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Abstract

Langmuir monolayers at gas/liquid interfaces provide a rich framework to investigate
the interplay between multiscale geometry and mechanics. Monolayer collapse is inves-
tigated at a topological and geometric level by building a scale space M from exper-
imental imaging data. We present a general lipid monolayer collapse phase diagram,
which shows that wrinkling, folding, crumpling, shear banding, and vesiculation are
a continuous set of mechanical states that can be approached by either tuning mono-
layer composition or temperature. The origin of the different mechanical states can be
understood by investigating the monolayer geometry at two scales: fluorescent vs
atomic force microscopy imaging. We show that an interesting switch in continuity
occurs in passing between the two scales, Carm € Mas # Crn € M. Studying the dif-
ference between monolayers that fold vs shear band, we show that shear banding is
correlated to the persistence of a multi-length scale microstructure within the mono-
layer at all surface pressures. A detailed analytical geometric formalism to describe this
microstructure is developed using the theory of structured deformations. Lastly, we pro-
vide the first ever finite element simulation of lipid monolayer collapse utilizing a direct
mapping from the experimental image space M into a simulation domain P. We show
that elastic dissipation in the form of bielasticity is a necessary and sufficient condition to
capture loss of in-plane stability and shear banding.

1. Introduction

For nearly a century, Langmuir monolayers have provided a rich sys-
tem for the study of self-organizing matter. The importance of surfactants in
industrial applications is hard to underestimate (Safran, 1994). Furthermore,
lipids are among the essential building blocks of living matter, their organi-
zation into bilayers forms cell membranes (Boal, 2002; Fung, 1993). Lipid
membranes play an integral role in creating multicellular tissues whose
organization ultimately leads to organisms (Boal, 2002). Moreover, the lipid
membrane is critical in intracellular interactions and specifically in helping
transmit mechanical information from one cell to another (Junghans et al.,
2014, 2015; Pocivavsek, Junghans, Zebda, Birukov, & Majewski, 2013).
Lipid monolayers also play important biological roles, especially in animals
with lungs, where the surfactant monolayer reduces surface tension of the large
air/water interface needed for gas exchange (Piknova, Schram, & Hall, 2002;
Robertson & Halliday, 1998; Zasadzinski, Ding, Warriner, Bringezu, &
Waring, 2001). The lipid monolayer’s or bilayer’s response to mechanical
forces is integral to many roles lipids play in biological systems (Gopal &
Lee, 2001; Lipp, Lee, Takamoto, Zasadzinski, & Waring, 1998; Ybert, Lu,
Moller, & Knobler, 2002 a, 2002 b). However, we lack a general understand-
ing of lipid mechanics under many biologically relevant conditions.
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Historically the approach to lipid mechanics began with thermodynam-
ics, especially in monolayers. The Langmuir monolayer’s confinement to the
two-dimensional gas/liquid interface allows direct visualization of thermo-
dynamics at work. The study of in-plane lipid phase transitions is among the
most studied monolayer phenomena (Kaganer, Mohwald, & Dutta, 1999;
McConnell, 1991; Mohwald, 1990, 1993). Various phases have been iden-
tified throughout the decades (see Fig. 1), including gaseous, liquid expanded
(LE), liquid condensed (LC), solid, and many subtypes (Mohwald, 1990,
1993; Safran, 1994). Pioneering monolayer work was later extended
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Fig. 1 All lipid monolayers in this paper were prepared as Langmuir monolayers spread
at a gas/water interface. The details of the setup are provided in the methods. Panel
(A) shows a schematic of the Langmuir trough with two barriers used to control the lipid
density at the interface. A Wilhelmy surface balance is used to measure the lateral sur-
face pressure, which is given as the difference in surface tensions of a lipid free and lipid
covered interface, IT = y, — 7. It should be noted that in general II/h#c; where h is
monolayer thickness and oj; is the true stress in the monolayer; furthermore only when
the monolayer is a liquid, unable to sustain a static shear stress, does II represent the
hydrostatic pressure (Witten et al., 2010). Panel (B) shows a representative isotherm with
the three canonical thermodynamic lipid phases: gas, liquid expanded (LE), and liquid
condensed (LC). Panel (C) shows lipid monolayer energy as a function of inverse density
(area per lipid molecule). At low packing density (gas and LE phases), the monolayer
energy is dominated by the interfacial energy which is well represented by U ~II-
h/A. However, as the monolayer transitions into an elastic solid, beginning with the
LC phase, a membrane elastic energy term emerges, Upmemp ~ W(F, K), where F is the
macroscopic deformation gradient and K the component due to positional disarrange-
ments according to the theory of structured deformations. Minimization of W(F, K) pro-
vides a general framework in which to study the wide range of elastic instabilities seen
in solid-like lipid monolayers.
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to bilayers under various configurations: supported bilayers, vesicles, etc.
(Kaganer et al.,, 1999; McConnell, 1991; Mohwald, 1990, 1993).
Quantitative modeling of lipid thermodynamics is largely rooted in the
development of equations of state and their validation with experiments,
such as isotherm measurements using a Langmuir trough (see Fig. 1)
(Andelman, Brochard, Knobler, & Rondelez, 1994; Fennell Evans &
Wennerstrom, 1999; Kaganer et al.,, 1999; McConnell, 1991; Pocivavsek,
Frey, et al., 2008; Pocivavsek et al., 2011).

Langmuir monolayers have also proven to be ideal systems to study lipid
mechanics in highly confined geometries or high lipid packing densities,
where the system is believed to behave as an elastic continuum. Ries
(1979) first observed a solid-like response in monolayers where trilayered
structures appeared on top of the monolayer at high compression; he
hypothesized a simple mechanical model based on elastic plate buckling
to explain the observed multilayers (Ries, 1979). Other experimental work
confirmed the peculiar folding behavior of a variety of lipid and gold nano-
particle films (Gopal & Lee, 2001; Lin et al., 2007; Lipp et al., 1998; Schultz
et al., 2006; Ybert et al., 2002 a, 2002 b). It would be more than 50 years
until a quantitative model of monolayer folding was developed by
Pocivavsek, Dellsy, et al. (2008). The wrinkle-to-fold model treated the
lipid monolayer as a uniform elastic plate which under compression buckles
with a given wavelength; with further compression, the linearly stable wrin-
kles convert to localized nonlinear folds which can lead to the multilayer
structures observed experimentally (Pocivavsek, Dellsy, et al., 2008).
Treating the monolayer as a homogeneous elastic plate essentially extracted
only the most basic geometric structure of the monolayer to build a mechan-
ical model. Yet this highly reduced approach was able to quantitatively pre-
dict collapse features to a much larger extent than models which approached
collapse (loss of mechanical stability) from the standpoint of thermodynamic
defects (Diamant, Witten, Ege, Gopal, & Lee, 2001; Diamant, Witten,
Gopal, & Lee, 2000; Lu, Knobler, Bruinsma, Twardos, & Dennin, 2002;
Nikomarov, 1990; Saint-Jalmes, Assenheimer, & Gallet, 1998; Saint-
Jalmes, Graner, Gallet, & Houchmandzadeh, 1994; Saint-Jalmes &
Gallet, 1998).

More recent research in monolayer collapse mechanisms has examined a
broad range of topics. In lipid monolayers, the exploration of membrane com-
position has found net charge, acyl chain saturation, and presence of choles-
terol to have important roles in altering collapse structures through tuning
in-plane rigidity (Garg, Thomas, & Borden, 2013; Goto & Caseli, 2013;
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Kim, Choti, Zell, Squires, & Zasadzinski, 2013; Thomas & Borden, 2017;
Zhang, Fan, Wang, Neal, & Zuo, 2011). These findings reveal insights into
the mechanical properties and collapse of various clinical surfactants. Presence
of polymers (Callens et al., 2019) and surfactant proteins (Holten-Andersen
etal., 2011; Pocivavsek, Frey, et al., 2008) in the composition of lipid mono-
layers has been found to act as mechanical instabilities which lead to folding
and collapse. Introduction of small molecules such as glycerol to the subphase
can amplify the size of the folds upon monolayer collapse due to their enrich-
ment at the lipid headgroup interface (Pocivavsek etal., 2011). While much of
this work has been conducted using Langmuir trough experiments, lipid-
coated microbubbles have emerged as innovative tools to study monolayer
collapse and stabilization, with additional biological and medical implications
(Garg et al., 2013; Kwan & Borden, 2012a, 2012b; Thomas & Borden,
2017). Monolayers composed of various nanoparticles offer a range of
exploration into nonlinear surface pressure near buckling (Cicuta & Vella,
2009; Liu, Sun, & Santamarina, 2021) and the critical role of in-plane rigidity
for out-of-plane wrinkling (Silverberg & Vecitis, 2017), due to the granular
nature of the interface. Gold nanoparticle monolayers in particular show
interesting features when forming localized regions of instability, which col-
lapse upon compression into trilayers that can bend and fold depending on
in-plane and out-of-plane mechanical properties (Chua et al., 2013; Leahy
et al., 2010). In addition to the topology of monolayer collapse, the kinetics
of such folding has been explored for some lipids (Boatwright, Levine, &
Dennin, 2010; Kim et al., 2013; Oppenheimer, Diamant, & Witten, 2013)
where in-plane rigidity is important in modeling and predicting the behavior.

We present a combined experimental, computational, and geometric
analysis of lipid monolayer collapse. As noted above, a large amount of lipid
literature focuses on the differences, often compositional, between different
lipid systems. However, mechanical response, including collapse, is by its
very nature a continuum phenomenon, as such it seeks commonalities.
We set the ground work here for a general theory of lipid monolayer
mechanics. We expand upon the linearly elastic plate models used to suc-
cessfully describe monolayer folding (Pocivavsek, Dellsy, et al., 2008). The
paper is divided into three parts. First, we present a novel general lipid
monolayer collapse phase diagram, showing that five canonical modes of
collapse can be accessed across lipid compositions and temperatures. We
provide a scale space analysis of monolayer imaging data at multiple length
scales, which builds a topology for the available monolayer data. Second,
we present the first ever finite element simulation of lipid monolayers using



6 Angelo Rosario Carotenuto et al.

experimentally derived input geometries. The simulations allow us to sys-
tematically test how mechanical dissipation in portions of the monolayer
leads to monolayer rearrangements and collapse via banding. Third, we uti-
lize the rich theoretical machinery of structured deformations to set up the
multiscale geometry of lipid monolayers based upon our experimental data.

