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Abstract

Langmuir monolayers at gas/liquid interfaces provide a rich framework to investigate
the interplay betweenmultiscale geometry andmechanics. Monolayer collapse is inves-
tigated at a topological and geometric level by building a scale space M from exper-
imental imaging data. We present a general lipid monolayer collapse phase diagram,
which shows that wrinkling, folding, crumpling, shear banding, and vesiculation are
a continuous set of mechanical states that can be approached by either tuning mono-
layer composition or temperature. The origin of the different mechanical states can be
understood by investigating the monolayer geometry at two scales: fluorescent vs
atomic force microscopy imaging. We show that an interesting switch in continuity
occurs in passing between the two scales, CAFM �MAFM 6¼ CFM �M. Studying the dif-
ference between monolayers that fold vs shear band, we show that shear banding is
correlated to the persistence of a multi-length scale microstructure within the mono-
layer at all surface pressures. A detailed analytical geometric formalism to describe this
microstructure is developed using the theory of structured deformations. Lastly, we pro-
vide the first ever finite element simulation of lipid monolayer collapse utilizing a direct
mapping from the experimental image spaceM into a simulation domain P. We show
that elastic dissipation in the form of bielasticity is a necessary and sufficient condition to
capture loss of in-plane stability and shear banding.

1. Introduction

For nearly a century, Langmuir monolayers have provided a rich sys-

tem for the study of self-organizing matter. The importance of surfactants in

industrial applications is hard to underestimate (Safran, 1994). Furthermore,

lipids are among the essential building blocks of living matter, their organi-

zation into bilayers forms cell membranes (Boal, 2002; Fung, 1993). Lipid

membranes play an integral role in creating multicellular tissues whose

organization ultimately leads to organisms (Boal, 2002). Moreover, the lipid

membrane is critical in intracellular interactions and specifically in helping

transmit mechanical information from one cell to another ( Junghans et al.,

2014, 2015; Pocivavsek, Junghans, Zebda, Birukov, & Majewski, 2013).

Lipid monolayers also play important biological roles, especially in animals

with lungs,where the surfactantmonolayer reduces surface tension of the large

air/water interface needed for gas exchange (Piknova, Schram, & Hall, 2002;

Robertson & Halliday, 1998; Zasadzinski, Ding, Warriner, Bringezu, &

Waring, 2001). The lipid monolayer’s or bilayer’s response to mechanical

forces is integral to many roles lipids play in biological systems (Gopal &

Lee, 2001; Lipp, Lee, Takamoto, Zasadzinski, & Waring, 1998; Ybert, Lu,

M€oller, & Knobler, 2002 a, 2002 b). However, we lack a general understand-

ing of lipid mechanics under many biologically relevant conditions.

2 Angelo Rosario Carotenuto et al.



Historically the approach to lipid mechanics began with thermodynam-

ics, especially in monolayers. The Langmuir monolayer’s confinement to the

two-dimensional gas/liquid interface allows direct visualization of thermo-

dynamics at work. The study of in-plane lipid phase transitions is among the

most studied monolayer phenomena (Kaganer, M€ohwald, & Dutta, 1999;

McConnell, 1991; M€ohwald, 1990, 1993). Various phases have been iden-

tified throughout the decades (see Fig. 1), including gaseous, liquid expanded

(LE), liquid condensed (LC), solid, and many subtypes (M€ohwald, 1990,

1993; Safran, 1994). Pioneering monolayer work was later extended
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Fig. 1 All lipid monolayers in this paper were prepared as Langmuir monolayers spread
at a gas/water interface. The details of the setup are provided in the methods. Panel
(A) shows a schematic of the Langmuir trough with two barriers used to control the lipid
density at the interface. A Wilhelmy surface balance is used to measure the lateral sur-
face pressure, which is given as the difference in surface tensions of a lipid free and lipid
covered interface, Π ¼ γo � γ. It should be noted that in general Π/h 6¼σij, where h is
monolayer thickness and σij is the true stress in the monolayer; furthermore only when
the monolayer is a liquid, unable to sustain a static shear stress, does Π represent the
hydrostatic pressure (Witten et al., 2010). Panel (B) shows a representative isothermwith
the three canonical thermodynamic lipid phases: gas, liquid expanded (LE), and liquid
condensed (LC). Panel (C) shows lipid monolayer energy as a function of inverse density
(area per lipid molecule). At low packing density (gas and LE phases), the monolayer
energy is dominated by the interfacial energy which is well represented by U �Π�
h/A. However, as the monolayer transitions into an elastic solid, beginning with the
LC phase, a membrane elastic energy term emerges, Umemb � W(F, K), where F is the
macroscopic deformation gradient and K the component due to positional disarrange-
ments according to the theory of structured deformations. Minimization ofW(F, K) pro-
vides a general framework in which to study the wide range of elastic instabilities seen
in solid-like lipid monolayers.
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to bilayers under various configurations: supported bilayers, vesicles, etc.

(Kaganer et al., 1999; McConnell, 1991; M€ohwald, 1990, 1993).

Quantitative modeling of lipid thermodynamics is largely rooted in the

development of equations of state and their validation with experiments,

such as isotherm measurements using a Langmuir trough (see Fig. 1)

(Andelman, Brochard, Knobler, & Rondelez, 1994; Fennell Evans &

Wennerstr€om, 1999; Kaganer et al., 1999; McConnell, 1991; Pocivavsek,

Frey, et al., 2008; Pocivavsek et al., 2011).

Langmuir monolayers have also proven to be ideal systems to study lipid

mechanics in highly confined geometries or high lipid packing densities,

where the system is believed to behave as an elastic continuum. Ries

(1979) first observed a solid-like response in monolayers where trilayered

structures appeared on top of the monolayer at high compression; he

hypothesized a simple mechanical model based on elastic plate buckling

to explain the observed multilayers (Ries, 1979). Other experimental work

confirmed the peculiar folding behavior of a variety of lipid and gold nano-

particle films (Gopal & Lee, 2001; Lin et al., 2007; Lipp et al., 1998; Schultz

et al., 2006; Ybert et al., 2002 a, 2002 b). It would be more than 50 years

until a quantitative model of monolayer folding was developed by

Pocivavsek, Dellsy, et al. (2008). The wrinkle-to-fold model treated the

lipid monolayer as a uniform elastic plate which under compression buckles

with a given wavelength; with further compression, the linearly stable wrin-

kles convert to localized nonlinear folds which can lead to the multilayer

structures observed experimentally (Pocivavsek, Dellsy, et al., 2008).

Treating the monolayer as a homogeneous elastic plate essentially extracted

only the most basic geometric structure of the monolayer to build a mechan-

ical model. Yet this highly reduced approach was able to quantitatively pre-

dict collapse features to a much larger extent than models which approached

collapse (loss of mechanical stability) from the standpoint of thermodynamic

defects (Diamant, Witten, Ege, Gopal, & Lee, 2001; Diamant, Witten,

Gopal, & Lee, 2000; Lu, Knobler, Bruinsma, Twardos, & Dennin, 2002;

Nikomarov, 1990; Saint-Jalmes, Assenheimer, & Gallet, 1998; Saint-

Jalmes, Graner, Gallet, & Houchmandzadeh, 1994; Saint-Jalmes &

Gallet, 1998).

More recent research in monolayer collapse mechanisms has examined a

broad range of topics. In lipidmonolayers, the exploration ofmembrane com-

position has found net charge, acyl chain saturation, and presence of choles-

terol to have important roles in altering collapse structures through tuning

in-plane rigidity (Garg, Thomas, & Borden, 2013; Goto & Caseli, 2013;
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Kim, Choi, Zell, Squires, & Zasadzinski, 2013; Thomas & Borden, 2017;

Zhang, Fan, Wang, Neal, & Zuo, 2011). These findings reveal insights into

themechanical properties and collapse of various clinical surfactants. Presence

of polymers (Callens et al., 2019) and surfactant proteins (Holten-Andersen

et al., 2011; Pocivavsek, Frey, et al., 2008) in the composition of lipid mono-

layers has been found to act as mechanical instabilities which lead to folding

and collapse. Introduction of small molecules such as glycerol to the subphase

can amplify the size of the folds upon monolayer collapse due to their enrich-

ment at the lipid headgroup interface (Pocivavsek et al., 2011).Whilemuch of

this work has been conducted using Langmuir trough experiments, lipid-

coated microbubbles have emerged as innovative tools to study monolayer

collapse and stabilization, with additional biological and medical implications

(Garg et al., 2013; Kwan & Borden, 2012a, 2012b; Thomas & Borden,

2017). Monolayers composed of various nanoparticles offer a range of

exploration into nonlinear surface pressure near buckling (Cicuta & Vella,

2009; Liu, Sun, & Santamarina, 2021) and the critical role of in-plane rigidity

for out-of-plane wrinkling (Silverberg & Vecitis, 2017), due to the granular

nature of the interface. Gold nanoparticle monolayers in particular show

interesting features when forming localized regions of instability, which col-

lapse upon compression into trilayers that can bend and fold depending on

in-plane and out-of-plane mechanical properties (Chua et al., 2013; Leahy

et al., 2010). In addition to the topology of monolayer collapse, the kinetics

of such folding has been explored for some lipids (Boatwright, Levine, &

Dennin, 2010; Kim et al., 2013; Oppenheimer, Diamant, & Witten, 2013)

where in-plane rigidity is important in modeling and predicting the behavior.

We present a combined experimental, computational, and geometric

analysis of lipid monolayer collapse. As noted above, a large amount of lipid

literature focuses on the differences, often compositional, between different

lipid systems. However, mechanical response, including collapse, is by its

very nature a continuum phenomenon, as such it seeks commonalities.

We set the ground work here for a general theory of lipid monolayer

mechanics. We expand upon the linearly elastic plate models used to suc-

cessfully describe monolayer folding (Pocivavsek, Dellsy, et al., 2008). The

paper is divided into three parts. First, we present a novel general lipid

monolayer collapse phase diagram, showing that five canonical modes of

collapse can be accessed across lipid compositions and temperatures. We

provide a scale space analysis of monolayer imaging data at multiple length

scales, which builds a topology for the available monolayer data. Second,

we present the first ever finite element simulation of lipid monolayers using
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experimentally derived input geometries. The simulations allow us to sys-

tematically test how mechanical dissipation in portions of the monolayer

leads to monolayer rearrangements and collapse via banding. Third, we uti-

lize the rich theoretical machinery of structured deformations to set up the

multiscale geometry of lipid monolayers based upon our experimental data.

