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1. Introduction

The goal of this paper is to extend results from classical measure theory and the the-
ory of Hardy Spaces of analytic functions in the open unit disk, D, in the complex plane,
from one to several non-commuting variables. In particular we are interested in Fatou’s
theorem [13], which recovers the Radon—Nikodym derivative of a positive measure p on
the unit circle (with respect to Lebesgue measure) from the boundary values of its Pois-
son integral. (This positive harmonic Poisson transform is the real part of an analytic
function, h,, given by the Herglotz—Riesz integral of x.) In the non-commutative (NC)
setting, positive measures on the circle are replaced with positive linear functionals on
the free disk system (these will be called ‘NC measures’; all terminology will be defined
carefully below), the NC multi-variable analogue of the operator system of the disk alge-
bra. Here, recall that the disk algebra is the unital Banach algebra of analytic functions
in D which extend continuously to the boundary, equipped with the supremum norm.
The notion of Herglotz—Riesz integral transform has a natural extension to this non-
commutative setting, and the NC Herglotz—Riesz transform of any positive NC measure,
i, is an NC Herglotz function, H,,, with positive real part in a certain non-commutative,
multi-variable unit row-ball. We are then faced with two basic problems: First, identify
the appropriate NC analogue of normalized Lebesgue measure and develop a suitable
definition of the Lebesgue decomposition of an NC measure with respect to this NC
Lebesgue measure, and secondly, assuming such an NC Lebesgue decomposition theory
can be developed, find a method of recovering the absolutely continuous part of the NC
measure, u, from its NC Herglotz—Riesz transform, H,,. We will put forward solutions
to both of these problems.

Let us describe the background in more detail; this will also allow us to establish
some notation. We recall that the Hardy Space, H?> = H?(D), is the Hilbert space of
analytic functions in the unit disk with square-summable Taylor coefficients at 0 € D,
endowed with the £2 inner product of these coefficients. Any element of the Hardy space
has non-tangential boundary limits almost everywhere with respect to Lebesgue measure
on the unit circle in the complex plane, D, and the identification of h € H? with its
boundary limits is an isometry into L?(0D). The Hardy algebra, H>® = H>(D), is
the unital Banach algebra of bounded analytic functions in . Multiplication by any
h € H*® defines a bounded linear map from H? into itself, so that H> can be viewed
as the multiplier algebra of H*(D).

In measure theory and Hardy space theory, there is an (essentially) bijective corre-
spondence between finite, positive, and regular Borel measures on the unit circle 0D,
and contractive analytic functions in D. Namely, if b € [H*°]; is a contractive analytic
function in D, then its Cayley Transform,
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is a Herglotz function, an analytic function with positive semi-definite real part in D.
By the Herglotz—Riesz representation formula for positive harmonic functions, there is a
unique positive measure, iy, so that the Herglotz—Riesz transform of pu; is

B (2) = / 1ijg*ub(dg“) — hy(2) — iTm By (0).
oD

This measure, py, is called the Clark or Aleksandrov—Clark measure of b € [H*°];, and
many properties of b are reflected in those of u; [8,3,4,38]. For example, a theorem of
Fatou, [13] (see [15, Chapter 3.3: Fatou’s Theorem]), implies that the Radon—Nikodym
derivative of u; with respect to normalized Lebesgue measure, m, on 9D is given (m—a.e.)
by the non-tangential and, in particular, radial limits of the positive harmonic function
Re hb:

ﬂb(do = lim 671 +0(2) m— a.e
m(dq) 7zlch 1—b(z) ( )
= ligl(l —b(2)") 7 1 = b(2)*b(2))(1 = b(2)"Y; m—ae.
z—(
= lim % m— a.e
B ATErE

where ¢ € D, z € D, and z 5 ¢ denotes non-tangential convergence. In particular, it
follows that the Clark measure, up, of b is singular with respect to Lebesgue measure if
and only if b is inner, i.e. has unimodular non-tangential limits m—a.e. on dD. (Under
the identification of h € H? with its boundary values, it is clear that any contractive
analytic b € [H*]; is inner if and only if the multiplier M, is an isometry of H? into
itself.)

This bijective correspondence between positive measures and contractive analytic
functions extends naturally to the non-commutative multi-variable setting of the Non-
commutative (NC) or free Hardy space, [35, Section 5] (see also [16,18]). Here, the free
Hardy space can be viewed as a Hilbert space of (graded) analytic functions in an open
unit ball of d—tuples of matrices (of all sizes) taking values in matrices of all sizes
[18,34,36,7,29,22]. Elements of this NC Hardy space have Taylor series expansions in-
dexed by the free monoid, F?, the set of all words in d letters. It follows that the free
Hardy space is isomorphic to ¢?(F?) in the same way that H2(D) is isomorphic to the
square-summable sequences indexed by the non-negative integers, £?(Ny).

By the Riesz—Markov representation theorem, any finite, positive, and regular Borel
measure, i, on D, can be identified with a positive linear functional, i on € (9D), the
commutative C*—algebra of continuous functions on the circle:

ﬂU%:/ﬂOw@)
oD
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By the Weierstrass approximation theorem,
¢(0D) = (A(D) + AD)")

where A(D) is the disk algebra, the algebra of all analytic functions in D with continuous
extensions to the boundary. In the above formula, elements of A(D) are identified with
their continuous boundary values and | - || denotes the supremum norm for continuous
functions on the circle. The disk algebra can also be viewed as the norm-closed unital
operator algebra generated by the shift, S := M,, the isometry of multiplication by z
on the Hardy space, H?(D). The shift plays a central role in the theory of Hardy spaces
[25,42]. The positive linear functional /i is then completely determined by the moments
of the measure u:

awh:/&wm, (1.1)
oD

and the Taylor series coefficients (at 0) of the Herglotz—Riesz integral transform of u are

. 1 d*h, ——

The shift on H?(D) is isomorphic to the unilateral shift on ¢*(Np). The square—
summable sequences, £2(Ng), can in turn be viewed as a simple, directed tree starting
from a single node and with one branch directed downward from each node to the next.
A canonical several-variable extension of £2(Np) is then ¢2(F9). If we view, as before,
£? of the free monoid as a simple directed tree starting from a single node and with
d branches directed downwards from each node, it is natural to define a d—tuple of
isometries, the left free shifts, L, 1 < k < d which shift along these branches from nodes
indexed by words of length N to those of length NV + 1 by appending letters to the left
of words indexing the standard orthonormal basis. These left free shifts have pairwise
orthogonal ranges so that the row operator L := (Ly,---,Lq) : £2(F%) @ C? — 2(F%)
is an isometry from d copies of ¢?(F9) into one copy which we call the left free shift.
This space of square-summable free sequences, £2(F?), can also be identified with the
full Fock space over C%, the direct sum of all tensor powers of C?. The full Fock space
will be denoted by HZ. Under this isomorphism the left free shifts are conjugate to the
left creation operators, see Section 2 for more details.

The immediate analogue of a positive measure in this non-commutative (NC) multi-
variable setting is then a positive linear functional, or NC measure, on the free disk
system:

= (Ag+ A7

where Ay := Alg{I, Ly, -- ,Ld}_”'” is the free disk algebra, the operator norm-closed
unital operator algebra generated by the left free shifts. As in the classical theory, ele-
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ments of the free disk algebra can be identified with bounded (matrix—valued) analytic
functions (in several non-commuting matrix variables) which extend continuously from
the interior to the boundary of a certain non-commutative multi-variable open unit ball.
Moreover, exactly as in Equation (1.1), the NC moments of the NC measure, u, are in
fixed proportion to the Taylor series coefficients of its NC Herglotz—Riesz transform, H,,.
There is a long history and well-established precedent of viewing positive linear func-
tionals on operator algebras as non-commutative measures, e.g. in von Neumann algebra
theory and Free Probability Theory [24,43,50].

Any NC measure can be viewed as a positive semi-definite quadratic form with dense
domain Ay C Hfl, and we develop a Lebesgue decomposition theory of (positive) NC
measures into absolutely continuous and singular parts using the Lebesgue decomposition
theory for quadratic (i.e. sesquilinear) forms due to B. Simon [41, Section 2], combined
with (non-commutative) reproducing kernel techniques applied to the spaces of Cauchy
transforms with respect to the NC measure. This Lebesgue decomposition theorem for
(potentially unbounded) quadratic forms in Hilbert Space is similar in spirit to von
Neumann’s proof of the Radon—Nikodym Theorem and Lebesgue decomposition theory
[51, Lemma 3.2.3], and our computation of the Radon—Nikodym derivative of any positive
NC measure is also reminiscent of this approach. In our theory, the Radon—-Nikodym
derivative of a non-commutative (NC) measure with respect to NC Lebesgue measure
will be a (generally unbounded) positive semi-definite left Toeplitz operator in the sense
of [33,35] and defines a positive free pluriharmonic function in the sense of Popescu [35].

Remark 1 (On boundary values). The free Hardy space, H?(Bg), is a Hilbert space of
non-commutative (NC) functions in an open unit ball, B, of the NC universe,

cg=Jcd ci=crmectxd (1.2)
n=1

In the above, C™*"™ denotes the m x n matrices with complex entries, and any element
of C"*" @ C1*4 is viewed as a row d—tuple, Z = (Zy,--- ,Z4), of n x n matrices. As
described in [29], one can equip C?¢ with three natural operator space norms: Given
X ecCy,

1
2

d
1X oo := max{ || Xall, - 1 Xall}, 1 Xleor := D X;X5|| , and
j=1

2

d
X lrow = || > X, X5
j=1

The unit ball we consider, is the unit ball, B, of C& with respect to the row-norm,
| * lrow- That is, we consider the NC open unit row-ball,
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d > d d d
B = | |BY  BL={Z=(Z,,Z) €CL| Z1Z; + -+ ZuZ; < L}. (1.3)
n=1

The open unit ball of C& with respect to the || - ||o operator space norm is the NC unit
polydisk, D, consisting of all points X = (X1,---,Xq) € C§ so that || Xy| < 1, for
1<k <d.

The distinguished boundary of the NC unit row ball, 9B%, can be identified with the
set of all row co-isometries, i.e. the set of all X € C% obeying XX* = X, X} +--- +

X4X; = I,. (Note that there are no finite-dimensional row isometries.) Indeed, if we
d

n’

identify the components of X € B%, with the corresponding subset of (C”Q'd, then the
Shilov boundary for the commutative algebra of complex functions in n2d variables is
the set of all co-isometries in C™*9" [47, Example 1.5.51]. Moreover, as proven in [39,
Lemma 2.10], any irreducible point X € C% with joint spectral radius equal to 1, which
is not in the joint similarity envelope of the NC unit ball, is jointly similar to a row
co-isometry. On the other hand, as described in Subsection 2.2 below, if X € C% is
in the joint similarity envelope of the NC unit row ball then the point evaluation map
h — h(X) is bounded as a linear map of H*(B&) into the Hilbert space (C™*", (-, )tr,),
where tr,, denotes the normalized trace and (-, -)s;, denotes the normalized trace inner
product.

It is natural to consider the boundary values of h € H?(B) on the boundary of the NC
unit row-ball, as well as to wonder whether the inner product in the NC Hardy space can
be expressed as an integral over the boundary 8]]31‘11. Moreover, one may wonder whether
there is an exact analogue of Fatou’s theorem in this context. Investigations of boundary
values in NC Hardy spaces of functions in the NC unit polydisk, and in the NC unit balls
with respect to the ||-||cor and || - ||row —norms, were studied in [29]. See also [49, Chapters
14-16] which studies asymptotic tracial integral formulae of bounded non-commutative
functions in ID)I‘iI over the distinguished boundary, 8[[])%I of [D)f\l17 consisting of d—tuples of
unitary matrices. In particular, [29, Theorem 3.5] shows that one can construct an NC
Hardy space of NC functions, H? (]D)I‘il) in DI‘{I with inner product defined as a limit of
tracial integrals with respect to product Haar measure over the boundary of 7“8]1))1‘{1, for
0 < r < 1, and this recovers the Fock space inner product at least on NC polynomials
p,q € H? (]Df{l). Note, however, that IB%I‘iI - ]Dfi17 the NC unit row-ball is a proper subset
of the NC unit polydisk, and a general element of H?(Bg) need not (and generally does
not) extend to Dg. (It is not difficult to construct examples of NC rational functions t
in H? for which certain points Z € Df\ll \BdN do not belong to their domains, for example
see [21].) Thus, it appears that generic elements of the Fock space cannot be represented
as NC functions in the polydisk, D¢, and in particular there does not appear to be any
way to sensibly assign levelwise boundary values on ani] to arbitrary elements of the
Fock space. Moreover, while the Fock space inner product of polynomials can be given
a random matrix interpretation, this interpretation does not extend to all elements of
the Hilbert space. On the other hand, [29, Theorem 3.5] can also be applied to construct
a Hardy space of NC functions in the row-ball Bg} whose inner product is given by an
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asymptotic integral formula with respect to a family of invariant measures over each
level of the boundary. However, this inner product does not coincide with the Fock space
inner product and hence this gives a different NC Hardy space than the one we consider
here.

At this point, it is not obvious whether or not the constructions of [29] can be modified
in a suitable way to show that the inner product in HQ(IB%I‘iI), can be expressed in terms of
integral formulae over the boundary, 818111. This would seem to be a necessary first step in
developing an exact analogue of Fatou’s theorem in this setting. While such an approach
would be interesting and valuable, we will instead pursue a more abstract and operator—
theoretic approach. By re-casting Fatou’s theorem in purely operator theoretic language,
we will develop a ‘dimension-free’ proof of Fatou’s theorem that applies to H?> (BI’%),
independently of d € N. In particular, we recover the classical result for H?(D) ~
H?(Bj;) as a special case.