2. Methods

2.1 Experimental procedure

2.1.1 Lipids, peptides, subphase, superphase

DMPE (1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine, T,, = 50°C),
DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine, T,, = 41°C), POPG
(1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1-rac-glycerol) (sodium  salt),
T,, = —2°C), and GM1 (ovine brain ganglioside GM1) were obtained from
Avanti Polar Lipids, Inc. (Alabaster, AL) in powder form and used without fur-
ther purification. Lipids were either dissolved in chloroform (DPPC and
POPG) or 9/1 (v/v) chloroform/methanol (DMPE and GM1) to make
5 mg/mL stock solutions. Solvents were HPLC grade and obtained from
Fisher Scientific (Pittsburgh, PA). SP-B 9-25 is a truncated synthetic peptide
of the 79-residue lung surfactant protein B. The peptide is an amphipathic helix
with an amino acid sequence of WLCRALIKRIQAMIPKG. SP-B 9-25 was
prepared using Fmoc chemistry (Fields, Lloyd, Macdonald, Otteson, & Noble,
1991; Waring et al., 2005) (double coupling, 2 X 45 min) with reagents from
Applied Biosystems (Foster City, CA) with a 431A solid phase peptide synthe-
sizer (Applied Biosystems, Foster City, CA) or a Symphony/Multiplex SPPS
synthesizer (Protein Technologies, Tucson, AZ). The peptide was cleaved
using modified Reagent K (90% trifluoroacetic acid, 4.4% triisopropyl
silane, 2.2% thioanisol, and 4.4% water). The peptide was precipitated upon
the addition of ice-cold diethyl ether, collected by centrifugation, and puri-
fied by reversed-phase HPLC. MALDI-TOF mass spectrometry using an
ABI Voyager RP-RBT2 reflection time-of-flight mass spectrometer
(Applied Biosystems, Foster City, CA) confirmed the predicted molecular
mass of the peptide.

Lipid and lipid:peptide mixtures were prepared in several molar ratios:
pure DMPE, DPPC:POPG 7:3, DPPC:POPG:SP-B 9-25 70:30:2, DPPC:
GM1 8:2, and DPPC:GM1 5:5. The solutions were diluted with chloroform
to obtain spreading solutions of concentration 0.1 mg/mlL. Visualization
with fluorescence microscopy was possible upon addition of 0.5 mol%
Texas Red 1,2-dihexadecanoyl-sn-glycerol-3-phosphoethanolamine,
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triethylammonium salt (TR-DHPE) (Invitrogen, Carlsbad, CA) to the
spreading solutions. The subphase for all the experiments was ultrapure
water (resistivity >18 MQcm) made using a ultrapurification (Milli-Q
Advantage A10, Millipore, Bedford, MA). The superphase was air except
for experiments with monolayers containing POPG. To minimize oxida-
tive damage to the unsaturated oleoyl chain of POPG, ultrahigh purity
Argon 5.0 (Airgas, Chicago, IL) was used as the superphase.

2.1.2 Instrument setup

All monolayer experiments were performed using a home-built Langmuir
trough system (Gopal & Lee, 2001). The set-up consists of a Teflon trough
(27.5 x 6.35 x 0.63 cm) fitted with two symmetrically mobile Teflon bar-
riers (I = 6.35 cm). The barriers were placed on linear translational stages
(UTM100CC, Corp., Irvine, CA) and interfaced to a Newport MM2000
motion controller to obtain movements with micron precision. The entire
Langmuir trough also sits on x, y, and z translation stages (Newport Corp.,
Irvine, CA) that allow for scanning of the air/water interface in each of
those respective directions. The surface pressure measurements are made
using a Wilhelmy plate tensiometer (Riegler & Kirstein GmbH, Potsdam,
Germany). As the surface area is reduced (compression) or increased (expan-
sion), the change in surface pressure is monitored, giving rise to surface
pressure (IT) vs area (A) isotherms. Temperature of the water subphase is
maintained within 0.5°C of the target temperature using a home-built con-
trol assembly consisting of thermoelectric units (Omega Engineering Inc.,
Stamford, CT) attached to a heat sink maintained at 20°C by a Neslab
RTE-100 water circulator (Portsmouth, NH). The trough is kept covered
with a resistively heated indium-tin oxide- coated glass plate (Delta
Technologies, Dallas, TX), which is maintained at approximately 2°C above
the target subphase temperature in order to minimize air currents, reduce
evaporative losses, and prevent condensation of water on the microscope
objective. Direct imaging of the surface is performed using a fluorescence
microscope with either a 50X or 20X extra-long working distance objective
lens (Nikon Y-FL, Fryer Co., Huntley, IL). The filter cube (Nikon HYQ
Texas Red, Fryer Co., Huntley, IL) used permits excitation between
530 and 590 nm and emission between between 610 and 690 nm. A
CCD camera Photonics, Inc., Palo Alto, CA) is used to collect images
at 30 frames/s, which are recorded on a Sony miniDV digital video cassette
recorder (B&H Photo-Video, New York, NY). The space between the
trough and microscope objective was confined in a Sigma Atmos
glove-bag (Sigma-Aldrich, St. Louis, MO) to reduce air currents or to
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achieve the argon superphase when necessary. The entire trough/micro-
scope assembly is mounted on a vibration isolation table (Newport Corp.,
Irvine, CA) and controlled completely by a custom software interface
written using LabView 6.1 (National Instruments, Dallas, TX).

2.1.3 Isothermal compression measurements

For each monolayer experiment, 80 mL of water was poured into the
trough. The subphase was heated to 25, 32, or 37°C in the case of
DPPC:POPG, 25°C for DPPC:POPG:SP-B 9-25, 30°C for DPPC:
GM1, and 15, 25, or 37°C for DMPE. When the target temperature was
reached, the surface balance was calibrated to the value of surface tension
of pure water for that temperature (Vargaftik, Volkov, & Voljak, 1983).
The monolayer was then spread at the gas/water interface by gently depos-
iting drops onto the surface and allowed to equilibrate for 20 min. The bar-
rier compression was started (linear speed of 0.1 mm/s) and isotherm data as
I (mN/m) vs A (A%/molecule) were collected at 1-s intervals. The surface
was imaged continuously throughout the compression.

2.1.4 Atomic force microscopy measurements

In order to study the surface morphology with nanometer resolution, the
monolayer at a given surface pressure was deposited onto a freshly cleaved
high grade mica surface (Ted Pella, Inc., Redding, CA) using an inverse
Langmuir—Schaefer technique (Lee et al., 1998) and subsequently imaged
by atomic force microscopy (AFM). The AFM mica puck was placed in a
custom-machined stainless steel washer with a knife sharp rim (2 mm above
the mica surface) and placed at the bottom of the trough prior to the addition
of the subphase. The monolayer was isothermally compressed to the desired
surface pressure. The subphase was slowly removed by suction, lowering the
monolayer until it was cut by the washer knife edge. Three holes drilled into
the bottom of the washer allowed the subphase to drain from the chamber
until the monolayer was completely deposited onto the mica substrate. This
method allowed us to keep the monolayer morphology and density intact
throughout the deposition process. The mica supported monolayers were
imaged in air with a Multimode Nanoscope IIIA scanning probe microscope
(Digital Instruments, Santa Barbara, CA) with a Type ] scanner in contact
mode using silicon nitride tips (NP-S, Veeco Probes, Woodbury, NY) with
a nominal spring constant of 0.32 N/m. The tips were decontaminated by
ultraviolet generated ozone (PSD-UV Surface Decontamination System,
Novascan, Ames, [A) prior to their use.
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2.2 Finite element modeling

Since banding in lipid monolayers as observed in the above experimental
data occurs when the monolayers are in a solid rather than liquid state, con-
tinuum mechanics and finite element (FE) method are promising tools to
provide significant insight into its underlying mechanism. Thus, we inte-
grate principles of nonlinear, large deformation solid mechanics with finite
element analysis (FEA) to investigate this complex system. FE simulations
are implemented using the commercial software package Abaqus 2018
(Dassault Systemes Americas Corp., Waltham, MA) with the dynamic
explicit solver. In order to construct an FE model for the lipid monolayer,
the fluorescence image of the monolayer before banding is imported into the
Simpleware ScanlP software (Synopsys, Inc., Mountain View, CA) to seg-
ment out the solid and continuous phases. After this segmentation, the lipid
model can be meshed either in ScanlP or in Abaqus (note that in general, we
found the meshing algorithm in ScanIP to be more flexible and provided
better mesh quality than Abaqus). A representative FE model for a lipid
monolayer considered in this study is shown in Fig. 6. Here a square portion
of the monolayer is extracted from the tested lipid monolayer and ScanIP
allows the determination of both solid and continuous phases as well as their
boundaries. The part with two distinguished phases is then imported into
Abaqus and kinematic coupling constraints are then used to tie the common
interface between the two phases.

Here, three-dimensional elements (C3D8R, 8-node linear brick,
reduced integration, with hourglass control) were used to mesh both phases
of the monolayer and a very fine mesh is employed. With a focus on the
in-plane banding of the monolayer, and to reduce the complexity of the sim-
ulations as well as the computational time, an effective plane strain boundary
condition in the out-of-plane direction (z) is used here. The monolayer is
then subjected to equal compression from both left and right sides to repre-
sent the loading condition in the experimental setup described above.

A hyperelastic material behavior based on neo-Hookean strain energy
function 1s used to model the elastic deformations of the solid domain,
D-phase, and the continuous Cpys -phase of the monolayer as follows
(Dassault Systemes, 2018; Nguyen & Waas, 2016):

Wa =50 =3+ 5= 1) Q0

=

w,=be -3+ (g - 1) ®)

[4
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where d and ¢ subscripts indicate the domain and the continuous phase,
respectively. p is the shear modulus, K is the bulk modulus, and D = % is
used to numerically impose a quasi-incompressibility condition. Note that
Abaqus explicit cannot model fully incompressibile materials but requires a
certain level of compressibilty. As K/p gets large, the model approaches the
incompressibility condition, where the volume change | = det(F) equals to 1.
Here, F is the deformation gradient and I; is the first invariant of the right
Cauchy-Green tensor C = F'F, and I} = ]I, is the deviatoric part of
the first invariant.