2. Methods

2.1 Experimental procedure
2.1.1 Lipids, peptides, subphase, superphase
DMPE (1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine, Tm ¼ 50°C),
DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine, Tm ¼ 41°C), POPG

(1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1-rac-glycerol)(sodium salt),

Tm ¼ �2°C), and GM1 (ovine brain ganglioside GM1) were obtained from

Avanti Polar Lipids, Inc. (Alabaster, AL) in powder form and usedwithout fur-

ther purification. Lipids were either dissolved in chloroform (DPPC and

POPG) or 9/1 (v/v) chloroform/methanol (DMPE and GM1) to make

5 mg/mL stock solutions. Solvents were HPLC grade and obtained from

Fisher Scientific (Pittsburgh, PA). SP-B 9-25 is a truncated synthetic peptide

of the 79-residue lung surfactant proteinB.The peptide is an amphipathic helix

with an amino acid sequence of WLCRALIKRIQAMIPKG. SP-B 9-25 was

prepared using Fmoc chemistry (Fields, Lloyd,Macdonald,Otteson, &Noble,

1991; Waring et al., 2005) (double coupling, 2� 45 min) with reagents from

Applied Biosystems (Foster City, CA) with a 431A solid phase peptide synthe-

sizer (Applied Biosystems, Foster City, CA) or a Symphony/Multiplex SPPS

synthesizer (Protein Technologies, Tucson, AZ). The peptide was cleaved

using modified Reagent K (90% trifluoroacetic acid, 4.4% triisopropyl

silane, 2.2% thioanisol, and 4.4%water). The peptide was precipitated upon

the addition of ice-cold diethyl ether, collected by centrifugation, and puri-

fied by reversed-phase HPLC. MALDI-TOF mass spectrometry using an

ABI Voyager RP-RBT2 reflection time-of-flight mass spectrometer

(Applied Biosystems, Foster City, CA) confirmed the predicted molecular

mass of the peptide.

Lipid and lipid:peptide mixtures were prepared in several molar ratios:

pure DMPE, DPPC:POPG 7:3, DPPC:POPG:SP-B 9-25 70:30:2, DPPC:

GM1 8:2, and DPPC:GM1 5:5. The solutions were diluted with chloroform

to obtain spreading solutions of concentration 0.1 mg/mL. Visualization

with fluorescence microscopy was possible upon addition of 0.5 mol%

Texas Red 1,2-dihexadecanoyl-sn-glycerol-3-phosphoethanolamine,
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triethylammonium salt (TR-DHPE) (Invitrogen, Carlsbad, CA) to the

spreading solutions. The subphase for all the experiments was ultrapure

water (resistivity �18 MΩcm) made using a ultrapurification (Milli-Q

Advantage A10, Millipore, Bedford, MA). The superphase was air except

for experiments with monolayers containing POPG. To minimize oxida-

tive damage to the unsaturated oleoyl chain of POPG, ultrahigh purity

Argon 5.0 (Airgas, Chicago, IL) was used as the superphase.

2.1.2 Instrument setup
All monolayer experiments were performed using a home-built Langmuir

trough system (Gopal & Lee, 2001). The set-up consists of a Teflon trough

(27.5 � 6.35 � 0.63 cm) fitted with two symmetrically mobile Teflon bar-

riers (l ¼ 6.35 cm). The barriers were placed on linear translational stages

(UTM100CC, Corp., Irvine, CA) and interfaced to a Newport MM2000

motion controller to obtain movements with micron precision. The entire

Langmuir trough also sits on x, y, and z translation stages (Newport Corp.,

Irvine, CA) that allow for scanning of the air/water interface in each of

those respective directions. The surface pressure measurements are made

using a Wilhelmy plate tensiometer (Riegler & Kirstein GmbH, Potsdam,

Germany). As the surface area is reduced (compression) or increased (expan-

sion), the change in surface pressure is monitored, giving rise to surface

pressure (Π) vs area (A) isotherms. Temperature of the water subphase is

maintained within 0.5°C of the target temperature using a home-built con-

trol assembly consisting of thermoelectric units (Omega Engineering Inc.,

Stamford, CT) attached to a heat sink maintained at 20°C by a Neslab

RTE-100 water circulator (Portsmouth, NH). The trough is kept covered

with a resistively heated indium-tin oxide- coated glass plate (Delta

Technologies, Dallas, TX), which is maintained at approximately 2°C above

the target subphase temperature in order to minimize air currents, reduce

evaporative losses, and prevent condensation of water on the microscope

objective. Direct imaging of the surface is performed using a fluorescence

microscope with either a 50X or 20X extra-long working distance objective

lens (Nikon Y-FL, Fryer Co., Huntley, IL). The filter cube (Nikon HYQ

Texas Red, Fryer Co., Huntley, IL) used permits excitation between

530 and 590 nm and emission between between 610 and 690 nm. A

CCD camera Photonics, Inc., Palo Alto, CA) is used to collect images

at 30 frames/s, which are recorded on a Sony miniDV digital video cassette

recorder (B&H Photo-Video, New York, NY). The space between the

trough and microscope objective was confined in a Sigma Atmos

glove-bag (Sigma-Aldrich, St. Louis, MO) to reduce air currents or to
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achieve the argon superphase when necessary. The entire trough/micro-

scope assembly is mounted on a vibration isolation table (Newport Corp.,

Irvine, CA) and controlled completely by a custom software interface

written using LabView 6.1 (National Instruments, Dallas, TX).

2.1.3 Isothermal compression measurements
For each monolayer experiment, 80 mL of water was poured into the

trough. The subphase was heated to 25, 32, or 37°C in the case of

DPPC:POPG, 25°C for DPPC:POPG:SP-B 9-25, 30°C for DPPC:

GM1, and 15, 25, or 37°C for DMPE. When the target temperature was

reached, the surface balance was calibrated to the value of surface tension

of pure water for that temperature (Vargaftik, Volkov, & Voljak, 1983).

The monolayer was then spread at the gas/water interface by gently depos-

iting drops onto the surface and allowed to equilibrate for 20 min. The bar-

rier compression was started (linear speed of 0.1 mm/s) and isotherm data as

Π (mN/m) vs A (Å2/molecule) were collected at 1-s intervals. The surface

was imaged continuously throughout the compression.

2.1.4 Atomic force microscopy measurements
In order to study the surface morphology with nanometer resolution, the

monolayer at a given surface pressure was deposited onto a freshly cleaved

high grade mica surface (Ted Pella, Inc., Redding, CA) using an inverse

Langmuir–Schaefer technique (Lee et al., 1998) and subsequently imaged

by atomic force microscopy (AFM). The AFM mica puck was placed in a

custom-machined stainless steel washer with a knife sharp rim (2 mm above

the mica surface) and placed at the bottom of the trough prior to the addition

of the subphase. The monolayer was isothermally compressed to the desired

surface pressure. The subphase was slowly removed by suction, lowering the

monolayer until it was cut by the washer knife edge. Three holes drilled into

the bottom of the washer allowed the subphase to drain from the chamber

until the monolayer was completely deposited onto the mica substrate. This

method allowed us to keep the monolayer morphology and density intact

throughout the deposition process. The mica supported monolayers were

imaged in air with aMultimodeNanoscope IIIA scanning probemicroscope

(Digital Instruments, Santa Barbara, CA) with a Type J scanner in contact

mode using silicon nitride tips (NP-S, Veeco Probes, Woodbury, NY) with

a nominal spring constant of 0.32 N/m. The tips were decontaminated by

ultraviolet generated ozone (PSD-UV Surface Decontamination System,

Novascan, Ames, IA) prior to their use.
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2.2 Finite element modeling
Since banding in lipid monolayers as observed in the above experimental

data occurs when the monolayers are in a solid rather than liquid state, con-

tinuum mechanics and finite element (FE) method are promising tools to

provide significant insight into its underlying mechanism. Thus, we inte-

grate principles of nonlinear, large deformation solid mechanics with finite

element analysis (FEA) to investigate this complex system. FE simulations

are implemented using the commercial software package Abaqus 2018

(Dassault Systèmes Americas Corp., Waltham, MA) with the dynamic

explicit solver. In order to construct an FE model for the lipid monolayer,

the fluorescence image of the monolayer before banding is imported into the

Simpleware ScanIP software (Synopsys, Inc., Mountain View, CA) to seg-

ment out the solid and continuous phases. After this segmentation, the lipid

model can be meshed either in ScanIP or in Abaqus (note that in general, we

found the meshing algorithm in ScanIP to be more flexible and provided

better mesh quality than Abaqus). A representative FE model for a lipid

monolayer considered in this study is shown in Fig. 6. Here a square portion

of the monolayer is extracted from the tested lipid monolayer and ScanIP

allows the determination of both solid and continuous phases as well as their

boundaries. The part with two distinguished phases is then imported into

Abaqus and kinematic coupling constraints are then used to tie the common

interface between the two phases.

Here, three-dimensional elements (C3D8R, 8-node linear brick,

reduced integration, with hourglass control) were used to mesh both phases

of the monolayer and a very fine mesh is employed. With a focus on the

in-plane banding of the monolayer, and to reduce the complexity of the sim-

ulations as well as the computational time, an effective plane strain boundary

condition in the out-of-plane direction (z) is used here. The monolayer is

then subjected to equal compression from both left and right sides to repre-

sent the loading condition in the experimental setup described above.

A hyperelastic material behavior based on neo-Hookean strain energy

function is used to model the elastic deformations of the solid domain,

D-phase, and the continuous CFM -phase of the monolayer as follows

(Dassault Systèmes, 2018; Nguyen & Waas, 2016):

Wd ¼ μd
2
ð�I1 � 3Þ+ 1

Dd
ð J � 1Þ2 (1)

Wc ¼ μc
2
ð�I1 � 3Þ+ 1

Dc
ð J � 1Þ2 (2)
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where d and c subscripts indicate the domain and the continuous phase,

respectively. μ is the shear modulus, K is the bulk modulus, and D ¼ 2
K
is

used to numerically impose a quasi-incompressibility condition. Note that

Abaqus explicit cannot model fully incompressibile materials but requires a

certain level of compressibilty. As K/μ gets large, the model approaches the

incompressibility condition, where the volume change J¼ det(F) equals to 1.

Here, F is the deformation gradient and I1 is the first invariant of the right

Cauchy-Green tensor C ¼ FTF, and �I1 ¼ J�2=3I1 is the deviatoric part of

the first invariant.

The strain energy function is used to derive the stress–strain relationship

for a neo-Hookean behavior of the following form (Dassault Systèmes,

2018; Nguyen & Waas, 2016):

S ¼ 2
∂W

∂C
(3)

σ ¼ 1

J
FSFT (4)

where S and σ are the second Piola–Kirchhoff and the Cauchy stresses,

respectively. W ¼ Wd, S ¼ Sd, σ ¼ σd and W ¼ Wc, S ¼ Sc, σ ¼ σc
for the D and the CFM -phase, respectively. Thus, the Cauchy stress,

becomes:

σd ¼ 1

J
μd �B� 1

3
�I1I

n o
+

2

Dd
ð J � 1Þ (5)

σc ¼ 1

J
μc �B� 1

3
�I1I

n o
+

2

Dc
ð J � 1Þ (6)

where B ¼ FFT is the left Cauchy Green tensor and �B ¼ J�2=3B.