1.1. Readers’ guide

Section 2 provides the necessary background material on the free disk algebra, NC
function theory, and the formalism of non-commutative reproducing kernels. Section 3
recalls the relevant background on NC measures and the NC Cauchy transform from
[18,16]. In Section 4 we describe Simon’s approach to the Lebesgue decomposition of
positive semi-definite and not necessarily bounded quadratic forms in Hilbert space,
see Theorem 2. We use this theory to define the Lebesgue decomposition of an NC
measure into absolutely continuous and singular parts in Definition 7; however, at this
stage, it is not clear that the absolutely continuous and singular parts of NC measures
are themselves NC measures. Section 5 then proves that this quadratic form approach
produces NC measures by examining spaces of NC Cauchy transforms. This yields an NC
Lebesgue decomposition of the original NC measure as the sum of absolutely continuous
and singular positive NC measures in Theorem 4. We further show that the NC Radon—
Nikodym derivative, T, of any positive NC measure with respect to NC Lebesgue measure
is a closed, positive semi-definite operator with the left Toeplitz property:

(VTLyh, VTL;g)uz = 0k ;(VTh,VTg)yz;  h,g € DomV'T,

in Theorem 5. Corollaries 1 and 2 provide further characterizations of absolutely con-
tinuous and singular NC measures in terms of their Gelfand—Naimark—Segal spaces and
their spaces of NC Cauchy transforms. Finally in Section 6 we prove our NC Fatou
theorem, Theorem 6, which shows how to recover the absolutely continuous part of an
NC measure from its Herglotz—Riesz transform; the main tool is the theory of strong
resolvent convergence of self-adjoint operators:

Theorem (Non-commutative Fatou Theorem). Let i € (Jz{d):_ be any positive NC measure
with NC Herglotz—Riesz transform H,. The absolutely continuous NC measure pg. s
given by the formula:
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/J'ac((l)lkag) = <\/Ta1, \/TGQ>H3; ai, a2 € Ad,

where the NC' Radon—Nikodym derivative, T, is a closed, positive semi-definite left
Toeplitz operator with dense domain in HZ so that Ag is a core for /T. This NC Radon—
Nikodym derivative can be computed by the formula:

(T +el)™? :SOTfli%{l(ReH#(TR)+€I)71; €>0.

In the above, and throughout, SOT denotes the strong operator topology and R =
(R1,- -+, Rq) is the row isometric right free shift whose components, Ry, act as Rre, =
ear on the standard orthonormal basis, {€q }acrae of £2(F9). As a corollary to this main
result, we recover (half of) a familiar fact from Hardy space theory in Corollary 3 — if
B is an NC inner function in IB%I‘{I, then its NC Clark measure is singular with respect to
NC Lebesgue measure.

2. Background: the free Hardy space

The Hardy space, H?(D), of analytic functions in the complex open unit disk can be
defined in two equivalent ways: On one hand,

H%*(D) := {f(z) =Y fn2" € O(D)

k=0

S <oo}

is the Hilbert space of all analytic functions in D with square-summable MacLaurin
series coefficients (and with the #2—inner product of these coefficients). Alternatively,

=———3 z,w€ED,

1 — zw*
is the unique reproducing kernel Hilbert space (RKHS) corresponding to the positive
sesqui-analytic Szeg6 kernel, k, on D. (Here, recall that there is a bijective correspondence
between reproducing kernel Hilbert spaces of complex-valued functions on a set X, and
positive kernel functions on X x X. See Subsection 2.2 for a detailed description.)

One also has the corresponding two equivalent definitions of the Hardy algebra
H>(D):

H®(D) := {h € 0(D)

sup [h(z)] < oo},
z€eD

and

H*®(D) := Mult H(k); k(z,w) = (1 — zw*) ™,
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where recall that the multiplier algebra, Mult H(k), of an RKHS, H(k), is the unital
WOT—closed (weak operator topology closed) algebra of all functions A which multiply
H(k) into itself. These definitions have natural non-commutative multi-variable exten-
sions.

2.1. 02 of the free monoid as the free Hardy space

From the square-summable Taylor series definition, is clear that the shift, S = M, is
an isometry on H2(D). The map f ~— (f,) of a holomorphic f € H2(D) to its sequence of
MacLaurin series coefficients defines a unitary map from H?(ID) onto ¢?(Njy), the square—
summable sequences indexed by the non-negative integers, and the image of the shift
under this unitary transformation is S , the unilateral shift on ¢2(Ny), the universal pure
isometry. Here, recall that the Wold decomposition shows that any isometry on Hilbert
space is unitarily equivalent to several copies of the unilateral shift, with possibly a
remainder unitary direct summand. An immediate multi-variable analogue of £?(Nj)
is then (2(F?), the square-summable sequences indexed by F¢, the free and universal
monoid on d letters. This is the unital semi-group of all words in d letters (which we
choose to be {1,...,d}), with product given by concatenation of words, and unit equal
to the empty word, ), containing no letters (and clearly Ny ~ F!). Given any word,
a=iy---ip € F4 4 € {1,--- ,d}, we write |a| := n for the length of the word «, and
|0] = 0. The square-summable sequences £2(Ny) can be viewed as a directed graph or
tree, starting from a single node (labeled by 0, the unit of Ny), and with one branch
connecting each node to the next. The unilateral shift moves downward along these
branches, taking the orthonormal basis vector of the k*® node to that of k + 1. Similarly,
?2(F%) can be viewed as a tree starting from a single node labeled by the unit, ), and
with d branches directed downward from each node. In this multi-variable setting there
is now a natural d—tuple of left free shifts shifting along branches from a given node to
d distinct nodes at the next level. Namely, if e, is the orthonormal basis vector labeled
by the word o € F¢, then Lpe, = ero; 1 < k < d. It is not difficult to see that the left
free shifts are isometries with pairwise orthogonal ranges,

LyLj := Ok 12 wa),
so that the d—tuple
L:=(Ly,---,Lg): *(F) @ C% — (*(F?),

defines a row isometry, i.e. an isometry from several copies of a Hilbert space into itself.
In fact, Popescu’s extension of the Wold decomposition shows that the left free shift, L,
is the universal pure row isometry (with d components) [30].

The left free shifts do not commute, and it may appear, at first sight, that one loses
all connection to analytic function theory (since one cannot represent Ly as M,, on
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a space of holomorphic functions on some domain in C9). Most remarkably, this is
not the case — instead ¢?(F¢) can be identified with a space of holomorphic functions in
several non-commuting (NC) variables, Z = (Z1,- -+ , Z4), and the Ly, ~ Mék become left
multiplication by these independent NC variables. Certainly any element of ¢2(F?) can
be viewed as a formal power series in d formal non-commuting variables 3 := (31, ,34):

f= Z faea HZfaﬁa = f(3),

aclFd

where if @ = iyig - - iy, ik € {1,...,d}, we use the standard notation 3% = 3;,3i, « - - 34, fOr
any free monomial. This is simply a change in notation, however, if Z := (Zy, -+ ,Zy) :
H ® C? — H is any strict row contraction on a Hilbert space, H, i.e.

22 = 2005 + -+ ZaZl < Iy,

then the Popescu—von Neumann inequality for free polynomials,

[P < lp(L)l; e C{a,--3a)

implies that the power series for f converges absolutely in operator norm when evaluated
at Z (and uniformly in operator norm on the ball of all strict row contractions of norm
at most r, for any fixed 0 < r < 1),

s < ees
1=z
The above inequality is a further consequence of the fact that ||p(L)|| = [[p|le(F+) for
any homogeneous free polynomial. This shows that the power series, f, can be viewed
as a function in the non-commutative open unit row-ball, Bfi], defined in Equation (1.3).
Here, B} = (C™*™ @ C'*9) | can be viewed as the set of all strict row contractions with
d components on C". Any such square-summable power series (in particular any free
polynomial) has the following three basic properties:

1. f:BZ — Cnxn, f is graded,
2. If Z € B, W € BY, then

f <g I/(I)/> = (f(OZ) f((I)/V)> , f respects direct sums,
3. If W = S~1Z8S is jointly similar to Z, i.e. W, = S71Z,S, 1 < k < d, then

f(W)=5"1f(2)8, f respects similarities.
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In modern NC Function Theory [22,1,45,46,48,49], the above three properties are taken as
the axioms defining a non-commutative function, and Bfi] - (Cf{l, is an example of an NC
set. (Any subset of Cgj which is closed under direct sums is an NC set.) The interpretation
of £2(F4) as non-commutative power series was first developed by Popescu in [34,36,35],
and this has been one of the inspirations of non-commutative function theory. This
general philosophy of identifying certain abstract Hilbert spaces and operator spaces
with concrete spaces of NC functions has been a fruitful viewpoint in non-commutative
analysis [48,49,44,29,39].

Remarkably, any locally bounded NC function (on say a left and right admissible
NC domain, see [22]) is automatically holomorphic in the sense that it is both Gateaux
and Fréchet differentiable at any point in its domain and has a convergent Taylor—type
power series expansion about any point [22, Chapter 7]. In particular, any f € ¢?(F9)
defines a holomorphic NC function in IB%I‘iI. Much of classical complex analysis and several
complex variables extends naturally to the setting of NC holomorphic functions with
purely algebraic proofs including the Schwarz Lemma, Cauchy’s estimates, Liouville’s
theorem (and much more) [34,36], Hilbert’s Nullstellensatz (this is in some sense ‘perfect’
in the NC setting) and a maximum modulus principle [39], Oka—Weil theorem [1], and
the concept of a complex analytic manifold [2].

It follows that we can identify ¢2(F?) with the Non-commutative (NC) or free Hardy
space:

H*BY) = f € OBR)| f(2)= Y faZ% Y |fal* <oy,

acFd

the Hilbert space of all (locally bounded hence holomorphic) NC functions in the NC unit
ball Bfi] with square—summable MacLaurin series coefficients. Under this identification
the left free shifts, Ly, become left multiplication by the independent variables, L =
M ék Note that ¢2(IF9) is also isomorphic to the full Fock space over C%:

H?l:C@Cd@(Cd®cd)@(6d®cd®cd)@: ((Cd)k‘@)’

oo
k=0

the direct sum of all tensor powers of C¢. This isomorphism is implemented by the
unitary map e, — L*1, where 1 denotes the vacuum vector (which spans the subspace
C C H?) of the Fock space. Under this isomorphism the left free shifts become the left
creation operators which act as tensoring on the left by the members of the standard
orthonormal basis of C?. In the sequel we identify ¢(F?), H2 and H*(Bg) and we will
use these notations interchangeably.
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2.2. Fock space as a non-commutative RKHS

As in the single-variable setting, the free Hardy space, H2(Bg), can be equivalently
defined using (non-commutative) reproducing kernel theory [7]. The theory of non-
commutative reproducing kernel Hilbert spaces (NC-RKHS) is a faithful analogue of the
classical theory [5,27]. Here, recall that a reproducing kernel Hilbert space is a Hilbert
space of (complex-valued) functions, H, on a set X, so that point evaluation at any
x € X is a bounded linear functional: For any f € H and x € X,

C(f) = f(x); Lo €H

The Riesz representation lemma then implies there is a corresponding kernel vector
k. € H so that

(ka, [)n = La(f) = f(=),

and one typically writes H =: H(k) where the reproducing kernel k : X x X — C is
defined as:

k(x,y) := (ke ky)2; z,y € X.

Here and throughout, all inner products and quadratic or sesquilinear forms are conjugate
linear in their first argument. Any reproducing kernel is an example of a positive kernel
function on X: A function k£ : X x X — C is a positive kernel function if given any
finite subset {x1,---, 2y} C X, the corresponding Gram matrix of the k,; is positive
semi-definite:

0 < [k(z, Ij)]lgi,jgN-

Conversely, starting with any positive kernel function, k, on X, there is a unique RKHS
of functions on X with reproducing kernel equal to k. (One simply defines functions
ky(z) == k(x,y) for z,y € X, and then takes the Hilbert space completion with respect
to the inner product defined by (ks, ky) = k(z,y).)

The concept of a non-commutative reproducing kernel Hilbert space (NC-RKHS) is
analogous: Let Q := || Q,,

Qn _ Qﬂcnxn ® (Cle,

be any NC subset of the NC universe (Cfir (Recall an NC set is any subset of Cf{l which
is closed under direct sums.) A Hilbert space of non-commutative functions, H on
(taking values in, say, Cy = | ] C™*") is an NC-RKHS if point evaluation at any point
Z € Q,, is a bounded linear map from H into the Hilbert space C™*" (equipped with
the normalized trace or Hilbert-Schmidt inner product). Denote this evaluation map by
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bz :H— CY"for Z € Qp, and let Kz := {3, : C"*™ — H be its Hilbert space adjoint.
For y,v € C™ we can then define

K{Z y,v}:= Kz(yv") € H.
Furthermore, given Z € Q,,,y,v € C" and W € Q,,,, z,u € C™ define the linear map
K(Z,W)[]:C™*™ — C™m,
by
(v, K(Z,W)[vu*]z)cn = (K{Z,y,v}, K{W, 2, u})3.

