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NON-COMMUTATIVE RATIONAL FUNCTIONS IN THE

FULL FOCK SPACE

MICHAEL T. JURY, ROBERT T. W. MARTIN, AND ELI SHAMOVICH

Abstract. A rational function belongs to the Hardy space, H2, of square-
summable power series if and only if it is bounded in the complex unit disk.
Any such rational function is necessarily analytic in a disk of radius greater
than one. The inner-outer factorization of a rational function r ∈ H2 is partic-
ularly simple: The inner factor of r is a (finite) Blaschke product and (hence)
both the inner and outer factors are again rational.

We extend these and other basic facts on rational functions in H2 to the
full Fock space over Cd, identified as the non-commutative (NC) Hardy space
of square-summable power series in several NC variables. In particular, we
characterize when an NC rational function belongs to the Fock space, we
prove analogues of classical results for inner-outer factorizations of NC ra-
tional functions and NC polynomials, and we obtain spectral results for NC
rational multipliers.

1. Introduction

A rational function, r, in the complex plane, is bounded in the unit disk, D,
if and only if it is analytic in a disk rD of radius r > 1. Moreover, a rational
function belongs to the Hardy space H2 of square-summable Taylor series in the
unit disk, if and only if it is uniformly bounded in D, i.e. if and only if it belongs
to H∞, the algebra of uniformly bounded analytic functions in the disk. Recall
that H∞ can be viewed as the multiplier algebra of H2, the algebra of all functions
which multiply H2 into itself. That is, any h ∈ H∞ defines a bounded linear
multiplication operator Mh : H2 → H2, where Mhf := hf for f ∈ H2. Such a
multiplier is called inner if Mh is an isometry and outer if Mh has dense range.
An element f ∈ H2 is called outer if it is cyclic for the shift, S = Mz. By classical
results of Herglotz and F. Riesz, any element, f , of the Hardy spaces H2 or H∞

has a unique inner-outer factorization, and the inner factor can be further factored
into a Blaschke inner which contains all the zero or ‘vanishing information’ of f ,
and a singular inner which has no zeroes in D. The inner-outer factorization of
a rational r ∈ H2 is particularly simple: The inner factor of r is always a finite
Blaschke product (this is again a rational function) so that the outer factor is also
a rational function. Moreover, in the case where r = p is a polynomial, its outer
factor is a polynomial of degree not exceeding that of p.

A canonical noncommutative (NC) analog of the classicalH2 is then the full Fock
space, H2

d, of square-summable power series in several non-commuting variables:
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6728 MICHAEL T. JURY ET AL.

Given a d−tuple of formal NC variables, z := (z1, · · · , zd), any f ∈ H2
d is a power

series

f(z) =
∑
α∈Fd

f̂αz
α;

∑
α

|f̂α|2 < +∞,

where Fd is the free monoid, the set of all words in the d letters {1, · · · , d}, and
given any word α = i1 · · · in ∈ Fd, ik ∈ {1, · · · , d}, the free monomial, zα, is
defined as zα := zi1 · · · zin . (Multiplication in Fd is defined by concatenation of
words, the unit is ∅, the empty word, containing no letters and z∅ := 1. The free
monoid is the universal monoid on d generators.) Left multiplication by any of the d
independent variables defines an isometry on H2

d, Lk := ML
zk
. It is straightforward

to check that the Lk have pairwise orthogonal ranges so that the row d−tuple
L := (L1, · · · , Ld) : H

2
d ⊗ Cd → H2

d defines an isometry from several copies of the
Fock space into itself which we call the left free shift.

The NC analog of H∞ is the WOT−closed algebra H∞
d generated by the left free

shifts. Just as H2 is a reproducing kernel Hilbert space, H2
d is an NC reproducing

kernel Hilbert space (NC-RKHS) in the sense of Ball, Marx, and Vinnikov [BMV16].
That is, for any Z ∈ Bd

n and y, v ∈ Cn, the matrix-entry point evaluation �Z,y,v :
H2

d → C defined by

�Z,y,v(f) = y∗f(Z)v,

is a bounded linear functional on H2
d. By Riesz representation there is a unique NC

Szegö kernel vector, K{Z, y, v} implementing this linear functional,

y∗f(Z)v = 〈K{Z, y, v}, f〉H2
d
.

With this identification, H∞
d is the algebra of left multipliers of H2

d. Additionally,
the elements of H2

d and H∞
d are NC functions in the sense of [AM15,KVV14] in the

unit free row-ball:

Bd
N =

∞⊔
n=1

Bd
n; Bd

n :=

⎧⎨
⎩(X1, · · · , Xd) ∈ Cn×n ⊗ C1×d

∣∣∣∣∣∣
d∑

j=1

XjX
∗
j < In

⎫⎬
⎭ .

Each locally bounded (hence analytic [KVV14, Chapter VII]) NC function in Bd
N

admits a Taylor series expansion in NC variables around the origin that converges
in an appropriate sense in Bd

N
. The functions in H2

d are those locally bounded NC
functions in Bd

N
with square-summable Taylor coefficients and the functions in H∞

d

are uniformly bounded in Bd
N
.

A non-commutative inner-outer factorization for elements of H2
d and H∞

d was first
obtained by Popescu [Pop91,Pop95] and independently by Davidson-Pitts [DP99].
Here, inner and outer in this NC setting are defined in direct analogy to classical
theory: An NC function, F , in H∞

d is inner if it defines an isometric left multiplier
of Fock space and outer if ML

F has dense range. An element f ∈ H2
d is outer

if it is cyclic for the isometric right shifts, Rk := MR
zk
. In [JMS21], the authors

have refined this NC inner-outer factorization by extending the classical Blaschke-
Singular-Outer factorization to the NC Hardy spaces H∞

d and H2
d. Namely, any

NC inner Θ ∈ H∞
d further factors uniquely as the product of an NC Blaschke inner

and an NC singular inner. As in the classical case, the NC Blaschke factor, B, of
f ∈ H2

d encodes all information about the “zeroes” of f and the NC singular inner
factor is pointwise invertible in Bd

N
. Several questions regarding this NC Blaschke-

Singular-Outer factorization have remained open. In particular, a natural question
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NC RATIONAL FUNCTIONS IN THE FOCK SPACE 6729

is whether, in analogy with classical Hardy space theory, the inner factors of rational
functions in H2

d are Blaschke. In this paper, we provide an affirmative answer to
this question, we characterize when an NC rational function belongs to Fock space,
and we provide applications to the spectral theory of multipliers of Fock space.

A complex NC rational expression is any syntactically valid combination of the
several NC variables z1, · · · , zd, the complex scalars, C, the operations +, ·,−1, and
parentheses (, ) [Vol17]. For example,

r(z1, z2) = z
3
1

(
z2z

−1
1 + 2

)−1 − 7z2z1z2.

The domain, Dom(r), of such an expression is simply the collection of all d-tuples
of matrices of all sizes, X = (X1, · · · , Xd) ∈ Cn×n ⊗ C1×d, n ∈ N, for which
r(X) ∈ Cn×n is defined. An NC rational function, r, is an equivalence class of NC
rational expressions with respect to the relation r1 ≡ r2, if Dom(r1)∩Dom(r2) �= ∅
and for every X in the intersection of their domains r1(X) = r2(X). For an NC
rational function r, we will abuse notations and write Dom(r) for the collection of
all points for which some r ∈ r is defined. That is, Dom(r) := ∪r∈rDom(r) and we
write r(X) := r(X) for any r ∈ r with X ∈ Dom(r). By realization theory for NC
rational functions, any NC rational function in d−variables, r, with 0 ∈ Dom(r) has
a minimal realization: There is a triple (A, b, c) with A ∈ C(n×n)·d := Cn×n⊗C1×d

and b, c ∈ Cn, so that for any X ∈ C(m×m)·d,

r(X) = b∗LA(X)−1c; LA(X) := I −
∑

Aj ⊗Xj .