While the domain acts like a homogeneous, rigid inclusion during the

compression process, the continuous matrix is less rigid with a heteroge-

neous microstructure (see Fig. 4). Hence, the neo-Hookean strain energy

function with fixed shear (μd) and bulk (Kd) moduli is assumed for the

domain through the whole compression process. The stress is evolved dur-

ing the compression process according to Eq. (5). On the other hand, the

presence of the microstructures in the continuous phase might provide

mechanisms for changes in its material properties and possibility for energy

dissipation. We assume that such changes can be associated with the nucle-

ation of banding observed in the monolayer. Here, we test such an assump-

tion that the microstructures rearrange and lead to a material softening in
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the continuous phase which may help to facilitate the banding instability

phenomenon in the monolayer. For this purpose, in addition to the pure

neo-Hookean model with the fixed shear (μc) and bulk (Kc) moduli where

the stress is evolved according to Eqs. (2) and (6), three additional consti-

tutive models that allow the considerations of softening and/or energy

dissipation for the continuous phase are considered.

For the first two models, we assume that the continuous phase can be

softened, or equivalently, there is a switch in the stress-deformation relation-

ship that leads to a slower increase of the stress under an increase of defor-

mation, when the von Mises stress reaches a critical value (σvm ¼ σcritical). To
model the switch of the material behavior after this critical point, the first

approach is to use the built-in elastic-plastic model in Abaqus where the crit-

ical stress is the yield stress σyl. Prior to this critical stress, the monolayer

behaves elastically as a neo-Hookean solid with the shear (μc) and bulk

(Kc) moduli described by the strain energy function in Eqs. (2) and (6).

When the critical stress is reached, σvm ¼ σcritical, plasticity is activated that

allows plastic flow and energy dissipation in the material model. As yielding

occurs, the evolution of the stress is described as a function of the plastic

strain. Due to the presence of the plastic strain, the stress no longer depends

on the strain elastically as governed by the neo-Hookean strain energy in

Eqs. (2) and (6), instead it increases in a slower fashion as the deformation

increases. Though lipid monolayers are not likely to behave plastically, this

numerical model allows the study of the effect of material instability on

the shearing mechanism in the monolayer. The second approach is moti-

vated by the consideration of the material softening due to microstructure

rearrangement through prescribing a reduction of the shear modulus but

without considering the plasticity effect as in theAbaqus built-in elastic-plastic

model which can be nonphysical for lipid monolayers. Specifically, the shear

modulus of the C-phase μc is reduced when the vonMises stress reaches a crit-

ical value. The strain energy in Eq. (2) is modified in a piecewise fashion with

μc¼ μc1 for σvm< σcritical and μc ¼ μc2 < μc1 for σvm� σcritical, which is the shear
modulus of the continuous matrix before material instability.

Wc ¼ μc1
2
ð�I1 � 3Þ+ 1

Dc1
ð J � 1Þ2 for σvm < σcritical (7)

Wc ¼ μc2
2
ð�I1 � 3Þ+ 1

Dc2
ð J � 1Þ2 for σvm � σcritical (8)

Through adjusting the ratio μc1=μc2 � 1, different levels of softening effects

are examined. Note that when μc1=μc2 ¼ 1, the C-phase becomes a pure
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neo-Hookean material. This second approach (referred here as a “bielastic”

model) is implemented in Abaqus explicit through the user material subrou-

tine VUMAT (Dassault Systèmes, 2018). This subroutine is written in

Fortran and requires the update of the current Cauchy stress in the material.

The Cauchy stresses are derived from the neo-Hookean energies stated in

Eqs. (7) and (8) and are updated as follows:

σc ¼ 1

J
μc1 �B� 1

3
�I1I

n o
+

2

Dc1
ð J � 1Þ for σvm < σcritical (9)

σc ¼ 1

J
μc2 �B� 1

3
�I1I

n o
+

2

Dc2
ð J � 1Þ for σvm � σcritical (10)

For VUMAT subroutine’s implementation, since the corotational coordi-

nate system is used in Abaqus, only the stretch part is employed in updating

the Cauchy stress. Hence, in the VUMAT subroutine, the Cauchy stress is

calculated as follows:

σc ¼ 1

J
μc �U � 1

3
�I1I

n o
+

2

Dc
ð J � 1Þ (11)

where μc ¼ μc1, Dc ¼ Dc1 for σvm < σcritical, Dc ¼ Dc2 and μc ¼ μc2 for σvm �
σcritical. F ¼ RU is the polar decomposition of the deformation gradient

where R is the rotation tensor and U is the stretch tensor.

Depending on the state of the stresses (before or after the critical value of

the vonMises stress), the shear modulus μc is assigned the value of μc1 and μc2
and the stresses are updated according to Eq. (11). The VUMAT subroutine

is verified against the built-in neo-Hookean material in Abaqus by setting

μc1 ¼ μc2 and consistent results are obtained.

The third model to study the softening effect in the C-phase employs a

viscoelastic consideration for describing its mechanical response. The instan-

taneous response of the lipid model at t ¼ 0 is still assumed to be

neo-Hookean and is captured by Eqs. (2) and (6). Viscoelasticity leads to

the relaxation of the shear modulus which is described through a single term

Prony series: μcðtÞ ¼ μcð∞Þ+ðμcð0Þ � μcð∞ÞÞe�t=τR ¼ μcð0Þ * gRðtÞ, where
gR(t) is the dimensionless relaxation function: gR(0)¼ 1 and gR(∞)¼ μc(∞)/

μc(0). The built-in viscoelastic model in Abaqus is utilized to model the con-

tinuous phase for this approach in which the stress–strain relationship is of

the following form:

τ ¼ τ0 + dev

Z t

0

_gRðsÞ �F�1
t ðt � sÞ:τ0ðt � sÞ: �F�T

t ðt � sÞds
� �

(12)
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where τ ¼ dev(Jσ) is the deviatoric part of the Kirchhoff stress and τ0(t) is
the deviatoric part of the instantaneous stress derived from the neo-

Hookean strain energy function. A relative deformation gradient Ft�sðtÞ ¼
∂xðtÞ=∂xðt � sÞ is used to map the stress in the configuration at time

(t � s) and time t.

In summary, the following material models are used to describe the

monolayer: the domain is modeled as a pure neo-Hookean material with

shear and bulk moduli μd and Kd ≫ μd. The C-phase is modeled using four

numerical models. One, a pure neo-Hookean material with shear and bulk

moduli μc andKc≫ μc. Two, an elastic-plastic model where the elastic part is

described by a neo-Hookean behavior with shear and bulk moduli μc and
Kc ≫ μc and plasticity occurs when the yield stress σyl is reached. Three, a
bielastic model based on a piecewise neo-Hookean energy function where

the shear modulus is softened from μc1 to μc2 when the von Mises stress sur-

passes a critical value. The bulk moduli Kc1 and Kc2 are larger than the shear

moduli to enforce quasi-incompressibility. Four, a viscoelastic model where

the shear modulus μc(t) relaxes over time.

The following sets of material parameters were used in the simulations.

The ratio between the shear moduli of domain and the continuous phase
μd
μc
� 25 as the domain is stiffer than the matrix. The ratio between the bulk

and shear moduli K
μ is set to be 20 to enforce quasi-incompressibility

(Dassault Systèmes, 2018) which correspond to an equivalent Poisson ratio

of 0.475. The dimensionless ratio between the critical stress for the onset of

plasticity or softening in bielastic material model is set to be
σyl
μc
¼ σcritical

μc
� 1:6.

The ratio
μc1
μc2

between the moduli of the continuous phase for the bielastic

case is varied from 1 to 50 to test the effects of material softening on the shear

banding mechanism in the monolayer. Six specific cases of this ratio are

presented
μc1
μc2

¼ 1, 2, 5, 10, 20, 50.

3. Experimental results

Lipid monolayers are studied at multiple length scales. Absent in the

literature is a formal framework to define this multiscale structure. Here, we

aim to provide a framework for the scale space of lipid monolayers. Fig. 1A

shows the schematic setup for Langmuir monolayer experiments. The entire

lipid covered surface forms the monolayer with a length scale on the order of

1 � 105 μm; we will term this the geometric outer scale of the system.

13Multiscale geometry and mechanics of lipid monolayer collapse



Two forms of data are often obtained at the monolayer outer scale: surface

pressure (Π), defined as the difference between the surface tensions of pure

water and lipid covered interface (Π ¼ γo � γ), and an image (M) (see

Fig. 1). In both cases, it is customary to assume that the monolayer at the

outer scale is a uniform two-dimensional manifold M embedded in

three-dimensional space R3.

3.1 Image analysis
Fluorescence images, acquired at different area fractions during the com-

pression and expansion of the monolayer (see Fig. 1B), provide a resolution

of the spatial structure of the monolayer at the scale of a few micrometers.

At low surface pressures with the monolayer in the liquid expanded (LE)

phase, the fluorescent probe TR-DHPE is homogeneously mixed in with

the lipids, and FM imaging does not resolve any structure. Structure first

appears in the images upon nucleation of liquid condensed (LC) domains.

Throughout the LE–LC phase transition the LC domains grow in size. The

domains appear dark in FM images because the bulky headgroup of

TR-DHPE is excluded from the well-ordered crystalline packing struc-

ture. However, beyond a certain compressive strain the LC domain growth

stops. Often in the monolayer literature, a tremendous amount of interpre-

tation is made about the structure and location of given lipid components

and their properties simply from FM images. We will refrain from making

such leaps of scientific faith. From the vantage of scale space, the FM data

simplify to binary pictures with dark regions (D-phase) and bright regions

(CFM-phase). We will refrain from using LE and LC, because these defini-

tions convolute mechanical properties with imaging data, yet the former

cannot be extracted from the latter at this scale. The data structure from

the FM images can formally be defined as D [ CFM �M. D [ CFM can

be studied from a geometric and topologic standpoint. Indeed, as will be

detailed later, a particular geometric rearrangement of D [ CFM is at the

heart of this paper, the so-termed banding instability (Pocivavsek, Frey,

et al., 2008).