The strain energy function is used to derive the stress—strain relationship
for a neo-Hookean behavior of the following form (Dassault Systemes,
2018; Nguyen & Waas, 2016):

ow
S=25% €)
o :JlFSFT 4)

where S and o are the second Piola—Kirchhoft and the Cauchy stresses,
respectively. W= W,;, S=S;, 6 =0c4and W =W, S= S, 0 = o,
for the D and the Cgy-phase, respectively. Thus, the Cauchy stress,

becomes:
1 _ 1 - 2
1 - 1= 2
Gczjﬂc{B—ghl}-Fa(J—l) ©)

where B = FF" is the left Cauchy Green tensor and B = J~2/°B,

‘While the domain acts like a homogeneous, rigid inclusion during the
compression process, the continuous matrix is less rigid with a heteroge-
neous microstructure (see Fig. 4). Hence, the neo-Hookean strain energy
function with fixed shear (u,;) and bulk (K;) moduli is assumed for the
domain through the whole compression process. The stress is evolved dur-
ing the compression process according to Eq. (5). On the other hand, the
presence of the microstructures in the continuous phase might provide
mechanisms for changes in its material properties and possibility for energy
dissipation. We assume that such changes can be associated with the nucle-
ation of banding observed in the monolayer. Here, we test such an assump-
tion that the microstructures rearrange and lead to a material softening in
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the continuous phase which may help to facilitate the banding instability
phenomenon in the monolayer. For this purpose, in addition to the pure
neo-Hookean model with the fixed shear (¢, and bulk (K) moduli where
the stress is evolved according to Egs. (2) and (6), three additional consti-
tutive models that allow the considerations of softening and/or energy
dissipation for the continuous phase are considered.

For the first two models, we assume that the continuous phase can be
softened, or equivalently, there is a switch in the stress-deformation relation-
ship that leads to a slower increase of the stress under an increase of defor-
mation, when the von Mises stress reaches a critical value (6,,, = 64isica)- TO
model the switch of the material behavior after this critical point, the first
approach is to use the built-in elastic-plastic model in Abaqus where the crit-
ical stress is the yield stress 6, Prior to this critical stress, the monolayer
behaves elastically as a neo-Hookean solid with the shear (4, and bulk
(K) moduli described by the strain energy function in Egs. (2) and (6).
When the critical stress is reached, 6,,, = 0, plasticity is activated that
allows plastic flow and energy dissipation in the material model. As yielding
occurs, the evolution of the stress is described as a function of the plastic
strain. Due to the presence of the plastic strain, the stress no longer depends
on the strain elastically as governed by the neo-Hookean strain energy in
Egs. (2) and (6), instead it increases in a slower fashion as the deformation
increases. Though lipid monolayers are not likely to behave plastically, this
numerical model allows the study of the effect of material instability on
the shearing mechanism in the monolayer. The second approach is moti-
vated by the consideration of the material softening due to microstructure
rearrangement through prescribing a reduction of the shear modulus but
without considering the plasticity effect as in the Abaqus built-in elastic-plastic
model which can be nonphysical for lipid monolayers. Specifically, the shear
modulus of the C-phase y, is reduced when the von Mises stress reaches a crit-
ical value. The strain energy in Eq. (2) is modified in a piecewise fashion with
M= pe tor 6, < Ouicqand p, = p o < p, for 6, > O isicar, Which is the shear
modulus of the continuous matrix before material instability.

Wf = Fa (Tl - 3) + ! ( - 1) fOV Ovm < Oitical (7)
2 Dﬂ
_ Ho (7 _ 1 _ >
W. = (11 3) + ( 1) Jor Gy 2 Ouitical (8)
2 Dy

Through adjusting the ratio p, /u,, > 1, different levels of softening effects

are examined. Note that when g, /u,, = 1, the C-phase becomes a pure
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neo-Hookean material. This second approach (referred here as a “bielastic”
model) is implemented in Abaqus explicit through the user material subrou-
tine VUMAT (Dassault Systemes, 2018). This subroutine is written in
Fortran and requires the update of the current Cauchy stress in the material.
The Cauchy stresses are derived from the neo-Hookean energies stated in
Eqgs. (7) and (8) and are updated as follows:

1 N 2

O, J:ufl{B 3 I1I} ])c1 (_] 1) fbi’ Cvm < Oitical (9)
1 N 2

o, :j'M[Z{B B 3111} " D, (J—=1) for ow = Guical (10)

For VUMAT subroutine’s implementation, since the corotational coordi-
nate system is used in Abaqus, only the stretch part is employed in updating
the Cauchy stress. Hence, in the VUMAT subroutine, the Cauchy stress is
calculated as follows:

1 - 1= 2
o= pu{U~zhi}+ 5 U-1) (11)

where u, = p,, D, = D, for 6,,, < Guijica, D, = D and y. = p for o, >
Cuiticar F = RU is the polar decomposition of the deformation gradient
where R is the rotation tensor and U is the stretch tensor.

Depending on the state of the stresses (before or after the critical value of
the von Mises stress), the shear modulus p, is assigned the value of ptq and p»
and the stresses are updated according to Eq. (11). The VUMAT subroutine
1s verified against the built-in neo-Hookean material in Abaqus by setting
M. = M., and consistent results are obtained.

The third model to study the softening effect in the C-phase employs a
viscoelastic consideration for describing its mechanical response. The instan-
taneous response of the lipid model at t+ = 0 is still assumed to be
neo-Hookean and is captured by Eqgs. (2) and (6). Viscoelasticity leads to
the relaxation of the shear modulus which is described through a single term
Prony series: 1, (t) = u.(00) + (1, (0) — pt,(00))e™/™* = p.(0) * g, (), where
2gr() is the dimensionless relaxation function: gr(0) = 1 and gr(co) = p (00)/
10). The built-in viscoelastic model in Abaqus is utilized to model the con-
tinuous phase for this approach in which the stress—strain relationship is of
the following form:

T =10+ dev [/th(s)El(t — §) 7ot —5).E~ " (t = 5)ds (12)
0
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where 7 = dev(Jo) is the deviatoric part of the Kirchhoft stress and 7(f) is
the deviatoric part of the instantaneous stress derived from the neo-
Hookean strain energy function. A relative deformation gradient F,_(f) =
0x(t)/0x(t —s) is used to map the stress in the configuration at time
(t — s) and time t.

In summary, the following material models are used to describe the
monolayer: the domain is modeled as a pure neo-Hookean material with
shear and bulk moduli g, and K; > p,. The C-phase is modeled using four
numerical models. One, a pure neo-Hookean material with shear and bulk
moduli g, and K, > u.. Two, an elastic-plastic model where the elastic part is
described by a neo-Hookean behavior with shear and bulk moduli . and
K. > p, and plasticity occurs when the yield stress 6, is reached. Three, a
bielastic model based on a piecewise neo-Hookean energy function where
the shear modulus is softened from p, to p, when the von Mises stress sur-
passes a critical value. The bulk moduli K;; and K, are larger than the shear
moduli to enforce quasi-incompressibility. Four, a viscoelastic model where
the shear modulus p(f) relaxes over time.

The following sets of material parameters were used in the simulations.
The ratio between the shear moduli of domain and the continuous phase
’;—;’ ~ 25 as the domain is stiffer than the matrix. The ratio between the bulk

and shear moduli % is set to be 20 to enforce quasi-incompressibility

(Dassault Systemes, 2018) which correspond to an equivalent Poisson ratio
of 0.475. The dimensionless ratio between the critical stress for the onset of
plasticity or softening in bielastic material model is set to be % = % ~ 1.6

The ratio Z— between the moduli of the continuous phase for the bielastic

1
case is varied from 1 to 50 to test the effects of material softening on the shear
banding mechanism in the monolayer. Six specific cases of this ratio are
presented ZA =1,2,5,10, 20, 50.

2

3. Experimental results

Lipid monolayers are studied at multiple length scales. Absent in the
literature is a formal framework to define this multiscale structure. Here, we
aim to provide a framework for the scale space of lipid monolayers. Fig. 1A
shows the schematic setup for Langmuir monolayer experiments. The entire
lipid covered surface forms the monolayer with a length scale on the order of
1 x 10° pm; we will term this the geometric outer scale of the system.
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Two forms of data are often obtained at the monolayer outer scale: surface
pressure (IT), defined as the difference between the surface tensions of pure
water and lipid covered interface (Il = y, — y), and an image (M) (see
Fig. 1). In both cases, it is customary to assume that the monolayer at the
outer scale is a uniform two-dimensional manifold M embedded in
three-dimensional space R’

3.1 Image analysis

Fluorescence images, acquired at different area fractions during the com-
pression and expansion of the monolayer (see Fig. 1B), provide a resolution
of the spatial structure of the monolayer at the scale of a few micrometers.
At low surface pressures with the monolayer in the liquid expanded (LE)
phase, the fluorescent probe TR-DHPE is homogeneously mixed in with
the lipids, and FM imaging does not resolve any structure. Structure first
appears in the images upon nucleation of liquid condensed (LC) domains.
Throughout the LE-LC phase transition the LC domains grow in size. The
domains appear dark in FM images because the bulky headgroup of
TR-DHPE is excluded from the well-ordered crystalline packing struc-
ture. However, beyond a certain compressive strain the LC domain growth
stops. Often in the monolayer literature, a tremendous amount of interpre-
tation is made about the structure and location of given lipid components
and their properties simply from FM images. We will refrain from making
such leaps of scientific faith. From the vantage of scale space, the FM data
simplify to binary pictures with dark regions (D-phase) and bright regions
(Cra-phase). We will refrain from using LE and LC, because these defini-
tions convolute mechanical properties with imaging data, yet the former
cannot be extracted from the latter at this scale. The data structure from
the FM images can formally be defined as DU Cpy € M. DU Cpyy can
be studied from a geometric and topologic standpoint. Indeed, as will be
detailed later, a particular geometric rearrangement of D U Cpy, is at the
heart of this paper, the so-termed banding instability (Pocivavsek, Frey,
et al., 2008).