(Here minimal means that n is as small as possible [KVV09, Vol17], and LA is
called a (monic) linear pencil.) Realizations of rational functions have been studied
extensively and have numerous applications to fields such as free probability and
free real algebraic geometry [DDOSS17, HKM13, HKMS19, HMS18]. One of the
main results of this paper is:

Theorem A. Let r be an NC rational function with minimal realization (A, b, c)
of size N . Then the following are equivalent.

(i) r ∈ H2
d.

(ii) r = K{Z, y, v} is an NC Szegö kernel vector for some Z ∈ Bd
N and y, v ∈

CN .
(iii) The joint spectral radius, spr(A), of A is < 1.
(iv) There exists r > 1, such that rBd

N
⊂ Dom(r).

(v) Bd
N
⊂ Dom(r).

(vi) r ∈ Ad := Alg(I, L)−‖·‖, the NC disk algebra.
(vii) r ∈ H∞

d .

For rational functions, r(z), of a single complex variable, it is not hard to prove
(using the Plancherel theorem) that if r is regular near 0 and its power series at 0
has square-summable coefficients, then it cannot have any poles in the closed unit
disk |z| ≤ 1, and is therefore regular in a disk of radius ρ > 1 (and hence bounded
and continuous in |z| ≤ 1). The equivlance of (i) with (iv)–(vii) in Theorem A can
then be read as an extension of these facts to NC rational functions in the row ball
(though the proofs will be rather more involved). This is made more interesting by
the observation that these one-variable facts do not generalize to the NC polydisk.
An example is provided after the proof of Theorem A.
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6730 MICHAEL T. JURY ET AL.

We will apply Theorem A to the study of the spectra and cyclicity of NC rational
multipliers. In Subsection 4.5 we prove that the spectrum of a rational multiplier
is determined by the spectra of its evaluations at finite levels of the free row-ball.
Combined with results of Davidson-Pitts and Conway-Morrell we obtain:

Theorem B. Let r be an NC rational function bounded on Bd
N
. Let r(L) := ML

r .
Then r(L) is a point of continuity of the spectral map T �→ σ(T ), T ∈ L (H2

d).

As a consequence of the identification of NC rational functions in H2
d and NC

kernels in Theorem A, we obtain that the inner and outer factors of any NC rational
function in H2

d are rational, and that any rational NC inner function is Blaschke;
see Section 5. That is, NC rational functions in Fock space have no singular inner
factor. Sections 5 and 6 contain further, more detailed results on the inner-outer
factorization of NC rational functions and polynomials in the Fock space. In partic-
ular we highlight the following, which is an immediate consequence of Corollary 5.4:

Theorem C. An NC rational function r(z) ∈ H2
d is outer if and only if det r(Z) �= 0

for all Z in the row ball.

In the classical one-variable Hardy space H2 in the unit disk, it is obvious that
a rational function in the space is cyclic for the unilateral shift if and only if it has
no zeroes in |z| < 1. The theorem just stated can be read as a generalization of
this fact (though much less obvious).

2. Preliminaries

Consider the complex NC universe,

Cd
N
:=

∞⊔
n=1

C(n×n)·d; C(n×n)·d = Cn×n ⊗ C1×d,

the disjoint union of all d−tuples X = (X1, · · · , Xd) of n× n matrices of all finite
sizes. The NC row-ball Bd

N
is the unit ball of Cd

N
with respect to the row operator

space norm on Cd. It will be occasionally useful to include the infinite level Bd
∞,

and to consider the operator unit row-ball:

Bd
ℵ0

:= Bd
N � Bd

∞.

The infinite level is the set of all strict row contractions on a fixed separable Hilbert
space.

As described in the introduction, the Fock space, H2
d, can be defined as a Hilbert

space of square-summable power series (as in [Pop06]) which define locally bounded,
hence analytic free NC functions in Bd

N
or Bd

ℵ0
[KVV14]. (A free NC function on

an NC domain such as Bd
N
is any function which respects the grading, direct sums,

and the joint similarities which preserve its NC domain.)
Given any matrix d−tuple X = (X1, · · · , Xd) ∈ C(n×n)·d, the joint or outer

spectral radius of X is:

spr(X) := lim
2k

√∥∥∥Ad
(k)
X,X∗(In)

∥∥∥; AdX,X∗(P ) := X (Id ⊗ P )X∗.
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2.1. Domains and realizations of NC rational functions. As described in the
introduction, the domain of any NC rational function, r, is

Dom(r) :=
⊔
n

Domn(r); Domn(r) :=
{
X ∈ C(n×n)·d

∣∣∣ r(X) is defined
}
.

NC rational functions which are regular at the origin, i.e. 0 ∈ Dom(r) have a
powerful realization theory: There is a triple (A, b, c) ∈ C(N×N)·d × CN × CN ,
called a realization of r so that for any X ∈ C(n×n)·d,

r(X) = b∗LA(X)−1c := b∗ ⊗ InLA(X)−1c⊗ In,

where LA is the (monic) linear pencil defined by:

LA(X) := IN ⊗ In −
d∑

j=1

Aj ⊗Xj .

Moreover, A can be assumed to be minimal in the sense that N is minimal, and
this implies that the realization is both observable:∨

b∗Aω = C1×N ,

and controllable ∨
Aωc = CN ,

see e.g. [HMS18, Subsection 3.1.2]. The domains of NC rational functions which
are regular at 0 have a convenient description:

Theorem ([Vol17, Theorem 3.5], [KVV09, Theorem 3.1]). If r is an NC rational
function regular at 0 with minimal realization (A, b, c), then,

Dom(r) :=
⊔
n∈N

{
X ∈ C(n×n)·d

∣∣∣ detLA(X) �= 0
}
.

2.2. A conjugation on Fock space. It will be useful to consider the conjugation
with respect to the standard orthonormal basis, {Lα1| α ∈ Fd}, on Fock space,
C : H2

d → H2
d, defined by: Cf = f , where

f =
∑
ω∈Fd

fωL
ω1

C�−→ f :=
∑
ω

fωL
ω1.

Lemma 2.3. The map C : H2
d → H2

d is a conjugation, i.e. it is an anti-linear
unitary involution.

That is, the anti-linear operator C is bijective, isometric, and C2 = I.

Lemma 2.4. The conjugation, C : H2
d → H2

d commutes with the left and right free

shifts. If F (L) ∈ H∞
d then CF (L)C =: F (L) ∈ H∞

d has the same operator norm
and if

F (L) =
∑
ω

FωL
ω then F (L) =

∑
ω

FωL
ω.

Moreover for any F,G ∈ H∞
d , and f ∈ H2

d, CF (L)G(L)C = F (L)G(L) and

CF (L)f = F (L)f .
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Here, recall that any F (L) ∈ H∞
d can be identified with the power series:

F (L) =
∑
ω∈Fd

F̂ωL
ω; F̂ω := 〈Lω1, F (L)1〉H2 ,

in the sense that the Cesàro partial sums of this series converge to F (L) in the
strong operator topology [DP99].

Proof. We have that

‖F (L)‖ = sup
‖f‖

H2=1

‖F (L)f‖

= sup ‖CF (L)f‖
= sup ‖F (L)f‖
= sup ‖F (L)f‖ = ‖F (L)‖.

All of the other properties are easily verified. �

Lemma 2.5. If f = Θ(L)F is the inner-outer factorization of f ∈ H2
d, then

f = Cf has inner-outer factorization f = Θ(L)F . That is, Θ(L) is inner if and
only if Θ(L) is inner and F ∈ H2

d is outer if and only if F is outer.