Before considering banding in detail, one last data feature is often seen

and described at the level of M: collapse. In the lipid monolayer literature,

collapse has a thermodynamic and imaging definition. In terms of monolayer

thermodynamics, collapse is traditionally defined as the point where the iso-

therm becomes horizontal at a high lipid packing density. By taking the

derivative of the isotherm, one can interpret collapse as a zone of infinite

compressibility. Often this point in the isotherm is correlated with the

14 Angelo Rosario Carotenuto et al.



FM image structure on themonolayer. Fig. 2 shows the first ever generalized

collapse phase diagram based on the structure of the collapsed monolayer as

derived from FM images. Without loss of generality, we can interpret

collapse as the loss of the planar geometry of M . More formally, M ¼S‘
i¼1TMi, where TMi defines a chart domain composed of the local tan-

gent space isometric to the plane; the entire monolayer is given by gluing the

different TMi together to form the atlas M. The process of defining scale

space involves defining the different layers of local charts giving rise to atlases
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Fig. 2 Generalized monolayer collapse phase diagram showing the richness of collapse
states in lipid monolayers and their tunability with various field parameters including
composition and temperature. Monolayer collapse is an elastic instability whereby
the lipid membrane collectively over some length scale undergoes in-plane or out-of-
plane displacement. This is a fundamentally different mode than movement of small
clusters of lipids from the surface to the bulk phase well described by Gibbs’ absorption
monolayers. The collective collapse modes are inherently governed by membrane elas-
ticity. Several of the authors have explored the inextensible membrane limit of mono-
layer collapse via wrinkling and folding where plate-like bending modes dominate
(Diamant et al., 2001, 2000; Pocivavsek, Dellsy, et al., 2008; Pocivavsek et al., 2009).
Relaxation of membrane inextensibility leads to multidirectional folding and eventually
the shear banding mode of in-plane relaxation (Pocivavsek, Frey, et al., 2008). In this
paper, we explore the general framework in which in-plane membrane elasticity can
be modeled. This figure demonstrates that the different collapse modes are universal,
spanning several different lipid compositions. Furthermore, membrane instability can
be controlled either by changing composition with the addition of peptides or unsat-
urated lipids or by temperature in single component systems.
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which become a large scale chart again leading to a new atlas on a different

scale. Working at the outer scale of M, before collapse, ‘ ! 1 because the

monolayer is everywhere isometric to the plane defined by the air/water

interface, as such one chart gives the whole atlas. Collapse forces us to rede-

fine the above partition into multiple charts; as such at its most fundamental

topologic level, collapse can be viewed as the break-up of the monolayer

tangent space from a single vector space into multiple vector spaces, thereby

defining a monolayer tangent bundleTM. Nonzero curvature of the tangent

bundle defines collapse. If we define a local metric parameterization of the

monolayer, collapse by these definitions can be studied using standard

methods of differential geometry. Indeed, the canonical collapse structure

studied in the literature is the wrinkle-to-fold instability (Pocivavsek,

Dellsy, et al., 2008; Pocivavsek, Frey, et al., 2008), where the projected

one-dimensional monolayer collapses via buckling (appearance of curva-

ture). Measurement of amplitudes from FM images is experimentally impos-

sible. However, the position of the local monolayer surface is often defined

through intensity level sets in the FM images, increasing brightness is cor-

related to higher lipid density in the planes normal to the air/water interface

(see Diamant et al., 2001, 2000 for detailed discussions). Qualitatively this

allows us to identify bright regions in Fig. 2 as regions of nonzero TM

curvature, i.e., collapse.

No standard geometric or topologic language exists to define the differ-

ent collapse states. As such, we use descriptive terms in Fig. 2: wrinkling,

folding, crumpling, shear banding, and vesiculation. The generalized col-

lapse phase diagram shows that both temperature and composition can be

used to tune the type of collapse a monolayer will undergo. Monolayers

of varying lipid compositions and at different temperatures can all have very

similar collapse structures on the scale ofM. This supports the existence of a

generality not only of geometry and topology but also mechanism in lipid

monolayer collapse.

The characterization of collapse geometry is the first step before any dis-

cussion of mechanism can be undertaken. As noted above, on the outer

scale, the geometry of M can be studied by studying the structure of

D [ CFM . The operationalization of this was undertaken in our prior work

on lipid monolayer banding (Pocivavsek, Frey, et al., 2008). First, the

FM image is binarized, followed by the calculation of the image autocorre-

lation function hρ(xm,n), ρ(xm+i,n+j)i. Taking the Fourier transform of the

autocorrelation function gives the image structure factor S(q). Fig. 3 shows

the outline of this approach and its application to distinguishing two collapse

states: folding and banding. For monolayers which fold, S(q) remains overall
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constant throughout compression, minus some local distortion which can be

correlated to global monolayer stretching in the direction normal to com-

pression but in-plane. Because the image is made binary, this analysis cannot

capture variation in local intensity level sets, as such actual folds cannot be

captured. In monolayers which undergo banding, S(q) changes structure

with increasing compression. As Fig. 3 shows, the symmetric S(q) develops

nodes as banding occurs. Studying S(q) proves to be a useful measure of

geometry on the outer scale of M. Later, we apply this method to compu-

tationally derived monolayer structures.

This completes our analysis of the outer scale of the lipid monolayer scale

space. From the standpoint of collapse, we see that monolayers that fold

show very few identifiable geometric features in M until the folds appear.

However, monolayers which undergo in-plane banding show a rich set of

geometric features inM. The next step in our analysis is to probe the geom-

etry of the monolayer at a higher spatial resolution, “de-blurring” scale space

and defining a submanifoldMAFM. As outlined in Section 2, this is accom-

plished by transferring the monolayer from the air/water interface onto a
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Image Based Monolayer Instability Analysis

Fig. 3 Geometric in-plane monolayer instabilities are captured by calculating the
per-pixel image autocorrelation function hρ(xm,n), ρ(xm+i,n+j)i, whose Fourier transform
gives the image structure factor S(q). In our prior experimental work on lipid monolayer
banding (Pocivavsek, Frey, et al., 2008), we discovered a correlation in the appearance of
nodes in S(q) and the banding instability. In monolayers which fold, Sf(q), at high pres-
sures, becomes distorted, indicating overall lattice shearing, but does not show nodes.
The appearance of nodes in Ssb(q) indicates the loss of in-plane stability. This general
method can be applied to experimentally and computationally derived data.
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solid substrate and performing AFM. Fig. 4 shows a set of FM images and the

corresponding AFM images for representative monolayers which collapsed

by folding and banding. The AFM data have richer structures compared to

the FM images. The data are still in the form of images; however, the inten-

sity at each pixel is directly correlated to local distance normal to the image

plane. Recall in the FM images, the intensity distribution allows different

domains D and CFM to be defined; however, no direct experimental corre-

lation between intensity and other length scales exists. Thus with AFM,

there is a higher resolution lateral scale and the appearance of a quantifiable

height scale. As Fig. 4 shows, brighter regions of the AFM image correspond

to thicker areas of the monolayer. These areas also are easily identifiable as

the dark domains in the FM images, as such we will continue to refer to

this phase as the D-phase which now has a corresponding height h
ðk,δÞ
ðRÞLC.
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Fig. 4 Lipid monolayers show a rich multiscale structure in-plane and out-of-plane. At
the completion of the LE–LC phase transition plateau (see Fig. 1B), the monolayer has a
biphasic appearance with dark circular domains (LC or D) surrounded by a bright con-
tinuous phase (LE or CFM). Continuity of the two phases in the FM images is blurred to
order of pixel size. When thesemonolayers are evaluated on a smaller length scale using
AFM, a new set of structures appears in the CFM phase, which is composed of submicron

D-phase domains of height hðk,δÞðRÞLC which is equal to the height of the large-scale circular

domain. The submicron D-phase domains are surrounded by a continuous CkR-phase
with a lower height hðk,δÞðRÞLE. Our data show that upon increasing surface pressure to col-

lapse, monolayers which undergo folding transition do so while maintaining a uniform
height in the membrane; however, monolayers which undergo banding have a persis-
tent multiheight and in-plane multiscale structure. The figure highlights the different
phases in the AFM images, which will be referenced in the theoretical part of the paper.

18 Angelo Rosario Carotenuto et al.



The darker regions in the AFM images correspond to a lower height

phase. When the FM and AFM data for the continuous CFM-phase are com-

pared, we observe the appearance of a new geometry at the AFM scale.

Stated formally in terms of geometric space, D �MAFM ≡D�M
but CAFM �MAFM 6¼ CFM �M. When one looks into the CAFM -phase,

we see an almost self-similar geometry to the original global geometry D[
CFM �M except on a much smaller inner and outer scale. We define this

new higher resolution doubly embedded geometry as D[CkR � CAFM �

MAFM . We also link a height h
ðk,δÞ
ðRÞLE to the CkR-phase. Increasing lateral com-

pression causes a change in the CAFM -phase geometry. For both monolayers

that fold and band, increasing lateral compression causes a decrease in area cov-

erage of the CkR-phase. For monolayers that fold, at the end of compression just

before folding onset, the CkR-phase has disappeared and only a uniform height

D-phase remains. However, for monolayers which band, D[CkR � CAFM-
phase persists to even high pressures, the mechanical implications of this are

explored in the theoretical section of this paper.

This completes the geometric analysis of scale space for lipid monolayers.

The more formalized geometric approach used here allows us to define and

study not only the geometry but also topology of lipid monolayers and their

mechanical instabilities. Such approaches have led to wonderful insights in

the behavior of three-dimensional liquid crystal phases (Safran, 1994), but

are lacking for lipid monolayers. Several observations are noteworthy.

First, between the two collapse modes analyzed, the dynamics portions of

the geometry switch. In M, the folding monolayer is geometrically static

while the banding monolayer shows geometric evolution; however, in

MAFM , the folding monolayer shows more rapid evolution with the com-

plete disappearance of CkR with compression, while the banding monolayer

geometry stays more static. Second, because of the different levels of infor-

mation in the image-based data at different scales notions of continuity and

homogeneity become complex.

3.2 Isotherm analysis
From the standpoint of thermodynamics, the uniformity of monolayer

response is taken as given when compression isotherms are measured.

However, beyond a certain surface packing density, the measured surface

pressure is likely only representative of a submanifold of (M) (Pocivavsek,

Frey, et al., 2008; Witten, Wang, Pocivavsek, & Lee, 2010). To prove this,

consider that the Wilhelmy plate is the standard method for monitoring
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interfacial pressure in a Langmuir trough; it consists of a rectangular strip

connected to a force transducer (see Fig. 1A). The meniscus at the air/

lipid/water interface pulls down the strip with a force proportional to

the net surface tension. In the case of M, under static conditions, the sur-

face pressure is uniform and unaffected by the geometry of the meniscus. As

the monolayer is compressed, surface phase transitions occur and the fluid

monolayer transitions to a solid one. Working with an ideal system where

the monolayer transitions from a perfect fluid to a perfect solid but geomet-

rically remains a smooth two-dimensional manifold M, we investigate the

impact on the output of the Wilhelmy measurement. We take the ability

to sustain a static shear stress as the only difference between liquid and solid

monolayers. M is taken as a thin annular disk of outer radius R and inner

radius a. The inner boundary represents theWilhelmy plate; the outer radius

represents the boundary of the Langmuir trough or external length. Applying

a uniform compressive radial displacement field u(r) generates a radial strain

γrr¼ ∂ru and an azimuthal strain γϕϕ¼ u/r. Assuming linear elasticity, the strain

gives rise to a proportional stress σ with the same principle axes. σrr ¼ A γrr +
B γϕϕ and σϕϕ¼B γrr+A γϕϕ. The equation of equilibrium is given by ∂rσrr¼
(σϕϕ� σrr)/r (see derivation inWitten et al., 2010). Substituting the stresses for

a uniform radial displacement gives ∂2r u+∂ru=r � u=r2 ¼ 0. The general solu-

tion is given by u(r)¼C[r+ b2/r] (Witten et al., 2010).Making the appropriate

substitutions gives σrr ¼ AC[(1 + B/A) � (b/r2(1 � B/A)] and σrr + σϕϕ ¼
2C(A+B), which represents the hydrostatic stress. Several insights come from

this analysis. In the setting of a perfect liquid monolayer A ¼ B, since no

deviatoric stresses are possible under static conditions, and there is no depen-

dence of the stress on location from the inner boundary, b¼ r. In this case, the

thermodynamic measurement is uniform and valid over M . However,

presume B < A, which might occur for an elastic film. In this case, the radial

stress will reverse signwhenever b=a >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1+B=AÞ=ð1� B=AÞp

. Now a new

inner scale appears: b � a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1+B=AÞ=ð1� B=AÞp

. To accurately sample the

surface pressure, one would have to do so on the submanifold Mb � M.

