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A classical theorem of Fatou asserts that the Radon–Nikodym 
derivative of any finite and positive Borel measure, μ, with 
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in the complex unit disk. This positive harmonic Poisson 
transform is the real part of an analytic function whose Taylor 
coefficients are in fixed proportion to the conjugate moments 
of μ.
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Theorem and related results have natural extensions to the 
setting of positive harmonic functions in an open unit ball of 
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class of positive non-commutative (NC) measures. Here, an 
NC measure is any positive linear functional on a certain self-
adjoint unital subspace of the Cuntz–Toeplitz algebra, the 
C∗−algebra generated by the left creation operators on the 
full Fock space.
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1. Introduction

The goal of this paper is to extend results from classical measure theory and the the-
ory of Hardy Spaces of analytic functions in the open unit disk, D, in the complex plane, 
from one to several non-commuting variables. In particular we are interested in Fatou’s 
theorem [13], which recovers the Radon–Nikodym derivative of a positive measure μ on 
the unit circle (with respect to Lebesgue measure) from the boundary values of its Pois-
son integral. (This positive harmonic Poisson transform is the real part of an analytic 
function, hμ, given by the Herglotz–Riesz integral of μ.) In the non-commutative (NC) 
setting, positive measures on the circle are replaced with positive linear functionals on 
the free disk system (these will be called ‘NC measures’; all terminology will be defined 
carefully below), the NC multi-variable analogue of the operator system of the disk alge-
bra. Here, recall that the disk algebra is the unital Banach algebra of analytic functions 
in D which extend continuously to the boundary, equipped with the supremum norm. 
The notion of Herglotz–Riesz integral transform has a natural extension to this non-
commutative setting, and the NC Herglotz–Riesz transform of any positive NC measure, 
μ, is an NC Herglotz function, Hμ, with positive real part in a certain non-commutative, 
multi-variable unit row-ball. We are then faced with two basic problems: First, identify 
the appropriate NC analogue of normalized Lebesgue measure and develop a suitable 
definition of the Lebesgue decomposition of an NC measure with respect to this NC 
Lebesgue measure, and secondly, assuming such an NC Lebesgue decomposition theory 
can be developed, find a method of recovering the absolutely continuous part of the NC 
measure, μ, from its NC Herglotz–Riesz transform, Hμ. We will put forward solutions 
to both of these problems.

Let us describe the background in more detail; this will also allow us to establish 
some notation. We recall that the Hardy Space, H2 = H2(D), is the Hilbert space of 
analytic functions in the unit disk with square–summable Taylor coefficients at 0 ∈ D, 
endowed with the �2 inner product of these coefficients. Any element of the Hardy space 
has non-tangential boundary limits almost everywhere with respect to Lebesgue measure 
on the unit circle in the complex plane, ∂D, and the identification of h ∈ H2 with its 
boundary limits is an isometry into L2(∂D). The Hardy algebra, H∞ = H∞(D), is 
the unital Banach algebra of bounded analytic functions in D. Multiplication by any 
h ∈ H∞ defines a bounded linear map from H2 into itself, so that H∞ can be viewed 
as the multiplier algebra of H2(D).

In measure theory and Hardy space theory, there is an (essentially) bijective corre-
spondence between finite, positive, and regular Borel measures on the unit circle ∂D, 
and contractive analytic functions in D. Namely, if b ∈ [H∞]1 is a contractive analytic 
function in D, then its Cayley Transform,

hb := 1 + b
,
1 − b
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is a Herglotz function, an analytic function with positive semi-definite real part in D. 
By the Herglotz–Riesz representation formula for positive harmonic functions, there is a 
unique positive measure, μb, so that the Herglotz–Riesz transform of μb is

hμb
(z) :=

∫
∂D

1 + zζ∗

1 − zζ∗
μb(dζ) = hb(z) − iIm hb(0).

This measure, μb, is called the Clark or Aleksandrov–Clark measure of b ∈ [H∞]1, and 
many properties of b are reflected in those of μb [8,3,4,38]. For example, a theorem of 
Fatou, [13] (see [15, Chapter 3.3: Fatou’s Theorem]), implies that the Radon–Nikodym 
derivative of μb with respect to normalized Lebesgue measure, m, on ∂D is given (m −a.e.) 
by the non-tangential and, in particular, radial limits of the positive harmonic function 
Rehb:

μb(dζ)
m(dζ) = lim

z ←
�

ζ

Re 1 + b(z)
1 − b(z) (m− a.e.)

= lim
z ←

�

ζ

(1 − b(z)∗)−1(1 − b(z)∗b(z))(1 − b(z))−1; m− a.e.

= lim
z ←

�
ζ

1 − |b(z)|2
|1 − b(z)|2 (m− a.e.),

where ζ ∈ ∂D, z ∈ D, and z ←
�

ζ denotes non-tangential convergence. In particular, it 
follows that the Clark measure, μb, of b is singular with respect to Lebesgue measure if 
and only if b is inner, i.e. has unimodular non-tangential limits m−a.e. on ∂D. (Under 
the identification of h ∈ H2 with its boundary values, it is clear that any contractive 
analytic b ∈ [H∞]1 is inner if and only if the multiplier Mb is an isometry of H2 into 
itself.)

This bijective correspondence between positive measures and contractive analytic 
functions extends naturally to the non-commutative multi-variable setting of the Non-
commutative (NC) or free Hardy space, [35, Section 5] (see also [16,18]). Here, the free 
Hardy space can be viewed as a Hilbert space of (graded) analytic functions in an open 
unit ball of d−tuples of matrices (of all sizes) taking values in matrices of all sizes 
[18,34,36,7,29,22]. Elements of this NC Hardy space have Taylor series expansions in-
dexed by the free monoid, Fd, the set of all words in d letters. It follows that the free 
Hardy space is isomorphic to �2(Fd) in the same way that H2(D) is isomorphic to the 
square–summable sequences indexed by the non-negative integers, �2(N0).

By the Riesz–Markov representation theorem, any finite, positive, and regular Borel 
measure, μ, on ∂D, can be identified with a positive linear functional, μ̂ on C (∂D), the 
commutative C∗−algebra of continuous functions on the circle:

μ̂(f) :=
∫

f(ζ)dμ(ζ).

∂D
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By the Weierstrass approximation theorem,

C (∂D) = (A(D) + A(D)∗)−‖·‖∞ ,

where A(D) is the disk algebra, the algebra of all analytic functions in D with continuous 
extensions to the boundary. In the above formula, elements of A(D) are identified with 
their continuous boundary values and ‖ · ‖∞ denotes the supremum norm for continuous 
functions on the circle. The disk algebra can also be viewed as the norm-closed unital 
operator algebra generated by the shift, S := Mz, the isometry of multiplication by z
on the Hardy space, H2(D). The shift plays a central role in the theory of Hardy spaces 
[25,42]. The positive linear functional μ̂ is then completely determined by the moments 
of the measure μ:

μ̂(Sk) :=
∫
∂D

ζkdμ(ζ), (1.1)

and the Taylor series coefficients (at 0) of the Herglotz–Riesz integral transform of μ are

hμ(0) = μ̂(I), hμ;k := 1
k!

dkhμ

dzk
(0) = 2μ̂(Sk), k ≥ 1.