Proof. Clearly Θ(L) is an isometry since Θ(L) = CΘ(L)C, and C is an anti-linear
unitary. Suppose that F is not outer. Then there is a g ∈ H2

d so that g ⊥
∨
RαF .

(Here recall Rk := MR
zk

are the isometric right free shifts.) Then,

0 = 〈RαF, g〉H2

= 〈Cg,CRαF 〉H2 (C is a conjugation)

= 〈g,RαF 〉H2 .

This proves that g ⊥
∨
RαF so that F is not outer. �

For any n ∈ N, we also define a conjugation, C : Cn → Cn, with respect to the
standard basis, {ej}nj=1,

C
∑

ajej :=
∑

ajej .

For c ∈ Cn we write c := Cc and for X ∈ Cn×n we write X := CXC, whose matrix
in the standard basis is obtained by entry-wise complex conjugation.

Lemma 2.6. If Z ∈ Bd
n is a strict row contraction, Z = CZC is also a strict row

contraction with ‖Z‖ = ‖Z‖ and spr(Z) = spr(Z).

3. Isomorphy of NC rational functions and kernels in Fock space

We consider NC rational functions r(z) in d noncommuting variables z1, · · · , zd.
Suppose that r is defined in the row ball Bd

N
; since this domain contains the scalar

point 0 it follows that r has a minimal realization (A, b, c) of size N . Since Bd
N
⊆

Dom(r), LA(Z) is invertible for all Z in the row-ball by [Vol17, Theorem 3.5]. Since
r(Z) is a locally bounded (analytic) NC function in Bd

N
, it has a Taylor-Taylor series
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at 0 with non-zero radius of convergence [KVV14, Chapter VII]:

r(Z) = b∗LA(Z)−1c

=
∑
ω∈Fd

b∗AωcZω

=
∑

(b, Aωc)
CN Zω.(3.1)

If we further assume that r(Z) belongs to the Fock space then the above power
series coefficients are square summable,∑

ω∈Fd

|(b, Aωc)
CN |2 < +∞,

and by [Pop06, Theorem 1.1] the above power series of Equation 3.1 converges
absolutely in Bd

ℵ0
and uniformly (in operator-norm) on NC balls of radius 0 ≤ r < 1.

Assuming from now on that r ∈ H2
d, we have that by [Vol17, Theorem 3.5, Theorem

3.10], that

ry,v(z) := y∗LA(Z)−1v ∈ Hol(Bd
N),

for any choice of y, v ∈ CN (since LA(Z) is invertible in Bd
N
).

3.1. NC Szegö kernels are NC rational functions.

Proposition 3.2. For any Z ∈ Bd
n and y, v ∈ Cn, the NC Szegö kernel vector is

given by the formula:

K{Z, y, v} =
∑
α∈Fd

(Zαv, y)
Cn Lα1.

This power series has radius of convergence

R ≥ 1

spr(Z)
≥ 1

‖Z‖ > 1.

In particular, the partial sums of the series converge uniformly in operator norm
on every row ball of radius r < R, so that K{Z, y, v} belongs to the NC disk algebra
Ad.

The image of any NC Szegö kernel under the conjugation, C, is:

CK{Z, y, v} = K{CZC,Cy,Cv} = K{Z, y, v}.

Any NC Szegö kernel, K{Z, y, v} with Z ∈ Bd
n, n < +∞, is an NC rational function

with (not necessarily minimal) realization
(
Z, y, v

)
.

Proof. Given any strict row contraction Z = (Z1, · · · , Zd) ∈ Bd
ℵ0
, let us first cal-

culate the radius of convergence of the power series formula for K{Z, y, v}, where
if Z ∈ Bd

n, then y, v ∈ Cn (and we allow n = ∞). By [Pop06, Theorem 1.1], the
radius of convergence, R, of the NC power series

K{Z, y, v}(W ) =
∑
ω

(Zωv, y)
Cn Wω,
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6734 MICHAEL T. JURY ET AL.

is given by the Hadamard formula:

1

R
= lim sup

k→∞

⎛
⎝∑

|ω|=k

|(Zωv, y)
Cn |2

⎞
⎠

1
2k

= lim sup

⎛
⎝∑

|ω|=k

(y, Zωvv∗(Zω)∗y)
Cn

⎞
⎠

1
2k

= lim sup
((

y,Ad
(k)
Z,Z∗(vv

∗)y
)
Cn

) 1
2k

≤ lim sup
(
‖v‖2Cn‖y‖2Cn‖Ad

(k)
Z,Z∗(In)‖

) 1
2k

= spr(Z) ≤ ‖Z‖ < 1.

This proves that

R ≥ 1

spr(Z)
≥ 1

‖Z‖ > 1,

so that K{Z, y, v} ∈ Hol(RBd
N
), and the Taylor-Taylor series ofK{Z, y, v} at 0 ∈ Bd

1

converges absolutely and uniformly on any NC row-ball rBd
N
of radius 0 < r < R.

This proves, in particular, that K{Z, y, v} ∈ Ad. Since Ad � H∞
d � H2

d, K{Z, y, v}
belongs to the Fock space. This can also be checked directly:

‖K{Z, y, v}‖2
H2

d
=

∑
ω

(y, Zωv)
Cn (Zωv, y)

Cn

=

∞∑
m=0

∑
|ω|=m

(y, Zωvv∗(Zω)∗y)
Cn

=

∞∑
m=0

(
y,Ad

(m)
Z,Z∗(vv

∗)y
)
Cn

≤ ‖y‖2Cn‖v‖2Cn

∞∑
m=0

‖Z‖2m

=
‖y‖2‖v‖2
1− ‖Z‖2 < ∞.

We now verify the reproducing formula. Let K̂{Z, y, v} :=
∑

(Zαv, y)
Cn Lα1,

and compute:

〈K̂{Z, y, v}, f〉H2
d

=
∑
α,β

(y, Zαv)
Cn f̂β〈Lα1, Lβ1〉H2

d

=
∑
α

(y, Zαv)
Cn f̂α

=
(
y,
∑

f̂αZ
αv
)
Cn

= (y, f(Z)v)
Cn
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Verifying the final assertion amounts to recognizing the geometric sum formula:
If K{Z, y, v} with Z ∈ Bd

n is an NC Szegö kernel, and W ∈ Bd
m, then

K{Z, y, v}(W ) =
∑
α

(Zαv, y)
Cn Wα

=
∑

(Cy,CZαv)
Cn Wα

=
∑(

y, Z
α
v
)
Cn

Wα

=
∑

(y∗ ⊗ Im)Z
α ⊗Wα(v ⊗ Im)

= (y∗ ⊗ Im)
∞∑
k=0

⎡
⎢⎣(Z1 ⊗ Im, · · · , Zd ⊗ Im

)⎛⎜⎝
In ⊗W1

...
In ⊗Wd

⎞
⎟⎠
⎤
⎥⎦
k

(v ⊗ Im)

= y∗LZ(W )−1v.

�

3.3. NC rational functions in Fock space are NC kernels. If r ∈ H2
d is an NC

rational function with minimal realization (A, b, c) of size N , then r := Cr ∈ H2
d is

also an NC rational function with the same norm and minimal realization (A, b, c).
In particular, expanding r in a Taylor-Taylor series at 0 ∈ Bd

1 yields:

r(Z) = b
∗
LA(Z)−1c

=
∑
ω

(Aωc, b)
CN Zω.