This simple example serves to show that even the much used and measured

isotherm is sensitive to the multiscale construction of the monolayer. There

are currently no established methods on how to precisely define the sub-

manifoldMb at which the lipid monolayer can be considered a uniform con-

tinuum solid from the standpoint of elastic response.

With the above limitations of local surface pressure measurements in

mind, it is possible to obtain effective elastic moduli from isothermmeasure-

ments (see Fig. 5). The two-dimensional bulk modulus K is related to the
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Fig. 5 (A) Bottom curve is DPPC:GM1 8:2, top curve is DPPC:GM1 5:5 displaced 100 points
on y-axis. In both curves, the red box marks the LE to LC phase transition and the
yellow ? the rigidity onset point. In the case of DPPC:GM1 8:2, where no in-plane
rearrangement occurs, Kmax � 110 MPa is reached at 40 mN/m at an area per molecule

(Continued)
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slope of the Π � A isotherm, K2D ¼ �A ∂Π
∂A
. Dividing K2D by the given

monolayer thickness (h � 2 nm) gives the traditional bulk modulus

K by simple dimensional analysis (Gopal, Belyi, Diamant, Witten, &

Lee, 2006; Gopal & Lee, 2001; Pocivavsek, Frey, et al., 2008). At high

area per molecule, the monolayer is liquid and the compressibility is high,

marked by a low K (long nearly horizontal lines in the data). The LE–LC
phase transition plateau is marked by a discontinuity and drop in K. It is

tempting to quantitatively interpret this from a mechanistic standpoint of

phase transitions and area condensation occurring on a much smaller

scale; however, given the analysis above about the validity of Π in an

ill-defined subdomain Mb, we believe it is more appropriate to simply

interpret this inflection as a sign of dissipation but not link to any partic-

ular mechanism. Following the LE–LC phase transition, as defined via

imaging on M, K undergoes a steep rise until a sharp inflection is again

reached followed by a complex region of decline and oscillating K values.

This indicates that the monolayer never truly reaches a mechanically

stable state post LE–LC phase transition, given that even for very small

compression the magnitude of K changes. Again, given that the isotherm

is only providing information locally in Mb while the displacement

field is being applied globally onM, any mechanistic interpretation is dif-

ficult. It is clear however that a maximum K is reached far before collapse

is seen on the scale of FM images. This indicates that some local

dissipation or relaxation is occurring that is not captured in the FM

scale space.

Fig. 5—cont’d of �40 (Å2/molecule). The transition in this case is very sharp. In the
case of DPPC:GM1 5:5, where the monolayer undergoes an in-plane domain
rearrangement, Kmax � 80 MPa is reached at a slightly higher surface pressure of
50 mN/m, however, at a similar area per molecule of�40 (Å2/molecule). (B) The bottom
curve is DPPC:POPG 7:3, while the top curve is DPPC:POPG:SP-B 9-25 70:30:2. The phase
transition at lowmolecular density and the rigidity onset points are marked as above. In
the bottom curve, where there is no peptide and themonolayer does not rearrange, Kmax

� 112 MPa is reached at 40 mN/m at an area per molecule of � 40(Å2/molecule). In the
monolayer with the peptide, a first maximum is reached earlier at 31 mN/m and
54 (Å2/molecule). The monolayer begins to relax at this point. This is likely due to a con-
formational change in the peptide, at the start, and later on a transition of the peptide
from the surface into the subphase.
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4. Finite element analysis

We present a highly novel method of integrating experimentally

derived geometry with finite element analysis (FEA) to model lipid mono-

layer response under compression. In our prior work, we postulated the

banding relaxation was qualitatively a “soft shear relaxation” triggered by

a stress-induced instability (Pocivavsek, Frey, et al., 2008). Until the present

work, this remained only a hypothetical notion, as we did not have a the-

oretical or computational model to validate it. Fig. 6 details our current

workflow. As detailed above, at the scale space of FM images M , the

banding instability is defined as a change in the image structure factor

S(q). To build the initial computational geometry, we map the distribution

of domains at the end of the LE–LC phase transition plateau fromM into a

computational submanifold P . From the standpoint of geometry, P pre-

serves the exact shape of the D-phase domains and their initial positions rel-

ative to each other. We then define the CFM-phase as P �D. Staying true to
the FM scale space,P has uniform thickness, which implies h

ðk,δÞ
ðRÞLE ¼ h

ðk,δÞ
ðRÞLC.

The goal of these simulations is to provide a computational framework with

which to uncover the necessary conditions within the continuum mechan-

ical limit for lipid monolayer banding.

Lipid monolayer collapse has traditionally been viewed as a continuum

instability, though there lacks a uniform and general theory to explain the

various observed collapse modes (see Fig. 2). Of all the collapse modes, fold-

ing has received the greatest attention in the literature (Diamant et al., 2001,

2000; Lipp et al., 1998; Pocivavsek, Dellsy, et al., 2008; Pocivavsek et al.,

2009). There is a clear consensus that folding is a continuum monolayer

instability that is dominated by elasticity. The dominant length scale of

monolayer folds is explained by a very simple linearly elastic model of thin

film buckling (Pocivavsek, Dellsy, et al., 2008). This motivates our approach

in building a computational model for monolayer banding. Given plate the-

ory explains folding to first order, and linear plate theory dictates suppression

of in-plane modes in favor of buckling while banding suppresses folding;

building a model that can capture in-plane rearrangement of the D-phase

is critical. As detailed in Section 2, we model the D-phase as a stiffer hyper-
elastic continuum. We vary the constitutive response of the CFM-phase. If

CFM responds elastically like a neo-Hookean material, strain develops pre-

dominantly in the direction normal to compression spanning different
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symmetry breaking transition

Fig. 6 Fluorescent microscopy images at lower surface pressures are used to generate
input geometries for finite element modeling of a local portion of the lipid monolayer at
the FM-scale. The D-phase domains are segmented as separate individual parts (black
domains) embedded in the continuous CFM-phase (gray background phase) making a
submanifold P , where P � M , with M representing the entire monolayer. We do
not at this point geometrically model the smaller length-scale structure contained in
the CFM -phase composed as a union of the CkR -phase and D -phase microdomains.
However, the effect of this microstructure comes into the problem at the level of the
constitutive response of the CFM-phase. Outputs of FEA simulations, where the initial
patch is compressed along the horizontal direction mimicking the Langmuir trough
loading geometry, are shown. S(q) is calculated from the real-space R(n) images showing
that initially theD-phase domains within this local monolayer patch form a perfect hex-
agonally close-packed structure. The appearance of the symmetry breaking transition
signified by nodes in S(q) and bands in R(n) demonstrates that the banding instability
can be captured in FEA, reproducing what is seen in experiments.
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domains (see Fig. 7 top row). This strain distribution persists to even high

lateral compressions. If we allow for dynamic dissipation in CFM bymodeling

it as a viscoelastic solid, a more complex and uniformly distributed strain

pattern develops. In both the neo-Hookean and viscoelastic cases, the
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Fig. 7 Finite element modeling of P under lateral compression is carried out using a
neo-Hookean hyperelastic energy functional for the D-phase and three built-in consti-
tutive models for the CkR -phase: neo-Hookean, viscoelastic, and elasto-plastic. If both
phases respond elastically (top row) then even at very high compressions, the mono-
layer distorts but does not undergo banding. For the two dissipative constitutive
models, signatures of banding clearly appear; these aremore present in the case of plas-
ticity than viscoelasticity. Because the D-phase is stiffer than the CkR-phase, the stress

field is primarily seen in the D-phase (first column). However, the CkR -phase contains
the majority of the strain. In the case of neo-Hookean and viscoelastic responses, the
strain is predominantly tensile and normal to the direction of compression, indicating
that incompressibility of P dictates the strain field. In the case of plasticity, localized
zones of high shear appear throughout the CkR-phase. These zones are tilted at � π/4
rad to the axis of compression and correspond to local regions of high plastic deforma-
tion and dissipation. Moreover, the appearance of these dissipation zones in the
CkR-phase correlates to the reorganization of the D-phase into bands (see bottom right).
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distribution of the D-phase in R(n) does not show banding. If we allow for

stress dissipation in the form of plasticity (see last column in Fig. 7), localized

zones of high shear stress appear tilted at an angle � π/4 rad to the axis of

compression. These shear bands correspond to regions of active plastic

deformation. Moreover, the geometry of the deformed configuration in

P shows banding in R(n) as well as the appearance of nodes in S(q) at high

lateral compression (see Fig. 6).

The simulations presented in Fig. 7 prove that for banding to occur a

degree of dissipation is needed in the CFM-phase. We investigated nonelastic

forms of dissipation such as viscoelasticity and plasticity. Experiments (see

general collapse phase diagram in Fig. 2) show that banding represents an

evolution of elastic monolayer response with increased degrees of freedom

in-plane. Elasticity without dissipation has successfully explained monolayer

folding (Pocivavsek, Dellsy, et al., 2008; Pocivavsek et al., 2009). There is no

experimental evidence that the monolayer has more complex constitutive

properties such as viscoelasticity or plasticity in the banding regime.