The shift on H2(D) is isomorphic to the unilateral shift on �2(N0). The square–
summable sequences, �2(N0), can in turn be viewed as a simple, directed tree starting 
from a single node and with one branch directed downward from each node to the next. 
A canonical several-variable extension of �2(N0) is then �2(Fd). If we view, as before, 
�2 of the free monoid as a simple directed tree starting from a single node and with 
d branches directed downwards from each node, it is natural to define a d−tuple of 
isometries, the left free shifts, Lk, 1 ≤ k ≤ d which shift along these branches from nodes 
indexed by words of length N to those of length N + 1 by appending letters to the left 
of words indexing the standard orthonormal basis. These left free shifts have pairwise 
orthogonal ranges so that the row operator L := (L1, · · · , Ld) : �2(Fd) ⊗ Cd → �2(Fd)
is an isometry from d copies of �2(Fd) into one copy which we call the left free shift. 
This space of square–summable free sequences, �2(Fd), can also be identified with the 
full Fock space over Cd, the direct sum of all tensor powers of Cd. The full Fock space 
will be denoted by H2

d. Under this isomorphism the left free shifts are conjugate to the 
left creation operators, see Section 2 for more details.

The immediate analogue of a positive measure in this non-commutative (NC) multi-
variable setting is then a positive linear functional, or NC measure, on the free disk 
system:

Ad := (Ad + A∗
d)

−‖·‖
,

where Ad := Alg{I, L1, · · · , Ld}−‖·‖ is the free disk algebra, the operator norm-closed 
unital operator algebra generated by the left free shifts. As in the classical theory, ele-
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ments of the free disk algebra can be identified with bounded (matrix–valued) analytic 
functions (in several non-commuting matrix variables) which extend continuously from 
the interior to the boundary of a certain non-commutative multi-variable open unit ball. 
Moreover, exactly as in Equation (1.1), the NC moments of the NC measure, μ, are in 
fixed proportion to the Taylor series coefficients of its NC Herglotz–Riesz transform, Hμ. 
There is a long history and well-established precedent of viewing positive linear func-
tionals on operator algebras as non-commutative measures, e.g. in von Neumann algebra 
theory and Free Probability Theory [24,43,50].

Any NC measure can be viewed as a positive semi-definite quadratic form with dense 
domain Ad ⊂ H2

d, and we develop a Lebesgue decomposition theory of (positive) NC 
measures into absolutely continuous and singular parts using the Lebesgue decomposition 
theory for quadratic (i.e. sesquilinear) forms due to B. Simon [41, Section 2], combined 
with (non-commutative) reproducing kernel techniques applied to the spaces of Cauchy 
transforms with respect to the NC measure. This Lebesgue decomposition theorem for 
(potentially unbounded) quadratic forms in Hilbert Space is similar in spirit to von 
Neumann’s proof of the Radon–Nikodym Theorem and Lebesgue decomposition theory 
[51, Lemma 3.2.3], and our computation of the Radon–Nikodym derivative of any positive 
NC measure is also reminiscent of this approach. In our theory, the Radon–Nikodym 
derivative of a non-commutative (NC) measure with respect to NC Lebesgue measure 
will be a (generally unbounded) positive semi-definite left Toeplitz operator in the sense 
of [33,35] and defines a positive free pluriharmonic function in the sense of Popescu [35].

Remark 1 (On boundary values). The free Hardy space, H2(Bd
N), is a Hilbert space of 

non-commutative (NC) functions in an open unit ball, Bd
N , of the NC universe,

Cd
N :=

∞	
n=1

Cd
n; Cd

n := Cn×n ⊗C1×d. (1.2)

In the above, Cm×n denotes the m × n matrices with complex entries, and any element 
of Cn×n ⊗ C1×d is viewed as a row d−tuple, Z = (Z1, · · · , Zd), of n × n matrices. As 
described in [29], one can equip Cd with three natural operator space norms: Given 
X ∈ Cd

N ,

‖X‖∞ := max{‖X1‖, · · · , ‖Xd‖}, ‖X‖col :=

∥∥∥∥∥∥
d∑

j=1
X∗

jXj

∥∥∥∥∥∥
1
2

, and

‖X‖row :=

∥∥∥∥∥∥
d∑

j=1
XjX

∗
j

∥∥∥∥∥∥
1
2

.

The unit ball we consider, is the unit ball, Bd
N , of Cd

N with respect to the row-norm, 
‖ · ‖row. That is, we consider the NC open unit row-ball,
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Bd
N =

∞	
n=1

Bd
n; Bd

n :=
{
Z = (Z1, · · · , Zd) ∈ Cd

n

∣∣ Z1Z
∗
1 + · · · + ZdZ

∗
d < In

}
. (1.3)

The open unit ball of Cd
N with respect to the ‖ · ‖∞ operator space norm is the NC unit 

polydisk, Dd
N , consisting of all points X = (X1, · · · , Xd) ∈ Cd

N so that ‖Xk‖ < 1, for 
1 ≤ k ≤ d.

The distinguished boundary of the NC unit row ball, ∂Bd
N , can be identified with the 

set of all row co-isometries, i.e. the set of all X ∈ Cd
n obeying XX∗ = X1X

∗
1 + · · · +

XdX
∗
d = In. (Note that there are no finite-dimensional row isometries.) Indeed, if we 

identify the components of X ∈ Bd
n, with the corresponding subset of Cn2·d, then the 

Shilov boundary for the commutative algebra of complex functions in n2d variables is 
the set of all co-isometries in Cn×dn [47, Example 1.5.51]. Moreover, as proven in [39, 
Lemma 2.10], any irreducible point X ∈ Cd

n with joint spectral radius equal to 1, which 
is not in the joint similarity envelope of the NC unit ball, is jointly similar to a row 
co-isometry. On the other hand, as described in Subsection 2.2 below, if X ∈ Cd

n is 
in the joint similarity envelope of the NC unit row ball then the point evaluation map 
h 
→ h(X) is bounded as a linear map of H2(Bd

N) into the Hilbert space (Cn×n, 〈·, ·〉trn), 
where trn denotes the normalized trace and 〈·, ·〉trn denotes the normalized trace inner 
product.

