPEls 302 

and mass flux begins to degrade, with the median values plateauing off from the linear regression 303 

line, when the subdomain size further decreases to 8 km and 4 km, indicating that a larger amount 304 

of CAPE generation is needed to produce a given amount of convection as the GCM grid size 305 

decreases. The scatter is also increased. There are two possible explanations for the degeneration 306 

of the linear relationship at small subdomain sizes. First, as the subdomain size decreases, for a 307 

given grid-scale circulation and thermodynamic state, the stochastic behavior of convection 308 

becomes more prominent, thereby making convection in individual subdomains deviate more from 309 

the convective quasi-equilibrium. Second, as the subdomain size decreases, some of the convection 310 

may become GCM grid-resolved, resulting in less subgrid convective mass flux for given grid-311 

scale state. This scale-aware issue should become more noticeable when the subdomain size 312 

becomes smaller.   313 

To further evaluate the accuracy of free tropospheric quasi-equilibrium as GCM grid size 314 

decreases, Fig. 5 shows the lag correlation between dCAPEls and convective precipitation, 600 mb 315 

convective mass flux, and 500 hPa vertical velocity, respectively, averaged over different 316 

subdomain sizes. The maximum correlation occurs when dCAPEls leads convective precipitation. 317 

The lead time decreases from 18 minutes for 64 km subdomain size to 10 minutes for sub-10 km 318 

subdomain size. The maximum correlation coefficient remains about the same from 64 km 319 

subdomain sizes to 16 km subdomain sizes but decreases as the subdomain size further decreases. 320 

The variation of time lag with subdomain size can be explained by the strength of GCM grid-scale 321 

forcing and the time it takes for convection to adjust. Wang and Randall (1996) demonstrated that 322 



 15 

it takes longer for convection to adjust under weak large-scale forcing, and vice versa. Fig. 4 shows 323 

that when the subdomain size is larger, the forcing is smaller. Thus, it takes longer for convective 324 

heating to adjust the atmosphere to an equilibrium state. The maximum correlation between 325 

convective mass flux and dCAPEls occurs at zero lag for all subdomain sizes. This indicates that 326 

the development of convective precipitation lags convective updraft mass flux at 600 mb, the larger 327 

the subdomain, the longer the time lag. The fact that the highest correlation occurs between 328 

convective mass flux and dCAPEls at zero lag suggests that using dCAPEls as a closure to 329 

determine the amount of convection at a given GCM time step is reasonable. However, this should 330 

not be construed as a causal relationship, but rather a diagnostic one. In a balanced state it may be 331 

difficult or pointless to identify causality. In the past convection has been considered both as a 332 

cause and a result of large-scale circulation, depending on one’s viewpoint. In dynamic models of 333 

tropical circulation (e.g. Gill 1980), the large-scale circulation is often viewed as a response to 334 

convective heating. On the other hand, in cloud-resolving models (e.g., Grabowski 2001) or single-335 

column models (Randall et al. 1996), large-scale forcing is prescribed to drive the models and 336 

convection in the models responds to the forcing. In the real world, large-scale circulation and 337 

convection interact with each other and neither view provides a complete picture of this interaction. 338 

In the context of convective parameterization, the amount of convection determined by a 339 

parameterization closure can be viewed as that needed to balance the model-predicted 340 

thermodynamic state or process, be it a cause or an effect. Therefore, it is unnecessary to determine 341 

whether one is the cause or the effect of the other. 342 

Previous work by Davies et al. (2013) and Kumar et al. (2015) using Doppler radar 343 

observations of convection and ECMWF reanalysis data in Darwin, Australia found that 344 

convection is highly correlated with 500 mb large-scale vertical velocity. Another study by Qiao 345 
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and Liang (2016) used a regional climate model Climate-Weather Research and Forecasting 346 

(CWRF) to evaluate the effects of cumulus parameterization closures on summer precipitation 347 

simulation over the U.S. east coast and Gulf of Mexico. They showed that vertical velocity and 348 

moisture convergence-based closures reproduce the observed precipitation pattern and amount, 349 

and capture the frequency of heavy rainfall events better than CAPE-based closures. Since the 350 

large-scale generation of CAPE is closely linked to vertical velocity through vertical advection of 351 

dry static energy, this indirectly supports the free tropospheric quasi-equilibrium closure. As 352 

shown in Fig. 5c, the correlation coefficients reach a maximum at zero lag between dCAPEls and 353 