Observe that r formally resembles an NC Szegö kernel: r ∼ K̃{A, b, c}. (Here, the
tilde denotes that we do not yet know if the formal power series for the NC kernel
at {A, b, c} converges in Bd

N
, or if it belongs to the Fock space.) It further follows

that the original rational function, r, resembles the formal NC kernel K̃{A, y, v}.

Lemma 3.4. Let r be a rational function in H2
d with minimal realization (A, b, c) of

size N . Then the unital homomorphism from NC polynomials into CN×N defined
by p �→ p(A) is continuous in the H2

d−norm. If y, v are any vectors in CN then
ry,v(Z) := y∗(I − ZA)−1v also belongs to H2

d.

It follows that the evaluation p �→ p(A) has a unique continuous extension to H2
d

which we write f �→ f(A). In particular if fn are NC polynomials and fn → f in
the H2

d norm, then fn(A) → f(A) and for all NC polynomials p, q ∈ C{z} we have
(pfq)(A) = p(A)f(A)q(A).

Proof. We first observe that for any NC polynomial p(z) =
∑

pωz
ω we have

〈r, p〉H2
d
=
∑
ω∈Fd

(b, Aωc)
CN pω = (b, p(A)c)

CN ,

so that r also acts ‘like’ the formal NC kernel vector K̃{A, b, c}. Hence by Cauchy-
Schwarz

|(b, p(A)c)
CN | ≤ ‖p‖2‖r‖2 = ‖p‖2‖r‖2.

Licensed to Univ of Florida. Prepared on Thu Jun 16 12:25:33 EDT 2022 for download from IP 128.227.231.12.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



6736 MICHAEL T. JURY ET AL.

Next, let {ej} be the standard basis for CN . By the observability and controllability
of (A, b, c), there exist systems of NC polynomials {βj} and {γj} such that

c∗γi(A) = e∗i and βj(A)b = ej ; 1 ≤ j ≤ N.

Then for any NC polynomial p ∈ C{z},
e∗i p(A)ej = (γi(A)∗c, p(A)βj(A)b)

CN

= 〈r, γipβj〉H2
d
,

and thus

|e∗i p(A)ej| ≤ ‖γipβj‖2‖r‖2
≤ ‖γi(L)‖‖βj(R)‖‖p‖2‖r‖2,

so that for all i, j, the matrix entry evaluations p �→ p(A)ij are continuous for the
H2

d−norm. By [Vol17, Theorem 3.10], for any 1 ≤ i, j ≤ N , the rational function

rij(z) = e∗i (I−Az)−1ei is defined in the row ball and the norm estimate above shows
that rij and hence rij belongs toH

2
d, since the formal inner product p(A)ij = 〈rij , p〉2

defines a bounded linear functional on H2
d. Finally by taking linear combinations

we have ry,v(z) = y∗(I − zA)−1v ∈ H2
d for all y, v ∈ CN . �

Let A ∈ C(n×n)·d be a d−tuple of n× n matrices. Following [SSS20] we say A is
reducible if it has a non-trivial jointly invariant subspace. If A is not reducible we
say it is irreducible.

Theorem 3.5. Let r ∈ H2
d be an NC rational function in H2

d with minimal re-
alization (A, b, c) of size N . Then A has joint spectral radius spr(A) < 1 and
is jointly similar to a point W ∈ Bd

N . If A is irreducible, then one can choose
‖W‖ = spr(A) < 1. Moreover, there are vectors x, u ∈ CN so that r = K{W,x, u}
is analytic in an NC row-ball of radius R ≥ ‖W‖−1 > 1.

Proof. We have that for any d−tuple Z ∈ Bd
n,

ry,v(Z) =
∑
ω

(Aωv, y)
CN Zω ∈ H2

d,

for any choice of y, v ∈ CN by Lemma 3.4. Hence,

∞ > ‖ry,v‖22
=

∑
ω

(y,Aωv)
CN (Aωv, y)

CN

=
∑
ω

(y,Aωvv∗(Aω)∗y)
CN ,

for any y, v ∈ CN . Taking v = ej where {ej} is the standard basis of CN and
summing over j yields:

∞ >

N∑
j=1

∑
ω

(
y,Aωeje

∗
j (A

ω)∗y
)
CN

=

∞∑
n=0

∑
|ω|=n

(y,AωIN (Aω)∗y)
CN

=

∞∑
n=0

(
y,Ad

(n)
A,A∗(IN )y

)
CN

,
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where we view A = (A1, · · · , Ad) ∈ C(N×N)·d as a row d−tuple of N ×N matrices.
Since this sum is finite, the general term must converge to 0,(

y,Ad
(n)
A,A∗(IN )y

)
CN

−→
n ↑ ∞ 0,

for any y ∈ CN . This proves that the positive semi-definite matrices:

Ad
(n)
A,A∗(IN ) → 0,

so that A = (A1, · · · , Ad) is a pure and finite-dimensional d−tuple. By the multi-
variable Rota-Strang theorem, [Pop14, Theorem 3.8] (see also [SSS20, Proposition
2.3, Remark 2.6]), A is jointly similar to a strict row contraction X ∈ Bd

N . That is,
there is an invertible S ∈ CN×N so that

Ak = SXkS
−1, 1 ≤ k ≤ d.

Hence, for any Z ∈ Bd
n

rb,c(Z) =
∑
ω∈Fd

(Aωc, b)
CN Zω

=
∑(

XωS−1c, S∗b
)
CN Zω

= K{X, x, u}(Z); x := S∗b, u := S−1c

By [SSS20, Lemma 2.4], if A is irreducible then,

spr (A) = min
{
‖S−1AS‖

∣∣ S ∈ GL(n)
}
,

so that we can choose ‖X‖ = spr (A) < 1. Either way, since A is jointly similar to
the strict row contraction, X ∈ Bd

N
, spr (A) < 1. Setting W := CXC, Lemma 2.6

and Proposition 3.2, imply that r = Cr = CK{W,x, u} = K{W,x, u} is also an
NC Szegö kernel vector whose Taylor-MacLaurin series has radius of convergence

R ≥ 1

‖W‖ > 1.

In particular, r is analytic in an NC row-ball of radius R > 1. �

Corollary 3.6. An NC rational function r belongs to H2
d if and only if r =

K{Z, y, v} for some finite point Z ∈ Bd
N , N < +∞, and y, v ∈ CN .

Remark 3.7. The multivariable Rota-Strang theorem [Pop14, Theorem 3.8] is proven
in a general multi-variable non-commutative context. For alternative proofs of this
theorem applied to the special case of d−tuples of matrices, see [SSS20, Section 2]
and [Pas19, Theorem 1.7].

4. Regularity of NC rational functions in Fock space

In this section, we will study varieties and spectra of NC rational multipliers.
It will be convenient to briefly recall the concept of vectorization of matrices and
completely bounded maps on matrices. Let A ∈ Cm×m, B ∈ Cn×n, then A ⊗ B
is an mn × mn matrix, but it can also be identified with a linear map on Cm×n.

To see the correspondence, for Z ∈ Cn×m, we write
−→
Z for the column vector of

size m · n obtained by stacking the columns of Z one on top of the other (in order
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from left to right). That is, dividing Z ∈ Cn×m into m columns, zk ∈ Cn (see for
example [HJ91, Section 4.2])

Z =
(
z1| · · · |zm

)
�→ −→

Z =

⎛
⎜⎝

z1

...
zm

⎞
⎟⎠ ∈ Cmn.

By [HJ91, Lemma 4.3.1],

(A⊗B)
−→
Z =

−−−−→
BZAT .

This vectorization map vec : Cm×n → Cmn, vec(A) :=
−→
A , is clearly linear and

invertible, and for any linear map � ∈ L (Cm×n), we define the matrization of �,−→
� ∈ Cmn×mn by

−→
�
−→
Z :=

−−→
�(Z), i.e.