Before considering banding in detail, one last data feature is often seen
and described at the level of M: collapse. In the lipid monolayer literature,
collapse has a thermodynamic and imaging definition. In terms of monolayer
thermodynamics, collapse is traditionally defined as the point where the iso-
therm becomes horizontal at a high lipid packing density. By taking the
derivative of the isotherm, one can interpret collapse as a zone of infinite
compressibility. Often this point in the isotherm is correlated with the
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FM image structure on the monolayer. Fig. 2 shows the first ever generalized
collapse phase diagram based on the structure of the collapsed monolayer as
derived from FM images. Without loss of generality, we can interpret

collapse as the loss of the planar geometry of M. More formally, M =
Ule TM,;, where T M, defines a chart domain composed of the local tan-
gent space isometric to the plane; the entire monolayer is given by gluing the
different T'M; together to form the atlas M. The process of defining scale
space involves defining the different layers of local charts giving rise to atlases

wrinkling folding crumpling
25C ‘ shear

banding vesiculation
37C

15C

{ \
. {

DMPE

DPPC:POPG 7:3
25C+ peptide

DPPC:GM1 a:b

Fig. 2 Generalized monolayer collapse phase diagram showing the richness of collapse
states in lipid monolayers and their tunability with various field parameters including
composition and temperature. Monolayer collapse is an elastic instability whereby
the lipid membrane collectively over some length scale undergoes in-plane or out-of-
plane displacement. This is a fundamentally different mode than movement of small
clusters of lipids from the surface to the bulk phase well described by Gibbs’ absorption
monolayers. The collective collapse modes are inherently governed by membrane elas-
ticity. Several of the authors have explored the inextensible membrane limit of mono-
layer collapse via wrinkling and folding where plate-like bending modes dominate
(Diamant et al., 2001, 2000; Pocivavsek, Dellsy, et al., 2008; Pocivavsek et al., 2009).
Relaxation of membrane inextensibility leads to multidirectional folding and eventually
the shear banding mode of in-plane relaxation (Pocivavsek, Frey, et al., 2008). In this
paper, we explore the general framework in which in-plane membrane elasticity can
be modeled. This figure demonstrates that the different collapse modes are universal,
spanning several different lipid compositions. Furthermore, membrane instability can
be controlled either by changing composition with the addition of peptides or unsat-
urated lipids or by temperature in single component systems.
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which become a large scale chart again leading to a new atlas on a different
scale. Working at the outer scale of M, before collapse, £ — 1 because the
monolayer is everywhere isometric to the plane defined by the air/water
interface, as such one chart gives the whole atlas. Collapse forces us to rede-
fine the above partition into multiple charts; as such at its most fundamental
topologic level, collapse can be viewed as the break-up of the monolayer
tangent space from a single vector space into multiple vector spaces, thereby
defining a monolayer tangent bundle TM. Nonzero curvature of the tangent
bundle defines collapse. If we define a local metric parameterization of the
monolayer, collapse by these definitions can be studied using standard
methods of differential geometry. Indeed, the canonical collapse structure
studied in the literature is the wrinkle-to-fold instability (Pocivavsek,
Dellsy, et al., 2008; Pocivavsek, Frey, et al., 2008), where the projected
one-dimensional monolayer collapses via buckling (appearance of curva-
ture). Measurement of amplitudes from FM images is experimentally impos-
sible. However, the position of the local monolayer surface is often defined
through intensity level sets in the FM images, increasing brightness is cor-
related to higher lipid density in the planes normal to the air/water interface
(see Diamant et al., 2001, 2000 for detailed discussions). Qualitatively this
allows us to identify bright regions in Fig. 2 as regions of nonzero TM
curvature, i.e., collapse.

No standard geometric or topologic language exists to define the differ-
ent collapse states. As such, we use descriptive terms in Fig. 2: wrinkling,
folding, crumpling, shear banding, and vesiculation. The generalized col-
lapse phase diagram shows that both temperature and composition can be
used to tune the type of collapse a monolayer will undergo. Monolayers
of varying lipid compositions and at different temperatures can all have very
similar collapse structures on the scale of M. This supports the existence of a
generality not only of geometry and topology but also mechanism in lipid
monolayer collapse.

The characterization of collapse geometry is the first step before any dis-
cussion of mechanism can be undertaken. As noted above, on the outer
scale, the geometry of M can be studied by studying the structure of
D U Cppr. The operationalization of this was undertaken in our prior work
on lipid monolayer banding (Pocivavsek, Frey, et al., 2008). First, the
FM image is binarized, followed by the calculation of the image autocorre-
lation function (p(x,,.,.), p(xmﬂ',,,,ﬁ)). Taking the Fourier transform of the
autocorrelation function gives the image structure factor S(q). Fig. 3 shows
the outline of this approach and its application to distinguishing two collapse
states: folding and banding. For monolayers which fold, S(q) remains overall



Multiscale geometry and mechanics of lipid monolayer collapse 17

Image Based Monolayer Instability Analysis
folding shear banding

senin S(q)

30mN/m

50 mN/m

in-plane strain

increasing lateral compression

70mN/m

Si(q) # Sa(q)

imaging signature of
shear banding instability

Sf (q) —» lattice stretch Sp (q) s nodes
a/b>1 Y\/

Fig. 3 Geometric in-plane monolayer instabilities are captured by calculating the
per-pixel image autocorrelation function (p(Xm ), p(Xmins)), Whose Fourier transform
gives the image structure factor S(g). In our prior experimental work on lipid monolayer
banding (Pocivavsek, Frey, et al., 2008), we discovered a correlation in the appearance of
nodes in 5(g) and the banding instability. In monolayers which fold, S{q), at high pres-
sures, becomes distorted, indicating overall lattice shearing, but does not show nodes.
The appearance of nodes in Sq,(g) indicates the loss of in-plane stability. This general
method can be applied to experimentally and computationally derived data.

1T

constant throughout compression, minus some local distortion which can be
correlated to global monolayer stretching in the direction normal to com-
pression but in-plane. Because the image is made binary, this analysis cannot
capture variation in local intensity level sets, as such actual folds cannot be
captured. In monolayers which undergo banding, S(q) changes structure
with increasing compression. As Fig. 3 shows, the symmetric S(g) develops
nodes as banding occurs. Studying S(q) proves to be a useful measure of
geometry on the outer scale of M. Later, we apply this method to compu-
tationally derived monolayer structures.

This completes our analysis of the outer scale of the lipid monolayer scale
space. From the standpoint of collapse, we see that monolayers that fold
show very few identifiable geometric features in M until the folds appear.
However, monolayers which undergo in-plane banding show a rich set of
geometric features in M. The next step in our analysis is to probe the geom-
etry of the monolayer at a higher spatial resolution, “de-blurring” scale space
and defining a submanifold M 4g). As outlined in Section 2, this is accom-
plished by transferring the monolayer from the air/water interface onto a
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Atomic Force Microscopy Monolayer Microstructure
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Fig. 4 Lipid monolayers show a rich multiscale structure in-plane and out-of-plane. At
the completion of the LE-LC phase transition plateau (see Fig. 1B), the monolayer has a
biphasic appearance with dark circular domains (LC or D) surrounded by a bright con-
tinuous phase (LE or Cry). Continuity of the two phases in the FM images is blurred to
order of pixel size. When these monolayers are evaluated on a smaller length scale using
AFM, a new set of structures appears in the Cry phase, which is composed of submicron

D-phase domains of height hﬁﬁ'{?c which is equal to the height of the large-scale circular

domain. The submicron D-phase domains are surrounded by a continuous C',;-phase
with a lower height hE’;')'?E. Our data show that upon increasing surface pressure to col-

lapse, monolayers which undergo folding transition do so while maintaining a uniform
height in the membrane; however, monolayers which undergo banding have a persis-
tent multiheight and in-plane multiscale structure. The figure highlights the different
phases in the AFM images, which will be referenced in the theoretical part of the paper.

solid substrate and performing AFM. Fig. 4 shows a set of FM images and the
corresponding AFM images for representative monolayers which collapsed
by folding and banding. The AFM data have richer structures compared to
the FM images. The data are still in the form of images; however, the inten-
sity at each pixel is directly correlated to local distance normal to the image
plane. Recall in the FM images, the intensity distribution allows different
domains D and Cpyy to be defined; however, no direct experimental corre-
lation between intensity and other length scales exists. Thus with AFM,
there is a higher resolution lateral scale and the appearance of a quantifiable
height scale. As Fig. 4 shows, brighter regions of the AFM image correspond
to thicker areas of the monolayer. These areas also are easily identifiable as

the dark domains in the FM images, as such we will continue to refer to
(k,3)

this phase as the D-phase which now has a corresponding height h(R) [
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The darker regions in the AFM images correspond to a lower height
phase. When the FM and AFM data for the continuous Cgy~phase are com-
pared, we observe the appearance of a new geometry at the AFM scale.
Stated formally in terms of geometric space, D& Mypy=De M
but Cary € Mapy # Cry € M. When one looks into the Capys -phase,
we see an almost self-similar geometry to the original global geometry DU
Cry € M except on a much smaller inner and outer scale. We define this

new higher resolution doubly embedded geometry as DUCfz €Curm €

M py. We also link a height hg’;’f)LE

pression causes a change in the C4pp-phase geometry. For both monolayers

to the Cf{—phase. Increasing lateral com-

that fold and band, increasing lateral compression causes a decrease in area cov-
erage of the Cﬁ—phase. For monolayers that fold, at the end of compression just
before folding onset, the Cf{—phase has disappeared and only a uniform height

D-phase remains. However, for monolayers which band, DUC];2 € Capvi-
phase persists to even high pressures, the mechanical implications of this are
explored in the theoretical section of this paper.

This completes the geometric analysis of scale space for lipid monolayers.
The more formalized geometric approach used here allows us to define and
study not only the geometry but also topology of lipid monolayers and their
mechanical instabilities. Such approaches have led to wonderful insights in
the behavior of three-dimensional liquid crystal phases (Safran, 1994), but
are lacking for lipid monolayers. Several observations are noteworthy.
First, between the two collapse modes analyzed, the dynamics portions of
the geometry switch. In M, the folding monolayer is geometrically static
while the banding monolayer shows geometric evolution; however, in
M gy, the folding monolayer shows more rapid evolution with the com-
plete disappearance of CII‘; with compression, while the banding monolayer
geometry stays more static. Second, because of the different levels of infor-
mation in the image-based data at different scales notions of continuity and
homogeneity become complex.