This defines a completely bounded linear map K(Z, W) : C™*™ — C™*™ go that
K(Z,Z):C™*"™ — C™*" is completely positive for any fixed Z € Q,,. The map K(Z, W)
is called the completely positive non-commutative reproducing kernel (CPNC kernel) for
the space H. The CPNC kernel is a sort of two-argument NC function, see [7, Sections
2.3-2.4] for details. As in the classical theory there is a bijection between CPNC kernel
functions on a given NC set and NC-RKHS on that set [7, Theorem 3.1], and if K is a
given CPNC kernel on an NC set, we will use the notation H,.(K) for the corresponding
NC-RKHS of NC functions. In particular, the free Hardy space is the unique NC-RKHS
corresponding to the NC Szegd kernel:

K(Z W)= 3 Z°[W;  HA(BE) = Huo(K). (2.1)

ackFd

All NC-RKHS in this paper will be NC-RKHS of free holomorphic functions in the
NC unit ball B, so that if f € H,.(K), f has a Taylor-MacLaurin series at 0 € B with
non-zero radius of convergence, [22, Chapter 7]:

f(2)= > 7%  ZeBL faeC,

a€clFd

and the linear coefficient evaluation functionals:
f‘£$ fé; ac Fd7
are all bounded. We will let K, denote the coefficient evaluation vector:

(Ko, )3 (r0) = Lalf) = fa, a €T,

and we will typically write ¢, =: K. If K is the NC Szegt kernel of the free Hardy
space, then
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i.e. K, can be identified with the free monomial L*1 € H?l.

Recall that any reproducing kernel Hilbert space (RKHS) H (k) on a set X is naturally
equipped with a multiplier algebra Mult H(k), the algebra of all functions on X which
‘multiply’” H(k) into itself:

heMk),FeMutH(k) = FheHk).

Any multiplier F' € Mult H(k) can be identified with a bounded linear multiplication
operator Mp € Z(H(k)), and under this identification Mult H (k) is closed in the weak
operator topology and unital. One can similarly define left and right multiplier algebras
in the NC setting. Namely, if H,.(K) is an NC-RKHS on an NC set €2, then NC functions
F, G are left or right multipliers of H,,.(K), respectively, if the NC functions

(F-1)(2) = F(Z)W(Z), or (h-G)(Z)=h(Z)C(Z),

belong to H(K), for every h € H,(K). As in the classical theory, the adjoints of both
left and right free multipliers have a natural action on point and coefficient evaluation
vectors:

(MEY*K{Z,y,v} = K{Z,F(Z)*y,v}, (MEY* K{Z,y,v} = K{Z,y,G(Z)v},
and if F(Z)=>.Z*F,, G(Z) = Z*G, then,
(MEY K, = Z K., Fj, (ME)'K, = Z K.,G5.
By=a YB=a

In the above, and throughout, ¢* = € denotes complex conjugate of a complex number
¢ € C. The left multiplier algebra of the free Hardy space provides a non-commutative
generalization of H>°(D) = Mult H?(D):

sup || f(2)| < oo} = Mult;, H?*(B&).

H>(Bf) := {f € O(BY)
ZeBY,

As in the single variable setting, the left multiplier norm on H*° (Bfi]) (the norm of a left
multiplier viewed as a left multiplication operator) coincides with the supremum norm
in the NC unit ball [39, Theorem 3.1], [34, Theorem 3.1]. In keeping with the notation
H?2 for the Fock space, we will often use the more compact notation H® = H> (BdN).
This left multiplier algebra can also be identified with

£30 = A]g{[’ Ly, )Ld}—weak—*’

the (left) free analytic Toeplitz algebra. Let
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Ag:=Alg{I,Ly,--- Lg}~ I,

be the left free disk algebra. The free disk algebra can be viewed as the set of all uniformly
bounded NC holomorphic functions in IB%fiI which extend continuously to the boundary,
OBY, (of all row contractions with unit norm). Recall that one can also define Ry, = M g‘k,
the isometric right free shifts on H*(B;), and these are unitarily equivalent to the left
free shifts via the self-adjoint transpose unitary on ¢2(F9), U,

Uien = eqt,

where if @ =iy - - - 4,, € F?, then a' := 4, - - - i1, its transpose or ‘letter reversal’. The map
w > w' for w € F? is an involution of the free monoid. We also define Ry := U, £5°U,
the right free analytic Toeplitz algebra. Note that if F/(L) = M 1%( z) € £5° has Taylor—
MacLaurin series:

F(Z)= Y F.Z° (2.2)
acFd

then its transpose—conjugate, F* € (H3°)" is a locally bounded NC function,
FY(2) =) FuZ®, (2.3)
so that
F(R) := U,F(L)U, = ME, € RF.

Asin [12,33] a left (or right) free multiplier of the free Hardy space will be called inner
if the corresponding multiplication operator is an isometry, and outer if the corresponding
(left or right) multiplication operator has dense range.

3. Non-commutative measures

As described in the introduction, any finite, positive, and regular Borel measure, p,
on JD is the Clark measure, p = py; corresponding to a contractive analytic function b
in D. As before, we can identify u, via its moments, with a positive linear functional,
ii, on the disk algebra operator system A(D) 4+ A(D)*. (We write this in place of its
norm-closure, which is simply the C*—algebra € (0D) of continuous functions on 9D in
this case.) If b is a contractive analytic function, then 1 — b is outer (cyclic for the shift),
and it follows that Hy(S) := (I + b(S))(I — b(S))~! is a closed operator affiliated to S
with dense domain Ran (I — b(.S)). Moreover, it is not difficult to verify the formula:

1

fi(S*) = = ((Hy(9)*1, S*1) g2 + (1, Hy(S)*S*1) =)

2
1 1 * ok
= 5k,0§Hb(0) + §<]—7Hb(s) S*1) p2.
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One can further re-write the Herglotz representation formula in terms of this Clark
functional:

Hy(z) = ilm Hy(0) + i (I 4 25)(1 — 28%)71),

and the (conjugate) moments of y are in fixed proportion to the MacLaurin series coef-
ficients of Hp:

Hy(2) = ilm Hy(0) + fip(1) +2)  2F fu ().
k=1

These constructions have exact analogues in the NC multi-variable setting. In place
of A(D) = Alg{I,S} 'l we have the free disk algebra, Ay = Alg{I, Ly,---, Ly}~ II'l.
The results in this section can be found in [18,16].

Definition 1. A positive non-commutative measure is a positive linear functional on the
free disk system:

dy = (Ag+ A5
The set of all positive NC measures will be denoted by (VQfd)if|r

Classically, the closed unit ball of H>*(ID), i.e. the closed convex set of all contractive
analytic functions in the disk, is called the Schur class [6]. The convex set, % := [H3°]1,
of all contractive NC functions in Bﬁ; will then be called the left NC' Schur class or left
free Schur class [6, Section 3|. Similarly, Z4 = £} will denote the right NC' Schur class,
the set of all transpose—conjugates of elements of .Z;.

Definition 2. A free holomorphic function, H in Bﬁ] is a left free or NC Herglotz function
if Re H(Z) is positive semi-definite for all Z € Bl‘i]. The set of all left free Herglotz
functions is a positive cone which we denote by fd“' .

We will also consider the right NC Herglotz class, 9?;, the image of fj under the
transpose involution, Z; = (£;)'. As in the classical setting, the fractional linear
Cayley Transform implements a bijection between £ and .fj : Given B € %,

Hp:=(-B)"*(I+B)e,
and given H € %,

By :=(H+1)"Y(H-1) <%

Similarly the Cayley Transform maps %y bijectively onto %’;.
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Definition 3. ([18, Definition 3.1]) Given any contractive free holomorphic B € %, :=
[H>®(B&)]1, the Clark functional or NC Clark measure of B is the positive linear func-
tional, up € (sz%d)i, defined by:

pis(1%) = 5 ((Hs(RY'1, L) + {1, Ho(R)* L1}z

1
(1, Hp(R)" L)

1
— “Hpyyg b,
5 B0 ,®+2<

It is not immediately obvious that the above definition of pp produces a positive NC
measure or positive linear functional on the free disk system, 27;. This is proven in [18,
Proposition 3.2] and [16, Proposition 4.5].

Remark 2. The left and right NC Schur classes are distinct. A simple example is given
by the NC polynomial:

1
B(Z) = ﬁzz(fn - 7)); ZeBl
This is inner as a right multiplier, i.e. M g( 2) is an isometry on H?i, and hence has operator
norm 1. However, as a left multiplier, M é( 2) has norm v/2 > 1, see [19, Example 3.4] for

details. Since the left and right NC Schur classes are distinct, so are the left and right
NC Herglotz classes.

Given Z € B4, let

I,®L}
ZL* = (%1®1Iyz, =, Za®Iy2) : =71 QL+ +Z;0 L € £(C" @ H3),
I,QL}

and set I, xm2 := I, ® Igz. Also note that ZL* is a strict contraction so that
(I—-2zL) ' =) (2L ) = > z°e L™,
k=0 aclFd

is a convergent geometric series. The following result extends the classical bijection be-
tween Herglotz functions in the disk and positive measures on the circle to our NC
multivariate setting.

Theorem 1. (/18, Theorem 3.4], [35, Section 5]) The map B — up is a bijection, modulo
the imaginary part of Hg(0), from £y onto (;z/d)_H and one has the NC Herglotz formula:

Hp(Z) = ilm Hp(0,) + (idy @ 1) ((Lnxmz + ZL) (Luxmz — ZL*)7Y);  Z € BL. (3.1)
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In the above, id,, : C™*"™ — C™*" denotes the identity map. Any NC measure p €
(,;zfd)TF is the NC Clark measure of some contractive NC holomorphic function B € %y,
# = up, and the moments of u can be identified with the MacLaurin (Taylor—Taylor
series at 0 € BY) series coefficients of Hp:

Hp(Z) = ilm Hp(0)1,, + (D)L, + 2 Z°u(L*)*, (3.2)
a0

see [18, Lemma 3.3].
3.1. Non-commutative Lebesgue measure

Classically, the Herglotz—Riesz transform, H,,(z), of normalized Lebesgue measure,
m on 0D is the constant function H,, = 1:

Hy(2) = / Lt )

1—z§*m
oD

— 23 / (¢*)Fm(dc) - / m(de)
k=0 5p oD

oo
=2) Foo-1=1
k=0

The corresponding contractive analytic function in D obtained as the inverse Cayley
Transform of H,,(z) =1 is then identically 0:

H,(z)-1

b (2) = m =

It is then natural to expect that in the NC multi-variable theory, the role of normalized
Lebesgue measure should be played by the unique positive NC measure corresponding
to the constant free holomorphic functions:

B(Z):=0,, orequivalently Hp(Z):=1,; ZcB.

Using the NC Herglotz representation formula (3.1), it is easy to check that the unique
NC measure (which we also denote by m), corresponding to the contractive NC function
B(Z) =0, is the vacuum state of the Fock space:

m(LY) == (1, L) g2 = 049

More evidence that this is to be expected, is that if m is normalized Lebesgue measure
on JD, then the corresponding linear functional /m restricted to A(ID) can be expressed
as:



M.T. Jury, R.T.W. Martin / Advances in Mathematics 400 (2022) 108293 19

m(S*) = (1,81 g2 = 0.

Definition 4. The vacuum state m € (szd)iL will be called normalized NC' Lebesgue mea-
sure.

3.2. Left regular representations of the Cuntz—Toeplitz algebra

If p is any positive finite and regular Borel measure on 9D, it is natural to consider
the L? space, L?(u,0D), as well as its ‘analytic part’,

()= \/ ¢*,

k>0

the closed linear span of the ‘analytic polynomials’ in L?(u,dD). The operator My, of
multiplication by ¢ is unitary on L?(p), and H?(u) is M —invariant so that the restriction
of M¢ to H?(u) is an isometry.

When d > 1, the appropriate analogues of H?(u) and M¢|g2 () are obtained via a
Gelfand-Naimark—Segal (GNS) construction: If p € (%)1, the fact that the free disk
algebra has the semi-Dirichlet property [10]:

AjAq C (Aa+ AT,
ensures that the GNS pre-inner product:
(a1,a2), = plajaz); ay,a2 € Ag

is well-defined on A,. The GNS space H2(up) is then the Hilbert space completion of
A4 modulo zero length vectors with respect to this pre-inner product. The equivalence
class of a € Ay will be denoted by a+ N, where N, C A, is the left ideal of all elements
of zero length. Moreover, the left regular representation: 7, : Aqg — Z(H2 (1)),

mu(a1)(as + N,) == aras + Ny; ai,as € Ay,

is completely isometric and extends to a x—representation of the Cuntz—Toeplitz algebra,
Eq=C*(I,L), on L(H%(1)) [9]. In particular,

I, = mu(L) = (mu(L1), -, mu(La)) : Hi(u) ® C7 — HE(w),
is a (row) isometry, and we write I, := m,(Lx). Again, if d = 1 then
HI () ~ H*(p), and II; o Me|gz(,

where i is, as before, the positive linear functional corresponding to the positive measure,
1 on the circle oD.
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3.3. The (right) NC Herglotz class

For our purposes, it will be convenient to consider the right free Herglotz class %’j =
(.fj )t, the image of the left free Herglotz class under the involutive transpose map.
Namely if H € Zd"’ has Taylor-MacLaurin series:

t
H(Z)= Y Z°Ho=p)I, +2>  Z°u(L*)",
acFd a#)

where H corresponds uniquely to the positive NC measure i, then H® € %’j has Taylor—
MacLaurin series:

HY(Z) =Y Z°Hoe = p(I)I, +2 Y Zu(LY)",
@ a#d

see [18, Section 3]. As in [18,17,20], we can identify Z; as closed (potentially unbounded)
right multiplication operators densely-defined in the full Fock or NC Hardy space: if
H € Z}, then Mfj ;) = H'(R), where H*(L) = M{;, , and H' € Z;. Given H € %,
one can construct the (right) free Herglotz space, T (H) := H,.(K™), the unique
NC-RKHS corresponding to the (right) free Herglotz kernel:

K™(Z,W) = SK(Z,W)[HZ)() + OHW); ZW e BY,

see [18, Section 4], [16]. Here K(Z,W) denotes the CPNC Szegd kernel in the NC unit
ball [B%f{l, see Equation (2.1), and K is also a CPNC kernel in BY,.

Lemma 1. A locally bounded NC function, H, in Bg} belongs to the right free Herglotz
class if and only if K¥ is a CPNC kernel.