−→
� = vec ◦ � ◦ vec−1.

In particular, if � is any (completely bounded) linear map on the operator space
Cm×n,

(4.1) �(X) =

d∑
j=1

AjXBj ; Aj ∈ Cm×m, Bj ∈ Cn×n, X ∈ Cm×n

then
−→
� =

∑
BT

j ⊗Aj .

The map � �→ −→
� has many nice properties; see e.g. [LM18, Section 3] and [Pas19].

In particular, if we have a linear pencil LA(Z) = Im ⊗ In −
∑d

j=1 Aj ⊗ Zj , with

Aj ∈ Cm×m, Zj ∈ Cn×n, then for any d-tuple Z ∈ C(n×n)·d, LA(Z) ∈ Cmn×mn,
and it is clear that if we define � ∈ L (Cn×m) by

�(X) := X −
d∑

j=1

ZjXAT
j ; X ∈ Cn×m,

then LA(Z) =
−→
� . Since A⊗B and B⊗A are unitarily equivalent via the canonical

shuffle,

LA(Z) ∼ −−→
�A,Z ,

where �A,Z ∈ L (Cm×n) is defined by

�A,Z(X) := X −
d∑

j=1

AjXZT
j ; X ∈ Cm×n.

It is now immediate that LA(Z) is singular if and only if �A,Z is.

Proposition 4.1. Let r be an NC rational function with 0 ∈ Dom(r). Let (A, b, c)
be a minimal realization of r of size N . Assume that spr (A) > 0. Then, there
exists a point Z ∈ C(N×N)·d, such that ‖Z‖ = 1

spr(A) and Z /∈ Dom(r).

In the above spr (A) > 0 implies that A is not jointly nilpotent, and hence r is
not a free polynomial.
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Proof. Let ρ := spr (A). One can apply arbitrary similarities to A to produce a
new realization for the same NC rational function, (A, b, c) �→ (S−1AS, S∗b, S−1c).
Applying a (unitary) similarity, we may assume that A is block upper-triangular,
where the blocks, A(j), 1 ≤ j ≤ k, on the diagonal are irreducible d-tuples. By
[Sha18, Lemma 3.2] we may apply a subsequent block diagonal similarity, so that

A =

⎛
⎜⎝
ρ1Y

(1) � �

0
. . . �

0 0 ρkY
(k)

⎞
⎟⎠ ,

where for each 1 ≤ j ≤ k, we have Y (j)(Y (j))∗ = I and ρj := spr
(
A(j)

)
. That is,

each d−tuple Y (j) is a row co-isometry. Since ρ = max{ρ1, . . . , ρk}, we may apply
another similarity and assume that ρ = ρ1. Let Y := Y (1) and set

Z :=

(
1
ρY 0

0 0

)
∈ C(N×N)·d,

be of the same size as A. Note that since Y ∈ C(m×m)·d, for some m ≤ N is a row
co-isometry, then so is Y = CY C. In particular, ‖Z‖ = 1

ρ . Consider the linear map

�[·] := �A,Z [·] : CN×N → CN×N defined as in the preceding discussion,

�A,Z [X] = X −
∑
j=1

AjXZT
j ; X ∈ CN×N .

Let P be the matrix with Im (the size of Y (1)) in the upper left corner and zeroes
everywhere else, then

�A,Z [P ] = P −
d∑

j=1

AjPZT

=

(
Im

0N−m

)
−

d∑
j=1

(
ρYj

0N−m

)(
Im

0N−m

)(
1
ρ (Y j)

T

0N−m

)
(4.2)

=

(
Im −

∑
YjY

∗
j

0N−m

)
≡ 0.

By the previous discussion, since �A,Z is singular, so is LA(Z). Since 0 ∈ Dom(r),
by [Vol17, Theorem 3.10], Dom(r) coincides with the complement of the singularity
locus of the pencil in its minimal realization. Hence Z /∈ Dom(r), as desired. �

Corollary 4.2. Let r be an NC rational function, such that Bd
N
⊆ Dom(r). Then r

is bounded on Bd
N
and analytic in rBd

N
for some r > 1.

Proof. Let (A, b, c) be a minimal realization of r. If spr (A) = 0, then A is jointly
nilpotent, r is a polynomial and we are done. Therefore, we may assume that
spr(A) > 0. By Proposition 4.1, there exists Z /∈ Dom(r), such that ‖Z‖ = 1

spr(A) .

However, Bd
N

⊂ Dom(r). Thus, spr(A) < 1 and r is an NC kernel in the Fock
space. �
Corollary 4.3. An NC rational function r belongs to H∞

d if and only if there exists
r > 1, such that rBd

N
⊂ Dom(r).

Proof. One direction is Corollary 4.2 and the other is the “moreover” statement in
Theorem 3.5. �
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We may now combine the above results to prove Theorem A:

Proof of Theorem A. The implications (i) =⇒ (ii), (i) =⇒ (iii), and (i) =⇒ (iv) are
contained in Theorem 3.5. On the other hand (ii) =⇒ (i) is trivial and (iii) =⇒ (ii)
follows from the Rota-Strang theorem. Thus (i), (ii), and (iii) are equivalent, and
each implies (iv). Next, (iv) =⇒ (v) is trivial, and (v) =⇒ (iii) follows from
Proposition 4.1, so (i) through (v) are equivalent. Finally, (ii) =⇒ (vi) is contained
in Proposition 3.2, and (vi) =⇒ (vii) and (vii) =⇒ (i) are trivial. This completes
the proof. �

Example 4.4. The implication (vii) =⇒ (v), which says that any rational function
bounded in the row ball is continuous up to the boundary (and then in fact analytic
across the boundary, by (iv)), seems special to the row ball and fails, for example,
in the NC polydisk. The NC polydisk, for d ≥ 2, is the NC domain which at level
n is the domain Dd

n of all d-tuples of strictly contractive matrices:

Dd
n = { (Z1, . . . , Zd) | ‖Zj‖ < 1 for all j = 1, . . . , d}.

A counterexample may be constructed in two variables as follows: the NC function

f(Z,W ) =
1

2

[
(I + Z)(I − Z)−1 + (I +W )(I −W )−1

]
has Re (f(Z,W )) ≥ 0 for all (Z,W ) ∈ D2

n, at all levels n. It follows that its inverse
Cayley transform

g(Z,W ) = (f(Z,W )− I)(f(Z,W ) + I)−1

is bounded by 1 at all levels. But at level n = 1, a quick calculation shows that g
is the rational inner function

g(z, w) =
z + w − 2zw

2− z − w

in the bidisk D2, which does not extend continuously from D2 to the boundary
point (1, 1).

The matricial character of the rational functions is also essential. If we look at,
say, level 2 of the row ball in 2 dimensions, identified with the domain in C8

Ω =

{(
Z =

(
z1 z2
z3 z4

)
,W =

(
w1 w2

w3 w4

)) ∣∣∣∣ ‖ZZ∗ +WW ∗‖ < 1

}
,

there will exist rational functions of the 8 complex variables z1, . . . , z4, w1, . . . , w4

which are bounded in Ω, but do not extend continuously to the boundary. An
example is

g(z1, z2, z3, z4, w1, w2, w3, w4) =
z1 + w4 − 2z1w4

2− z1 − w4

which is bounded by 1 in Ω, but does not extend continuously from Ω to the
boundary point Z = ( 1 0

0 0 ) ,W = ( 0 0
0 1 ).