It is natural to consider the boundary values of h ∈ H2(Bd
N) on the boundary of the NC 

unit row-ball, as well as to wonder whether the inner product in the NC Hardy space can 
be expressed as an integral over the boundary ∂Bd

N. Moreover, one may wonder whether 
there is an exact analogue of Fatou’s theorem in this context. Investigations of boundary 
values in NC Hardy spaces of functions in the NC unit polydisk, and in the NC unit balls 
with respect to the ‖ ·‖col and ‖ ·‖row−norms, were studied in [29]. See also [49, Chapters 
14-16] which studies asymptotic tracial integral formulae of bounded non-commutative 
functions in Dd

N over the distinguished boundary, ∂Dd
N of Dd

N , consisting of d−tuples of 
unitary matrices. In particular, [29, Theorem 3.5] shows that one can construct an NC 
Hardy space of NC functions, H2(Dd

N) in Dd
N with inner product defined as a limit of 

tracial integrals with respect to product Haar measure over the boundary of r∂Dd
N, for 

0 < r < 1, and this recovers the Fock space inner product at least on NC polynomials 
p, q ∈ H2(Dd

N). Note, however, that Bd
N � Dd

N , the NC unit row-ball is a proper subset 
of the NC unit polydisk, and a general element of H2(Bd

N) need not (and generally does 
not) extend to Dd

N . (It is not difficult to construct examples of NC rational functions r
in H2

d for which certain points Z ∈ Dd
N \Bd

N do not belong to their domains, for example 
see [21].) Thus, it appears that generic elements of the Fock space cannot be represented 
as NC functions in the polydisk, Dd

N , and in particular there does not appear to be any 
way to sensibly assign levelwise boundary values on ∂Dd

N to arbitrary elements of the 
Fock space. Moreover, while the Fock space inner product of polynomials can be given 
a random matrix interpretation, this interpretation does not extend to all elements of 
the Hilbert space. On the other hand, [29, Theorem 3.5] can also be applied to construct 
a Hardy space of NC functions in the row-ball Bd

N whose inner product is given by an 
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asymptotic integral formula with respect to a family of invariant measures over each 
level of the boundary. However, this inner product does not coincide with the Fock space 
inner product and hence this gives a different NC Hardy space than the one we consider 
here.

At this point, it is not obvious whether or not the constructions of [29] can be modified 
in a suitable way to show that the inner product in H2(Bd

N), can be expressed in terms of 
integral formulae over the boundary, ∂Bd

N . This would seem to be a necessary first step in 
developing an exact analogue of Fatou’s theorem in this setting. While such an approach 
would be interesting and valuable, we will instead pursue a more abstract and operator–
theoretic approach. By re-casting Fatou’s theorem in purely operator theoretic language, 
we will develop a ‘dimension-free’ proof of Fatou’s theorem that applies to H2(Bd

N), 
independently of d ∈ N. In particular, we recover the classical result for H2(D) 

H2(B1

N) as a special case.

1.1. Readers’ guide

Section 2 provides the necessary background material on the free disk algebra, NC 
function theory, and the formalism of non-commutative reproducing kernels. Section 3
recalls the relevant background on NC measures and the NC Cauchy transform from 
[18,16]. In Section 4 we describe Simon’s approach to the Lebesgue decomposition of 
positive semi-definite and not necessarily bounded quadratic forms in Hilbert space, 
see Theorem 2. We use this theory to define the Lebesgue decomposition of an NC 
measure into absolutely continuous and singular parts in Definition 7; however, at this 
stage, it is not clear that the absolutely continuous and singular parts of NC measures 
are themselves NC measures. Section 5 then proves that this quadratic form approach 
produces NC measures by examining spaces of NC Cauchy transforms. This yields an NC 
Lebesgue decomposition of the original NC measure as the sum of absolutely continuous 
and singular positive NC measures in Theorem 4. We further show that the NC Radon–
Nikodym derivative, T , of any positive NC measure with respect to NC Lebesgue measure 
is a closed, positive semi-definite operator with the left Toeplitz property:

〈
√
TLkh,

√
TLjg〉H2

d
= δk,j〈

√
Th,

√
Tg〉H2

d
; h, g ∈ Dom

√
T ,

in Theorem 5. Corollaries 1 and 2 provide further characterizations of absolutely con-
tinuous and singular NC measures in terms of their Gelfand–Naimark–Segal spaces and 
their spaces of NC Cauchy transforms. Finally in Section 6 we prove our NC Fatou 
theorem, Theorem 6, which shows how to recover the absolutely continuous part of an 
NC measure from its Herglotz–Riesz transform; the main tool is the theory of strong 
resolvent convergence of self-adjoint operators:

Theorem (Non-commutative Fatou Theorem). Let μ ∈ (Ad)†+ be any positive NC measure 
with NC Herglotz–Riesz transform Hμ. The absolutely continuous NC measure μac is 
given by the formula:
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μac(a∗1a2) = 〈
√
Ta1,

√
Ta2〉H2

d
; a1, a2 ∈ Ad,

where the NC Radon–Nikodym derivative, T , is a closed, positive semi-definite left 
Toeplitz operator with dense domain in H2

d so that Ad is a core for 
√
T . This NC Radon–

Nikodym derivative can be computed by the formula:

(T + εI)−1 = SOT − lim
r↑1

(ReHμ(rR) + εI)−1 ; ε > 0.

In the above, and throughout, SOT denotes the strong operator topology and R =
(R1, · · · , Rd) is the row isometric right free shift whose components, Rk, act as Rkeα =
eαk on the standard orthonormal basis, {eα}α∈Fd of �2(Fd). As a corollary to this main 
result, we recover (half of) a familiar fact from Hardy space theory in Corollary 3 – if 
B is an NC inner function in Bd

N , then its NC Clark measure is singular with respect to 
NC Lebesgue measure.

2. Background: the free Hardy space

The Hardy space, H2(D), of analytic functions in the complex open unit disk can be 
defined in two equivalent ways: On one hand,

H2(D) :=
{
f(z) =

∞∑
k=0

f̂nz
n ∈ O(D)

∣∣∣∣∣ ∑ |f̂n|2 < ∞
}

is the Hilbert space of all analytic functions in D with square–summable MacLaurin 
series coefficients (and with the �2−inner product of these coefficients). Alternatively,

H2(D) := H(k); k(z, w) := 1
1 − zw∗ ; z, w ∈ D,

is the unique reproducing kernel Hilbert space (RKHS) corresponding to the positive 
sesqui-analytic Szegö kernel, k, on D. (Here, recall that there is a bijective correspondence 
between reproducing kernel Hilbert spaces of complex-valued functions on a set X, and 
positive kernel functions on X ×X. See Subsection 2.2 for a detailed description.)

One also has the corresponding two equivalent definitions of the Hardy algebra 
H∞(D):

H∞(D) :=
{
h ∈ O(D)

∣∣∣∣ sup
z∈D

|h(z)| < ∞
}
,

and

H∞(D) := MultH(k); k(z, w) = (1 − zw∗)−1,
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where recall that the multiplier algebra, MultH(k), of an RKHS, H(k), is the unital 
WOT−closed (weak operator topology closed) algebra of all functions h which multiply 
H(k) into itself. These definitions have natural non-commutative multi-variable exten-
sions.