500 mb vertical velocity for all subdomain sizes, the same as that between dCAPEls and convective 354 

updraft mass flux at 600 mb, indicating that dCAPEls, 500 mb vertical velocity and convection 355 

occur concurrently. This concerted action between convection, adiabatic cooling and upward 356 

motion was noticed 30 years ago by Fraedrich and McBride (1989) as a free ride. It is also the 357 

basis of the weak temperature gradient approximation (Sobel et al. 2001). In terms of the values 358 

of correlation coefficients, dCAPEls and 500 mb vertical velocity are highly correlated, with 359 

coefficients over 0.8 for all subdomain sizes. Nonetheless, it should be noted that dCAPEls does 360 

not necessarily have a one-to-one relationship with the 500 mb vertical velocity since vertical 361 

motion at other levels also contributes to dCAPEls.  362 

Fig. 6 shows the lag correlation between dCAPEls and vertical velocity (color shading) at 363 

different levels for different subdomain sizes. At zero lag, there is a broad maximum correlation 364 

in the mid-troposphere between 600 and 300 hPa. Also, there is a clear tilted structure, showing a 365 

time lag between the lower and upper troposphere for all subdomain sizes, with the lower 366 

tropospheric vertical velocity leading dCAPEls and the upper tropospheric vertical velocity lagging 367 

dCAPEls. The vertical velocity below 800 hPa leads dCAPEls by as much as 2 hours for 64 km 368 
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subdomain size, reduced to less than half an hour for 4 km subdomain size. This indicates that the 369 

low-level grid-scale circulation acts first to generate dCAPEls. Also shown in Fig. 6 is the time-370 

lag correlation between convective mass flux and dCAPEls (contours). Similar to vertical velocity, 371 

convective mass flux in the lower troposphere also leads dCAPEls, although the vertical tilt in the 372 

time lag-height plot is not as much as that for vertical velocity. This suggests that vertical velocity 373 

below 800 hPa develops first, followed immediately by shallow convection, which reenforces the 374 

vertical motion. Then dCAPEls peaks, accompanied by deep convection in the troposphere. This 375 

is consistent with previous observational and modeling studies that shallow convection often 376 

appears before deep convection (Wu 2003, Zhang and Klein 2010). The lead time decreases with 377 

subdomain size, reflecting that convection responds faster to stronger forcing as the subdomain 378 

size decreases.  379 

From Figs. 5 and 6, convective mass flux and grid-scale vertical velocity w are closely related. 380 

Since 𝑤̅ = 𝑀𝑐𝜌 + (1 − 𝜎)𝑤̃, where 𝑤̅ is the subdomain-mean vertical velocity, Mc is convective 381 

mass flux, 𝜌  is the air density, 𝜎  is the convective fraction and 𝑤̃  is vertical velocity in the 382 

convection-free environment within the subdomain, the difference between 𝑤̅ and 𝑀𝑐 𝜌⁄  measures 383 

the compensating subsidence in the convection-free environment. Fig. 7 shows the vertical profiles 384 

of 𝑤̅ and 𝑀𝑐 𝜌⁄  for different subdomain sizes. Convective mass flux exceeds 𝑤̅ at most levels 385 

except in the boundary layer, meaning that there is systematic compensating subsidence in the 386 

convective environment. The strength of the subsidence relative to convective mass flux or 387 

subdomain-mean vertical velocity decreases with subdomain size. In other words, more 388 

compensating subsidence occurs non-locally outside the subdomain where convection occurs as 389 

the subdomain size decrease. This is in agreement with the conceptual model of scale-dependence 390 

of convective effects as envisioned by Arakawa et al. (2011). 391 
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Fig. 8 shows the regression slope between 600 mb mass flux and dCAPEls for different 392 

subdomain sizes. Similar to the correlation coefficients, for a given subdomain size the regression 393 

slope is the largest at zero lag. For different subdomain sizes, the regression slope first increases 394 

from 64 km subdomain sizes to 16 km subdomain sizes, but then decreases as the subdomain size 395 

becomes smaller, similar to that of correlation coefficient shown in Fig. 5b. However, the 396 

fluctuations are relatively smaller compared to the regression slopes themselves, in the range of 397 