4.5. Singularity loci and spectra of NC rational functions. Let r be an NC
rational function. We would like to understand the NC variety of r and to determine
when it intersects Bd

N
. Here, recall that the singularity locus or (left) NC variety of

any f ∈ H2
d is:

Sing(r)=
⊔

n∈N∪{∞}
Singn(f); Singn(f) :=

{
(Z, y)∈Bd

n×Cn \ {0}
∣∣ y∗f(Z) = 0

}
,
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see [JMS21, Definition 3.2]. In particular, if (Z, y) ∈ Singn(f) for some n < +∞,
then f(Z) is a singular matrix.

Corollary 4.6. Let r ∈ H∞
d be an NC rational function with minimal realization

of size N .

(i) If det r(Z) �= 0, for every Z ∈ Bd
k, for k ≤ N + 1, then r(L) is invertible.

(ii) If det r(Z) �= 0, for every Z ∈ Bd
k, for k ≤ N + 1, then Sing(r) = ∅.

Proof. By [HMS18, Algorithm 4.3], the minimal realization of r−1 is of size at most

N + 1. First, assume that det r(Z) �= 0 for every Z ∈ Bd
k and k ≤ N + 1. We want

to show that r−1 ∈ H∞
d . For this it suffices to show that the joint spectral radius

of the minimal realization of r−1 is strictly less than 1. Let (A, b, c) be a minimal
realization of r−1 so that A has size at most N+1. Assume that spr(A) ≥ 1. Then,
by Proposition 4.1, there exists a point Z of norm 1

spr(A) ≤ 1 and size at most N+1

so that Z is not in the domain of r−1. However, by assumption, Bd
N+1 ⊂ Dom(r−1)

and this is a contradiction. This proves (i).
To prove (ii), we need only to consider the case spr(A) = 1. Fix an arbitrary

0 < r < 1 and note that r−1
r (Z) := r(rZ)−1, has minimal realization (rA, b, c). In

particular, spr(rA) = r spr(A) < 1, and thus rr(L) = r(rL) is invertible by (i).
Since this is true for every 0 < r < 1, we have that Sing(r) = ∅. �

Now we can prove that the spectrum of a bounded NC rational function is
determined on finite levels. To be more precise we make the following definition:

Definition 4.7. Let f ∈ H∞
d , we define the finite spectrum of f(L) to be

σN(f(L)) =
⋃

Z∈Bd
N

σ(f(Z)).

Lemma 4.8. Let f ∈ H∞
d , then

σN(f(L)) ⊆ σ(f(L)).

Proof. Let Z ∈ Bd
n and let λ ∈ σ(f(Z)). Let 0 �= y ∈ Cn, be an eigenvector of

f(Z)∗ associated with λ. For any v ∈ Cn, we take the kernel function K{Z, y, v}
and f(L)∗K{Z, y, v} = K{Z, f(Z)∗y, v} = K{Z, λy, v} = λK{Z, y, v}. Hence λ in
the spectrum of f(L). Since the spectrum is closed, the claim follows. �

Corollary 4.9. Let r ∈ H∞
d be an NC rational function with minimal realization

of size N . Then λ ∈ σ(r(L)) if and only if there exists Z ∈ Bd
k, for some k ≤ N+2,

such that λ ∈ σ(r(Z)). In particular,

σN(r(L)) = σ(r(L)).

Proof. By Corollary 4.6, 0 ∈ σ(r(L)) if and only if there exists Z ∈ Bd
k, for some

k < N + 1, such that det r(Z) = 0. Now λ /∈ σ(r(L)) if and only if r(L) − λI is
invertible. By [HMS18, Algorithm 4.3], the minimal realization of (r − λ)−1 is of
size at most N + 2 and a second application of the previous corollary yields the
claim. �

Given a unital Banach algebra, A , we can consider the map a �→ σ(a) from A
to 2C0 , the set of all compact subsets of C equipped with the Hausdorff metric. It
is well-known that this spectral map, σ : a �→ σ(a) is upper semi-continuous but
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generally not continuous. In [CM79], Conway and Morrel have characterized the
points of continuity of the spectral map on L (H) for H a separable Hilbert space.
To apply this result in our setting, we need to recall a few notions concerning the
decomposition of spectrum. In [DP99, Theorem 1.7], Davidson and Pitts proved
that for every f ∈ H∞

d , σ(f(L)) = σe(f(L)), where σe denotes the essential spec-
trum. Moreover, by [DP99, Theorem 1.7] and [DP99, Corollary 1.8], σ(f(L)) is
connected and is not a singleton.

Recall that an operator T ∈ L (H) is semi-Fredholm if Ran (T ) is closed and at

least one of Ker (T ), Ran (T )⊥ is finite dimensional. Following Conway and Morrel,
we denote by SF ⊂ L (H), the collection of all semi-Fredholm operators and we
define the index of any T ∈ SF as:

ind(T ) = dimKer (T )− dimKer (T ∗) ∈ Z ∪ {±∞}.

For T ∈ L (H) and n ∈ Z ∪ {±∞} we further define:

σn(T ) = {λ ∈ σ(T ) | λI − T ∈ SF and ind(λI − T ) = n},

σ±(T ) =
⋃
n�=0

σn(T ).

By [DP99, Theorem 1.7], every multiplier is injective. Thus, for every λ ∈ C,
λI − f(L) is semi-Fredholm. If d > 1, then the index has two possible values. If
λI−f(L) is outer, then ind(λI−f(L)) = 0. If λI−f(L) is not outer, then it admits
an inner-outer decomposition λI − f(L) = θ(L)g(L). In particular, Ker (θ(L)∗) ⊂
Ker

(
λI − f(L)∗

)
. However, dimKer (θ(L)∗) �= 0 and thus ind(λI − f(L)) < 0. We

summarize this discussion in the following lemma.

Lemma 4.10. For every f ∈ H∞
d , σ(f(L)) = σ±(f(L)) ∪ σ0(f(L)) and

σ0(f(L)) = {λ ∈ σ(f(L)) | λI − f(L) is outer},
σ±(f(L)) = {λ ∈ σ(f(L)) | λI − f(L) has an inner factor}.

Furthermore, σN(f(L)) ⊆ σ±(f(L)).

Proof. The first two claims follow from the discussion preceding the lemma, and
it remains to prove the final claim. For every Z ∈ Bd

N
and λ ∈ σ(f(Z)), since

λI − f(Z) is singular, λI − f(L) is not outer. �

Remark 4.11. We note that for every Z ∈ Bd
N
and λ ∈ σ(f(Z)), λI − f(L) actually

has a non-trivial singularity locus on finite levels. Thus, in particular, λI − f(L)
has a non-trivial Blaschke factor. (See Definition 5.1 for the definition of an NC
Blaschke inner function.)

Theorem B. Let r ∈ H∞
d be an NC rational function. Then r(L) is a point of

continuity of the spectrum.

Proof. Since the spectrum is connected, by [CM79, Theorem 3.1(c)], the spectrum

is continuous at r(L) if and only if σ(r(L)) = σ±(r(L)). By Lemma 4.10, we

know that σN(r(L)) ⊆ σ±(r(L)). Therefore, from Corollary 4.9, we conclude that

σ(r(L)) = σ±(r(L)). �
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5. Inner-outer factorization of NC rational functions in the

Fock space

As established in [JMS21], any element, h, of Fock space has a unique NC
Blaschke-Singular-Outer factorization, h = B · S · f where B ∈ H∞

d is an NC
Blashcke inner function, S ∈ H∞

d is NC singular inner and f ∈ H2
d is NC outer.

Namely, as proven by Popescu and Davidson-Pitts, h = Θ · f has a unique NC
inner-outer factorization, where Θ ∈ H∞

d is inner, i.e. an isometric left multiplier,
and f is NC outer, i.e. cyclic for the right shifts. In [JMS21] we proved that the
inner factor, Θ can be further uniquely factored as the product of an NC Blaschke
inner function, B, containing all the vanishing or zero information of h, and an NC
singular inner function which is pointwise invertible in Bd

N
.