3.2 Isotherm analysis

From the standpoint of thermodynamics, the uniformity of monolayer
response is taken as given when compression isotherms are measured.
However, beyond a certain surface packing density, the measured surface
pressure is likely only representative of a submanifold of (M) (Pocivavsek,
Frey, etal., 2008; Witten, Wang, Pocivavsek, & Lee, 2010). To prove this,
consider that the Wilhelmy plate is the standard method for monitoring
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interfacial pressure in a Langmuir trough; it consists of a rectangular strip
connected to a force transducer (see Fig. 1A). The meniscus at the air/
lipid/water interface pulls down the strip with a force proportional to
the net surface tension. In the case of M, under static conditions, the sur-
face pressure is uniform and unaffected by the geometry of the meniscus. As
the monolayer is compressed, surface phase transitions occur and the fluid
monolayer transitions to a solid one. Working with an ideal system where
the monolayer transitions from a perfect fluid to a perfect solid but geomet-
rically remains a smooth two-dimensional manifold M, we investigate the
impact on the output of the Wilhelmy measurement. We take the ability
to sustain a static shear stress as the only difference between liquid and solid
monolayers. M is taken as a thin annular disk of outer radius R and inner
radius a. The inner boundary represents the Wilhelmy plate; the outer radius
represents the boundary of the Langmuir trough or external length. Applying
a uniform compressive radial displacement field u(r) generates a radial strain
Y= 0 and an azimuthal strain y 44 = u/r. Assuming linear elasticity, the strain
gives rise to a proportional stress o with the same principle axes. 6, = Ay, +
Bygpand 644 = By, + Ay 4y The equation of equilibrium is given by 0,6, =
(04p — 0,)/1(see derivation in Witten et al., 2010). Substituting the stresses for
a uniform radial displacement gives 07 +0,u/r — u/r* = 0. The general solu-
tion is given by u(f) = C[r+ b*/r] (Witten et al., 2010). Making the appropriate
substitutions gives 6, = AC[(1 + B/A) — (b/#(1 — B/A)] and 6,, + Cpp =
2C(A + B), which represents the hydrostatic stress. Several insights come from
this analysis. In the setting of a perfect liquid monolayer A = B, since no
deviatoric stresses are possible under static conditions, and there is no depen-
dence of the stress on location from the inner boundary, b = r. In this case, the
thermodynamic measurement is uniform and valid over M . However,
presume B < A, which might occur for an elastic film. In this case, the radial

stress will reverse sign whenever b/a > \/(1 +B/A)/(1 — B/A). Now anew

inner scale appears: b ~ a\/(l +B/A)/(1 — B/A). To accurately sample the
surface pressure, one would have to do so on the submanifold M, C M.

This simple example serves to show that even the much used and measured
isotherm is sensitive to the multiscale construction of the monolayer. There
are currently no established methods on how to precisely define the sub-
manifold M, at which the lipid monolayer can be considered a uniform con-
tinuum solid from the standpoint of elastic response.

With the above limitations of local surface pressure measurements in
mind, it is possible to obtain effective elastic moduli from isotherm measure-
ments (see Fig. 5). The two-dimensional bulk modulus K is related to the
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Fig.5 (A) Bottom curve is DPPC:GM1 8:2, top curve is DPPC:GM1 5:5 displaced 100 points
on y-axis. In both curves, the red box marks the LE to LC phase transition and the
yellow x the rigidity onset point. In the case of DPPC:GM1 8:2, where no in-plane
rearrangement occurs, K,qx ~ 110 MPa is reached at 40 mN/m at an area per molecule
(Continued)
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slope of the I — A isotherm, Kop = —A %. Dividing K, by the given
monolayer thickness (I ~ 2nm) gives the traditional bulk modulus
K by simple dimensional analysis (Gopal, Belyi, Diamant, Witten, &
Lee, 2006; Gopal & Lee, 2001; Pocivavsek, Frey, et al., 2008). At high
area per molecule, the monolayer is liquid and the compressibility is high,
marked by a low K (long nearly horizontal lines in the data). The LE-LC
phase transition plateau is marked by a discontinuity and drop in K. It is
tempting to quantitatively interpret this from a mechanistic standpoint of
phase transitions and area condensation occurring on a much smaller
scale; however, given the analysis above about the validity of II in an
ill-defined subdomain M), we believe it is more appropriate to simply
interpret this inflection as a sign of dissipation but not link to any partic-
ular mechanism. Following the LE-LC phase transition, as defined via
imaging on M, K undergoes a steep rise until a sharp inflection is again
reached followed by a complex region of decline and oscillating K values.
This indicates that the monolayer never truly reaches a mechanically
stable state post LE-LC phase transition, given that even for very small
compression the magnitude of K changes. Again, given that the isotherm
is only providing information locally in M, while the displacement
field is being applied globally on M, any mechanistic interpretation is dif-
ficult. It is clear however that a maximum K is reached far before collapse
is seen on the scale of FM images. This indicates that some local
dissipation or relaxation is occurring that is not captured in the FM
scale space.

Fig. 5—cont’'d of ~40 (A*/molecule). The transition in this case is very sharp. In the
case of DPPC:GM1 5:5, where the monolayer undergoes an in-plane domain
rearrangement, K. ~ 80 MPa is reached at a slightly higher surface pressure of
50 mN/m, however, at a similar area per molecule of ~40 (A4*/molecule). (B) The bottom
curve is DPPC:POPG 7:3, while the top curve is DPPC:POPG:SP-B 9-25 70:30:2. The phase
transition at low molecular density and the rigidity onset points are marked as above. In
the bottom curve, where there is no peptide and the monolayer does not rearrange, Kyax
~ 112 MPa is reached at 40 mN/m at an area per molecule of ~ 40(A%/molecule). In the
monolayer with the peptide, a first maximum is reached earlier at 31 mN/m and
54 (A%/molecule). The monolayer begins to relax at this point. This is likely due to a con-
formational change in the peptide, at the start, and later on a transition of the peptide
from the surface into the subphase.
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4. Finite element analysis

We present a highly novel method of integrating experimentally
derived geometry with finite element analysis (FEA) to model lipid mono-
layer response under compression. In our prior work, we postulated the
banding relaxation was qualitatively a “soft shear relaxation” triggered by
a stress-induced instability (Pocivavsek, Frey, et al., 2008). Until the present
work, this remained only a hypothetical notion, as we did not have a the-
oretical or computational model to validate it. Fig. 6 details our current
workflow. As detailed above, at the scale space of FM images M, the
banding instability is defined as a change in the image structure factor
S(g9). To build the initial computational geometry, we map the distribution
of domains at the end of the LE-LC phase transition plateau from M into a
computational submanifold P. From the standpoint of geometry, P pre-
serves the exact shape of the D-phase domains and their initial positions rel-
ative to each other. We then define the Cry-phase as P — D. Staying true to

the FM scale space, P has uniform thickness, which implies hE;’iE = hE;’fl)‘C

The goal of these simulations is to provide a computational framework with
which to uncover the necessary conditions within the continuum mechan-
ical limit for lipid monolayer banding.

Lipid monolayer collapse has traditionally been viewed as a continuum
instability, though there lacks a uniform and general theory to explain the
various observed collapse modes (see Fig. 2). Of all the collapse modes, fold-
ing has received the greatest attention in the literature (Diamant et al., 2001,
2000; Lipp et al., 1998; Pocivavsek, Dellsy, et al., 2008; Pocivavsek et al.,
2009). There is a clear consensus that folding is a continuum monolayer
instability that is dominated by elasticity. The dominant length scale of
monolayer folds is explained by a very simple linearly elastic model of thin
film buckling (Pocivavsek, Dellsy, et al., 2008). This motivates our approach
in building a computational model for monolayer banding. Given plate the-
ory explains folding to first order, and linear plate theory dictates suppression
of in-plane modes in favor of buckling while banding suppresses folding;
building a model that can capture in-plane rearrangement of the D-phase
is critical. As detailed in Section 2, we model the D-phase as a stiffer hyper-
elastic continuum. We vary the constitutive response of the Cgy-phase. If
Cra responds elastically like a neo-Hookean material, strain develops pre-
dominantly in the direction normal to compression spanning different
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Fig. 6 Fluorescent microscopy images at lower surface pressures are used to generate
input geometries for finite element modeling of a local portion of the lipid monolayer at
the FM-scale. The D-phase domains are segmented as separate individual parts (black
domains) embedded in the continuous Cry-phase (gray background phase) making a
submanifold P, where P C M, with M representing the entire monolayer. We do
not at this point geometrically model the smaller length-scale structure contained in
the Cey-phase composed as a union of the C',;—phase and D-phase microdomains.
However, the effect of this microstructure comes into the problem at the level of the
constitutive response of the Cry-phase. Outputs of FEA simulations, where the initial
patch is compressed along the horizontal direction mimicking the Langmuir trough
loading geometry, are shown. 5(q) is calculated from the real-space R(n) images showing
that initially the D-phase domains within this local monolayer patch form a perfect hex-
agonally close-packed structure. The appearance of the symmetry breaking transition
signified by nodes in S(g) and bands in R(n) demonstrates that the banding instability
can be captured in FEA, reproducing what is seen in experiments.
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Stress

Visco-Elastic Neo-Hookean

Elasto-Plastic

Fig. 7 Finite element modeling of P under lateral compression is carried out using a
neo-Hookean hyperelastic energy functional for the D-phase and three built-in consti-
tutive models for the Ck-phase: neo-Hookean, viscoelastic, and elasto-plastic. If both
phases respond elastically (top row) then even at very high compressions, the mono-
layer distorts but does not undergo banding. For the two dissipative constitutive
models, signatures of banding clearly appear; these are more present in the case of plas-
ticity than viscoelasticity. Because the D-phase is stiffer than the C’,;-phase, the stress
field is primarily seen in the D-phase (first column). However, the C’,;-phase contains
the majority of the strain. In the case of neo-Hookean and viscoelastic responses, the
strain is predominantly tensile and normal to the direction of compression, indicating
that incompressibility of P dictates the strain field. In the case of plasticity, localized
zones of high shear appear throughout the C',;-phase. These zones are tilted at ~ z/4
rad to the axis of compression and correspond to local regions of high plastic deforma-
tion and dissipation. Moreover, the appearance of these dissipation zones in the
C',;—phase correlates to the reorganization of the D-phase into bands (see bottom right).

domains (see Fig. 7 top row). This strain distribution persists to even high
lateral compressions. If we allow for dynamic dissipation in Cpy, by modeling
it as a viscoelastic solid, a more complex and uniformly distributed strain
pattern develops. In both the neo-Hookean and viscoelastic cases, the
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distribution of the D-phase in R(n) does not show banding. If we allow for
stress dissipation in the form of plasticity (see last column in Fig. 7), localized
zones of high shear stress appear tilted at an angle ~ n/4 rad to the axis of
compression. These shear bands correspond to regions of active plastic
deformation. Moreover, the geometry of the deformed configuration in
‘P shows banding in R(n) as well as the appearance of nodes in S(q) at high
lateral compression (see Fig. 6).