12 to 14 (kg m-2 day-1)/(J kg-1 hr-1). The slight decrease of the slopes for subdomain sizes < 32 km 398 

can be explained by the following reasoning. Convection, as measured by precipitation or updraft 399 

mass flux, is positive-definite (i.e. the amount of convection cannot be negative) whereas the 400 

subdomain-scale dCAPEls can be either positive or negative. In neighboring subdomains, dCAPEls 401 

can be either positive or negative. In strongly positive dCAPEls subdomains, it is likely there is 402 

active convection and convective precipitation. In negative dCAPEls subdomains, there is likely 403 

no convection. Assume that there is a linear relationship between convection and dCAPEls in 404 

subdomains where dCAPEls is positive. When averaging over a larger subdomain containing 405 

subdomains with both positive and negative dCAPEls, the rate of reduction of convective updraft 406 

mass flux will be smaller than the rate of reduction of dCAPEls because the former contains 407 

positive or zero values only while the latter contains both positive and negative values. Thus, the 408 

ratio of convective mass flux to dCAPEls for larger subdomains is larger than that for smaller 409 

subdomains, as seen in Fig. 8. A similar GCM-resolution dependence was also recognized by Xiao 410 

et al. (2015) and Yun et al. (2017) when examining the scale-awareness of vertical transport in the 411 

Zhang-McFarlane convection scheme.  412 

Finally, to examine the sensitivity of the relationships between dCAPEls and convective mass 413 

flux to temporal scales for different subdomain sizes, Fig. 9 shows the variation of correlation 414 
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coefficients and regression slopes between dCAPEls and 600 mb convective mass flux with time 415 

averaging intervals from 6 minutes to 3 hours for all subdomain sizes. The correlation coefficients 416 

for 32 km to 4 km subdomain sizes have a maximum at 30 min averaging time and then decrease 417 

slightly as the averaging intervals increase to 3 hours. For 64 km subdomain size, the correlation 418 

coefficient reaches a maximum at 1-hr averaging interval. However, its variation with averaging 419 

time intervals is relatively small. For the regression slopes, their variations with averaging time 420 

intervals have a similar pattern to that for the correlation coefficients. Therefore, these indicate 421 

that free tropospheric quasi-equilibrium between the subdomain scale forcing (i.e. dCAPEls) and 422 

convection holds well for timescales of 30 min or longer, implying that for GCM applications with 423 

30-min timestep, the free tropospheric quasi-equilibrium assumption is suitable.  424 

4. Conclusions 425 

This study uses the cloud-resolving model simulation of convection in Darwin, Australia to 426 

examine the validity of the free tropospheric quasi-equilibrium assumption for different spatial 427 

scales equivalent to GCM grid sizes from 64 km to 4 km. The CRM output is averaged over 428 

different subdomains equivalent to different GCM resolutions to investigate the relationships 429 

between convection, as measured by convective precipitation and convective mass flux at the 600 430 

mb level, and the generation of convective available potential energy, dCAPEls, by subdomain-431 

scale circulation. Results show that although observed advective forcing is used to drive the CRM 432 

simulation of convection, CAPE generation for convection on subdomain scales is dominated by 433 

model-generated circulation when subdomain sizes become smaller. It is further shown that the 434 

total CAPE variation is controlled by contributions from the boundary layer properties on all 435 

spatial scales from 64 km down to 4 km subdomain sizes. The smaller the subdomain size, the 436 

larger the contribution from the boundary layer. For 64 km, the boundary layer contributes about 437 
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93% to the total CAPE variation. For sub-10 km (8 to 4 km) subdomain sizes, it contributes as 438 

much as 96% to the total CAPE variation. This implies that convective removal and large-scale 439 

generation of CAPE in the free troposphere are largely in balance, with their sum accounting for 440 

about less 7 to 4% of the total CAPE change (Fig. 3).  441 

Convective precipitation, mass flux at 600 mb and vertical velocity at 500 mb all correlate 442 

well with dCAPEls for subdomain sizes from 64 km to 4 km, suggesting that the free tropospheric 443 

quasi-equilibrium assumption can be applied to GCMs with resolutions in the grey zone. However, 444 

the correlation coefficient decreases as subdomain size decreases for subdomain sizes smaller than 445 

16 km. This is likely due to increased randomness of convection and more noticeable scale-446 

dependence of the relationships when the subdomain size reaches the grey zone. The regression 447 

slope also becomes smaller with decreasing subdomain sizes on these scales, although the decrease 448 

is relatively small. This can be explained by the fact that convection is positive-definite whereas 449 

the free tropospheric forcing can be either positive or negative. Thus, as the subdomain size 450 

becomes smaller, the same amount of CAPE generation by the grid-scale circulation will 451 

correspond to a smaller amount of convection in the averaging domain. This implies that although 452 

free tropospheric quasi-equilibrium can still be useable as the GCM resolution increases, it needs 453 

to be modified to account for the decreasing regression slope in order to make it scale-aware. 454 