Definition 5.1. ([JMS21, Definition 3.6]) An NC inner Θ ∈ H∞
d is:

(i) Blaschke if Ran (Θ(L)) =
{
h ∈ H2

d | y∗h(Z) ≡ 0 ∀(Z, y) ∈ Sing(Θ)
}
.

(ii) singular if Θ is pointwise invertible in Bd
ℵ0
.

Recall, as discussed in Section 1, that a rational function, r in the classical
Hardy space, H2, has a simple inner-outer factorization. Namely, r = b · f , where b
is Blaschke inner (in fact a finite Blaschke product, hence rational) and f is outer.
In particular, r has no singular inner factor. In this section we obtain analogues of
these results in the NC setting of Fock space.

Theorem 5.2. Let r ∈ H2
d be an NC rational function with minimal realization

(A, b, c) of size N . If r = Θ · f is the NC inner-outer factorization of r then both Θ
and f are NC rational functions and the inner factor is NC Blaschke. The NC outer

factor, f , has a realization (A, b̃, c) for some b̃ ∈ CN and the minimal realization
of Θ is of size at most 2N + 1.

Proof. We have that r(ζ) = b∗(I − zA)−1c belongs to H2
d and b, c ∈ CN (where N

is minimal) if and only if r = K{Z, y, v} for some Z ∈ Bd
N , and some y, v ∈ CN by

Corollary 3.6 and Theorem 3.5. Moreover, there is a similarity, S ∈ CN×N so that
Z = S−1AS, y = S∗b and v = S−1c. Calculate that

f = Θ(L)∗Θ(L)f

= Θ(L)∗r = Θ(L)∗K{Z, y, v}
= K{Z,Θ(Z)∗y, v},

and it follows that there is some b̃ ∈ CN so that

f(z) = b̃∗(I − zA)−1c.

Hence (A, b̃, c) is a (not necessarily minimal) realization of f of size N . Since f
is outer, it is invertible in the NC unit ball [JM19, Lemma 3.2] [JMS21, Theorem
4.2], and it follows that

Θ(Z) = r(Z)f(Z)−1,

is also an NC rational function with minimal realization of size at most 2N + 1
[HMS18, Algorithm 4.3]. That is, f(Z)−1 has a realization of size at most N + 1
and r · f−1 then has a descriptor realization of size at most N +N + 1 = 2N + 1.

Finally, by Theorem A, since Θ = Θ(L)1 ∈ H2
d is an NC rational function,

Θ ∈ Ad belongs to the NC disk algebra. By [JMS21, Theorem 6.10] any NC inner
function in Ad is necessarily Blaschke, and we conclude that Θ is an NC Blaschke
inner function. �
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Corollary 5.3. Any inner NC rational function is NC Blaschke.

Corollary 5.4. An NC rational function, r ∈ H2
d with minimal realization (A, b, c)

of size N is NC outer if and only if SingN+1(r) = ∅.

Proof. If r = Θ · f is the inner-outer factorization of r, then Θ is NC Blaschke by
the previous corollary, so that Θ �= I if and only if Sing(r) �= ∅. By Corollary 4.6,
Sing(r) �= ∅ if and only if SingN+1(r) �= ∅. �

Corollary 5.5. An NC rational function r ∈ H2
d is outer if and only if the radius

of convergence of the Taylor-Taylor series of r−1 at 0 ∈ Bd
1 is at least 1.

Proof. By Theorem 5.2, the inner factor, Θ of r is NC Blaschke, so that r is outer if
and only if r is pointwise invertible in Bd

ℵ0
by [JMS21, Theorem 4.2]. In particular,

r is NC outer if and only if r(rL)−1 ∈ H∞
d for any 0 < r < 1, and this happens if

and only if the radius of convergence of the Taylor series at 0 is at least 1. �

Example 5.6. Let V (L) be any NC rational inner and set r(L) := aI + bV (L),
a, b ∈ C, and suppose a �= 0. If |b/a| ≤ 1 then r(L) will be outer by [JM19, Lemma
3.3]. Otherwise if w := b/a is such that |w| > 1, let z = −1/w ∈ D. Then,

r(L) = w(z − V (L))

= w (z − V (L)) (I − zV (L))−1︸ ︷︷ ︸
NC rational inner, Blaschke

· (I − zV (L))︸ ︷︷ ︸
NC outer

.

In the above, one can verify that the Möbius transformation of an isometry is
always an isometry so that the first factor is NC inner and rational, and therefore
NC Blaschke. The second factor has the form 1−B for a contractive B ∈ H∞

d and
is therefore NC outer by [JM19, Lemma 3.3].

6. Inner-outer factorization of NC polynomials

In this section we apply the results of the previous section to NC polynomials,
and compute some examples. It is well-known that if

p(z) = b∗(I −Az)−1c

is a minimal realization of an NC polynonmial p, then the matrices A are jointly
nilpotent; in particular, if ω is any word of length |ω| > deg p, then Aw = 0. To see
this, observe that if |ω| > deg p, then c∗Aωb = 0, and therefore

c∗γ(A)Aωβ(A)b = 0

for all NC polynomials β and γ. Since the minimal realization is observable and
controllable, we conclude that d∗Aωe = 0 for all vectors d, e. Let p ∈ C{z} be any
NC polynomial with inner-outer factorization p = Θ · f , and homogeneous degree
deg(p). By Corollary 3.6 and the above remarks, p = K{Z, y, v} for some jointly
nilpotent Z of order deg(p).

Theorem 6.1. Let p = Θ ·f be the NC inner-outer factorization of p = K{Z, y, v}.
Then f = q ∈ C{z} is an NC polynomial of degree deg(q) ≤ deg(p), and Θ(Z) =
p(Z)q(Z)−1 is an inner NC rational function. The inner factor of p is NC Blaschke.
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Proof. The inner factor of p ∈ C{z} is NC Blaschke by Theorem 5.2. Observe that

f = f(L)1 = Θ(L)∗p(L)1

= Θ(L)∗K{Z, y, v}
= K{Z,Θ(Z)∗y, v}.

Since Z is a jointly nilpotent row contraction of order n, n := deg(p) we have that

f = K{Z,Θ(Z)∗y, v}
=

∑
|α|≤deg(p)

(Zαv,Θ(Z)∗y)
Cmn Lα1,

is also an NC polynomial, f = q ∈ C{z} of degree less than or equal to deg(p). In
particular,

Θ(Z) = p(Z)q(Z)−1,

is an NC rational inner function. �

Given a free polynomial, p ∈ C{z}, let Tp be the hereditary subset of Fd deter-
mined by the non-zero coefficients of p. That is, if Sp := {α ∈ Fd| pα �= 0}, then
Tp is the set of all β ∈ Fd so that there exists a γ ∈ Fd such that γβ ∈ Sp. Let |Tp|
be the number of elements in the tree, Tp.

Corollary 6.2. An NC polynomial p ∈ C{z} is NC outer if and only if Sing|Tp|(p) =

∅. In particular, p is NC outer if and only if p(Z) is pointwise invertible in Bd
N
.