The simulations presented in Fig. 7 prove that for banding to occur a
degree of dissipation is needed in the Cpp~phase. We investigated nonelastic
forms of dissipation such as viscoelasticity and plasticity. Experiments (see
general collapse phase diagram in Fig. 2) show that banding represents an
evolution of elastic monolayer response with increased degrees of freedom
in-plane. Elasticity without dissipation has successfully explained monolayer
folding (Pocivavsek, Dellsy, et al., 2008; Pocivavsek et al., 2009). There is no
experimental evidence that the monolayer has more complex constitutive
properties such as viscoelasticity or plasticity in the banding regime.
Fig. 4 shows that the local substructure within the C4pp-phase given by
the distribution and proportion of the D U Cl}”;—phases 1s the only experimen-
tal evidence of a difference between monolayers that fold and those that
band. The central hypothesis of this paper is that a purely elastic source of
dissipation can lead to the banding instability. The theoretical portion of this
paper builds a constitutive model for D U Ci € Capym € P using the AFM
derived data as presented in Fig. 4. This model predicts the existence of an
internal elastic instability arising from the microstructure within the Czkz‘
phase. To model this with FEA, we construct a bielastic strain energy for

the sz -phase: W[:’%(fl —3)+DL](]— 1)2 for 0,,, < 04 and W, =

(I, -3)+ Di?(] — 1)2 for 6,,, > G isica- The D-phase is modeled as a uni-

form elastic solid defined by a single shear modulus p,. Three dimensionless
ratios are held constant: first, a constant ratio between the shear moduli of
domain and the continuous phase % ~ 25; second, a fixed ratio between the

¢

bulk and shear moduli f = 20 enforcing quasi-incompressibility; and third, a

fixed ratio between the critical stress for the onset of softening in a bielastic

material model % = % ~2 1.6. This allows us to study the effect of different

levels of softening by adjusting the ratio y, /p,,. Six specific cases of this ratio
are simulated % =1,2,5,10,20,50. Note that when y //1[2 =1, the contin-

uous phase becomes a pure neo-Hookean material. Fig. 8 shows the distri-

bution of the D-phase at low and high lateral compression as a function of
Ha.

b
He

for comparison, we include the elasto-plastic model in the last column.
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finite element

increasing symmetry breaking

Fig. 8 To test the hypothesis that purely elastic sources of dissipation can lead to the
banding instability FEA simulations are performed with a bielastic strain energy for the
Ck-phase: W, =k(lh —3)+ Diﬂ(lf 1)% for 6ym < Geritical and W, =f2(h —3)+ D%Z(J* 1)?
for oym > Gcritical (s€€ Main text for more details). By adjusting the ratio u /u,,, different
levels of softening effects are examined, increasing left to right in the figure. Note that
when ug /u., =1, the continuous phase becomes a pure neo-Hookean material. For
comparison, we include the elasto-plastic model in the last column. Each simulation
is analyzed using the methods presented above, the real space image R(n) is trans-
formed into the structure factor S(g). A low level and high level of lateral compression
are analyzed, with results shown in the top and bottom two rows, respectively. For all
cases, at low compressions, the D-phase in P is organized into a nearly perfect hexag-
onal close-packed structure. As lateral compression is increased, we see a transition to
banding in R(n) and the appearance of nodes in S(g) that become most prominent for
Har/iea = 50 and in the case of plasticity.

We calculate S(q) for each set of computationally derived domain images. At

Ha

low compression, p does not impact domain distribution and S(g) shows

2

the D-phase is organized into a nearly perfect hexagonal close-packed struc-
ture. As lateral compression is increased, we see a transition to banding in
R(n) and the appearance of nodes in S(q) that become most prominent
for p./po = 50 and in the case of plasticity. This proves that banding
can arise from a bielastic response in the C4pp-phase and is sensitive to
the degree of softening dictated by the ratio p,/p». The theoretical portion
of this paper will provide an insight as to the source of this modulus ratio
based on the C4py-phase microstructure.

Fig. 9 shows the maximum and minimum principal strains in the
Cary-phase at the same time points as the geometric analysis in Fig. 8.
Since our analysis is constrained to relative ratios of certain moduli, the abso-
lute magnitude of these strains is not to be interpreted too rigorously (we do
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Fig. 9 The maximum and minimum principal strains in the C4ep-phase are analyzed for
the two compression levels shown in Fig. 8 and the different values of u /.. The first
column where u./uc; = 1 corresponds to a pure neo-Hookean response, while the last
column shows the strain distributions for the elasto-plastic system. At low compression
(first two rows), the strain distribution is nearly homogeneous and equivalent in all cases.
At higher compression, for low values of uc/uc,, a predominantly tensile strain normal
to the direction of compression develops. As uq1/uc, increases, this strain field begins to
rotate such that by mismatch 20 and 50 strong shear bands appear very similar in dis-
tribution to the plastic shear bands. We take this as the hallmark signature of a local
material instability in the bielastic response of the Csrm-phase leading to the global
rearrangement of the D-phase into bands.

provide the scales for completeness). The distribution of the strain however
is informative, much as in Fig. 7. For the neo-Hookean case yi,; /u,, =1 up
to ft/H, = 10, the maximum principal strain (tension) occurs between
D-phase domains in the direction normal to compression. This intuitively
agrees with the notion that the quasi-incompressible monolayer when com-
pressed laterally along the horizontal direction expands and is stretched ver-
tically to conserve volume. Beginning at p, /i, =20 and extending to
mismatch 50, the vertically oriented tensile principal strain begins to rotate
at higher compressions. The strain pattern which emerges in the bielastic
materials is very similar to the plasticity zones seen earlier (see Fig. 7) and
shown in the last column of Fig. 9. The appearance of these purely elastic shear
bands arise from a local material instability in the bielastic response of the
C4rv-phase leading to the global rearrangement of the D-phase into bands.
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5. Multiscale geometry of lipid monolayers

A basic asymmetry exists in monolayers, the hydrophilic headgroups
bind with water molecules of the underlying subphase, upon which the
hydrophobic tails stick out in air. Once the monolayer is formed, loading
is applied by controlling the displacement of a (very slowly) moving rigid
wall. The headgroups through contact tractions at the water-lipid interface
bear the load. During this quasi-static process lipids undergo conformational
and positional disarrangements. The former are well known to relate to

(i) changes in conformations of the lipid tails (occurring with very negli-
gible storing of energy compared with the energy stored within the
water-headgroup layer), which undergo either shortening (through
increase in “curliness” by rolling) or elongation, through unrolling
their physical length,

(ii) changes in the projection of the tails at the water-headgroup interface,
which increases as shortening (and, sometimes, tilting) occurs.

The latter kind, i.e., positional disarrangements, involving switching of lipid

clusters similar to jamming in granular materials (Hunt, Tordesillas, Green, &

Shi, 2010; Majumdar, Krishnaswamy, & Sood, 2011; Majumdar & Sood,

2008; Tordesillas, Lin, Zhang, Behringer, & Shi, 2011; Tordesillas,

Pucilowski, Lin, Peters, & Behringer, 2016), is envisioned to be a plausible

mechanism for rearrangements of such clusters when material instabilities
occurring through banding arise. This aspect will be discussed later. Other
geometrical changes include the macroscopic deformation, describing the
very slow motion of the headgroups within the water-lipid layer. Such defor-
mation and along with positional disarrangements are captured through a
multiscale kinematics based on the theory of Structured Deformations,
labeled as SDs (Deseri & Owen, 2003, 2013, 2019), a relatively recent mul-
tiscale geometrical approach to the mechanics of complex bodies (a recent
application to lipid bilayers, more precisely to the cell membranes, can be

found in Carotenuto et al., 2020).

The multiscale geometrical changes discussed above are visualized in a
time-snapshot of the lipid monolayer represented in four different con-
figurations and displayed in Fig. 10. In the first three of such configurations,
denoted as By, Bﬁ’;f", and Bg‘gf’, we consider a § —Representative Area
Element, labeled as 6 —RAE, namely a small patch relative to the size
of the whole monolayer. Indeed, the size § < ¢, where £ is the minimum
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Fig. 10 Beginning in the lower left, the virgin configuration B(Vljzg is shown with a mate-

rial particle X within a smaller area of interest 6%, § —RAE labeled Cf,k). This configuration
is homogeneous in height and lateral organization with no micro- or macrostructure; we
. . tk . .
label it LG. Through any sequence of mappingsi , Bf,'jzg is taken to B;Z,?se, a macroscopic
reference configuration essentially identical to the virgin one. However on a sub-
macroscopic level, Cf?k) reveals a multiphase structure (see Fig. 4). Averaged conforma-
tional changes occurring during the mapping from B(vl;zg to B;g;’se are carried out by Vi,

which provides the average change in volume through Eq. (18). The gray paths indicate
how positional disarrangements, switching of submicroscopic islands of LC phase, map
from one configuration to the next. Sequences of classical (macroscopic) deformations

y® from either B9 or B essentially determine the current configuration 5.