Finally, the sensitivity of relationship between dCAPEls and convective mass flux at 600 mb to 455 

temporal scales for all subdomain sizes is examined. It shows that their correlations remain similar 456 

for all subdomain sizes for timescales of 30 min or longer. However, there is a noticeable increase 457 

for 8 km and 4 km subdomain sizes from 6 min to 30 min intervals. As for the regression slops, 458 

there is also little change for different averaging intervals for all subdomain sizes, especially 459 

timescales longer than 30 min. These results indicate that the free tropospheric quasi-equilibrium 460 
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between dCAPEls and convection holds well for 30 min or longer timescales at all subdomain sizes 461 

from 64 km to 4 km. 462 

As the computing power increases, GCMs have begun to increase the horizontal resolution 463 

to 25 km or higher. This requires convective schemes to be able to adapt to the higher resolutions. 464 

While some schemes have incorporated the fact that convective cloud fraction within a GCM grid 465 

box typically increases with the GCM resolution, not much has been done to modify convection 466 

parameterization closure. This study provides a diagnostic evaluation on a closure assumption, 467 

which can be used to guide future development of a scale-aware closure for convection 468 

parameterization in high-resolution GCMs. 469 
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Figure Captions: 657 

Fig. 1: Time series of observed precipitation (mm/hr) and CAPE generation (J/kg/hr) by large-658 

scale advective forcing averaged over the IOP domain during the break monsoon period 659 

(February 5 to February 10, 2006) of TWP-ICE IOP. 660 

Fig. 2: Sample time series of cloud-resolving model simulated precipitation (mm/hr) and net CAPE 661 

generation (J/kg/hr) in subdomains at size of (a) 64 km and (b) 32 km for 30 min time-662 

averaging intervals. Contributions to net CAPE generation from observed forcing (black) 663 

and model-generated forcing (blue) are also shown to demonstrate their relative importance 664 

as subdomain size changes. The correlation coefficients between net CAPE generation and 665 

contribution from observed/model-generated forcing are given above each frame. 666 

Fig. 3: Scatter plots of total CAPE change ( 𝑑𝐶𝐴𝑃𝐸/𝑑𝑡 ) versus CAPE change due to 667 

thermodynamic changes in the planetary boundary layer ( 𝑑𝐶𝐴𝑃𝐸𝑝/𝑑𝑡 ) for different 668 

subdomain sizes ranging from 64 km to 4 km. Each point represents a 1-hr average of 669 

model output at 6 min interval. The regression lines (black), slopes and correlation 670 

coefficients are also provided. For visual clarity, only a portion (chosen randomly) of data 671 

points is used in the scatterplots at 16, 8 and 4 km subdomain sizes, but all data are used in 672 

the calculation of statistics. 673 

Fig. 4: Scatter plots of convective mass flux at 600 mb and dCAPEls for different subdomain sizes. 674 

The blue line is linear regression, with correlation coefficient and slope shown at the top 675 

of each plot. Red solid curves are for median values and green and yellow solid curves are 676 

for first and third quartiles, respectively. For plotting the quartile curves, the data are 677 

divided into a number of bins and the bin sizes are larger for smaller subdomains. For visual 678 

clarity, only a portion (chosen randomly) of data points is used in the scatterplots, but all 679 
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data are used in the calculation of statistics. Note that the horizontal and vertical scales are 680 

different across the plots. 681 

Fig. 5: Lag correlation (a) between dCAPEls and convective precipitation, (b) between dCAPEls 682 

and convective mass flux at 600 mb and (c) between dCAPEls and 500 mb vertical velocity 683 

for subdomain sizes ranging from 64 km to 4 km. Positive values in x-axis mean dCAPEls 684 

leads the associated convective fields, and vice versa. 685 

Fig. 6: Lag correlation between vertical velocity and dCAPEls (color shading), and between 686 

convective mass flux and dCAPEls (contours) at (a) 64 km, (b) 32 km, (c) 16 km, (d) 8 km 687 

and e) 4 km. Contour lines start at 0.2 with an interval of 0.2. Negative value in x-axis 688 