2.1. �2 of the free monoid as the free Hardy space

From the square–summable Taylor series definition, is clear that the shift, S = Mz, is 
an isometry on H2(D). The map f 
→ (f̂n) of a holomorphic f ∈ H2(D) to its sequence of 
MacLaurin series coefficients defines a unitary map from H2(D) onto �2(N0), the square–
summable sequences indexed by the non-negative integers, and the image of the shift 
under this unitary transformation is Ŝ, the unilateral shift on �2(N0), the universal pure 
isometry. Here, recall that the Wold decomposition shows that any isometry on Hilbert 
space is unitarily equivalent to several copies of the unilateral shift, with possibly a 
remainder unitary direct summand. An immediate multi-variable analogue of �2(N0)
is then �2(Fd), the square–summable sequences indexed by Fd, the free and universal 
monoid on d letters. This is the unital semi-group of all words in d letters (which we 
choose to be {1, ..., d}), with product given by concatenation of words, and unit equal 
to the empty word, ∅, containing no letters (and clearly N0 
 F1). Given any word, 
α = i1 · · · in ∈ Fd, ik ∈ {1, · · · , d}, we write |α| := n for the length of the word α, and 
|∅| = 0. The square–summable sequences �2(N0) can be viewed as a directed graph or 
tree, starting from a single node (labeled by 0, the unit of N0), and with one branch 
connecting each node to the next. The unilateral shift moves downward along these 
branches, taking the orthonormal basis vector of the kth node to that of k+1. Similarly, 
�2(Fd) can be viewed as a tree starting from a single node labeled by the unit, ∅, and 
with d branches directed downward from each node. In this multi-variable setting there 
is now a natural d−tuple of left free shifts shifting along branches from a given node to 
d distinct nodes at the next level. Namely, if eα is the orthonormal basis vector labeled
by the word α ∈ Fd, then Lkeα = ekα; 1 ≤ k ≤ d. It is not difficult to see that the left 
free shifts are isometries with pairwise orthogonal ranges,

L∗
kLj := δk,jI�2(Fd),

so that the d−tuple

L := (L1, · · · , Ld) : �2(Fd) ⊗Cd → �2(Fd),

defines a row isometry, i.e. an isometry from several copies of a Hilbert space into itself. 
In fact, Popescu’s extension of the Wold decomposition shows that the left free shift, L, 
is the universal pure row isometry (with d components) [30].

The left free shifts do not commute, and it may appear, at first sight, that one loses 
all connection to analytic function theory (since one cannot represent Lk as Mzk on 
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a space of holomorphic functions on some domain in Cd). Most remarkably, this is 
not the case – instead �2(Fd) can be identified with a space of holomorphic functions in 
several non-commuting (NC) variables, Z = (Z1, · · · , Zd), and the Lk 
 ML

Zk
become left 

multiplication by these independent NC variables. Certainly any element of �2(Fd) can 
be viewed as a formal power series in d formal non-commuting variables z := (z1, · · · , zd):

f :=
∑
α∈Fd

f̂αeα 
→
∑

f̂αz
α =: f(z),

where if α = i1i2 · · · in, ik ∈ {1, ..., d}, we use the standard notation zα = zi1zi2 · · · zid for 
any free monomial. This is simply a change in notation, however, if Z := (Z1, · · · , Zd) :
H⊗Cd → H is any strict row contraction on a Hilbert space, H, i.e.

ZZ∗ = Z1Z
∗
1 + · · · + ZdZ

∗
d < IH,

then the Popescu–von Neumann inequality for free polynomials,

‖p(Z)‖ ≤ ‖p(L)‖; p ∈ C{z1, · · · , zd},

implies that the power series for f converges absolutely in operator norm when evaluated 
at Z (and uniformly in operator norm on the ball of all strict row contractions of norm 
at most r, for any fixed 0 < r < 1),

‖f(Z)‖2 ≤
‖f‖2

�2(Fd)

1 − ‖Z‖2 .

The above inequality is a further consequence of the fact that ‖p(L)‖ = ‖p‖�2(Fd) for 
any homogeneous free polynomial. This shows that the power series, f , can be viewed 
as a function in the non-commutative open unit row-ball, Bd

N , defined in Equation (1.3). 
Here, Bd

n =
(
Cn×n ⊗C1×d

)
1, can be viewed as the set of all strict row contractions with 

d components on Cn. Any such square–summable power series (in particular any free 
polynomial) has the following three basic properties:

1. f : Bd
n → Cn×n, f is graded,

2. If Z ∈ Bd
n, W ∈ Bd

m then

f

(
Z 0
0 W

)
=
(
f(Z) 0

0 f(W )

)
, f respects direct sums,

3. If W = S−1ZS is jointly similar to Z, i.e. Wk = S−1ZkS, 1 ≤ k ≤ d, then

f(W ) = S−1f(Z)S, f respects similarities.
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In modern NC Function Theory [22,1,45,46,48,49], the above three properties are taken as 
the axioms defining a non-commutative function, and Bd

N ⊆ Cd
N , is an example of an NC 

set. (Any subset of Cd
N which is closed under direct sums is an NC set.) The interpretation 

of �2(Fd) as non-commutative power series was first developed by Popescu in [34,36,35], 
and this has been one of the inspirations of non-commutative function theory. This 
general philosophy of identifying certain abstract Hilbert spaces and operator spaces 
with concrete spaces of NC functions has been a fruitful viewpoint in non-commutative 
analysis [48,49,44,29,39].

Remarkably, any locally bounded NC function (on say a left and right admissible 
NC domain, see [22]) is automatically holomorphic in the sense that it is both Gâteaux 
and Fréchet differentiable at any point in its domain and has a convergent Taylor–type 
power series expansion about any point [22, Chapter 7]. In particular, any f ∈ �2(Fd)
defines a holomorphic NC function in Bd

N . Much of classical complex analysis and several 
complex variables extends naturally to the setting of NC holomorphic functions with 
purely algebraic proofs including the Schwarz Lemma, Cauchy’s estimates, Liouville’s 
theorem (and much more) [34,36], Hilbert’s Nullstellensatz (this is in some sense ‘perfect’ 
in the NC setting) and a maximum modulus principle [39], Oka–Weil theorem [1], and 
the concept of a complex analytic manifold [2].

It follows that we can identify �2(Fd) with the Non-commutative (NC) or free Hardy 
space:

H2(Bd
N) :=

⎧⎨⎩f ∈ O(Bd
N)

∣∣∣∣∣∣ f(Z) =
∑
α∈Fd

f̂αZ
α,
∑

|f̂α|2 < ∞

⎫⎬⎭ ,

the Hilbert space of all (locally bounded hence holomorphic) NC functions in the NC unit 
ball Bd

N with square–summable MacLaurin series coefficients. Under this identification 
the left free shifts, Lk, become left multiplication by the independent variables, Lk =
ML

Zk
. Note that �2(Fd) is also isomorphic to the full Fock space over Cd:

H2
d := C ⊕Cd ⊕

(
Cd ⊗Cd

)
⊕
(
Cd ⊗Cd ⊗Cd

)
⊕ · · · =

∞⊕
k=0

(
Cd
)k·⊗

,

the direct sum of all tensor powers of Cd. This isomorphism is implemented by the 
unitary map eα 
→ Lα1, where 1 denotes the vacuum vector (which spans the subspace 
C ⊂ H2

d) of the Fock space. Under this isomorphism the left free shifts become the left 
creation operators which act as tensoring on the left by the members of the standard 
orthonormal basis of Cd. In the sequel we identify �2(Fd), H2

d and H2(Bd
N) and we will 

use these notations interchangeably.
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2.2. Fock space as a non-commutative RKHS

As in the single-variable setting, the free Hardy space, H2(Bd
N), can be equivalently 

defined using (non-commutative) reproducing kernel theory [7]. The theory of non-
commutative reproducing kernel Hilbert spaces (NC-RKHS) is a faithful analogue of the 
classical theory [5,27]. Here, recall that a reproducing kernel Hilbert space is a Hilbert 
space of (complex-valued) functions, H, on a set X, so that point evaluation at any 
x ∈ X is a bounded linear functional: For any f ∈ H and x ∈ X,

�x(f) := f(x); �x ∈ H†.