There is an analogous kernel characterization of the left NC Herglotz class, see [18,
Section 3.

Proof. By definition H is right Herglotz if and only if H® is left Herglotz, 4.e. if and only
if Re H'(Z) > 0 for all Z € B. By [42, Chapter IIL8], the Cayley Transform implements
a bijection between closed, accretive operators (operators with numerical range in the
right half-plane) which are densely-defined in a Hilbert space and contractions which
do not have 1 as an eigenvalue. In particular, H® is a left NC Herglotz function if and
only if B := (H* — 1)(H' 4+ 1)~! € %, is a contractive NC function in Bf. (By the NC
maximum modulus principle, [39, Lemma 6.11], any non-constant B* € %, must take
strictly contractive values in BI{].) Setting B = (B")", we conclude that H € %’j belongs
to the right NC Herglotz class if and only if M¥ = BY(R) = U BY(L)U, is a contractive
right multiplier so that B € %, belongs to the right Schur class.
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It is well-known that a multiplier, b, of a reproducing kernel Hilbert space, H(k),
is contractive, if and only if the de Branges-Rovnyak kernel, kb(z,w) := k(z,w) —
b(2)k(z,w)b(w)* is a positive kernel function. It is straightforward to verify this in
the NC setting: A right multiplier, B € (H$)", of H2 is contractive if and only if
Igz — ME(ME)* >0, so that B € %, if and only if for any (Z,y,v) € B x C* x C"
and any n € N,

0< <K{Z7 y,’U}7 (I - M3<M§)*)K{Z>y’v}>ﬂ-ﬂ2
= <K{Z7 Y, v}7 K{Z> Y, U}>H2 - <K{Z7 Y, B(Z)U}7 K{Z7 Y, B(Z)U}>H2 (33)
— K (Z D)oYy — 5 K (2, 2)B(Z)oo BZ) .

Clearly if B is a contractive right multiplier the above expression is positive semi-definite.
Conversely, linear combinations of NC Szegt kernels are NC Szego kernels: K{Z,y,v} +
cK{W,x,u} = K{Z ® W,y @® cx,v ® u}, and the linear span of the NC Szego kernels is
dense. Hence, the above expression is positive semi-definite for all (Z,y,v) if and only if
B e %y.

It follows that B is a right NC Schur function if and only if the linear map KZ(Z, Z)[ ] :
Cn*m — C™*™ defined by

KP(2,2)|] = K(Z,2)[] - K(Z,2)[B(Z)(-)B(Z)"],

is positive semi-definite for any Z € B and n € N. By [7, Subsection 2.4], this is
equivalent to KB(Z,Z)[)] being completely positive for any Z € BdN, and hence to
KB(Z,W) being a CPNC kernel. It is clear that B(Z) = (H(Z) — I)(H(Z) + 1)~}
is the Cayley Transform of H, and a bit of algebra verifies that

K5(Z,W)[] = K"(Z W) - B(Z))()I = BW)"),

or equivalently, K*(Z, W)[-] = KB(Z,W)[(I — B(Z))"*(-)(I — B(W)*)71]. It follows
easily from these equations that the NC de Branges-Rovnyak kernel KZ is a CPNC
kernel if and only if K is a CPNC kernel. O

Given H € %’;, there is then a corresponding NC-RKHS, H,,.(K ), of NC holomor-
phic (i.e. locally bounded) functions in Bg. If p € (,;zfd)i is the unique NC measure
corresponding to the right NC Herglotz function H € ,%’dJr by Theorem 1, we will usually
write K = K*, and we will use the notation S (H,) := H,.(K") for the right free
Herglotz space of H),. Here, we will also write H = H,, (or sometimes 1 = ). As
described in [18,16], if H = H,,, there is a natural onto isometry, the (right) free Cauchy
transform, 6, : H2(u) — 2 (H,,): For any free polynomial p € C{3} C H3(u),

(€.p)(Z) = (idp @ pot) ((Iyxmz — Z o L*) " I, @ p(L))



22 M.T. Jury, R.T.W. Martin / Advances in Mathematics 400 (2022) 108293

=Y Z°u(Lp(L))
aclFd
= Y Z*(L*+ Ny, p(L) + N

ackFd

In the above, as before, for any Z € B, ZL* = Zy @ L} + ... + Z4 ® L} is a strict
contraction. The final formula above extends to arbitrary z € H3(p). (In the first line of
the formula above, the t symbol means that one needs to take the transpose of all words
in L* appearing in the geometric sum of (I,,xmg2z — ZL*)~! to obtain the second line.)

3.4. NC Cauchy transform of GNS row isometry

The image of the GNS row isometry II, under the free Cauchy transform is a row
isometry on the free Herglotz space:

Vi =61, =, (W, -+ 1pa) 65 @ Ia A (H,) @ C— s (Hy),  (34)
where II,,.; = m,(Lg). The range of the row isometry V, is:

RanV, = K*{Z y,v} — K*{0,,y,v}) = K*, 3.5
m «
(Z,y,v)e a#l)
B xC"xC"; neN

and for any Z € B4, y,v € C",

K*{Z,Z1y.v}
Vi (K*{Z,y,v} — K*{0y,y,v}) = KM{Z, Z*y, v} := : €t (H,) ®C"
K"{Z,Z}y,v}
(3.6)
The linear span of all such vectors is dense in 7 (H,,) ® C? since V,; is a co-isometry.
The image of Ran V), under ¢} is HZ(u)o = Voo LY + Ny, the closed linear span
of the non-constant free monomials in H2(u). If F € 5+ (H,,) is orthogonal to RanV,,
then for any Z € BY,

F(Z)=I,F(0)
i.e. F'=F(0) € C is constant-valued. See [18, Section 4.4] for details.
Remark 3. Recall that if ;1 = m is normalized NC Lebesgue measure (the vacuum state),
then H,(Z) = I,, for any Z € BZ so that the NC Herglotz kernel, K™ = K reduces to

the NC Szegd kernel and s (H,,) = H?(BY) is simply the free Hardy space. In this
case V,, ~ Mé ~ L is the left free shift.
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4. Lebesgue decomposition of NC Toeplitz forms

Any positive NC measure p € (e;zfd)i can be identified with a positive semi-definite
quadratic form, g,,, with dense domain, Dom ¢, = A4, in the Fock space. In this section
we define the absolutely continuous and singular parts of any p € (,dd):_, with respect to
normalized NC Lebesgue measure, m, by applying B. Simon’s Lebesgue decomposition
theory for forms to g, [41, Section 2]|. Standard references for the theory of potentially
unbounded quadratic forms in Hilbert space are [23] and [37, Section VIIL.6].

4.1. Closable Toeplitz forms

All inner products and sesquilinear forms in this paper are conjugate linear in their
first argument. A sesquilinear (or quadratic) form, ¢ : Domg x Dom¢q — C, where
the domain of ¢, Domg C H, is dense in a Hilbert space, H, is positive semi-definite
if g(h,h) > 0 for all h € Domg. Given such a positive semi-definite quadratic form,
q, define H(q + 1) as the Hilbert space completion of Dom ¢ with respect to the inner
product:

(T, Y) g1 = q(z,y) + (T, ).

The form g is closed if Dom ¢ is complete in the norm of ||-||4+1, %.e. if Dom g = H(g+1).

A positive semi-definite quadratic form ¢, with dense domain in a Hilbert Space, H,
is closed if and only if there is a unique closed, positive semi-definite operator A, with
dense domain in H so that Dom ¢ = Dom v/A and

q(h,g) = qa(h,g) == (VAR,VAg)n;  g,h € Domyg,

[23, Chapter VI, Theorem 2.1, Theorem 2.23]. This can be viewed as an extension of the
Riesz representation lemma to potentially unbounded positive semi-definite quadratic
forms. A positive quadratic form, ¢, is closable if it has a closed extension. Equivalently,
q is closable if and only if the following condition holds: If z,, € Dom g converges to 0
and x,, is also Cauchy with respect to the pre-inner product defined by ¢, i.e.

q(xp — Ty Ty — Ty) — 0,

then this sequence also converges to 0 with respect to ¢, i.e. ¢(zn,z,) — 0. If ¢ is
closable, then it has a minimal closed extension, g, with Dom g C H equal to the set of
all h € H so that there is a sequence h,, € Dom ¢, such that h,, — h and (h,) is Cauchy
in the norm of H(g + 1). A linear subset D C Dom g is called a form core for a closed
form ¢ if D is a dense linear subspace in H(q + 1). It follows that if ¢ is closable with
closure (minimal closed extension) g, then Dom ¢ is a form core for g [23, Chapter VI,
Theorem 1.21]. If ¢ = g4 is a closed, positive semi-definite quadratic form, then D is a
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form core for ¢ if and only if D is a core for v/A. In particular, Dom A is a form core for
q. Here, recall that a linear subspace D C Dom A is called a core for a closed operator
A, if D@ AD is dense in the (closed) graph of A.

In [41, Section 2], B. Simon proved that any densely-defined positive semi-definite
quadratic form, ¢, acting in a Hilbert space H, has a unique Lebesgue decomposition:

q = Gac t+ Gs; Gacsqs = 0

where . is the maximal closable form bounded above by ¢, o < g and g5 = ¢—Gac < g.

Here, a partial order on positive semi-definite quadratic forms with dense domains in a
Hilbert space H is defined by ¢; < g2 if Dom ¢; € Dom ¢; and

q1(h.h) < ga(h,h) ¥h € Dom ga. (4.1)

If g is a positive semi-definite quadratic form with dense form domain, Domg, in a
separable Hilbert space, H, there is a natural, contractive co-embedding, E : H(g+1) <
‘H, defined by Eh := h. We call this map a co-embedding as it has dense range so that
E* is injective.

Theorem 2. ([} 1, Section 2], [37, Theorem S.15]) If q is a positive semi-definite quadratic
form, densely-defined in a Hilbert space H, then there is a mazximal closable positive
semi-definite form qqc bounded above by q, q.c < q, and Dom q is a form-core for Ggc. If
E :H(q+ 1) — H is the contractive co-embedding, and Qs is the orthogonal projection
onto Ker E, qqc is given by the formula:

(_Zac(hh h2) = <h17 Qach2>?-[(q+1) - <h17 h2>’H; Qac =1 - Qs~

Remark 4. In the above, maximality refers to the partial order defined in Equation (4.1).
This theorem yields the unique Lebesque decomposition

4 = qac + gs; 0<¢=q¢—qac < ¢,

where q,. is absolutely continuous, i.e. closable, and ¢ is singular in the sense that the
only closable positive semi-definite quadratic form bounded above by ¢ is the identically
zero form.

The proof of the above Lebesgue decomposition theorem for quadratic forms is similar
to von Neumann’s approach to Lebesgue decomposition theory [51, Lemma 3.2.3], and
in fact recovers von Neumann’s classical proof of the Lebesgue decomposition of a finite
positive and regular Borel measure (on say D), u, with respect to another, A, if one
takes H = L?()\,0D), and g, to be the quadratic form with the continuous functions
€ (0D) C L?(\) as a dense form domain,
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af.9) = [ FQacIn(dc),
oD

[41]. We are primarily interested in positive semi-definite quadratic forms arising from
positive NC measures p € (szd):_:

Definition 5. A positive semi-definite sesquilinear form, ¢, with dense L—invariant do-
main Dom ¢ C H? is called left Toeplitz if:

q(Ljg, Lyh) = 6 q(g, h); g,h € Domg. (4.2)

Definition 6. A closed, positive semi-definite and densely-defined operator T': Dom T C
H2 — H2 will be called left Toeplitz if:

1. Dom /T is L—invariant, and
2. the associated closed quadratic form

qr(g,h) :== (VTg, ﬁh)Hg; g,h € Dom VT,
is left Toeplitz.
In particular, if u € (%)1 is any positive NC measure, then

qulai,az) == p(ajas); ai,as € Ag, (4.3)

is a positive semi-definite left Toeplitz form with dense form domain Dom g, = Agq C H2.
Note that the left Toeplitz condition, Equation (4.2), is equivalent to:

q(L7g,h)  if a = By for some v € F,
0 else.

Remark 5. One could further define unbounded left Toeplitz forms and operators which
are not positive semi-definite, but we will have no need for this concept. Most left Toeplitz
forms, ¢, and operators, T, we consider will be such that the free polynomials, C{3} =
C{31, - ,3a}, and the free disk algebra, A4, are L—invariant cores for ¢ and VT.

Remark 6. By the Riesz representation lemma, a bounded sesquilinear form on Hi is left
Toeplitz if and only if it is the quadratic form of a bounded positive semi-definite left
Toeplitz operator. Moreover, a bounded positive semi-definite operator, T' € £ (HZ), is
left Toeplitz if and only if

LiTL; = 6,,T.
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Such operators are called multi-Toeplitz in [33]. Here, recall that a bounded operator T on
the Hardy space H2(D) is called Toeplitz if T = Ty = Pg2My|g= for some f € L>(0D).
A result of Brown and Halmos identifies the bounded Toeplitz operators as the set of all
bounded operators T' € .Z(H?) with the Toeplitz property:

S*TS =T,
where S = M, is the shift on H? [14, Theorem 6.

Lemma 2. If T is a closed positive semi-definite left Toeplitz operator so that Ay is a
core for /T, then Dom T is L—invariant and C{3} is a core for V/T.

Proof. By assumption, Ay is a core for v/T. To see that Domy/T is L—invariant, given
any r € Dom\/T, choose a,, € Ay so that a,, — z in Hfl, and vTa,, — VTz. Then for
any 1 < k <d, Lpa, € Ay C DomVT, Lya, — Lyz, and

||ﬁ(Lkan - Lka77l)||I2EH2 =dqr (Lk(a'n - am)7 Lk(an — am))
=qr(an — Gm, an — ap,) (qr is a left Toeplitz form)

= ”\/T(an - am)“]%{[z’a

so that v/T Lya, is also Cauchy and converges to some y € Hfl. Since /T is closed, it
follows that \/Tka =y, and Dom+/T is L—invariant.