Fig. 4 shows that the local substructure within the CAFM -phase given by

the distribution and proportion of theD [ CkR-phases is the only experimen-

tal evidence of a difference between monolayers that fold and those that

band. The central hypothesis of this paper is that a purely elastic source of

dissipation can lead to the banding instability. The theoretical portion of this

paper builds a constitutive model for D [ CkR � CAFM � P using the AFM

derived data as presented in Fig. 4. This model predicts the existence of an

internal elastic instability arising from the microstructure within the CkR-
phase. To model this with FEA, we construct a bielastic strain energy for

the CkR -phase: Wc ¼ μc1
2
ð�I1�3Þ+ 1

Dc1
ðJ�1Þ2 for σvm < σcritical and Wc ¼

μc2
2
ð�I1�3Þ+ 1

Dc2
ðJ�1Þ2 for σvm � σcritical. The D-phase is modeled as a uni-

form elastic solid defined by a single shear modulus μd. Three dimensionless

ratios are held constant: first, a constant ratio between the shear moduli of

domain and the continuous phase
μd
μc
� 25; second, a fixed ratio between the

bulk and shear moduli Kμ ¼ 20 enforcing quasi-incompressibility; and third, a

fixed ratio between the critical stress for the onset of softening in a bielastic

material model
σyl
μc
¼ σcritical

μc
� 1:6. This allows us to study the effect of different

levels of softening by adjusting the ratio μc1=μc2. Six specific cases of this ratio

are simulated
μc1
μc2
¼ 1,2,5,10,20,50. Note that when μc1=μc2 ¼ 1, the contin-

uous phase becomes a pure neo-Hookean material. Fig. 8 shows the distri-

bution of the D-phase at low and high lateral compression as a function of
μc1
μc2
; for comparison, we include the elasto-plastic model in the last column.
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We calculate S(q) for each set of computationally derived domain images. At

low compression,
μc1
μc2

does not impact domain distribution and S(q) shows

theD-phase is organized into a nearly perfect hexagonal close-packed struc-

ture. As lateral compression is increased, we see a transition to banding in

R(n) and the appearance of nodes in S(q) that become most prominent

for μc1/μc2 ¼ 50 and in the case of plasticity. This proves that banding

can arise from a bielastic response in the CAFM -phase and is sensitive to

the degree of softening dictated by the ratio μc1/μc2. The theoretical portion
of this paper will provide an insight as to the source of this modulus ratio

based on the CAFM-phase microstructure.

Fig. 9 shows the maximum and minimum principal strains in the

CAFM-phase at the same time points as the geometric analysis in Fig. 8.

Since our analysis is constrained to relative ratios of certain moduli, the abso-

lute magnitude of these strains is not to be interpreted too rigorously (we do
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Fig. 8 To test the hypothesis that purely elastic sources of dissipation can lead to the
banding instability FEA simulations are performed with a bielastic strain energy for the

CkR-phase:Wc ¼ μc1
2 ð�I1�3Þ+ 1

Dc1
ðJ�1Þ2 for σvm < σcritical andWc ¼ μc2

2 ð�I1�3Þ+ 1
Dc2

ðJ�1Þ2
for σvm � σcritical (see main text for more details). By adjusting the ratio μc1=μc2, different
levels of softening effects are examined, increasing left to right in the figure. Note that
when μc1=μc2 ¼ 1, the continuous phase becomes a pure neo-Hookean material. For
comparison, we include the elasto-plastic model in the last column. Each simulation
is analyzed using the methods presented above, the real space image R(n) is trans-
formed into the structure factor S(q). A low level and high level of lateral compression
are analyzed, with results shown in the top and bottom two rows, respectively. For all
cases, at low compressions, the D-phase in P is organized into a nearly perfect hexag-
onal close-packed structure. As lateral compression is increased, we see a transition to
banding in R(n) and the appearance of nodes in S(q) that become most prominent for
μc1/μc2 ¼ 50 and in the case of plasticity.
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provide the scales for completeness). The distribution of the strain however

is informative, much as in Fig. 7. For the neo-Hookean case μc1=μc2 ¼ 1 up

to μc1=μc2 ¼ 10, the maximum principal strain (tension) occurs between

D-phase domains in the direction normal to compression. This intuitively

agrees with the notion that the quasi-incompressible monolayer when com-

pressed laterally along the horizontal direction expands and is stretched ver-

tically to conserve volume. Beginning at μc1=μc2 ¼ 20 and extending to

mismatch 50, the vertically oriented tensile principal strain begins to rotate

at higher compressions. The strain pattern which emerges in the bielastic

materials is very similar to the plasticity zones seen earlier (see Fig. 7) and

shown in the last columnof Fig. 9. The appearance of these purely elastic shear

bands arise from a local material instability in the bielastic response of the

CAFM-phase leading to the global rearrangement of the D-phase into bands.
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Fig. 9 The maximum and minimum principal strains in the CAFM-phase are analyzed for
the two compression levels shown in Fig. 8 and the different values of μc1=μc2. The first
column where μc1/μc2 ¼ 1 corresponds to a pure neo-Hookean response, while the last
column shows the strain distributions for the elasto-plastic system. At low compression
(first two rows), the strain distribution is nearly homogeneous and equivalent in all cases.
At higher compression, for low values of μc1/μc2, a predominantly tensile strain normal
to the direction of compression develops. As μc1/μc2 increases, this strain field begins to
rotate such that by mismatch 20 and 50 strong shear bands appear very similar in dis-
tribution to the plastic shear bands. We take this as the hallmark signature of a local
material instability in the bielastic response of the CAFM -phase leading to the global
rearrangement of the D-phase into bands.
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5. Multiscale geometry of lipid monolayers

A basic asymmetry exists in monolayers, the hydrophilic headgroups

bind with water molecules of the underlying subphase, upon which the

hydrophobic tails stick out in air. Once the monolayer is formed, loading

is applied by controlling the displacement of a (very slowly) moving rigid

wall. The headgroups through contact tractions at the water-lipid interface

bear the load. During this quasi-static process lipids undergo conformational

and positional disarrangements. The former are well known to relate to

(i) changes in conformations of the lipid tails (occurring with very negli-

gible storing of energy compared with the energy stored within the

water-headgroup layer), which undergo either shortening (through

increase in “curliness” by rolling) or elongation, through unrolling

their physical length,

(ii) changes in the projection of the tails at the water-headgroup interface,

which increases as shortening (and, sometimes, tilting) occurs.

The latter kind, i.e., positional disarrangements, involving switching of lipid

clusters similar to jamming in granular materials (Hunt, Tordesillas, Green, &

Shi, 2010; Majumdar, Krishnaswamy, & Sood, 2011; Majumdar & Sood,

2008; Tordesillas, Lin, Zhang, Behringer, & Shi, 2011; Tordesillas,

Pucilowski, Lin, Peters, & Behringer, 2016), is envisioned to be a plausible

mechanism for rearrangements of such clusters when material instabilities

occurring through banding arise. This aspect will be discussed later. Other

geometrical changes include the macroscopic deformation, describing the

very slowmotion of the headgroupswithin thewater-lipid layer. Such defor-

mation and along with positional disarrangements are captured through a

multiscale kinematics based on the theory of Structured Deformations,

labeled as SDs (Deseri & Owen, 2003, 2013, 2019), a relatively recent mul-

tiscale geometrical approach to the mechanics of complex bodies (a recent

application to lipid bilayers, more precisely to the cell membranes, can be

found in Carotenuto et al., 2020).

The multiscale geometrical changes discussed above are visualized in a

time-snapshot of the lipid monolayer represented in four different con-

figurations and displayed in Fig. 10. In the first three of such configurations,

denoted as BVirg, BPhase
Ref , and BPosit

Ref , we consider a δ �Representative Area

Element, labeled as δ �RAE, namely a small patch relative to the size

of the whole monolayer. Indeed, the size δ ≪ ‘, where ‘ is the minimum
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size of the system and δ is of the order of 0.1 μm.Within a δ�RAE, cluster

of lipids of much smaller sizes with respect to δ can coexist in differ-

ent conformations (see Fig. 4 for the experimental source of this

length scale).

Fig. 10 Beginning in the lower left, the virgin configuration BðkÞ
Virg is shown with a mate-

rial particle X within a smaller area of interest δ2, δ�RAE labeled CðkÞV . This configuration
is homogeneous in height and lateral organization with nomicro- or macrostructure; we

label it LG. Through any sequence of mappings~i
k
, BðkÞ

Virg is taken to BPhase
Ref , a macroscopic

reference configuration essentially identical to the virgin one. However on a sub-

macroscopic level, CðkÞR reveals a multiphase structure (see Fig. 4). Averaged conforma-

tional changes occurring during the mapping from BðkÞ
Virg to BPhase

Ref are carried out byri
�

k ,
which provides the average change in volume through Eq. (18). The gray paths indicate
how positional disarrangements, switching of submicroscopic islands of LC phase, map
from one configuration to the next. Sequences of classical (macroscopic) deformations
~yðkÞ from either BPhase

Ref or BPosit
Ref essentially determine the current configuration B.
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A chart of Cartesian coordinates in any configuration, with an origin

at an arbitrary material point at the headgroup-water interface, is taken.

It is useful to build a link between lipid physics and continuum mechanics

terminologies. We look at the virgin configuration BVirg of the body as the lim-

iting case in which the vast majority of lipid clusters are in a conformational

state at the interface between the gaseous and LE phases (see Fig. 1B). The

LG phase here is used to define a purely homogenous liquid state of the

monolayer that might exist prior to any phase transitions but with a finite

surface pressure (see Fig. 1); commonly in the literature this state is referred

to simply as LE however to help us differentiate between a virgin configu-

ration that is completely homogenous and multiphase configuration we take

the notational liberty of defining the LG phase. In this homogenous state, the

body is practically fully relaxed and macroscopically uniform and homoge-

neous, conforming to the outer scale defined by FM scale space (see Fig. 4).

For the physical situation at hand, this is exactly how one could conceive a

virgin configuration for the monolayer. This configuration is macroscopi-

cally identical to the reference one, although by moving to the next level

of monolayer scale space (see closeup 1 showing a δ �RAE at the

top-left in Fig. 10) submacroscopically lipid conformations are not uniform

in any δ �RAE within either reference configurations displayed in Fig. 10.

Indeed, there are clusters of lipids formed by smaller subislands in the LC

phase coexisting with subregions in the LE state. Our terminology labels

coexistent LE–LC phases within the given δ �RAE in the reference con-

figuration BPhase
Ref as materially disarranged. This term reflects the conforma-

tional changes experienced by the lipid clusters relative to the virgin

configuration. Indeed, within the given δ �RAE in BPhase
Ref , subislands of

more packed and elongated units than the ones in the gas phase characterize

the morphological variations of such lipids. Lipids in the gas phase are uni-

formly present throughout the virgin configuration. The more fraction of

cluster of lipids within a given δ �RAE tends to include subdomains in

the LC and LE phases, the more materially disarranged the body becomes

within that given region. Of course between subislands in the LC and LE

phases contained in the same cluster there are discontinuities in the height

of the lipid tails and, hence, in the vertical component of the displacement

field at the scale of such domains.