The Riesz representation lemma then implies there is a corresponding kernel vector
kx ∈ H so that

〈kx, f〉H = �x(f) = f(x),

and one typically writes H =: H(k) where the reproducing kernel k : X × X → C is 
defined as:

k(x, y) := 〈kx, ky〉H; x, y ∈ X.

Here and throughout, all inner products and quadratic or sesquilinear forms are conjugate 
linear in their first argument. Any reproducing kernel is an example of a positive kernel 
function on X: A function k : X × X → C is a positive kernel function if given any 
finite subset {x1, · · · , xN} ⊂ X, the corresponding Gram matrix of the kxj

is positive 
semi-definite:

0 ≤ [k(xi, xj)]1≤i,j≤N .

Conversely, starting with any positive kernel function, k, on X, there is a unique RKHS 
of functions on X with reproducing kernel equal to k. (One simply defines functions 
ky(x) := k(x, y) for x, y ∈ X, and then takes the Hilbert space completion with respect 
to the inner product defined by 〈kx, ky〉 := k(x, y).)

The concept of a non-commutative reproducing kernel Hilbert space (NC-RKHS) is 
analogous: Let Ω := 	Ωn,

Ωn = Ω
⋂

Cn×n ⊗C1×d,

be any NC subset of the NC universe Cd
N . (Recall an NC set is any subset of Cd

N which 
is closed under direct sums.) A Hilbert space of non-commutative functions, H on Ω
(taking values in, say, CN = 	Cn×n) is an NC-RKHS if point evaluation at any point 
Z ∈ Ωn is a bounded linear map from H into the Hilbert space Cn×n (equipped with 
the normalized trace or Hilbert-Schmidt inner product). Denote this evaluation map by 
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�Z : H → Cn×n for Z ∈ Ωn, and let KZ := �∗Z : Cn×n → H be its Hilbert space adjoint. 
For y, v ∈ Cn we can then define

K{Z, y, v} := KZ(yv∗) ∈ H.

Furthermore, given Z ∈ Ωn, y, v ∈ Cn and W ∈ Ωm, x, u ∈ Cm define the linear map

K(Z,W )[·] : Cn×m → Cn×m,

by

(y,K(Z,W )[vu∗]x)Cn := 〈K{Z, y, v},K{W,x, u}〉H.

This defines a completely bounded linear map K(Z, W ) : Cn×m → Cn×m so that 
K(Z, Z) : Cn×n → Cn×n is completely positive for any fixed Z ∈ Ωn. The map K(Z, W )
is called the completely positive non-commutative reproducing kernel (CPNC kernel) for 
the space H. The CPNC kernel is a sort of two-argument NC function, see [7, Sections 
2.3-2.4] for details. As in the classical theory there is a bijection between CPNC kernel 
functions on a given NC set and NC-RKHS on that set [7, Theorem 3.1], and if K is a 
given CPNC kernel on an NC set, we will use the notation Hnc(K) for the corresponding 
NC-RKHS of NC functions. In particular, the free Hardy space is the unique NC-RKHS 
corresponding to the NC Szegö kernel:

K(Z,W )[·] :=
∑
α∈Fd

Zα[·]Wα∗; H2(Bd
N) = Hnc(K). (2.1)

All NC-RKHS in this paper will be NC-RKHS of free holomorphic functions in the 
NC unit ball Bd

N so that if f ∈ Hnc(K), f has a Taylor–MacLaurin series at 0 ∈ Bd
1 with 

non-zero radius of convergence, [22, Chapter 7]:

f(Z) =
∑
α∈Fd

Zαf̂α; Z ∈ Bd
n, f̂α ∈ C,

and the linear coefficient evaluation functionals:

f
�α→ f̂α; α ∈ Fd,

are all bounded. We will let Kα denote the coefficient evaluation vector :

〈Kα, f〉Hnc(K) = �α(f) = f̂α, α ∈ Fd,

and we will typically write �α =: K∗
α. If K is the NC Szegö kernel of the free Hardy 

space, then
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Kα(Z) = Zα,

i.e. Kα can be identified with the free monomial Lα1 ∈ H2
d.

Recall that any reproducing kernel Hilbert space (RKHS) H(k) on a set X is naturally 
equipped with a multiplier algebra MultH(k), the algebra of all functions on X which 
‘multiply’ H(k) into itself:

h ∈ H(k), F ∈ MultH(k) ⇒ Fh ∈ H(k).

Any multiplier F ∈ MultH(k) can be identified with a bounded linear multiplication 
operator MF ∈ L (H(k)), and under this identification MultH(k) is closed in the weak 
operator topology and unital. One can similarly define left and right multiplier algebras 
in the NC setting. Namely, if Hnc(K) is an NC-RKHS on an NC set Ω, then NC functions 
F, G are left or right multipliers of Hnc(K), respectively, if the NC functions

(F · h)(Z) = F (Z)h(Z), or (h ·G)(Z) = h(Z)G(Z),

belong to Hnc(K), for every h ∈ Hnc(K). As in the classical theory, the adjoints of both 
left and right free multipliers have a natural action on point and coefficient evaluation 
vectors:

(ML
F )∗K{Z, y, v} = K{Z,F (Z)∗y, v}, (MR

G )∗K{Z, y, v} = K{Z, y,G(Z)v},

and if F (Z) =
∑

ZαFα, G(Z) =
∑

ZαGα then,

(ML
F )∗Kα =

∑
βγ=α

KγF
∗
β , (MR

G )∗Kα =
∑
γβ=α

KγG
∗
β .

In the above, and throughout, c∗ = c denotes complex conjugate of a complex number 
c ∈ C. The left multiplier algebra of the free Hardy space provides a non-commutative 
generalization of H∞(D) = MultH2(D):

H∞(Bd
N) :=

{
f ∈ O(Bd

N)

∣∣∣∣∣ sup
Z∈Bd

N

‖f(Z)‖ < ∞
}

= MultL H2(Bd
N).

As in the single variable setting, the left multiplier norm on H∞(Bd
N) (the norm of a left 

multiplier viewed as a left multiplication operator) coincides with the supremum norm 
in the NC unit ball [39, Theorem 3.1], [34, Theorem 3.1]. In keeping with the notation 
H2

d for the Fock space, we will often use the more compact notation H∞
d = H∞(Bd

N). 
This left multiplier algebra can also be identified with

L∞
d := Alg{I, L1, · · · , Ld}−weak−∗,

the (left) free analytic Toeplitz algebra. Let
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Ad := Alg{I, L1, · · · , Ld}−‖·‖,

be the left free disk algebra. The free disk algebra can be viewed as the set of all uniformly 
bounded NC holomorphic functions in Bd

N which extend continuously to the boundary, 
∂Bd

N (of all row contractions with unit norm). Recall that one can also define Rk = MR
Zk

, 
the isometric right free shifts on H2(Bd

N), and these are unitarily equivalent to the left 
free shifts via the self-adjoint transpose unitary on �2(Fd), Ut,

Uteα := eαt ,

where if α = i1 · · · in ∈ Fd, then αt := in · · · i1, its transpose or ‘letter reversal’. The map 
ω 
→ ωt for ω ∈ Fd is an involution of the free monoid. We also define R∞

d := UtL
∞
d Ut, 

the right free analytic Toeplitz algebra. Note that if F (L) = ML
F (Z) ∈ L∞

d has Taylor–
MacLaurin series:

F (Z) =
∑
α∈Fd

FαZ
α, (2.2)

then its transpose–conjugate, F t ∈ (H∞
d )t is a locally bounded NC function,

F t(Z) :=
∑

FαtZα, (2.3)

so that

F (R) := UtF (L)Ut = MR
F t ∈ R∞

d .