To show that C{3} is a core for VT, it suffices to show that the set of all p & v/Tp
for p € C{3} is dense in the set of all a @ /Ta for a € Ay, since this latter set is dense
in the graph of VT. Since Ay = Alg{I, L,---,Lq} 'l given any a(L) € Ay, there
exists a sequence of free polynomials p, (L) so that p,(L) — a(L) in operator norm. In
particular, p, := p, (L)1 — a := a(L)1 in H2. For each 1 < k < d, define the linear map
11 on RanyT by

Hk\/fz: ﬁka; z € DomVT.

This is well-defined since Dom+/T is L—invariant. Since T is left Toeplitz, it is easy to
check that the II; define row isometries with pairwise orthogonal ranges: Given z,y €

Dom\/T7

<Hkﬁx, Hjﬁy) = <\/TL]€1‘, \/TL]y>
= (Sk_’j <\/T£C, \/Ty) (44)

Hence, II := (IIy, - - - ,II;) extends by continuity to a row isometry on Hp := Ranv/T. It
follows that,
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VT (pn = p) iz = VT (pu(L) = p ()12
= || (pn(I1) — pr (1)) VT'1|

< |lpn (T1) = pp ()| VT

< lpn(L) = pm(D)IIIVT]].

In the above we have used that w(L) = II extends to a unital *—representation of the
Cuntz—Toeplitz C*—algebra, &; := C*{I, Ly, -+, Ly}, and hence is completely contrac-
tive. (Alternatively, this also follows from a trivial application of Popescu’s NC von
Neumann inequality [31].) Since the sequence p, (L) is Cauchy in operator norm, it fol-
lows that (v/T'p,) is Cauchy in H?2 and converges to some y € H2. As before, since VT
is closed, it follows that v/T'a = y. This proves that C{3} is a core for V7. O

4.2. Absolutely continuous and singular left Toeplitz forms

Let pu € (mfd)j_ be any positive NC measure and let ¢, be the left Toeplitz form
with dense form domain A, C H3 defined by p, see Equation (4.3). Then g, has a
Lebesgue decomposition into absolutely continuous (closable) and singular parts given
by Theorem 2. We now define an NC measure, 1, to be absolutely continuous, or singular,
if the concomitant left Toeplitz form g,, is absolutely continuous or singular, respectively.

Definition 7. A positive NC measure y € (;zfd)l is:

1. absolutely continuous (AC) with respect to NC Lebesgue measure, m, if g, is an
absolutely continuous (i.e. closable) quadratic form.

2. singular with respect to m, if g, is singular, 7.e. the maximal absolutely continuous
part of the left Toeplitz form g, vanishes identically.

In particular, if ¢, = gac + g5 is the Lebesgue decomposition of the left Toeplitz form
qu, then the explicit formula of Theorem 2 shows that the absolutely continuous form
Gac : Ag X Ay — C can be expressed as:

qac<a17 a2) = <CL1 + Nu—i—mz Qac(a2 + Nu+m)>u+m - <a17a2>H3

= <a1 + Nu—i—rm (Qac - E*E) (a2 + Nu+m)>u+m- (45)

Here, Qs = I — Qg is the orthogonal projection onto the kernel of the contractive co-
embedding E : H2(u + m) — H2 = H2%(m) defined by E(p(L) + Nyim) := p(L)1 =
p € H2. (Note that E*E < Pgzrge = Qac.) In general, given an arbitrary positive NC
measure [, it is not obvious whether or not there exist positive NC measures figc, tts €
(%)1 so that gac = qu,., ¢s = qu, and 1 = fiqc + 5. This will be established in the next
section using NC Cauchy transform techniques, and this will yield a unique Lebesgue
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decomposition of any pu € (;afd)l into the sum of absolutely continuous and singular
(positive) NC measures, see Theorem 4.

Remark 7. When d = 1, and i is the linear functional on € (9D) corresponding to a
finite, positive and regular Borel measure, p, it is also not obvious that g,. and g5, where
qu = Qac +qs is the Lebesgue form decomposition, correspond to the linear functionals of
the absolutely continuous and singular parts of the measure p (with respect to normalized
Lebesgue measure, m, on D), as constructed in classical Measure Theory. The fact that
one recovers the classical Lebesgue decomposition in this way follows from the results of
our companion paper, see [19, Corollary 8.5].

Example 1. Given any z € H2, let m, € (%)1 denote the positive vector functional:
my (L) = (2, L"%)ps.

The results of [20,17] show that given x € H2, one can define 2*(R) = MZE, where
z%(R)1 = z € H? as a densely-defined, closed, and potentially unbounded right mul-
tiplier defined on a dense domain, Dom z*(R) 2 A, in the Fock space with symbol in
the (right) free Smirnov class ;" (R), the set of all ratios of bounded right multipli-
ers B(R)A(R)~! with outer (dense range) denominator. We will write 2°(R) ~ RF to
denote that z*(R) is an unbounded right multiplier affiliated to the right free analytic
Toeplitz algebra SR5°. That is, it commutes with the left free shifts in the sense that
Dom z*(R) is L—invariant, and z*(R)Lyh = Lix'(R)h for any h € Domz'(R). The
(generally unbounded) left-Toeplitz operator T' := z'(R)*z'(R) is then well-defined,
closed, positive semi-definite and densely-defined, and g,,, agrees with ¢r on the dense
form domain A,4. The form g,,, is then a closable left Toeplitz form with form closure
qr, so that m, € (%)1 is an absolutely continuous (AC) positive NC measure. In fact,
any AC positive NC measure is a vector state on the Fock space (although it may have
the asymmetric form pu(L*) = my (L) = (z, L*y)y3 for some y # x; x,y € HY) [19,
Remark 6.19, Corollary 6.23].

5. Cauchy transforms of NC measures

The goal of this section is to define absolutely continuous and singular NC measures,
and to show that any positive NC measure p € (.fzfd)T+ has a unique Lebesgue decom-
position, g = e + s, into absolutely continuous and singular parts, pee, tts € (mfd)l
by proving that the absolutely continuous and singular parts of the Lebesgue form de-
composition of p are positive NC measures. If p is any positive finite and regular Borel
measure on JD, the space of all y—Cauchy transforms,

Ga)) = [ TmaOntde; g€ B, 2 €D,

oD
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of the analytic part, H?(p) of L?(u, OD), is the reproducing kernel Hilbert space, 5 (h,,)
of functions in D (the Herglotz space of h,) with reproducing kernel

1h h * 1 1
K¥(z,w) = 5% - / T2 1w

oD

where h,(2) is the Herglotz—Riesz transform of . In this setting, is not difficult to verify
that domination of positive measures is equivalent to domination of the kernels for their
spaces of Cauchy transforms:

p<t?x & KHt<EEKN

In particular, the following exact NC analogue of a reproducing kernel theory result due
to Aronszajn applies [27, Theorem 5.1] [5, Theorem I, Section 7]:

Theorem 3. Let K1, Ky be CPNC kernels on an NC set Q. Then K, < t?Ky for some
t > 0 if and only if

an(Kl) g an(KQ)v
and the norm of the embedding e : Hpo(K1) = Hne(K2) is at most t.

As in the single-variable setting, it is easy to verify that domination of (positive) NC
measures fi, A € (szfd)i is equivalent to domination of the NC kernels for their spaces of
Cauchy transforms:

Lemma 3. Given p, \ € (%)L there is at > 0 so that i < t?X, if and only if K* < 2K,
IfE, : H3(\) = H2(u) and e, : 7 (H,) — A (H)) are the co-embedding/embedding
defined by

E,(a(L)+ Ny) =a(L) + N,, and (e,h)(Z)=h(Z); ZcBE,

then, By, = € e, [|ELll = |leu]| <t, and E,1I§ =G E,.

The above lemma motivates our terminology of co-embedding for the map E, :
H3(\) — H3(u), as E}; is injective and unitarily equivalent to the embedding of NC
Herglotz spaces, e,,.

Proposition 1. Given any NC measure p € (%)L let E : H3(u +m) — H2 be the
contractive co-embedding, and let Qs be the orthogonal projection onto Ker E. Then Qg
is reducing for the GNS row isometry of pu+ m.
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Proof. Since EII; ,, = L*E, by Lemma 3, it is easy to check that Ran Qs = Ker E*F

is II,, 4, —invariant. Indeed, suppose that x € Ker F and set IIj, := II,, 4,1 and check
that

EHkI = LkE:c =0.

Hence Q) is Il = II,4 ,, —invariant so that Q.. = I — Q) is co-invariant and projects onto
Ker(E)* = Ran (E*) 'l Let 1 — Q, := ptm (I — Q)€ ,, be the projection onto

%y mRan (E*) 71 = Ran ()71,
the closure of the range of the contractive embedding,
¢ HA(BY) — A5 (Hyim),

in A (H,1m). Let int(p+ m, m) = Rane, the intersection of the NC Hardy space with
the space of Cauchy transforms of u 4+ m, and let

Inty, 4 (m) == int(p + m, m)_”'”H“er ’

the closure of the range of e. It follows that Int,y,,(m) is Vi, co-invariant, and it
remains to prove that it is also invariant. Given f € S (H i) () H?(BY), observe
that by Equation (3.6),

(Vqum;kf)(Z) - (Vqum;kf)(On) = Zkf(Z)
= (MZ, )(2) = (Vi ))(Z),

so that

(Vu-‘rm;kf)(Z) = (Vm;kf)(z) +clp,

where ¢ := (V,4mf)(0) is constant. Since H?(BY,) contains the constant functions, we
conclude that Vjimkf € H*(BE) (N S+ (H,+m) also belongs to the intersection space,
so that the range of I — Qg is reducing for V,4m, and Quc = I — Qs, @ are reducing
projections for the GNS row isometry II,,4,,. O

Corollary 1. Given an NC measure p € (,Qfd)i, the following are equivalent:
1. p is absolutely continuous.

2. The intersection of A+ (H,yn) with the NC Hardy space, H*(BY), is dense in
H (Hu-‘rm)'
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Proof. By the formula for ¢,., Equation (4.5), and by definition, y is absolutely continu-
ous if and only if Quc = 1,14, the identity of H2(u+m). Since Q. is the orthogonal pro-
jection onto the closure of Ran E*, we have that Q,. = I if and only if E* has dense range.
By Lemma 3, E* has dense range if and only if e = 6,1 E*6), : H2(BY) < AT (Hpigm)
has dense range. O

Corollary 2. An NC measure p € (Q/d)l is singular if and only if
H7(p +m) = Hj(n) © H.

Proof. Since m, yu < p+ m, the co-embeddings E : H3(u +m) — H3 and E,, : H3(u +
m) < H3(p) are contractions with dense ranges, and E*E + E}E,, = I, y,,, the identity
in Z(H?(u+ m)). By the formula of Equation (4.5), p is singular if and only if E*E =
Pranse = Qac, in which case Qs =1 — Quc = I — E*E = EJ E,. It follows that E, E,
are co-isometries onto their ranges, and we can identify Ran Q,. and Ran Q, with H3
and H?(u), respectively. O

Theorem 4. (Non-commutative Lebesque decomposition) Any positive NC measure | €
(%)1 has a unique Lebesque decomposition,

B = fac T Ls)

into positive NC measures [ige, fts < pt. The NC measure piq. is the mazimal absolutely
continuous NC measure bounded above by p, and us is a singular NC' measure.

Proof. Consider the Lebesgue form decomposition ¢, = gac + ¢s of the positive semi-
definite left Toeplitz form, g,, with dense form domain A4 C H2. Given qq, we first
define a self-adjoint linear functional jiq. : Ag + A% — C by

MCLC(G’T + a2) = qac(alu 1) + Qac(laaQ); a1 € Ay, as € Ag)),

where Agj) denotes the elements of A4 which vanish at 0, a2(0) = 0. Here, note that we
do not take the norm closure of Ag + A%. The fact that pq. is self-adjoint follows as gqc
is positive semi-definite, hence symmetric: Given a € Ay,

tac(@) = qac (1, (a — a(0)1)) + gac(a(0)1,1) = gac(1, a),

and

,Ufac(a*) = Qac(ay 1) = Qac(L (I) = Mac(a)v

since gq. is a symmetric sesquilinear form. Observe that ji.. is bounded on Ag + AJ:
Given a; € Ay, as € AEIO), applying the formula of Equation (4.5) for gq., and using that

Qqc commutes with the GNS representation of u + m by Proposition 1 yields
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|Mac(a1 + a§)| = |Qac(a1, 1) + qac(17a2>‘
= |{Qac({ + Nu+m)= 7Tu+m(ai + a2)Qac(I + Nu+m)>u+m
— (L@ (L) + az(L) L)

< Impm (af + a2) [ QeI + Nyt II* + llar (L)* + a2(L)]|
< [lax(L)" + aa(L)[I(2 + p(1))-

In the above we have used that 7,1, is a unital *—representation of the Cuntz—Toeplitz
C*—algebra (the unital C*—algebra generated by the left free shifts), and is hence com-
pletely positive and completely contractive. This proves that u,. is bounded on its
domain and hence extends by continuity to a bounded linear functional on the free
disk system o7 = (Ag + A%) "I

It remains to prove that pg,. is a positive linear functional. By [16, Lemma 4.6],
any positive element of o7; is the norm-limit of sums of squares of free polynomials
pn € C{3}, and so it suffices to check that u,.(p(L)*p(L)) is positive semi-definite for
any free polynomial p. Given any free polynomial of homogeneous degree IV,

p(L):= Y pal®  pa€C,
lal<N

one can compute that

pL)pL) = 3 S Baps(L)LP

|a|<N|BISN
1
= Y Pl Iy 3 Il 4wl (5.1)
lal,[v[<N; la|<N
v#0

=:u(L)
where u € C{3} has homogeneous degree at most N. Then calculate that
pac(P(L)"P(L)) = prac(u(L)* + u(L))

= Gac(u(L), 1) + qac(1, u(L))

= 2Re <I —+ Nu-{—ma (Qac — E*E) U(L) =+ Nﬂ+m>li+m'
Let II :=II,,4,,. Since Qq. commutes with 1I by Proposition 1, and E intertwines II with
L by Lemma 3, i.e. EIl; = L;E, it follows that the positive semi-definite contraction

D :=Qq.— E*E is Il =11,,1,,,—Toeplitz in the sense that

H;‘;DH] = 6k7jD; 1 S k},j S d.
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This IT—Toeplitz property allows us to reverse the steps in Equation (5.1) to conclude
that

u(11)* D + Du(I1) = p(IL)* Dp(I1).
It then follows that

2Re <I + N#+ma (Qac - E*E) (“(L) + Nu+m)>u+m
= (p(L) + Nytms, (Qac — E*E) p(L) + Nu+7n>u+m = ac(p,p) >0,

1

since gqc is a positive semi-definite sesquilinear form. Hence piq. € () Iy

and by con-
struction

w(p(L)*p(L)) — pac(p(L)*p(L)) = 4u(p, P) — Gac(p,p) = 0.