size of the system and d is of the order of 0.1 pm. Within a § —R AE, cluster
of lipids of much smaller sizes with respect to 6 can coexist in differ-
ent conformations (see Fig. 4 for the experimental source of this

length scale).
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A chart of Cartesian coordinates in any configuration, with an origin
at an arbitrary material point at the headgroup-water interface, is taken.
It 1s useful to build a link between lipid physics and continuum mechanics
terminologies. We look at the virgin configuration By, of the body as the lim-
iting case in which the vast majority of lipid clusters are in a conformational
state at the interface between the gaseous and LE phases (see Fig. 1B). The
LG phase here is used to define a purely homogenous liquid state of the
monolayer that might exist prior to any phase transitions but with a finite
surface pressure (see Fig. 1); commonly in the literature this state is referred
to simply as LE however to help us differentiate between a virgin configu-
ration that is completely homogenous and multiphase configuration we take
the notational liberty of defining the LG phase. In this homogenous state, the
body is practically fully relaxed and macroscopically uniform and homoge-
neous, conforming to the outer scale defined by FM scale space (see Fig. 4).
For the physical situation at hand, this is exactly how one could conceive a
virgin configuration for the monolayer. This configuration is macroscopi-
cally identical to the reference one, although by moving to the next level
of monolayer scale space (see closeup 1 showing a 6 —RAE at the
top-left in Fig. 10) submacroscopically lipid conformations are not uniform
in any 0 —R AE within either reference configurations displayed in Fig. 10.
Indeed, there are clusters of lipids formed by smaller subislands in the LC
phase coexisting with subregions in the LE state. Our terminology labels
coexistent LE-LC phases within the given 6 —RAE in the reference con-

figuration Bg’;ﬁ“ as materially disarranged. This term reflects the conforma-

tional changes experienced by the lipid clusters relative to the virgin

configuration. Indeed, within the given 6 —RAE in Bgt’j‘l“, subislands of

more packed and elongated units than the ones in the gas phase characterize
the morphological variations of such lipids. Lipids in the gas phase are uni-
formly present throughout the virgin configuration. The more fraction of
cluster of lipids within a given 6 —RAE tends to include subdomains in
the LC and LE phases, the more materially disarranged the body becomes
within that given region. Of course between subislands in the LC and LE
phases contained in the same cluster there are discontinuities in the height
of the lipid tails and, hence, in the vertical component of the displacement
field at the scale of such domains.

To complete the geometrical description of the system at hand, we intro-

duce a sequence of macroscopic deformations, y*), from a reference
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configuration to the current one,” and its gradient E®)_ It is worth noting

that the inverse (Vi("“))71 of the gradient of a sequence of mappings i
(converging to the identity as the index k goes to infinity and as the size

0 of the 6 —RAE goes to zero) does, in fact, converge to the standard inelas-

tic part of ¥

infinitesimal neighborhoods of a given material particle, this convergence

. Unlike existing methods, that can only reconstruct local

allows the retrieval of the whole macroscopic configuration. The latter mac-
roscopically looks exactly the same as BZ?““’ and Bi}m, with the property of

being a relaxed configuration. Hence an actual entirely virgin configuration,
Byiy, can be retrieved in this way.

We emphasize the fact that the mapping, its gradient and its inverse con-
verge, although the the presence of the disarrangements described above implies that
the sequence of the gradients Vi does not converge to the gradient of the limit ¥
(limy_ 4o limg_.q 52 J};X 5 i® da vi) Of the generating sequence i®,
This is the case for the sequence at hand, for which Vi converges to a
tensor field not equal to the identity.

To bridge the terminology between the present context and the theory
of SDs we remark that, upon comparing the local blurred geometrical
changes between the virgin and the reference configuration, the actual pure
measure of disarrangements due to geometrical changes between the virgin
and the reference configuration is the following difference

V( lim lim§2 / i dAy,) — lim lm 872 [ Vi dAp,.
Ox6

k— + 00 0—0 k—+ 00 6—0 5X8

(13)

It is worth noting that lim,_, 4 lims ¢ 52 fgxg i® dA virg 1s the identity
mapping, i, which has the constant gradient I, while the tensor to the left
smears out the conformational changes experienced by the lipid clusters.
Hence, before taking the two sets of limits above, as an approximate measure
of pure conformational disarrangements the tensor field coming from the
following difterence can be considered:

1- Vi, (14)

* Either Bﬁlf'»”“ or B2 once positional disarrangements have occurred, upon restricting the reasoning

ref 2
Phase

above to a generic § —RAE element displayed in both configurations By, and By, making them

macroscopically identical to one another.
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This tensor field represents the appropriate average of discontinuities in the
vertical component of the displacement field at the scale of LC and LE sub-
domains, or equivalently, an average of the jumps in lipid tail heights within
the small islands contained in 6 —RAE.

An advantage of the approach undertaken here is that we carry on infor-
mation about the geometrical changes by generating Structured
Deformations (SDs) of the whole body through limiting processes, allowing
us to retain key features of the determining sequence of mappings and their
gradients (see Fig. 10).” Such SDs come in pairs of two elements. The first
element is a vector-valued field representing either the macroscopic defor-
mation or the identity mapping. The second element is a tensor-valued field
which does not need to be the gradient of the first element. This systemat-
ically accounts for the problem of geometric compatibility and applies to the
configurations of the body as a whole, not just to infinitesimal neighbor-
hoods of a given material point as it is customary in standard approaches
to finite inelastic phenomena, e.g., growth in biological materials and in
additive manufacturing, metal/soil/polymer finite plasticity, finite viscoelas-
ticity, finite damage, etc.

5.1 A closer look at conformational changes

Ph
Within a subdomain of the reference configuration By, termed 6 —RAE,
a microstructure exists which experiments confirm is a coexistence of

nanoislands of LC and LE phases (see Figs. 4 and 10). Comparing 6 —

RAE € Bgﬁ““ to 6 —RAE € Byjy,, it is clear lipid conformational changes
have occurred. The change in lipid tail height compared to the fully relaxed
configuration By;, can be taken as purely morphological since any energy

stored in the tails is negligible compared to the headgroups. Nevertheless,
(k.6)

as seen in Fig. 10, evaluating an averaged measure Ay of lipid tail elon-

gations is key to understanding monolayer mechanics By defining
k,6 (k& le 3 k,5) k,6
AEC) - C/han’ ) - >/dARff and /1< - h b/thrg’ I(JE ) =

(k o) / dA Ref as the changes in elongation and area concentrations of lipid
clusters in the LC and the LE phases, respectively, one can calculate the aver-
age elongation of lipid tails within a subdomain of the monolayer

b AsS goes to zero and k tends to infinity.
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(k3) (k8)° | (k6) (ko)

/lgk’é) ‘Lc *ic ‘LE_MLE (15)
k,6 k,0 k.6 k.6
( )/1( )_,_ C(LE))“(LE)

/1 and /1LF within each subcluster of a given 6 —R AE of the reference

conﬁguratlon Bg’gﬁ“ are considered constant. This is justified since physically

these are two different thermodynamic phases, connected by a first-order
phase transition. The respective surface concentrations of the two phases,
%
CE‘C) and ¢ ( ) , however, can change from point to point in-plane even
within a glven 6 —RAE of the reference configuration.®
Recall that the identity tensor P for in-plane transformations is simply

the projector of tensors onto the reference plane of the monolayer, namely
P=1- E; ®E;. (16)

Furthermore, we recall that the measured area changes between the refer-
ence and virgin configurations is the second invariant of the projection of the

material gradient P Vi®) onto the reference plane for the body, namely
dAre [ dAvig = det(PViV) (17)

Henceforth, upon factoring this term across both the numerator and the
denominator of Eq. (15), we can easily refer to the area concentration of
the LC and LE phases relative to the virgin configuration.

Local volume changes of lipid clusters during conformational changes
have to be computed to account for the second aspect of tail morphological
variations, namely their projection onto the headgroup-water interface. The
local averaged volume change can be written as

det(Vi®) = 1) der(P Vi (¥)) (18)

This same result is obtained by comparing the local volume measures within

)

Bgﬁfase and Byiy,. To derive this, we first define the averaged heights h( Ref and

Phase

h(V,,g) as the heights of the lipid clusters within B, o and By irg, respectively;

and, as mentioned above, hER))L( and hER))LE the actual heights of lipid clus-

ters within C ;2 (see Fig. 10). The volume occupied by the clusters at a point

¢ Evidently, while dAg, denotes the area measure of an infinitesimal surface patch within a given

. . .. % &S) . . .
0—RAE in the reference configuration, the quantities dAiC) and dAg‘C) indicate the corresponding
local area measures of the lipid clusters within the LC and the LE phase in that same configuration.
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inside 6—RAE € ngﬁ“ can then be written as follows: hgz ef> dARy =
hEk )5) dAE];(S)LC + hE )) dA(R) )LE We map this relationship into By, by

dividing both sides by h(V,, g) followed by dividing and multiplying each area

measure by dA;, to obtain:
geca) Virg /1(1@5) (LkEa) Virg /1(“3) _ /lgk,a) det(P ﬁi(k)) (19)
where ﬂg R Lf / h(Vk”g), (I” o) Vie _ cl(jeéé) det(PVi®) and cékEﬁ) Ve

cg}’;(s) det(P Vil )) are the surface concentrations relative to the virgin con-
figurations of LC and LE phases, respectively. On the other hand, local vol-

ume conservation requires that hgief) dArys = h(VWg) dA i, det(Vl )), hence
Eq. (18) and

det(Vil®)) = (o) Vite plko) 4 (k.0) Virg j(k.2) (20)

follow. The right hand side of the last relationship can be reinterpreted upon
3(k) 3(k)

considering the restrictions of the sequence i i 1c» and i, to the
counter-images of the domains in the LC and LE phases. For such mappings,

Eq. (20) reads as follows det(Vilt) = det(ﬁigg) + det(ﬁiik;). In turn,
Eq. (20) expresses the fact that volume concentrations relative to the refer-
ence configuration, cg/kolézc = dVLC§)/dVRejr (det(V i) " det(V i(Lké),

60— gV %D [V = (det(Vi®)) " det(VioD), of the LC and LE

phases form the totality of lipid population, namely C(IﬁO(?)LC‘i‘ c(ij)LE =1.

We can now revisit Eq. (15). In particular, by substituting Eq. (18) into
(20), we obtain

k5 ko ko %
ﬂg ) = C(Vol)LC ’IEC) + f(Va/)LE A(LE 21)

which gives a more revealing measurement of the average elongation of lipid
tails within a subdomain of the monolayer as it moves between By, and

k.5)

Bg;;”e By taking the average of ﬂg over an area element &” defined by

5 —RAE ¢ Bph‘m a mean value of this field within such an element can

be obtained: (ﬂ(k 5)> =57 [, .M A{9) dAg.. Given that /IE‘C) and /IE‘C) are
constant throughout the given § —RAE, we obtain

k,6 k,6 k,0 k,6 k,6
(ASy = (B0 A Ay A, (22)
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) will refer to (xlgk’(s)).