As in [12,33] a left (or right) free multiplier of the free Hardy space will be called inner
if the corresponding multiplication operator is an isometry, and outer if the corresponding 
(left or right) multiplication operator has dense range.

3. Non-commutative measures

As described in the introduction, any finite, positive, and regular Borel measure, μ, 
on ∂D is the Clark measure, μ = μb corresponding to a contractive analytic function b
in D. As before, we can identify μ, via its moments, with a positive linear functional, 
μ̂, on the disk algebra operator system A(D) + A(D)∗. (We write this in place of its 
norm-closure, which is simply the C∗−algebra C (∂D) of continuous functions on ∂D in 
this case.) If b is a contractive analytic function, then 1 − b is outer (cyclic for the shift), 
and it follows that Hb(S) := (I + b(S))(I − b(S))−1 is a closed operator affiliated to S
with dense domain Ran (I − b(S)). Moreover, it is not difficult to verify the formula:

μ̂b(Sk) = 1
2
(
〈Hb(S)∗1, Sk1〉H2 + 〈1, Hb(S)∗Sk1〉H2

)
= δk,0

1
Hb(0) + 1 〈1, Hb(S)∗Sk1〉H2 .
2 2
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One can further re-write the Herglotz representation formula in terms of this Clark 
functional:

Hb(z) = iImHb(0) + μ̂b

(
(I + zS∗)(I − zS∗)−1) ,

and the (conjugate) moments of μ are in fixed proportion to the MacLaurin series coef-
ficients of Hb:

Hb(z) = iImHb(0) + μ̂b(I) + 2
∞∑
k=1

zkμ̂b(Sk)∗.

These constructions have exact analogues in the NC multi-variable setting. In place 
of A(D) = Alg{I, S}−‖·‖ we have the free disk algebra, Ad = Alg{I, L1, · · · , Ld}−‖·‖. 
The results in this section can be found in [18,16].

Definition 1. A positive non-commutative measure is a positive linear functional on the 
free disk system:

Ad := (Ad + A∗
d)

−‖·‖
.

The set of all positive NC measures will be denoted by (Ad)†+.

Classically, the closed unit ball of H∞(D), i.e. the closed convex set of all contractive 
analytic functions in the disk, is called the Schur class [6]. The convex set, Ld := [H∞

d ]1, 
of all contractive NC functions in Bd

N will then be called the left NC Schur class or left 
free Schur class [6, Section 3]. Similarly, Rd = L t

d will denote the right NC Schur class, 
the set of all transpose–conjugates of elements of Ld.

Definition 2. A free holomorphic function, H in Bd
N is a left free or NC Herglotz function 

if ReH(Z) is positive semi-definite for all Z ∈ Bd
N . The set of all left free Herglotz 

functions is a positive cone which we denote by L +
d .

We will also consider the right NC Herglotz class, R+
d , the image of L +

d under the 
transpose involution, R+

d = (L +
d )t. As in the classical setting, the fractional linear 

Cayley Transform implements a bijection between Ld and L +
d : Given B ∈ Ld,

HB := (I −B)−1(I + B) ∈ L +
d ,

and given H ∈ L +
d ,

BH := (H + I)−1(H − I) ∈ Ld.

Similarly the Cayley Transform maps Rd bijectively onto R+
d .
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Definition 3. ([18, Definition 3.1]) Given any contractive free holomorphic B ∈ Ld :=
[H∞(Bd

N)]1, the Clark functional or NC Clark measure of B is the positive linear func-
tional, μB ∈ (Ad)†+, defined by:

μB(Lα) := 1
2

(
〈HB(R)∗1, Lα1〉H2

d
+ 〈1, HB(R)∗Lα1〉H2

d

)
= 1

2HB;∅ · δα,∅ + 1
2 〈1, HB(R)∗Lα1〉H2

d
.

It is not immediately obvious that the above definition of μB produces a positive NC 
measure or positive linear functional on the free disk system, Ad. This is proven in [18, 
Proposition 3.2] and [16, Proposition 4.5].

Remark 2. The left and right NC Schur classes are distinct. A simple example is given 
by the NC polynomial:

B(Z) := 1√
2
Z2(In − Z1); Z ∈ Bd

n.

This is inner as a right multiplier, i.e. MR
B(Z) is an isometry on H2

d, and hence has operator 
norm 1. However, as a left multiplier, ML

B(Z) has norm 
√

2 > 1, see [19, Example 3.4] for 
details. Since the left and right NC Schur classes are distinct, so are the left and right 
NC Herglotz classes.

Given Z ∈ Bd
n, let

ZL∗ := ( Z1⊗IH2 , ··· , Zd⊗IH2 )

⎛⎝ In⊗L∗
1

...
In⊗L∗

d

⎞⎠ = Z1 ⊗ L∗
1 + · · · + Zd ⊗ L∗

d ∈ L (Cn ⊗H2
d),

and set In×H2 := In ⊗ IH2 . Also note that ZL∗ is a strict contraction so that

(I − ZL∗)−1 =
∞∑
k=0

(ZL∗)k =
∑
α∈Fd

Zα ⊗ L∗α,

is a convergent geometric series. The following result extends the classical bijection be-
tween Herglotz functions in the disk and positive measures on the circle to our NC 
multivariate setting.

Theorem 1. ([18, Theorem 3.4], [35, Section 5]) The map B 
→ μB is a bijection, modulo 
the imaginary part of HB(0), from Ld onto (Ad)†+, and one has the NC Herglotz formula:

HB(Z) = iImHB(0n)+(idn⊗μB)
(
(In×H2 + ZL∗)(In×H2 − ZL∗)−1) ; Z ∈ Bd

n. (3.1)
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In the above, idn : Cn×n → Cn×n denotes the identity map. Any NC measure μ ∈
(Ad)†+ is the NC Clark measure of some contractive NC holomorphic function B ∈ Ld, 
μ = μB , and the moments of μ can be identified with the MacLaurin (Taylor–Taylor 
series at 0 ∈ Bd

1) series coefficients of HB :

HB(Z) = iImHB(0)In + μ(I)In + 2
∑
α �=∅

Zαμ(Lαt
)∗, (3.2)

see [18, Lemma 3.3].