Again, since sums of squares of free polynomials are norm dense in the cone of positive
elements in o7y, ps = 1t — fge € (%d)i and [ = pge + ps- By definition, g4 is then an
absolutely continuous NC measure, and ps is a singular NC measure. O

Theorem 5. Let p € (%)1 be an absolutely continuous NC measure. The closure of the
positive semi-definite left Toeplitz form, q,,, is the sesquilinear form of a unique closed,
positive semi-definite left Toeplitz operator, T, and Agq is a core for V/T.

Proof. If ;1 is AC, then by definition, g,, with form domain Domg, = A4 is AC, i.e.
closable. Hence the form closure g, = gr is the positive semi-definite form of a unique
closed, positive semi-definite left Toeplitz operator T" > 0, and by construction, Ay is a
form-core for ¢, hence a core for vVT. O

6. The Radon—Nikodym formula for NC measures

Consider 1 = pp where B € £; = [HJ°]; as before. By Theorem 4, p has an NC
Lebesgue decomposition

M:Nac+ﬂs7

and by Theorem 5 and Lemma 2, there is a unique closed, densely-defined, positive left
Toeplitz operator T such that Ay C Domv/T,

Hac(azar) = <\/Ta1, \/Tazmg = qr(a1,az); ar,az € Ag, (6.1)

C{3} < Domv/T is a core for T and Dom+/T is L—invariant. The operator T' can
be thought of as the NC Radon—Nikodym derivative of p with respect to NC Lebesgue
measure, m. Our goal is to recover T from the function B, or, more precisely, from the
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net of scaled right multipliers B,.(R) := B(rR), 0 < r < 1. For each 0 < r < 1 we form
the (bounded, positive, invertible, left Toeplitz) operator T,.:
T, :=ReHp(rR) >0
= (I - B(rR)*)"' (I - B(rR)*B(rR)) (I — B(rR))™". (6.2)

Remark 8. Here, B(L) € [£5°]1 is a contraction, and so B(rL) is a strict contraction,

IB(rL)l = sup [|B(rZ)l| = sup [|B(Z)|| <1,
ZeB, ZerBg,

unless B(Z) = BI,, B € dD, is identically constant, by [39, Theorem 3.1] and the NC
maximum modulus principle of [39, Lemma 6.11]. Hence, B(rR) = UyB(rL)U; is also a
strict contraction for any 0 < r < 1.

We observe that in one variable, the quadratic form induced by the Toeplitz operator
T, is

e R LGS I :
(T, 1,) —84 O e m(de: fug e 2,

and by Fatou’s theorem, we have that the Radon—Nikodym derivative of uy, is:

() _ 1=IMOP _ 1= O
m(dQ) ~ TT=HQF ~ M [T = brO)P

Thus T can be recovered from the b, by forming the Toeplitz operators T;. and taking

a.e. limits of the symbols, so that T is the densely defined Toeplitz operator with L'
symbol

1—[b(QI?,
[1=b(Q)*

In the non-commutative setting, we seek to recover the ‘NC Radon—Nikodym deriva-

¢ € dD. (6.3)

tive’, T', from its radial values, T}, by re-casting the original Fatou Theorem in purely
operator—theoretic or functional analytic terms. One technical hurdle is that while the
operators T, are bounded, T generically is not. It turns out that the notion of strong
resolvent convergence (i.e. strong operator topology convergence of resolvents) of posi-
tive semi-definite operators is appropriate. This notion is defined in Subsection 6.2. The
main goal of this section is to prove:

Theorem 6 (Non-commutative Fatou Theorem). Let p = up € (szd)z_ be the NC Clark
measure of B € [H°]1 with NC Lebesgue decomposition pt = fige + ps. If T > 0 is the
positive semi-definite left Toeplitz operator so that qr = Gu,,., and T, := Re Hg(rR),
0 <r <1, as above, then T, converges to T in the strong resolvent sense as r T 1.
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Using this theorem (and without appeal to Fatou’s original result) it is not too difficult
to show, in the one variable case, that T is the (possibly unbounded) Toeplitz operator
with the symbol given above in Equation (6.3), as of course must be the case.

6.1. Radial approximation of NC Herglotz functions

Let B € % = [H*(BY)]1 be a contractive NC function in the NC unit ball, and let
BY € %, be its transpose—conjugate in the right free Schur class. For any 0 < r < 1,
define

B,(Z)=B(rZ), B.(R)=B(rR)=M§£,, and p, =pup, € (o)) .

Lemma 4. The net B(rR) converges SOT — * to B(R) asr 1 1.

Proof. One can show, as in [40, Theorem 3.5.5], that B.(R) = B(R). In fact,

B, (R) S B(R) = Mgt(z), since for any kernel function K{Z,y,v},

I(B-(R) = B(R))*K{Z,y, v}|* = |[K{Z,y,(B"(rZ) - B"(2))v}|]*

= (y,K(Z, Z2)[(B*(rZ) — B"(Z))vo*(B*"(rZ) — BY(Z))"ly) ¢n — 0.

Cn

Using that the set of all kernel functions is dense in H2, and that the net B,.(R) is
uniformly norm-bounded, it follows that B(rR)* converges SOT to B(R)*. O

Lemma 5. p,, = pp, converges pointwise to up as r 1 1. That is, for any ai,a2 € Ag,
pr(aiaz) — pp(ajas).

Proof. This follows from the formula for the NC Clark measure of Definition 3, and that
HY(rZ) converges pointwise to Hy(Z) as r 1 1. (Or, equivalently, one can apply the
Taylor—Taylor series formula for Hg(rZ) of Equation (3.2).) O

6.2. Strong resolvent convergence of self-adjoint operators

It will be useful to recall some basic facts about convergence of unbounded self-adjoint
operators. Our main reference for this is [37, Chapter VIIL.7]:

Definition 8. Let A,, A be closed, self-adjoint operators. The sequence A,, converges to
A in the strong resolvent (SR) sense if (A, — A\I)~! — (A—AI)~! in the strong operator
topology (SOT) for any A € C \ R.

To show strong resolvent convergence it suffices to check SOT convergence of the
resolvents at any fixed point A € C \ R:
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Theorem 7. (/37, Theorem VIII.19]) Let A, A be self-adjoint operators. Then A, SE 4
if and only if there is a Ag € C \ R so that (A, — X\oI)™? sor (A—NoI)~ 1.
Remark 9. We will be primarily interested in positive semi-definite A,,, A, in which case

one can instead choose \g € (—o0,0). In particular, it suffices to show (I + A,)* =g

(I+A)~L
6.3. Strong resolvent convergence of positive free harmonic functions

Recall that we have defined
T,= (I —B(rR)*)"*(I - BrR)*B(rR))(I - B(rR))™*>0; 0<r<1.

To investigate the strong resolvent convergence of the T}, we define A,.(¢) := (el +T;)~ !
for any € > 0. In particular, if A, := A.(1), then

A=I+T) ' = %(1 — B(rR)) (I = Re B(rR)) " (I — B(rR)").

Since the spectrum, o(I 4+ 7)) C [1,00), it follows that 0 < A, < I for any 0 < r < 1.
Also note that r — A, is SOT —continuous for r € (0,1).

Our strategy will be to prove that if A(e) := (el +T)~!, where T > 0 is the closed,
positive semi-definite NC Radon—Nikodym derivative of p = pp with respect to NC
Lebesgue measure, i.e. G, = qr, then

An(e) ST A(e) = (eI +T)71,
where WOT denotes weak operator topology. Using the resolvent formula, it will then
follow that A, = A,(1) = A, so that T, converges to T in the strong resolvent sense.

6.4. Factorization of unbounded left Toeplitz operators

Any strictly positive left Toeplitz operator which is bounded above and below has an
analytic outer factorization:

Theorem 8. (Popescu [33, Theorem 1.5]) Any positive left Toeplitz T € £ (H32) which is
bounded below, T > €I, can be factored as: T = F(R)*F(R) for some outer F(R) € RY°.

Here, recall that F(R) € RY is called outer if it has dense range. The goal of this
subsection is to extend this factorization result to closed, unbounded left Toeplitz oper-
ators.

Theorem 9. Let 7 > 0 be a closed, positive semi-definite left Toeplitz operator so that
Aq is a core for \/T. Then, for any fived ¢ > 0 there is a right-outer xyj(R) ~ R,
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Dom z(¢(R) = Dom /7 so that zq(R)*zq(R) = el + 7, and z{, = z(q(R)1 € HZ. The
closed right multiplier x| (R) is unique up to a unimodular constant.

In the above, recall that the notation x(R) ~ R° means that z(R) is a potentially
unbounded, closed right multiplier affiliated to the operator algebra :R°, see Example 1.
That is, Dom z(R) is L—invariant and x(R)Liyh = Lz (R)h for any h € Dom z(R). Any
such unbounded multiplier can be expressed as z(R) = B(R)A(R)~! with B(R), A(R) €
M bounded right multipliers so that A(R) is NC outer, i.e. has dense range [17]. The
above theorem is essentially [33, Theorem 1.1, Corollary 1.4], without the assumption
that 7 is bounded. We pause to observe that in one variable this result is a familiar
consequence of the theory of outer functions: If h is a non-negative L' function on the
circle, (think of this as the symbol of 7), then 1 + h is log-integrable on the unit circle
OD), hence there is an H? outer function g such that 1 + h = |g|?> almost everywhere on
0D [15, Chapter IV], or, (ignoring technicalities about domains)

I1+T;, = Tiyp = T;Tg.
(Of course h itself need not be log-integrable and hence need not factor.)
Definition 9. Let II be a row isometry on a separable Hilbert space H. A closed, densely-

defined operator X : Dom X C H?l — H is called an intertwiner if Dom X is L—invariant
and

XLix =1 X x € Dom X.

Theorem 10. Let IT be a cyclic row isometry on H. Suppose X : Dom X C Hz — H s
an intertwiner which is densely-defined, closed, surjective and bounded below. Then 11 is
unitarily equivalent to L.

Any X satisfying the above theorem has a bounded inverse, by the open mapping
theorem. This result is essentially [11, Theorem 2.8], without the assumption that X is
bounded. Our proof follows the same lines, though the unbounded case requires some
care.

Proof. The Cuntz part of II is supported on:

K= m \/ Ran IT¢
k=1 \|o|=k
= ﬂ \/ I1*XDom X (by surjectivity of X)

k=1 \|a|=k
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= ﬁ \/ X L%Dom X
k=1 \|a|=k

We now prove that the space (-, (V|a\:k X L*Dom X) is {0}. Let

M= \/ L°Dom X, k=12,...
|a|=k

(here we are taking just the linear span, not its closure). We have Mj, C Dom X for each
k, and

\/ LeHj | ={0}.

lel=k

T8

N c
k=1

Supposing that h € K = ﬂ;‘;l XMy, we want to prove h = 0. For each k there is a
gr € My such that h = Xgg. Since X is assumed bounded below, we have

[R]l = 1 X grll > cllgxll

for some absolute constant ¢ > 0, and all k. Thus the sequence gy is uniformly bounded,
so there is a subsequence (g,,) converging weakly to some g € HZ. Since the M, are
nested, this g must belong to the intersection of all the M}, which we have just observed
is {0}. Thus g = 0. Let now f € Dom X*, which is a dense subspace since X is closed.
We have

<h7.f> = <Xg7lk7f> = <gnk7X*.f> — 0.

Since this holds for all f € Dom X*, we conclude h = 0. We have shown that £ = {0},
hence II is of pure type—L, i.e. II is unitarily equivalent to copies of L. Since II is cyclic,
its wandering space is one-dimensional, and II is unitarily equivalent to L. O

Proof of Theorem 9. Without loss in generality assume € = 1 and consider /I + 7. This
is closed, bounded below, strictly positive, and hence bijective in HZ (its range is all
of H2 and it is injective on its dense domain). Both /7 and /I + 7 are (generally
unbounded) closed positive semi-definite operators, and it follows from spectral theory
that Dom /7 = Dom+/I + 7. It is further easy to check that the norms

IRlIE: ) = IRIZ +IV7RIZ, and  ||R]7 ., = (IVT +Th]?,

coincide on Dom /7. (Indeed, it is clear that they coincide on Dom 7, which is a core for
both /7 and /T + 7.) Set X :=+/I + 7 and define a row isometry, II, on Ran X = H?2
by the equation:
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I Xy := X Lyy; y € Dom X.