To complete the geometrical description of the system at hand, we intro-

duce a sequence of macroscopic deformations, y
�ðkÞ, from a reference
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configuration to the current one,a and its gradient ~FðkÞ. It is worth noting

that the inverse ðr~iðkÞÞ�1
of the gradient of a sequence of mappings ~i

ðkÞ

(converging to the identity as the index k goes to infinity and as the size

δ of the δ�RAE goes to zero) does, in fact, converge to the standard inelas-

tic part of ~F
ðkÞ
. Unlike existing methods, that can only reconstruct local

infinitesimal neighborhoods of a given material particle, this convergence

allows the retrieval of the whole macroscopic configuration. The latter mac-

roscopically looks exactly the same as BPhase
ref and BPosit

ref , with the property of

being a relaxed configuration. Hence an actual entirely virgin configuration,

BVirg, can be retrieved in this way.

We emphasize the fact that the mapping, its gradient and its inverse con-

verge, although the the presence of the disarrangements described above implies that

the sequence of the gradients ri(k) does not converge to the gradient of the limit r
(limk!+∞ limδ!0 δ�2

Ð
δ�δ i(k) dAVirg) of the generating sequence i(k).

This is the case for the sequence at hand, for which ~riðkÞ converges to a

tensor field not equal to the identity.

To bridge the terminology between the present context and the theory

of SDs we remark that, upon comparing the local blurred geometrical

changes between the virgin and the reference configuration, the actual pure

measure of disarrangements due to geometrical changes between the virgin

and the reference configuration is the following difference

rð lim
k!+∞

lim
δ!0

δ�2

Z
δ�δ

iðkÞ dAVirgÞ � lim
k!+∞

lim
δ!0

δ�2

Z
δ�δ

riðkÞ dAVirg:

(13)

It is worth noting that limk!+∞ limδ!0 δ
�2

Ð
δ�δ i

(k) dAVirg is the identity

mapping, i, which has the constant gradient I, while the tensor to the left

smears out the conformational changes experienced by the lipid clusters.

Hence, before taking the two sets of limits above, as an approximate measure

of pure conformational disarrangements the tensor field coming from the

following difference can be considered:

I�riðkÞ: (14)

a Either BPhase
ref or BPosit

ref , once positional disarrangements have occurred, upon restricting the reasoning

above to a generic δ �RAE element displayed in both configurations BVirg and BPhase
Ref , making them

macroscopically identical to one another.
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This tensor field represents the appropriate average of discontinuities in the

vertical component of the displacement field at the scale of LC and LE sub-

domains, or equivalently, an average of the jumps in lipid tail heights within

the small islands contained in δ �RAE.

An advantage of the approach undertaken here is that we carry on infor-

mation about the geometrical changes by generating Structured

Deformations (SDs) of the whole body through limiting processes, allowing

us to retain key features of the determining sequence of mappings and their

gradients (see Fig. 10).b Such SDs come in pairs of two elements. The first

element is a vector-valued field representing either the macroscopic defor-

mation or the identity mapping. The second element is a tensor-valued field

which does not need to be the gradient of the first element. This systemat-

ically accounts for the problem of geometric compatibility and applies to the

configurations of the body as a whole, not just to infinitesimal neighbor-

hoods of a given material point as it is customary in standard approaches

to finite inelastic phenomena, e.g., growth in biological materials and in

additive manufacturing, metal/soil/polymer finite plasticity, finite viscoelas-

ticity, finite damage, etc.

5.1 A closer look at conformational changes

Within a subdomain of the reference configuration BPhase
Ref termed δ �RAE,

a microstructure exists which experiments confirm is a coexistence of

nanoislands of LC and LE phases (see Figs. 4 and 10). Comparing δ�
RAE� BPhase

Ref to δ�RAE� BVirg, it is clear lipid conformational changes

have occurred. The change in lipid tail height compared to the fully relaxed

configuration BVirg can be taken as purely morphological since any energy

stored in the tails is negligible compared to the headgroups. Nevertheless,

as seen in Fig. 10, evaluating an averaged measure λðk,δÞ3 of lipid tail elon-

gations is key to understanding monolayer mechanics. By defining

λðk,δÞLC ¼ h
ðkÞ
ðRÞ LC=h

ðkÞ
Virg, c

ðk,δÞ
LC ¼ dA

ðk,δÞ
LC =dARef and λðk,δÞLE ¼ h

ðkÞ
ðRÞ LE=h

ðkÞ
Virg, c

ðk,δÞ
LE ¼

dA
ðk,δÞ
LE =dARef as the changes in elongation and area concentrations of lipid

clusters in the LC and the LE phases, respectively, one can calculate the aver-

age elongation of lipid tails within a subdomain of the monolayer

b As δ goes to zero and k tends to infinity.
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λðk,δÞ3 ¼ c
ðk,δÞ
LC λðk,δÞ

2

LC + c
ðk,δÞ
LE λðk,δÞ

2

LE

c
ðk,δÞ
LC λðk,δÞLC + c

ðk,δÞ
LE λðk,δÞLE

: (15)

λðk,δÞLC and λðk,δÞLE within each subcluster of a given δ �RAE of the reference

configuration BPhase
Ref are considered constant. This is justified since physically

these are two different thermodynamic phases, connected by a first-order

phase transition. The respective surface concentrations of the two phases,

c
ðk,δÞ
LC and c

ðk,δÞ
LE , however, can change from point to point in-plane even

within a given δ �RAE of the reference configuration.c

Recall that the identity tensor  for in-plane transformations is simply

the projector of tensors onto the reference plane of the monolayer, namely

 ¼ I � E3 	 E3: (16)

Furthermore, we recall that the measured area changes between the refer-

ence and virgin configurations is the second invariant of the projection of the

material gradient  ~riðkÞ onto the reference plane for the body, namely

dARef =dAVirg ¼ detð ~riðkÞÞ (17)

Henceforth, upon factoring this term across both the numerator and the

denominator of Eq. (15), we can easily refer to the area concentration of

the LC and LE phases relative to the virgin configuration.

Local volume changes of lipid clusters during conformational changes

have to be computed to account for the second aspect of tail morphological

variations, namely their projection onto the headgroup-water interface. The

local averaged volume change can be written as

detð ~riðkÞÞ ¼ λðk,δÞ3 detð ~riðkÞÞ (18)

This same result is obtained by comparing the local volume measures within

BPhase
Ref and BVirg. To derive this, we first define the averaged heights h

ðk,δÞ
Ref and

h
ðk,δÞ
Virg as the heights of the lipid clusters within BPhase

Ref and BVirg, respectively;

and, as mentioned above, h
ðk,δÞ
ðRÞ LC

and h
ðk,δÞ
ðRÞ LE

the actual heights of lipid clus-

ters within CkR (see Fig. 10). The volume occupied by the clusters at a point

c Evidently, while dARef denotes the area measure of an infinitesimal surface patch within a given

δ�RAE in the reference configuration, the quantities dA
ðk,δÞ
LC and dA

ðk,δÞ
LC indicate the corresponding

local area measures of the lipid clusters within the LC and the LE phase in that same configuration.
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inside δ�RAE � BPhase
Ref can then be written as follows: h

ðk,δÞ
Ref dARef ¼

h
ðk,δÞ
ðRÞ LC dA

ðk,δÞ
ðRÞ LC + h

ðk,δÞ
ðRÞ LE dA

ðk,δÞ
ðRÞ LE. We map this relationship into BVirg by

dividing both sides by h
ðk,δÞ
Virg followed by dividing and multiplying each area

measure by dAVirg to obtain:

c
ðk,δÞ Virg
LC λðk,δÞLC + c

ðk,δÞ Virg
LE λðk,δÞLE ¼ λðk,δÞ3 detð ~ri

ðkÞÞ (19)

where λðk,δÞ3 ¼ h
ðk,δÞ
Ref =h

ðk,δÞ
Virg , c

ðk,δÞ Virg
LC ¼ c

ðk,δÞ
LC detð ~riðkÞÞ and c

ðk,δÞ Virg
LE ¼

c
ðk,δÞ
LE detð ~riðkÞÞ are the surface concentrations relative to the virgin con-

figurations of LC and LE phases, respectively. On the other hand, local vol-

ume conservation requires that h
ðk,δÞ
Ref dARef ¼ h

ðk,δÞ
Virg dAVirg detð ~riðkÞÞ, hence

Eq. (18) and

detð ~riðkÞÞ ¼ c
ðk,δÞ Virg
LC λðk,δÞLC + c

ðk,δÞ Virg
LE λðk,δÞLE

(20)

follow. The right hand side of the last relationship can be reinterpreted upon

considering the restrictions of the sequence ~iðkÞ, ~i
ðkÞ
LC, and ~i

ðkÞ
LE, to the

counter-images of the domains in the LC and LE phases. For such mappings,

Eq. (20) reads as follows detð ~riðkÞÞ ¼ detð ~ri
ðkÞ
LCÞ + detð ~ri

ðkÞ
LEÞ. In turn,

Eq. (20) expresses the fact that volume concentrations relative to the refer-

ence configuration, c
ðk,δÞ
Vol LC ¼ dV

ðk,δÞ
LC =dVRef ¼ðdetð ~r iðkÞÞÞ�1

detð ~r i
ðkÞ
LCÞ,

c
ðk,δÞ
Vol LE ¼ dV

ðk,δÞ
LE =dVRef ¼ðdetð ~r iðkÞÞÞ�1

detð ~r i
ðkÞ
LEÞ, of the LC and LE

phases form the totality of lipid population, namely c
ðk,δÞ
Vol LC+ c

ðk,δÞ
Vol LE ¼ 1:

We can now revisit Eq. (15). In particular, by substituting Eq. (18) into

(20), we obtain

λðk,δÞ3 ¼ c
ðk,δÞ
Vol LC λðk,δÞLC + c

ðk,δÞ
Vol LE λðk,δÞLE (21)

which gives a more revealing measurement of the average elongation of lipid

tails within a subdomain of the monolayer as it moves between BVirg and

BPhase
Ref . By taking the average of λðk,δÞ3 over an area element δ2 defined by

δ �RAE � BPhase
Ref a mean value of this field within such an element can

be obtained: hλðk,δÞ3 i ¼ δ�2
R
δ�δλ

ðk,δÞ
3 dARef . Given that λðk,δÞLC and λðk,δÞLC are

constant throughout the given δ �RAE, we obtain

hλðk,δÞ3 i ¼ hcðk,δÞVol LCi λðk,δÞLC +hcðk,δÞVol LEi λðk,δÞLE : (22)
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Henceforth, notationally λðkÞ3 will refer to hλðk,δÞ3 i.
We are now in a position to characterize I �ri(k), the measure of pure

conformational disarrangements. The sequence of gradients of identity map-

pings describing the conformational changes of the lipid clusters at hand

reads as follows:

~ri
ðkÞ ¼ ðdet ð ~ri

ðkÞÞÞ
1=2

 ~ri
ðkÞ

∘

+ λðkÞ3 E3 	 E3 (23)

where  ~ri
ðkÞ

∘

¼ ðdet ð ~r i
ðkÞÞÞ

�1=2

 ~ri
ðkÞ

is the area preserving

(in-plane isochoric part) of the restriction of the disarrangement tensor to

the midplane. The measure of pure conformational disarrangements then

becomes:

I� ~ri
ðkÞ ¼  � ðdet ð ~ri

ðkÞÞÞ
1=2

 ~ri
ðkÞ

∘

+ ð1 � λðkÞ3 Þ E3 	 E3

(24)

Of note, the average measures of pure in-plane and out-of-plane disarrange-

ments are given by  � ðdet ð ~ri
ðkÞÞÞ

1=2

 ~ri
ðkÞ

∘

and 1 � λðkÞ3 ,

respectively.