3.1. Non-commutative Lebesgue measure

Classically, the Herglotz–Riesz transform, Hm(z), of normalized Lebesgue measure, 
m on ∂D is the constant function Hm ≡ 1:

Hm(z) :=
∫
∂D

1 + zζ∗

1 − zζ∗
m(dζ)

= 2
∞∑
k=0

zk
∫
∂D

(ζ∗)km(dζ) −
∫
∂D

m(dζ)

= 2
∞∑
k=0

zkδk,0 − 1 = 1.

The corresponding contractive analytic function in D obtained as the inverse Cayley 
Transform of Hm(z) ≡ 1 is then identically 0:

bm(z) := Hm(z) − 1
Hm(z) + 1 = 0.

It is then natural to expect that in the NC multi-variable theory, the role of normalized 
Lebesgue measure should be played by the unique positive NC measure corresponding 
to the constant free holomorphic functions:

B(Z) := 0n, or equivalently HB(Z) := In; Z ∈ Bd
n.

Using the NC Herglotz representation formula (3.1), it is easy to check that the unique 
NC measure (which we also denote by m), corresponding to the contractive NC function 
B(Z) = 0n is the vacuum state of the Fock space:

m(Lα) := 〈1, Lα1〉H2 = δα,∅.

More evidence that this is to be expected, is that if m is normalized Lebesgue measure 
on ∂D, then the corresponding linear functional m̂ restricted to A(D) can be expressed 
as:
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m̂(Sk) = 〈1, Sk1〉H2 = δk,0.

Definition 4. The vacuum state m ∈ (Ad)†+ will be called normalized NC Lebesgue mea-
sure.

3.2. Left regular representations of the Cuntz–Toeplitz algebra

If μ is any positive finite and regular Borel measure on ∂D, it is natural to consider 
the L2 space, L2(μ, ∂D), as well as its ‘analytic part’,

H2(μ) :=
∨
k≥0

ζk,

the closed linear span of the ‘analytic polynomials’ in L2(μ, ∂D). The operator Mζ , of 
multiplication by ζ is unitary on L2(μ), and H2(μ) is Mζ−invariant so that the restriction 
of Mζ to H2(μ) is an isometry.

When d > 1, the appropriate analogues of H2(μ) and Mζ |H2(μ) are obtained via a 
Gelfand–Naimark–Segal (GNS) construction: If μ ∈ (Ad)†+, the fact that the free disk 
algebra has the semi-Dirichlet property [10]:

A∗
dAd ⊆ (Ad + A∗

d)−‖·‖,

ensures that the GNS pre-inner product:

〈a1, a2〉μ := μ(a∗1a2); a1, a2 ∈ Ad

is well-defined on Ad. The GNS space H2
d(μB) is then the Hilbert space completion of 

Ad modulo zero length vectors with respect to this pre-inner product. The equivalence
class of a ∈ Ad will be denoted by a +Nμ, where Nμ ⊆ Ad is the left ideal of all elements 
of zero length. Moreover, the left regular representation: πμ : Ad → L (H2

d(μ)),

πμ(a1)(a2 + Nμ) := a1a2 + Nμ; a1, a2 ∈ Ad,

is completely isometric and extends to a ∗−representation of the Cuntz–Toeplitz algebra, 
Ed = C∗(I, L), on L (H2

d(μ)) [9]. In particular,

Πμ = πμ(L) := (πμ(L1), · · · , πμ(Ld)) : H2
d(μ) ⊗Cd → H2

d(μ),

is a (row) isometry, and we write Πμ;k := πμ(Lk). Again, if d = 1 then

H2
1(μ̂) 
 H2(μ), and Πμ̂ 
 Mζ |H2(μ),

where μ̂ is, as before, the positive linear functional corresponding to the positive measure, 
μ on the circle ∂D.
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3.3. The (right) NC Herglotz class

For our purposes, it will be convenient to consider the right free Herglotz class R+
d =

(L +
d )t, the image of the left free Herglotz class under the involutive transpose map. 

Namely if H ∈ L +
d has Taylor–MacLaurin series:

H(Z) =
∑
α∈Fd

ZαHα = μ(I)In + 2
∑
α �=∅

Zαμ(Lαt
)∗,

where H corresponds uniquely to the positive NC measure μ, then Ht ∈ R+
d has Taylor–

MacLaurin series:

Ht(Z) =
∑
α

ZαHαt = μ(I)In + 2
∑
α �=∅

Zαμ(Lα)∗,

see [18, Section 3]. As in [18,17,20], we can identify R+
d as closed (potentially unbounded) 

right multiplication operators densely-defined in the full Fock or NC Hardy space: if 
H ∈ R+

d , then MR
H(Z) = Ht(R), where Ht(L) = ML

Ht(Z) and Ht ∈ L +
d . Given H ∈ R+

d , 
one can construct the (right) free Herglotz space, H +(H) := Hnc(KH), the unique 
NC-RKHS corresponding to the (right) free Herglotz kernel:

KH(Z,W ) := 1
2K(Z,W ) [H(Z)(·) + (·)H(W )∗] ; Z,W ∈ Bd

N ,

see [18, Section 4], [16]. Here K(Z, W ) denotes the CPNC Szegö kernel in the NC unit 
ball Bd

N , see Equation (2.1), and KH is also a CPNC kernel in Bd
N .

Lemma 1. A locally bounded NC function, H, in Bd
N belongs to the right free Herglotz 

class if and only if KH is a CPNC kernel.

There is an analogous kernel characterization of the left NC Herglotz class, see [18, 
Section 3].

Proof. By definition H is right Herglotz if and only if Ht is left Herglotz, i.e. if and only 
if ReHt(Z) ≥ 0 for all Z ∈ Bd

N . By [42, Chapter III.8], the Cayley Transform implements 
a bijection between closed, accretive operators (operators with numerical range in the 
right half-plane) which are densely-defined in a Hilbert space and contractions which 
do not have 1 as an eigenvalue. In particular, Ht is a left NC Herglotz function if and 
only if Bt := (Ht − 1)(Ht + 1)−1 ∈ Ld is a contractive NC function in Bd

N . (By the NC 
maximum modulus principle, [39, Lemma 6.11], any non-constant Bt ∈ Ld must take 
strictly contractive values in Bd

N .) Setting B = (Bt)t, we conclude that H ∈ R+
d belongs 

to the right NC Herglotz class if and only if MR
B = Bt(R) = UtB

t(L)Ut is a contractive 
right multiplier so that B ∈ Rd belongs to the right Schur class.
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It is well-known that a multiplier, b, of a reproducing kernel Hilbert space, H(k), 
is contractive, if and only if the de Branges-Rovnyak kernel, kb(z, w) := k(z, w) −
b(z)k(z, w)b(w)∗ is a positive kernel function. It is straightforward to verify this in 
the NC setting: A right multiplier, B ∈ (H∞

d )t, of H2
d is contractive if and only if 

IH2 −MR
B (MR

B )∗ ≥ 0, so that B ∈ Rd if and only if for any (Z, y, v) ∈ Bd
n × Cn × Cn

and any n ∈ N,

0 ≤ 〈K{Z, y, v}, (I −MR
B (MR

B )∗)K{Z, y, v}〉H2

= 〈K{Z, y, v},K{Z, y, v}〉H2 − 〈K{Z, y,B(Z)v},K{Z, y,B(Z)v}〉H2 (3.3)

= y∗K(Z,Z)[vv∗]y − y∗K(Z,Z)[B(Z)vv∗B(Z)∗]y.