We are now in a position to characterize I —Vi®, the measure of pure

Henceforth, notationally lgk

conformational disarrangements. The sequence of gradients of identity map-
pings describing the conformational changes of the lipid clusters at hand
reads as follows:

o

, s 12 T
vi¥ = (der @vi?)) T pvi + AV E, 0 E; (23)

—-1/2

where PVi = (det (P V i(k))) ! Pvi® s the area preserving
(in-plane isochoric part) of the restriction of the disarrangement tensor to
the midplane. The measure of pure conformational disarrangements then
becomes:

pvi + (1 — 2¥)E; @ E;
(24)

. . 1/2
1-vi¥ = P — (da (PVi"))

Of note, the average measures of pure in-plane and out-of-plane disarrange-
[e]

~ 1/2 -
ments are given by P — (det (]P’Vi(k))) PVi

respectively.

® and 1 — lgk) ,

In order to retain only in-plane features of the conformational changes
contributing to the local average monolayer compressibility and its spatial
gradients, we uncouple the direct influence of the out-of-plane morpholog-
ical variations of the lipid tails within clusters in the given 6 —R AE through

the following factorization of the tensor Vil

o

~ (L ~ (B, 1/2 —(k
Vit = (ugﬂ 1) P + E3®E3) (Ag@ —12p /15”133@}33).

(25)

The tensor appearing to the right of this multiplicative decomposition of

5 (k) .
Vl( ) incorporates:

= (k)

k
* the average change in volume det(Vi (

) = 4% der(PVi™), labeled in
Phase ,

Eq. (18), due to conformational changes from By, to B
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* geometrical area preserving (averaged measure of) in-plane morpholog-
o

ical variations P@i(k), which would simply become P if no such redistri-

butions occurred,
and at the same time the factorized form allows for uncoupling the direct
influence of the out-of-plane conformational changes of the lipid tails within
clusters in 6 —R AE (such an influence remains confined to the right factor of
Eq. 25).

Since purely elongational changes within lipid tails do not contribute to
monolayer energy storage, it is physically reasonable to assume that the
monolayer energy density (not defined in this manuscript) is a function of
lipid morphological variations represented through K® alone.? Eq. (25)
allows us to identify this variable as

—°
K® = (A0 det(PVi®))'/? PV (26)

5.2 Macroscopic deformation

The overall deformation of the body is envisioned as a sequence of macro-
scopic (vector-valued) fields

~ . 7 (k

g =y + ¢;) X3 Es, 27)
where k simply labels the order of such a sequence, y® = y{(f) e, a=1,2,
depends only on the in-plane coordinates (not on Xj), and so does

J;gk) = jk9) / hgif), where h* ? is the average measure of the tail thickness
at a location in space situated within the image in the current configuration
(see Fig. 10 to the bottom right) of a given 6 —RAE mapped from the ref-

. . i ~(k) .
erence configuration (either Bgﬁ?‘e 0 Bgﬁ;}ft). In other words ¢; "~ is an aver-

aged macroscopic measure of the tail’s length change at a given location

x within the current configuration relative to the corresponding material

(k) 71( (k) —1

particle X =y x), where y simply denotes the inverse of the mac-

roscopic deformation at hand.

4 Of course the restriction to the plane of the monolayer of the sequence of macroscopic deformation
gradients will play a key role in the energy as well, as it will have to combine with K* to deliver the
appropriate geometric measure of geometrical changes upon which energy is stored.
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Here {e,}(q—1, 2} 1s an orthonormal basis taken at the water-headgroup
interface in the current configuration, while the unit vector in the third
direction remains the same as before deformation. The overall geometric
changes of the water-headgroup layer are then described by restricting
the sequence of macroscopic deformations (Eq. 27) to points located in
the reference plane at X5 = 0. Henceforth, by restricting the out-of-plane
component of the macroscopic deformation to have spatially slow variations
in-plane within a given 6 —RAE (for instance piecewise constant in plane

within the given 6 —RAE), then qggki ~ 0, and the approximate form for

the gradient of }7(k) becomes

BV = k¥ + 4\ Ey 0B, 28)

which is exact at the water-headgroup interface, i.e., at X5 = 0. This
sequence of gradients describes the local features (blurred out within the
given 06 —RAE) of the macroscopic geometrical changes. We note that

A k . .
Fk) = y( A) ® E4 (as usual, repeated indexes means sum among the items
with the same index) gives information about the in-plane macroscopic var-

iations of the geometry of the monolayer with respect to changes in position

in a reference configuration Bg,s (either ngfﬂ) or Bg‘:}” to be discussed later).

Here the notation o 4 = 6‘37:, with A =1, 2, and where X= (X, X5) denotes
both a generic in-plane material particle in B, and the in-plane coordinate
chart in the same configuration. Of note, we bear in mind that the sequence
of macroscopic deformation gradients does account for both geometrical

changes due to and without disarrangements.”

5.3 A measure of geometrical changes without
disarrangements

It is key to recall that elongational changes of the tails are only conforma-
tional, hence no energy can be stored through the morphological variations
of the lipid tails. A strictly kinematic, and somewhat related issue, is how
material elements taken within any 8 —RAE in the virgin configuration

¢ For future references it is useful to keep track of the restriction of the gradient of the macroscopic defor-
mation to any horizontal plane (e.g., the lipid-water interface). This has been already introduced in the

text in Eq. (16). Considerations about the isochoricity are obsolete: we must get rid of them. In par-
ticular, we note that yy(L,’) RE4 = Fff)A e, ® E4, after setting FE,L:)A = )/S:L
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deform without any kind of disarrangements caused by jumps, voids,
switching, etc. Fig. 10 and the basis of the theory of SDs help to state that
this local transformation' is given by the mutiplicative decomposition

G® = F® Vi® between the macroscopic deformation gradient, denoted
the material gradient (relative to changes of the material particle in By, of

> (k .. . . .
, and the tensor Vz( ). This is consistent with the fact that, upon taking

.. . ~ sk . . .
the composition of mappings y(k)OI( ) (transforming each material particle
X in the virgin configuration onto its corresponding location x=

()N’(k) Oi(k)) (X) in the current one) the result is still that same multiplicative

k) . .
® just mentioned above.

decomposition for G

This composition relates with the “elastic part” of the macroscopic deforma-

tion gradient in standard treatments of bodies undergoing finite deformations

and nonelastic phenomena such as growth, remodeling, plasticity, etc., as

E® =G® (Vi)™ In spite of this striking analogy, SDs do not require
~ (k)

giving constitutive attributes to the purely geometrical entities lN:(k), G,
and Vi® involved in the decompositions above. Finally, based on
Egs. (23), (26), and (28) an approximate measure of deformation without
disarrangements (which holds in this exact form at the waterheadgroup

(k)

interface and layer) G takes the following form:

G" = ¥ + % 3" E, @ Es, (29)

where

W = pg"

FOR®. (30)
This latter tensor field is the geometrical variable directly determining the
energy density of the monolayer. This explains how the local averaged mea-
sure of conformational changes K and the corresponding part F® of the
deformation gradient combine to deliver the appropriate geometric variable
upon which the stored energy density of the monolayer depends. It is worth

. . 3 k
noting that (26) allows us to look into the structure of G™% and note that /1g )
directly enters into such a variable. Furthermore, if a particular situation in

. . = (ke k) .
f In Fig. 10, the composition between Y and 91 represents what happens locally to any material ele-
ment in an infinitesimal neighborhood of a particle inside any § —R AE in the virgin configuration after
deformation from By, to the current configuration B.
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which conformational changes are uniform in-plane (i.e., in-plane
[e]

“hydrostatic”), i.e., Pv i(k) = P, then G® = (lgk) det PV i(k))1/2 Fk)

5.4 Positional disarrangements

Positional disarrangements may arise within planar subregions of the mono-
layer bearing trace at the water-headgroup interface and inside the layer in
the immediate proximity of the interface. This can happen during material
instabilities, such as shear bands: banding regions are, in fact, extensively
reported in the first part of this work. Positional disarrangements, visualized
in Fig. 10 within the closeup 2 and displayed to the top right of the figure
inside 6 —RAE in Bg‘;, may involve switching of subclusters of lipids once

locally a certain stress-strain state is reached. The envisioned physical mech-
anism is analogous to granular materials experiencing shear bands
(Tordesillas et al., 2011, 2016). The idea is that under a significantly dom-
inant compressive state of stress, at a critical level of such loading, during
deformation, subclusters in the LC phase and the ones in the LE displayed

in 6 —RAE in the reference configuration Bgf‘) would disarrange almost

like grains jamming and, hence, by switching positions with other clusters,
lead to banding as seen in Fig. 10 and seen experimentally with lipid mono-
layers in the generalized collapse phase diagram presented in Fig. 2.

6. Conclusions

Lipid monolayers provide a rich system in which to explore and study
the mechanics of thin self~assembled films with unparalleled details. The
importance of lipid films in technological and biological applications and
systems is unquestioned. Lipid monolayers such as lung surfactants or cell
membranes composed of lipid bilayers are often exposed to mechanical
forces that lead to mechanical instabilities, which in turn impact the
large-scale behavior of the system. We provide the first step toward a unified
general theory of lipid film continuum mechanics. We show that in mono-
layers, irrespective of composition, five canonical collapse modes can be
accessed. Furthermore, the different modes of collapse can be tuned through
composition in multicomponent systems or simply temperature in
single-component monolayers. Furthermore, lipid monolayers can be pro-
bed on multiple microscopy length scales, building a rich multidimensional
image data space. We provide a scale space to unify these difterent lengths
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and allow for a common language in which to build the topology of lipid
monolayer structure. In the section on multiscale geometry, we provide a
formal analytical description of this topology for lipid monolayers that
undergo banding. The geometric kinematics developed in this paper are
the first step to a generalized mechanical model of lipids. In future work,
these kinematics will be used in the context of structured deformation the-
ory to build constitutive models of lipids intrinsically grounded in their mul-
tiscale structure. These continuum models will then be validated and tested
using finite element analysis, a methodology successtully applied to lipid
monolayers in the present paper.
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