In order to retain only in-plane features of the conformational changes

contributing to the local average monolayer compressibility and its spatial

gradients, we uncouple the direct influence of the out-of-plane morpholog-

ical variations of the lipid tails within clusters in the given δ�RAE through

the following factorization of the tensor ~riðkÞ:

~ri
ðkÞ ¼ ðλðkÞ3 detð ~ri

ðkÞÞÞ
1=2

 ~ri
ðkÞ

∘

+ E3	E3

0
@

1
A λ

ðkÞ �1=2
3 + λ

ðkÞ
3 E3	E3

� �
:

(25)

The tensor appearing to the right of this multiplicative decomposition of

~ri
ðkÞ

incorporates:

• the average change in volume detð ~ri
ðkÞÞ ¼ λðkÞ3 detð ~ri

ðkÞÞ, labeled in

Eq. (18), due to conformational changes from BVirg to BPhase
Ref ;
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• geometrical area preserving (averaged measure of ) in-plane morpholog-

ical variations  ~ri
ðkÞ

∘

, which would simply become  if no such redistri-

butions occurred,

and at the same time the factorized form allows for uncoupling the direct

influence of the out-of-plane conformational changes of the lipid tails within

clusters in δ�RAE (such an influence remains confined to the right factor of

Eq. 25).

Since purely elongational changes within lipid tails do not contribute to

monolayer energy storage, it is physically reasonable to assume that the

monolayer energy density (not defined in this manuscript) is a function of

lipid morphological variations represented through K(k) alone.d Eq. (25)

allows us to identify this variable as

KðkÞ ¼ ðλðkÞ3 detðr iðkÞÞÞ1=2  ~riðkÞ
∘

(26)

5.2 Macroscopic deformation
The overall deformation of the body is envisioned as a sequence of macro-

scopic (vector-valued) fields

~yðkÞ ¼ yðkÞ + ~ϕ
ðkÞ
3 X3 E3, (27)

where k simply labels the order of such a sequence, yðkÞ ¼ yðkÞα eα, α¼ 1, 2,

depends only on the in-plane coordinates (not on X3), and so does

~ϕ
ðkÞ
3 ¼ hðk,δÞ=hðk,δÞRef , where h

(k, δ) is the average measure of the tail thickness

at a location in space situated within the image in the current configuration

(see Fig. 10 to the bottom right) of a given δ �RAE mapped from the ref-

erence configuration (either BPhase
Ref or BPosit

Ref ). In other words ~ϕ
ðkÞ
3 is an aver-

aged macroscopic measure of the tail’s length change at a given location

x within the current configuration relative to the corresponding material

particleX¼y(k) �1(x), where y(k) �1 simply denotes the inverse of the mac-

roscopic deformation at hand.

d Of course the restriction to the plane of the monolayer of the sequence of macroscopic deformation

gradients will play a key role in the energy as well, as it will have to combine with Kk to deliver the

appropriate geometric measure of geometrical changes upon which energy is stored.
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Here {eα}{α¼1, 2} is an orthonormal basis taken at the water-headgroup

interface in the current configuration, while the unit vector in the third

direction remains the same as before deformation. The overall geometric

changes of the water-headgroup layer are then described by restricting

the sequence of macroscopic deformations (Eq. 27) to points located in

the reference plane at X3 ¼ 0. Henceforth, by restricting the out-of-plane

component of the macroscopic deformation to have spatially slow variations

in-plane within a given δ �RAE (for instance piecewise constant in plane

within the given δ �RAE), then ~ϕ
ðkÞ
3,α � 0, and the approximate form for

the gradient of ~yðkÞ becomes

~F
ðkÞ ¼ FðkÞ + ~ϕ

ðkÞ
3 E3 	 E3, (28)

which is exact at the water-headgroup interface, i.e., at X3 ¼ 0. This

sequence of gradients describes the local features (blurred out within the

given δ �RAE) of the macroscopic geometrical changes. We note that

FðkÞ ¼ y
ðkÞ
,A 	 EA (as usual, repeated indexes means sum among the items

with the same index) gives information about the in-plane macroscopic var-

iations of the geometry of the monolayer with respect to changes in position

in a reference configuration BRef (either BPhase
Ref or BPosit

Ref to be discussed later).

Here the notation °,A ¼ ∂∘
∂XA

, withA¼ 1, 2, and whereX≡ (X1,X2) denotes

both a generic in-plane material particle in BRef and the in-plane coordinate

chart in the same configuration. Of note, we bear in mind that the sequence

of macroscopic deformation gradients does account for both geometrical

changes due to and without disarrangements.e

5.3 A measure of geometrical changes without
disarrangements

It is key to recall that elongational changes of the tails are only conforma-

tional, hence no energy can be stored through the morphological variations

of the lipid tails. A strictly kinematic, and somewhat related issue, is how

material elements taken within any δ �RAE in the virgin configuration

e For future references it is useful to keep track of the restriction of the gradient of themacroscopic defor-

mation to any horizontal plane (e.g., the lipid-water interface). This has been already introduced in the

text in Eq. (16). Considerations about the isochoricity are obsolete: we must get rid of them. In par-

ticular, we note that y
ðkÞ
,A 	 EA ¼ F

ðkÞ
α, A eα 	 EA, after setting F

ðkÞ
α, A ¼ y

ðkÞ
α,A.
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deform without any kind of disarrangements caused by jumps, voids,

switching, etc. Fig. 10 and the basis of the theory of SDs help to state that

this local transformationf is given by the mutiplicative decomposition

~GðkÞ ¼ ~FðkÞ ~riðkÞ between the macroscopic deformation gradient, denoted

by ~F
ðkÞ
, and the tensor ~ri

ðkÞ
. This is consistent with the fact that, upon taking

the material gradient (relative to changes of the material particle in BVirg) of

the composition of mappings ~yðkÞ∘~i
ðkÞ

(transforming each material particle

X in the virgin configuration onto its corresponding location x¼
~yðkÞ∘~iðkÞ
� �ðXÞ in the current one) the result is still that same multiplicative

decomposition for ~G
ðkÞ

just mentioned above.

This composition relates with the “elastic part” of the macroscopic deforma-

tion gradient in standard treatments of bodies undergoing finite deformations

and nonelastic phenomena such as growth, remodeling, plasticity, etc., as

~FðkÞ ¼ ~GðkÞ ð ~riðkÞÞ�1
. In spite of this striking analogy, SDs do not require

giving constitutive attributes to the purely geometrical entities ~F
ðkÞ
, ~G

ðkÞ
,

and ~riðkÞ involved in the decompositions above. Finally, based on

Eqs. (23), (26), and (28) an approximate measure of deformation without

disarrangements (which holds in this exact form at the waterheadgroup

interface and layer) ~G
ðkÞ

takes the following form:

~G
ðkÞ ¼ GðkÞ + λðkÞ3

~ϕ
ðkÞ
3 E3 	 E3, (29)

where

GðkÞ ¼  ~G
ðkÞ ¼ FðkÞKðkÞ: (30)

This latter tensor field is the geometrical variable directly determining the

energy density of the monolayer. This explains how the local averaged mea-

sure of conformational changes K(k) and the corresponding part F(k) of the

deformation gradient combine to deliver the appropriate geometric variable

upon which the stored energy density of the monolayer depends. It is worth

noting that (26) allows us to look into the structure ofG(k) and note that λðkÞ3

directly enters into such a variable. Furthermore, if a particular situation in

f In Fig. 10, the composition between ~F
ðkÞ

and eri
ðkÞ

represents what happens locally to any material ele-

ment in an infinitesimal neighborhood of a particle inside any δ�RAE in the virgin configuration after

deformation from BVirg to the current configuration B.
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which conformational changes are uniform in-plane (i.e., in-plane

“hydrostatic”), i.e.,  ~r i
ðkÞ

∘

¼ , then GðkÞ ¼ ðλðkÞ3 det r iðkÞÞ1=2 FðkÞ.

5.4 Positional disarrangements
Positional disarrangements may arise within planar subregions of the mono-

layer bearing trace at the water-headgroup interface and inside the layer in

the immediate proximity of the interface. This can happen during material

instabilities, such as shear bands: banding regions are, in fact, extensively

reported in the first part of this work. Positional disarrangements, visualized

in Fig. 10 within the closeup 2 and displayed to the top right of the figure

inside δ �RAE in BPos
Ref , may involve switching of subclusters of lipids once

locally a certain stress-strain state is reached. The envisioned physical mech-

anism is analogous to granular materials experiencing shear bands

(Tordesillas et al., 2011, 2016). The idea is that under a significantly dom-

inant compressive state of stress, at a critical level of such loading, during

deformation, subclusters in the LC phase and the ones in the LE displayed

in δ �RAE in the reference configuration BPhase
Ref would disarrange almost

like grains jamming and, hence, by switching positions with other clusters,

lead to banding as seen in Fig. 10 and seen experimentally with lipid mono-

layers in the generalized collapse phase diagram presented in Fig. 2.

6. Conclusions

Lipid monolayers provide a rich system in which to explore and study

the mechanics of thin self-assembled films with unparalleled details. The

importance of lipid films in technological and biological applications and

systems is unquestioned. Lipid monolayers such as lung surfactants or cell

membranes composed of lipid bilayers are often exposed to mechanical

forces that lead to mechanical instabilities, which in turn impact the

large-scale behavior of the system.We provide the first step toward a unified

general theory of lipid film continuum mechanics. We show that in mono-

layers, irrespective of composition, five canonical collapse modes can be

accessed. Furthermore, the different modes of collapse can be tuned through

composition in multicomponent systems or simply temperature in

single-component monolayers. Furthermore, lipid monolayers can be pro-

bed on multiple microscopy length scales, building a rich multidimensional

image data space. We provide a scale space to unify these different lengths
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and allow for a common language in which to build the topology of lipid

monolayer structure. In the section on multiscale geometry, we provide a

formal analytical description of this topology for lipid monolayers that

undergo banding. The geometric kinematics developed in this paper are

the first step to a generalized mechanical model of lipids. In future work,

these kinematics will be used in the context of structured deformation the-

ory to build constitutive models of lipids intrinsically grounded in their mul-

tiscale structure. These continuum models will then be validated and tested

using finite element analysis, a methodology successfully applied to lipid

monolayers in the present paper.
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