As in Equation (4.4), IT is a row isometry since ¢r1r = ¢r + ¢m (Where m denotes the
Lebesgue vacuum state) is a left Toeplitz form. Recall that since 7 is a closed, positive
semi-definite left Toeplitz operator with A, a core for /7, that Dom /7 is L—invariant
and contains the free polynomials as a core by Lemma 2. The free disk algebra is also
a core for v/T + 7: Recall that Ay is a core for \/T or VI + 7 if and only if it is a form
core for the closed forms ¢,, qry., respectively, see Subsection 4.1. By definition, A4
is a form core for ¢, or ¢qr+, if and only if Ay is dense in H(g, + 1) or H(qr4+- + 1)
respectively. The norms of H(g, + 1), H(qr4+- + 1) are equivalent and therefore Ay is a
core for /T + 7. In conclusion, Lemma 2 implies that the free polynomials are a core
for /I + 7, Dom+/I + 7 is L—invariant and X is a closed intertwiner. Since C{3} is a
core for X = /T + 7, any h = /T + 7g € Ran X is the norm-limit of vectors of the form
Xpn(L)1, for p, € C{3}. Hence,

h = lim p,(I1)X1,
n—oo
so that X1 is cyclic for II. In summary, X : Dom X — H? is a densely-defined, closed
and bijective intertwiner, and II is a cyclic row isometry so that Theorem 10 implies that
II ~ L is unitarily equivalent to L via a unitary U on Hg, U*IIU = L. The operator
U*X then commutes with the left free shifts:

U*XLiyh =U*ll, Xh = L,U*Xh; h € Dom X,

and it follows that U*X = z(R) ~ R is a right-Smirnov multiplier affiliated to the
right multiplier algebra of the NC Hardy Space [17, Corollary 4.26], and

z(R)*z(R)=X*"X =1+

Since z(R) = U*\/I + 7, the free polynomials are a core for x(R), and Ran z(R) is dense
in H2 so that x(R) is right-outer. Since 1 € Dom /T + 7 = Domz(R) it follows that
z' = z(R)1 € H? is an L—cyclic vector. To prove uniqueness, suppose that y(R) =
M;f ~ R is an outer right multiplier so that z(R)*z(R) = I + 7 = y(R)*y(R). Since
both z(R), y(R) are outer (i.e. they have dense range), x(R)*,y(R)* are injective. Also,
any z(R) ~ R is necessarily injective by [17, Lemma 4.9, Corollary 4.26]. By the polar
decomposition for closed operators, [28, Proposition 5.3.18], it follows that there are
unitary operators U,V so that

z(R)=UvVI+7, and y(R)=VVI+rT,
and hence z(R) = UV*y(R). Then, for any h € Domy(R),

(Lya(R) — 2(R)Ly) h =0 = (L, UV* —UV*Ly)y(R)h = 0.
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Since y(R) has dense range, we conclude that UV* commutes with the left shifts so
that UV* = W(R) € RY is a unitary right multiplier [12, Theorem 1.2]. However, the
only normal elements of SRY° are scalar multiples of the identity, and it follows that
W(R) = (I, ¢ € OD is a unitary constant [12, Corollary 1.5]. O

Remark 10. In the above, since I + 7 > I is bounded below by 1 (under the assumption
that e = 1), it follows that #(R)~! is a contractive right multiplier.

Lemma 6. For any ¢ > 0, the bounded operators x| (rR)flx[e] (rR)™* converge in the
strong operator topology to (el +7)~1 asr 1 1.

In the above, and throughout, we employ the notation (A*)~! =: A=,
Proof. Immediate, by Lemma 4. 0O

Theorem 11. Let 7 > 0 be any closed, positive semi-definite left Toeplitz operator so that
Ag is a core for /7. If € > 0 is fized and Yiq(R) ~ R is the potentially unbounded
outer right multiplier so that el + 7 = yq(R)*yq(R) and y[te] = yq(R)1 € HZ, then
yq(R) = (Mji)_1 where

1

= - (€ 7).
Ve = {1, (eI + 1)~ 11) (el +7)71

Proof. This is an extension of [33, Theorem 1.5] to closed, unbounded left Toeplitz
operators, and the proof is similar. Again, without loss in generality we assume that
e=1.Let ¢ := (I +7)711. We first claim that Mf defines a bounded operator in RS°.
To see this note that ¢ € Dom (I + 7) = Domy(R)*y(R) C Dom y(R). Hence y(R)p €
Domy(R)* and for any a € F¢, L®y(R)p = y(R)L%p € Domy(R)* since Dom y(R)*
is L—invariant by [17, Corollary 4.27] and also L*p € Domy(R). We conclude that
L%y € Domy(R)*y(R) for any o € F. Given any free polynomial, p(L) := > pa L €
C{Ly,---,Lq}, we have that p(L)y € Dom (I + 7) and

1M plI* = [Ip(L)ell?
< |IWT +71p(L)yl? well-defined as Dom /I + 7 = Dom y(R),

—Zpapﬁ 2o, (I+7)LP)

= Z Pal? - (. (T +T)0) + D Pabar(e, (I +T)L70) + coc.
v#£0D,«

= Ipal? (I +7) ", T+ 7)T +7)7')

+ D Pabar (U+7)7'1,(I+7)L7¢) + coc.
v#0D,«
=0 (as v # 0)
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=D Ipal? (LI +7) 710 = |IpllEs (1, (2 + 1) s,
[0

where c.c. denotes complex conjugate of the previous term. This proves that Mf extends
to a bounded operator. Moreover, a similar calculation shows that for any p,q € C{3},

(MZ)* (I +7)MZp,a) = (p,a)mz (L. (I +7) " L)mz,
so that
(ME T +7)ME =1(1,(I+7)7"1),
or, defining ¥ as in the theorem statement,
(M)*(I+ )M} = 1. (6.4)

We claim that Mf’ =: F(R) € RY is outer, i.e. that ¢ is cyclic for L. To see this
suppose that h € H?2 is orthogonal to \/ L%, or equivalently, to \/ L%p. Since (I +7)~*
is bounded, the closed operator I 4+ 7 is surjective which means that h = (I + 7)g for
some g € HZ. Then,

(I+7)g L LI+ 7')711,

for any o € F¢. In particular, taking o = () shows gy = 0 so that g = LL*g Hence,

and this shows that all Taylor coefficients of order 1 of g also vanish. Repeating this
argument shows that all Taylor coefficients vanish so that g = 0, both ¢, are L—cyclic,
and F(R) = Mf is right-outer (and hence has a right-Smirnov inverse affiliated to R
[20,17]).

By previous calculation we have (Mf)*y(R)*y(R)Mf = I, and it follows that
y(R)Mf € R is a bounded, unitary right multiplier. However, the only normal ele-
ments of R are scalar multiples of the identity [12, Corollary 1.5], so that y(R)Mf =al
for some o € 9D, and we can assume, without loss in generality, that @ = 1
and Mf = y(R)~!. Finally, by Equation (6.4), y(R)™*(I + 7)y(R)~* = I, so that
I + 7 =y(R)*y(R). Here, recall our notation: y(R)~* := (y(R)*)~'. O

Remark 11. Theorem 9 and Theorem 11 can be readily extended to general positive left
Toeplitz operators, 7 > eI > 0, such that Dom /7 contains an L—cyclic vector, h € H2.
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Remark 12. Taking 7 =T > 0 to be the NC Radon-Nikodym derivative of u = pup with
respect to NC Lebesgue measure, i.e. g7 is the closure of g, , the above results can be
applied to any A(e) = (el + T)~! for any € > 0. In particular, A = A(1) = (I +T)~*
factors (uniquely up to ¢ € ID) as:

A=2(R)'2(R)™*, and I+T=xz(R)*z(R), (6.5)

where z(R)™! € [R]; is contractive, right-outer, z(R) ~ RF, and z(R)1 = z* € H2 is
L—cyclic.

6.5. Radial approximation of free harmonic functions
For any 0 < r < 1 consider the map ®, : R — RI° defined by:
(I)T(Rk) = T‘Rk.

Since rR is a strict row contraction, it follows that ®, extends to a completely positive
and unital map on the (right) free Toeplitz system (RS + (R3°)*) ¥ 7* [32, Corollary
2.3).

Observe that T has well-defined Taylor coeflicients:

T, = (VTL*1,VT1)ga,

and that by definition,

1
Tp=ReH, . and T, = §Hﬂac;at, a# 0,

are (up to a constant) the Taylor coefficients of the NC Herglotz function, H,,,,, since ¢r
is the closure of g, . It follows that we can define the bounded left Toeplitz operators

®,.(T) by the Taylor coefficients:

Lac?

. (T)p:=Tp and ®.(T)y :=Torl®l = %HHWWW; a0,
and it follows that
4o, (T) = (,Uac)r,
as defined in Lemma 5 so that

0<®,(T)=ReH,, (rR) <ReH,(rR) =1T,.

In the disk, if h is a bounded, positive harmonic function and we have h(¢) = |g(¢)|?

on the circle, for some bounded analytic g, then |g(z)|? < h(z) inside the disk, since h is
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harmonic, |g|? is subharmonic, and they have the same boundary values. An NC version
of this, adapted to our purposes, is the following:

Lemma 7. For any 0 < r < 1, we have the harmonic majorant inequality:
z(rR)*z(rR) < I+ ®,.(T) <I+T,. (6.6)

In the above statement, recall that z(R) ~ R is as defined in Remark 12,
z(R)*z(R)=1+T.

Proof. By the Schwarz inequality for unital 2—positive maps [26, Proposition 3.3|, for
any a(R) € R, it follows that

a(rR)*a(rR) < ®,.(a(R)"a(R)),

and we need to show that this inequality holds for potentially unbounded right multipli-
ers, (R) ~ K.

Let zjy be the Nth partial sum of a* = 2(R)1 = } 2, L1, 2y = 37, <y Tar L1,
so that =% — 2* in H2, and define

I+ Ty = .’L‘N(R)*.’I?N(R)
Observe that for any o € F¢,

lim (@, (I +Tw)), = |r[* im(I + T)a

N—o0
= |r|* Uim(L*1, 2y (R)* z N (R)1)
= |r|* Hm(Lz}y, zy)
= |r|*(L%", a")
= [r[*(@(R)L1, 2(R)1)
= |r|*(VIT+TL1,/T+T1)
(

=[r*(I +T)a = (I + 2(T))a-

It follows that if

is any free polynomial, then
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lim (p, @ (I +Tn)p)mz
N—oco

=1m Y |pal*(I+ T ) +lim Y Papay (1, &,(I + Tn)L71) +c.c.
@ ) =TT TN,

= (p, (I + ©,(T))p)mz (6.7)

by the previous calculation. In the above c.c. denotes complex conjugate of the previous
term. Hence,

(z(rR)p,z(rR)p) = [|p(L)z(rR)1||”
= lim [p(L)an (rR)1?

by Equation (6.7), and this proves that
z(rR)*z(rR) < I+ ®,.(T),
which is in turn bounded above by I + T;. by the discussion preceding the lemma. O

Consider the net A,, 0 < A, < I, for 0 < r < 1. Since this net is uniformly bounded,
there is a WOT —convergent subsequence Ay := A, with limit 0 < § < I. To show that
the entire net A, converges in the weak operator topology to d, it suffices to show that
any WOT —convergent subsequence of the net A, has the same limit.

Proposition 2. Let A, := (I +T,)~'. Then A, war A, where A = (I +T)7 L.

This proposition does most of the work of proving our NC Fatou Theorem; once it is
established it remains only to improve WOT convergence to SOT convergence, which is
a routine argument using the resolvent identity. To prove the proposition, we begin with
a lemma.

Lemma 8. Let Ay := A, be any WOT —convergent subsequence of A, with limit §. Then
0 < § < I is injective, so that 6~ is a closed, positive operator.

Proof. Suppose that § has kernel so that there is a non-zero h € H2 so that 6k = 0. It
follows that
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0 = (h,6h) = lim (A, h, h)
retl ’

= 3 Jim (g0, (T~ Re B(re )~ ge)

where g := (I — B(rgR)*)h. By the NC Schwarz inequality and Mobius transforms,
B(riR) is a strict contraction so that 0 < (I — Re B(ripR)) < 2I is invertible for 0 <
ri < 1 [34, Theorem 2.4]. (Alternatively, B(rR) is a strict contraction for any 0 < r < 1
by the NC maximum modulus principle, see Remark 8.) By spectral mapping,

%I < (I —ReB(ryR)) 1,

so that
0= (h,dh)
1. -
=3 h}gn(gk, (I —ReB(ryR)) ™ "gx)
> Ly 2
= 1l£n||ng
1
= Jlim [(I = B(reR)")h|)*

= 21— BRI,

Since B(R) is a contraction, it follows also that (I — B(R))h = 0. However, since we
assume that B € %, is non-constant and hence strictly contractive in the NC unit
row-ball, I — B(Z) must be invertible. Hence,

0=U,(I — B(R))h=U;(I — B(R))U;Uh
— (I - BL)A,
so that for any Z,
0=(I—-B(2)h*(Z).
We conclude that h = 0 and that ¢ is injective. O

The following familiar fact will be used repeatedly in the sequel:

Lemma 9. Let H,.(K) be an NC-RKHS on an NC set Q C (Cl‘iI with CPNC kernel K. A
sequence, (hj), in Hne(K) converges weakly to some h € Hypo(K) if and only if (h;) is
uniformly norm-bounded and h; — h pointwise in 2.

Assume that H,.(K) contains the constant function id(Z) := I,,. A sequence, (H}),
of (left or right) NC multipliers of Hne(K) converges in the weak operator topology to a
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(left or right) multiplier H (in the sense that MR war =" ME or ML w3r =" ML) if and
only if left or right multiplication by Hj, respectwely, s uniformly bounded in operator
norm and H; — H pointwise in €.