means dCAPEls lags vertical velocity and mass flux. 689 

Fig. 7: Vertical profiles of subdomain-mean vertical velocity (W) and convective mass flux (MF) 690 

for different subdomain sizes. MF is divided by air density (𝜌) at each level to give the 691 

same unit as that for W. 692 

Fig. 8: Regression slopes between dCAPEls and 600 mb convective mass flux at different time lags 693 

for different subdomain sizes. Positive value in x-axis means dCAPEls leads mass flux, and 694 

vice versa. 695 

Fig. 9: Lag 0 (a) correlation and (b) slope between dCAPEls and 600 mb convective mass flux for 696 

subdomain sizes ranging from 64 km to 4 km for different time-averaging intervals. 697 
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 705 

Fig. 1 Time series of observed precipitation (mm/hr) and CAPE generation (J/kg/hr) by large-scale 706 

advective forcing averaged over the IOP domain during the break monsoon period (February 5 to 707 

February 10, 2006) of TWP-ICE IOP. 708 
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Fig. 2 Sample time series of cloud-resolving model simulated precipitation (mm/hr) and net CAPE 713 

generation (J/kg/hr) in subdomains at size of (a) 64 km and (b) 32 km for 30 min time-averaging 714 

intervals. Contributions to net CAPE generation from observed forcing (black) and model-715 

generated forcing (blue) are also shown to demonstrate their relative importance as subdomain size 716 

changes. The correlation coefficients between net CAPE generation and contribution from 717 

observed/model-generated forcing are given above each frame. 718 
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 720 

 721 

Fig. 3 Scatter plots of total CAPE change ( 𝑑𝐶𝐴𝑃𝐸/𝑑𝑡 ) versus CAPE change due to 722 

thermodynamic changes in the planetary boundary layer (𝑑𝐶𝐴𝑃𝐸𝑝/𝑑𝑡) for different subdomain 723 

sizes ranging from 64 km to 4 km. Each point represents a 1-hr average of model output at 6 min 724 

interval. The regression lines (black), slopes and correlation coefficients are also provided. For 725 

visual clarity, only a portion (chosen randomly) of data points is used in the scatterplots at 16, 8 726 

and 4 km subdomain sizes, but all data are used in the calculation of statistics. 727 



 35 

 728 

 729 

 730 

 731 

 732 

Fig. 4 Scatter plots of convective mass flux at 600 mb and dCAPEls for different subdomain sizes. 733 

The blue line is linear regression, with correlation coefficient and slope shown at the top of each 734 

plot. Red solid curves are for median values and green and yellow solid curves are for first and 735 

third quartiles, respectively. For plotting the quartile curves, the data are divided into a number of 736 

bins and the bin sizes are larger for smaller subdomains. For visual clarity, only a portion (chosen 737 

randomly) of data points is used in the scatterplots, but all data are used in the calculation of 738 

statistics. Note that the horizontal and vertical scales are different across the plots. 739 
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 742 

 743 

Fig. 5 Lag correlation (a) between dCAPEls and convective precipitation, (b) between dCAPEls 744 

and convective mass flux at 600 mb and (c) between dCAPEls and 500 mb vertical velocity for 745 

subdomain sizes ranging from 64 km to 4 km. Positive values in x-axis mean dCAPEls leads the 746 

associated convective fields, and vice versa. 747 
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 751 

 752 

Fig. 6 Lag correlation between vertical velocity and dCAPEls (color shading), and between 753 

convective mass flux and dCAPEls (contours) at (a) 64 km, (b) 32 km, (c) 16 km, (d) 8 km and e) 754 

4 km. Contour lines start at 0.2 with an interval of 0.2. Negative value in x-axis means dCAPEls 755 

lags vertical velocity and mass flux. 756 
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 762 

Fig. 7 Vertical profiles of subdomain-mean vertical velocity (W) and convective mass flux (MF) 763 

for different subdomain sizes. MF is divided by air density (𝜌) at each level to give the same unit 764 

as that for W. 765 
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 767 

Fig. 8 Regression slopes between dCAPEls and 600 mb convective mass flux at different time lags 768 

for different subdomain sizes. Positive value in x-axis means dCAPEls leads mass flux, and vice 769 

versa. 770 
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 775 

Fig. 9 Lag 0 (a) correlation and (b) slope between dCAPEls and 600 mb convective mass flux for 776 

subdomain sizes ranging from 64 km to 4 km for different time-averaging intervals. 777 
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