Proof. A straightforward refinement of the argument of [JMS21, Proposition 5.13]
shows that Sing|Tp|(p) is empty if and only if the full NC variety Sing(p) is empty

(this includes the infinite level). The claim now follows from Corollary 5.4. �

Example 6.3. Let p(L) = I +L1 +L1L2. Then we know that the outer factor, q,
of p must be of the form:

q(L) = aI + bL1 + cL2 + dL1L2.

where we may assume a > 0. This outer factor must obey q(L)∗q(L) = p(L)∗p(L),
and it must maximize |q(0)|2. This gives the equations:

p(L)∗p(L) = 3I + L1 + L2 + L1L2︸ ︷︷ ︸
=:g(L)

+g(L)∗,

and

q(L)∗q(L) = (a2+ b2 + c2 + d2)I + abL1 +(ac+ bd)L2 + adL1L2+conjugate terms.

Equating coefficients yields:

ac+
1

a2
= 1, b =

1

a
= d,

and

0 = r(t) := t4 − 3t3 + 3t2 − 2t+ 1; t := a2.
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One can check t = 1 is a root of this polynomial (taking a = 1 gives p(L)). Factoring
this root out gives the cubic polynomial

t3 − 2t2 + t− 1,

which has two complex roots and one real root t0 � 1.7549 > 1. It follows that if
we set a =

√
t0, and set

b = d =
1√
t0
, c =

1√
t0

(
1− 1

t0

)
,

then the q(L) with these coefficients is the outer factor of p.

Example 6.4. The Drury-Arveson space H2
d can be viewed as the subspace of the

full Fock space spanned by the NC kernels Kz := K{z, 1, 1} for z ∈ Bd = Bd
1 =(

C1×d
)
1
. This subspace is left shift co-invariant and it follows that the multiplier

algebra, H∞
d , of H2

d is a complete quotient of H∞
d .

In forthcoming work, Aleman, Hartz, McCarthy and Richter have proven that
any element h ∈ H2

d has a unique quasi-inner–free outer factorization [AHMR21].
That is h = θ · f where θ is the compression of an inner left multiplier Θ ∈ H∞

d to
H∞

d , and f = PH2F is the projection of an outer F ∈ H2
d onto H2

d . In particular,
there are many examples of outer functions h ∈ H2

d which are not free outer, in the
sense that there is no NC outer H ∈ H2

d so that PH2H = h. (A function h ∈ H2
d

is called outer if it is cyclic for the algebra of multipliers of H2
d , which happens if

and only if there is a sequence of polynomials qn(z1, . . . , zd) such that h · qn → 1
in the Hilbert space norm.) A simple example is given by the following polynomial
[Ric19]; we thank the authors of [AHMR21] for their permission to include it here:

p(z1, z2) = 1− 2z1z2.

To see that this polynomial is outer in H2
2 , we argue as follows: the norm of a

polynomial q(z1, z2) =
∑

amnz
m
1 zn2 in H2

2 is by definition

(6.1) ‖q‖2H2
2
=
∑
m,n

m!n!

(m+ n)!
|amn|2.

We consider the Dirichlet space, D , of analytic functions f =
∑

anz
n in the unit

disk |z| < 1, equipped with the Hilbert space norm

(6.2) ‖f‖2D =

∞∑
n=0

(n+ 1)|an|2.

From (6.1) and Stirling’s formula, there is an absolute constant C such that for any
one-variable polynomial q(z) =

∑
n anz

n, we have

(6.3) ‖q(2z1z2)‖2H2
2
≤ C

∞∑
n=0

√
n+ 1|a2n| ≤ C

∞∑
n=0

(n+ 1)|an|2 = ‖q(z)‖2D .

From [BS84, Lemma 8], the function (1−z) is cyclic for the Dirichlet space D , hence
there exists a sequence of one-variable polynomials qn(z) such that (1−z)·qn(z) → 1
in the D− norm as n → ∞. It then follows from (6.3) that (1−2z1z2)·qn(2z1z2) → 1
in H2

2 , as desired.
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A natural lift of the above polynomial is the symmetric polynomial P (z1, z2) =
1− z1z2 − z2z1. As in [JMS21, Example 6.8], we have that the inner-outer decom-
position of P is

P (z1, z2) =

(
1√
2
− V (z)

)(
1− 1√

2
V (z)

)−1

︸ ︷︷ ︸
−μ 1√

2

(V )=:ΘP

·
√
2

(
1− 1√

2
V (z)

)
︸ ︷︷ ︸

=:FP

.

Here, V (z) = V (z1, z2) := 1√
2
(z1z2 + z2z1) is inner, and evaluation of the Möbius

transformation, μ− 1√
2
(z) = (z + 1/

√
2)(1 + z/

√
2)−1, at any isometry is again an

isometry, so that −μ 1√
2
(V ) = ΘP is again NC inner (in fact NC rational and

Blaschke). The second factor FP is, up to a constant factor, the identity plus a
(strictly) contractive left multiplier, and therefore it is NC outer by [JM19, Lemma
3.3]. Uniqueness of the quasi-inner–free outer factorization of p [AHMR21], now
implies that p cannot be free outer. If p was free outer, then p = 1 · p would be
the unique quasi inner–free outer factorization of p, but clearly p = θp · fp where
θp(z1, z2) = ΘP (z1, z2) and fp(z1, z2) = Fp(z1, z2) is a second quasi-inner–free outer
factorization of p, a contradiction.

Since P ∈ C{z} is a non-outer free polynomial of homogeneous degree 2, Corol-
lary 6.2 implies that there is a point Z ∈ Bd

N for N ≤ 5 = |TP | so that detP (Z) = 0.
To construct a point in the singularity set of P , we write V = V (L1, L2), which is
an isometry on H2

d. Observe that FP = (I − 1√
2
V ) ∈ H∞

d is a bounded, invertible

left multiplier so that

f(z) :=
√
2Fp(z)

−1 =

(
1− 1

2
(z1z2 + z2z1)

)−1

∈ H∞
d ,

is also a bounded left multiplier. An easy geometric series argument now verifies
that if f = f(L)1, then P (L)∗f = 0. Moreover, f is an NC rational function and a
Schur complement argument shows that a realization for f is given by the formula:

f(z) = (1, 0, 0)

⎛
⎜⎜⎜⎜⎜⎝I3 +

1√
2

⎛
⎝0 0 1
1 0 0
0 0 0

⎞
⎠

︸ ︷︷ ︸
=:−A1

z1 +
1√
2

⎛
⎝0 1 0
0 0 0
1 0 0

⎞
⎠

︸ ︷︷ ︸
=:−A2

z2

⎞
⎟⎟⎟⎟⎟⎠

−1⎛
⎝1
0
0

⎞
⎠ .

That is, f has the realization (A, b, c) where b = c =
(

1
0
0

)
∈ C3. This A ∈ C(3×3)·2

is a row contraction but it is not a strict row contraction. However it is easy to
check that spr(A) < 1, and that A = DWD−1 is similar to a strict row contraction
W ∈ B2

3 where

W1 = −

⎛
⎝ 0 0 2−3/4

2−1/4 0 0
0 0 0

⎞
⎠ , W2 = −

⎛
⎝ 0 2−3/4 0

0 0 0
2−1/4 0 0

⎞
⎠ ,

and D =

⎛
⎝1

21/4

21/4

⎞
⎠ .
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It then follows that f = K{W, e1, e1} where e1 = b = c ∈ C3 is the first standard
basis vector of C3. Since P (L)∗f = 0, we have that

0 = P (L)∗f = P (L)∗K{W, e1, e1} = K{W,P (W )∗e1, e1},

and therefore (since e1 is cyclic for the unital algebra generated by W ) P (W )∗e1 =
0. Indeed, this is easily checked:

P (W )∗ = I3 −W ∗
2W

∗
1 −W ∗

1W
∗
2

=

⎛
⎝0 0 0
0 − 1

2 0
0 0 − 1

2

⎞
⎠ .

It follows that (W, e1) ∈ Sing3(P ) is a finite dimensional point in the NC variety of
P .
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