Proof. If h; 2 h, where w denotes weak convergence, then this sequence is bounded in
Hilbert space norm and for any (Z,y,v) € Q, x C"* x C™,

y*hJ(Z)v = <K{Za yav}v hj>7'lnc(K) - <K{Zay7v}’ h>7'lnc(K) = y*h(Z)v

Similarly if id € Hp.(K) and MR wa3r ME, then (MH ) is uniformly bounded in
operator norm, and if h; = MHj '1d € Hne(K) then h; = h:= ME -id and h;(Z) =
H;(Z), h(Z) = H(Z).

Conversely, the linear span of the NC kernels K{Z,y, v} is dense in H,.(K) (in fact,
linear combinations of NC kernels are NC kernels), so pointwise convergence and uniform
boundedness readily implies weak or WOT convergence. O

Proof of Proposition 2. Let Ay be any WOT —convergent subsequence with limit §. It
suffices to show that § = A = (I +T)~!, where recall that gr is the closure of Quuo.» and
¢ = pp. This will prove that every WOT —convergent subsequence of the A, has the
same limit, A, so that the entire net converges in WOT to A. By the previous lemma,
0~ ! is closed, positive and bounded below by 1, and we can define T’ := §~' — I. By
spectral mapping, T’ is positive semi-definite.

By [33, Theorem 1.5], for any 0 < r < 1, there is a bounded y"(R) € RF so that
AP =T1+T, =y (R)*y")(R), where

y(r)(R) = c;l(Mgrl)_l; Cr 1= <17Ar1>_1/27

so that y("(R)~! = ¢, ME |. Here, note that any right outer y(R) ~ RF is always
pointwise invertible in the NC unit ball B, [17, Lemma 3.2]. Moreover,

A= +T) " =y (R Ty O(R)
so that ||y (R)™!|| < 1. The Taylor coefficients of (™ (R)~! are then:
(L1, y " (R) ') = ¢ (L1, A, 1).

Consider the operator cME 51 where ¢ := (1, 61)‘5 initially defined on free polynomials.
Then, since Ap = A, 75, we claim ¢MF 5] defines a contractive right multiplier,
y(R)~! so that yk(R)*1 = y(”)(R)*1 converges in the weak operator topology to
y(R)~!. Indeed, for any a, 8 € F¢,

(L71, (5 — Ag)1) a=pBy
(L1, (eM§ —yp(R)LP1) = (LLYG - A1) =0 B=ay, v#0 p —0,
0 else
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and so the same holds replacing the free monomials L%, L? with any free polynomials

1

P, q. Since the free polynomials are dense in HZ and the sequence yi(R)™! is uniformly

norm bounded, it follows that

1 WOT

yk(R) CM(SI’

so that y(R)™!' := cME is a contractive right multiplier. We claim that § =
y(R)'y(R)~*. Indeed this follows because

Ap = yi(R)ye(R) 8T 6.

For any (Z,y,v) and another (W,b,c) € B, x C™ x C™,
(K{Z,u,v}, 6 K{W,b,c}) = liin<K{Z,u,v}, ALK{W,b,c}).

Since y(R)™! war y(R)™!, Lemma 9 implies that yi(Z)~

y*(Z)~! in the NC unit ball,

1 converges pointwise to

(K{Z,u,v}, Ay K{W, b, c}) = ((yx(R)~ )K{ZUU} yk(R) " K{W,b,c})
K{Z,u,y;,(Z2)" o}, K{W, b, yp, (W) "c})

(
=
(u, K(Z,W)[yi(Z) " oc" yp (W) 7*1b) ¢
= (
(

u, K(Z W)y (2) " oe™y (W) 7 1b) ¢
K{Z,u,v},y(R)~"'y(R) " K{W.b,c}),

and the claim follows. Consider y;(R) := y(™)(R). Observe that the sequence y} =
yr(R)1 is uniformly bounded in H?Z:

lyr(R)1][> = (1, (I + Re Hp(rpR)) 1)z
=1+4up, (I)=1+ReHp,
=14+ ReHp(0) =1+ pup(I) < +oo.

It follows that there is a weakly convergent subsequence yj = yk with limit g* € H2.

1

However, we already know that for any Z € B&, y!(Z)~! converges to y*(Z)~! so that

Y} (Z) converges to y*(Z) pointwise in BI{I. By Lemma 9, it follows that the subsequence
Yy = y,tcj converges pointwise to both y* and 7' so that y* = y* € H2. In particular, for
any free polynomial, p,

ly(R)p||* = [[p(L)y"|?
= lim(p(L)yy, p(L)y")

< ly(R)p|| 1imksup Ip(L)yill,
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and it follows that

ly(R)pl* < lim sup Ip(L)ykl?
= limksup<p, Y (R) yx (R)p)
= limksup<p, (I +Re Hp(ryR))p)
=lim pp,, (p"p) +m(p"p)

= (up +m)(p*p), by Lemma 5.

Since finite and positive sums of squares, p*p, of free polynomials, p € C{3}, are norm-
dense in the cone of positive elements in .27;, this proves that the vector state m, (L) :=
(y*, L"‘yt>H3 is bounded above by p+m = up +m [16, Lemma 4.6]. However, as proven
above, § = y(R)~'y(R)~*, so that by definition I + T’ = §~1 = y(R)*y(R). Hence,

qy(a1,az) :=my(ajaz); ai,as € Ag

= qr+1 (a1, az).

That is, given Dom (g, + gm) = Aq,

QT + qm = QI+17 = Qy < Qup+m = Qup + Gm,

in the sense of the partial order on positive semi-definite quadratic forms, see Equation
(4.1). This proves that gps is a closable positive semi-definite quadratic form obeying
g1 < quy. By Theorem 4 the closure of g, is g7, and g,,, is the maximal closable
positive semi-definite quadratic form bounded above by g,. Maximality then implies
that 7" < T in the sense that ¢r» < ¢r. That is, Domv/T C Dom\/ﬁ, and

IVT'h|[? = gp+(h,h) < qr(h,h) = |[VTh]?,

for all h € Domv/T.
Conversely, for any 0 < r < 1, the harmonic majorant inequality of Lemma 7 implies
that

z(rR)*x(rR) < I +1T,. (6.8)

(Recall that z(R)*z(R) = I + T.) By [23, Chapter VI, Theorem 2.21] (see also [41,
Proposition 1.1]), closed positive semi-definite operators 71,75 obey ¢r, < g¢r, if and
only if (A\I +Ty)™1 < (M + Ty)7! for any A > 0. It follows that the above inequality
(6.8) is equivalent to:

(I+T) ' =A, <z(rR)‘z(rR)™*.
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In the above, recall that z(R)~! and hence z(rR)~! are contractions. In particular, for
each r = ry,

A, < x(rpR) 'z (rpR) %,
N

WRT (1411 ST (1+1)—1

where the SOT convergence of z(rR)™‘z(rR)™* to (I +T)~! follows from Lemma 6.
Again by [23, Chapter VI, Theorem 2.21], we conclude that

[+T<I+T,

so that gr < gp/ and hence qgr = g7v. By the uniqueness of the Riesz representation of
closed, densely-defined positive semi-definite quadratic forms, T' = T" [23, Chapter VI,
Theorem 2.1, Theorem 2.23]. O

Remark 13. Observe that with z(R)*z(R) = I + T, and y")(R)*y")(R) = I 4+ T}, we
have that z(rR)1 — z(R)1 = z* in H2, and similarly since (I +7;.)~! converges in WOT
to (I +T)7!, one can argue that y(™* := y(M(R)1 converges weakly to x(R)1 in HZ.
(That y(")it := y((R)1 converges weakly to z(R)1 in H2 was shown in the proof of
Proposition 2.) However, (") generally does not converge in norm to z*, as this would
imply that g = figc, which is generally not true. Indeed, if y("):* L x*, then for any
ai,as € Ay,

ir(aias) + m(afas) — plafas) + m(afaz) by Lemma 5

mymi(aiaz) = mge(ajaz) = pac(ajaz) + m(ajaz).
Remark 14. Since 7" = T, Equation (6.6) becomes:
z(rR)*z(rR) < I+ T, =2(I — B(rR)*)"'(I — Re B(rR))(I — B(rR))™". (6.9)
Equivalently, setting X (rR) := z(rR)(I — B(rR)),
X(rR)*X(rR) < 2(I — Re B(rR)). (6.10)

This shows that the free harmonic function 2(I — Re B*(Z)) is a harmonic majorant for
the free pluri-subharmonic function X*(Z)*X*(Z).

We are finally in position to prove our main theorem.

Proof of NC Fatou Theorem. We have proven that A, := (I +7,.)~! converges to A :=
(I +T)~!in WOT and a similar analysis for A,.(s) = (s +T,)"!, s > 0 shows that
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A, (s) converges WOT to A(s) = (sI + T)~1. Using WOT convergence of the A,.(s) =
(sI +T,)"1 to A(s) for 1 < s < 2 implies, by the resolvent formula,

a |

(I+T) " =+l +T) ) = +T) (A + el + 1),
is WOT-convergent to
(I+T)" Y1+l +T)7",

for any € € [0,1]. Since (I +T,)" ((1 + €)I +T,)~! is uniformly bounded for € € [0, 1]
and 0 < r < 1, taking the limit as € | 0 shows that

IT+7) 2 "8 (1+1)72,
is WOT —convergent, and this implies SOT—convergence of (I + T;)~* since
17+ T) = hl1* = (B, (T + T)~%h).
Hence T;. — T in the strong resolvent sense. 0O
Having proved that T is recovered from the T, in the sense of strong resolvent conver-

gence, we consider the problem of exhibiting 7" more explicitly. Ideally, one would like
to prove that

T=(I-B(R)")"'(I-B(R)"BR)I - B(R))™"

(suitably interpreted). One way of making this precise would be to claim that
Ran (I — B(R)) belongs to Dom v/T and that for all f,g € H?2

(T(I = B(R))f,(I - B(R))g) = ((I - B(R)"B(R))f,9)-

If this were true unrestrictedly, it would prove, for example, that T = 0 (equivalently,
tae = 0, that is, p is singular) if and only if B(R) is an isometry (that is B* is a right NC
inner function). This correspondence-that a function b is inner if and only if its Clark
measure pyp, is singular—of course holds in one variable, via the standard form of Fatou’s
theorem as described in the introduction. Here, at present, our results are somewhat less
satisfactory, but we are able to prove the desired inequality in one direction:

Theorem 12. Dom+/I + T contains Ran (I — B(R)) and

(I - B(R)*)(I+T)(I - B(R)) < 2(I — Re B(R)). (6.11)
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Proof. By Theorem 9 we have that x(R)*z(R) = [ + T, x(R) = U*\/I+ T (by con-
struction and also by polar decomposition) so that Dom z:(R) = Dom /T + T. We claim
that Ran (I — B(R)) € Dom+/I+T = Domz(R). First define, for each 0 < r < 1,
X(rR):=z(rR)(I — B(rR)). Then by Lemma 7,

X(rR)* X (rR) = (I = B(rR)")z(rR)"z(rR)(I — B(rR))
< (I =B(rR)")(I +T;)(I - B(rR))
2

(I —Re B(rR)). (6.12)

It follows that X (rR) is uniformly norm-bounded for 0 < r < 1. Let Xi(R) = X(rxR)
be any WOT —convergent subsequence with limit X (R). Then X*(ryZ) necessarily con-
verges pointwise to X*(Z) for any Z € Bfi] by Lemma 9. However, we also have

XY (rZ) = (I — Bt (ri2))at (re Z) — X*(Z) := (I — BY(2))z"(Z).

This proves that any such WOT limit is unique and equal to X (R) = z(R)(I — B(R)),

so that, in particular, Ran (I — B(R)) € Domz(R), and X (rR) war X (R). Moreover,

by Lemma 4, since X (rR) is uniformly norm bounded, X (rR) SO—T> * X(R). Taking the

limit of Equation (6.12) then yields:
X(R)*X(R) <2(I -ReB(R)). O

Corollary 3. Let u = pp be the NC Clark measure of B € £y = [HY]1. If B is inner
(that is, B(R) = M, is an isometry) then u is singular.

Proof. Recall that B is inner if and only if B(L), or equivalently B(R) = UyB(L)U; are
isometries. We have that the closure of ¢, is ¢r where T is the strong resolvent limit
of the T, = Re Hp(rR) if u = pp. In particular for any h := (I — B(R))g, if B is inner
then:

qr+1)(h, h) < 2(g,(I — Re B(R))g)

((I—B(R))g,9) + (9, (I — B(R))g)

((I - B(R))g,(I — B(R))g) Using that B(R)*B(R) =1
= (h,h) = qi(h, h).

This proves that I + T < I sothat T=0. O

Inspecting the proof of Theorem 12, it is not too hard to show that we would obtain
equality (rather than just the one inequality) if we knew that for all B(R) we could
factor
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2] — B(R)" — B(R) = G(R)*"G(R), (6.13)
for some G' € R5°. Indeed, if this is so then for all 7 < 1 we would have
(I-B(rR)")I+T,)(I—-B(rR)) > G(rR)*G(rR),
and by taking SOT' limits
(I = B(R)")z(R)"x(R)(I — B(R)) > G(R)"G(R) = 2(I — Re B(R)),

as desired. In one variable the factorization (6.13) always holds, indeed on the circle we
have

2-b(Q) = (¢) = [1 = b(O* + 1 = [b(O* = [1 = b,

so that 2 — b(¢) — b(C) is log-integrable, and hence there is an outer function g with

2 —b(¢) — b(¢) = |g(¢)]?. Thus our results allow us to fully recover the known form of
the Radon—Nikodym derivative in the one-variable case.
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