Clearly if B is a contractive right multiplier the above expression is positive semi-definite. 
Conversely, linear combinations of NC Szegö kernels are NC Szegö kernels: K{Z, y, v} +
cK{W, x, u} = K{Z ⊕W, y ⊕ cx, v ⊕ u}, and the linear span of the NC Szegö kernels is 
dense. Hence, the above expression is positive semi-definite for all (Z, y, v) if and only if 
B ∈ Rd.

It follows that B is a right NC Schur function if and only if the linear map KB(Z, Z)[·] :
Cn×n → Cn×n defined by

KB(Z,Z)[·] := K(Z,Z)[·] −K(Z,Z)[B(Z)(·)B(Z)∗],

is positive semi-definite for any Z ∈ Bd
n and n ∈ N. By [7, Subsection 2.4], this is 

equivalent to KB(Z, Z)[·] being completely positive for any Z ∈ Bd
N , and hence to 

KB(Z, W ) being a CPNC kernel. It is clear that B(Z) = (H(Z) − I)(H(Z) + I)−1

is the Cayley Transform of H, and a bit of algebra verifies that

KB(Z,W )[·] = KH(Z,W )[(I −B(Z))(·)(I −B(W )∗)],

or equivalently, KH(Z, W )[·] = KB(Z, W )[(I − B(Z))−1(·)(I − B(W )∗)−1]. It follows 
easily from these equations that the NC de Branges-Rovnyak kernel KB is a CPNC 
kernel if and only if KH is a CPNC kernel. �

Given H ∈ R+
d , there is then a corresponding NC-RKHS, Hnc(KH), of NC holomor-

phic (i.e. locally bounded) functions in Bd
N . If μ ∈ (Ad)†+ is the unique NC measure 

corresponding to the right NC Herglotz function H ∈ R+
d by Theorem 1, we will usually 

write KH = Kμ, and we will use the notation H +(Hμ) := Hnc(Kμ) for the right free 
Herglotz space of Hμ. Here, we will also write H = Hμ (or sometimes μ = μH). As 
described in [18,16], if H = Hμ, there is a natural onto isometry, the (right) free Cauchy 
transform, Cμ : H2

d(μ) → H +(Hμ): For any free polynomial p ∈ C{z} ⊆ H2
d(μ),

(Cμp)(Z) = (idn ⊗ μ ◦ t)
(
(In×H2 − Z ◦ L∗)−1 In ⊗ p(L)

)
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:=
∑
α∈Fd

Zαμ (Lα∗p(L))

=
∑
α∈Fd

Zα〈Lα + Nμ, p(L) + Nμ〉μ.

In the above, as before, for any Z ∈ Bd
N , ZL∗ = Z1 ⊗ L∗

1 + ... + Zd ⊗ L∗
d is a strict 

contraction. The final formula above extends to arbitrary x ∈ H2
d(μ). (In the first line of 

the formula above, the t symbol means that one needs to take the transpose of all words 
in L∗ appearing in the geometric sum of (In×H2 − ZL∗)−1 to obtain the second line.)

3.4. NC Cauchy transform of GNS row isometry

The image of the GNS row isometry Πμ under the free Cauchy transform is a row 
isometry on the free Herglotz space:

Vμ = CμΠμC ∗
μ := Cμ (Πμ;1, · · · ,Πμ;d) C ∗

μ ⊗ Id : H +(Hμ) ⊗Cd → H +(Hμ), (3.4)

where Πμ;k = πμ(Lk). The range of the row isometry Vμ is:

RanVμ =
∨

(Z,y,v)∈
Bd

n×Cn×Cn; n∈N

(Kμ{Z, y, v} −Kμ{0n, y, v}) =
∨
α �=∅

Kμ
α , (3.5)

and for any Z ∈ Bd
n, y, v ∈ Cn,

V ∗
μ (Kμ{Z, y, v} −Kμ{0n, y, v}) = Kμ{Z,Z∗y, v} :=

⎛⎝Kμ{Z,Z∗
1 y,v}

...
Kμ{Z,Z∗

dy,v}

⎞⎠ ∈ H +(Hμ) ⊗Cd.

(3.6)
The linear span of all such vectors is dense in H +(Hμ) ⊗Cd since V ∗

μ is a co-isometry.
The image of RanVμ under C ∗

μ is H2
d(μ)0 =

∨
α �=∅ L

α + Nμ, the closed linear span 
of the non-constant free monomials in H2

d(μ). If F ∈ H +(Hμ) is orthogonal to RanVμ, 
then for any Z ∈ Bd

n,

F (Z) = InF (0)

i.e. F ≡ F (0) ∈ C is constant-valued. See [18, Section 4.4] for details.

Remark 3. Recall that if μ = m is normalized NC Lebesgue measure (the vacuum state), 
then Hμ(Z) = In for any Z ∈ Bd

n so that the NC Herglotz kernel, Km = K reduces to 
the NC Szegö kernel and H +(Hm) = H2(Bd

N) is simply the free Hardy space. In this 
case Vm 
 ML

Z 
 L is the left free shift.
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4. Lebesgue decomposition of NC Toeplitz forms

Any positive NC measure μ ∈ (Ad)†+ can be identified with a positive semi-definite 
quadratic form, qμ, with dense domain, Dom qμ = Ad, in the Fock space. In this section 
we define the absolutely continuous and singular parts of any μ ∈ (Ad)†+, with respect to 
normalized NC Lebesgue measure, m, by applying B. Simon’s Lebesgue decomposition 
theory for forms to qμ [41, Section 2]. Standard references for the theory of potentially 
unbounded quadratic forms in Hilbert space are [23] and [37, Section VIII.6].

4.1. Closable Toeplitz forms

All inner products and sesquilinear forms in this paper are conjugate linear in their 
first argument. A sesquilinear (or quadratic) form, q : Dom q × Dom q → C, where 
the domain of q, Dom q ⊆ H, is dense in a Hilbert space, H, is positive semi-definite 
if q(h, h) ≥ 0 for all h ∈ Dom q. Given such a positive semi-definite quadratic form, 
q, define H(q + 1) as the Hilbert space completion of Dom q with respect to the inner 
product:

〈x, y〉q+1 := q(x, y) + 〈x, y〉H.

The form q is closed if Dom q is complete in the norm of ‖ ·‖q+1, i.e. if Dom q = H(q+1).
A positive semi-definite quadratic form q, with dense domain in a Hilbert Space, H, 

is closed if and only if there is a unique closed, positive semi-definite operator A, with 
dense domain in H so that Dom q = Dom

√
A and

q(h, g) = qA(h, g) := 〈
√
Ah,

√
Ag〉H; g, h ∈ Dom q,

[23, Chapter VI, Theorem 2.1, Theorem 2.23]. This can be viewed as an extension of the 
Riesz representation lemma to potentially unbounded positive semi-definite quadratic 
forms. A positive quadratic form, q, is closable if it has a closed extension. Equivalently, 
q is closable if and only if the following condition holds: If xn ∈ Dom q converges to 0
and xn is also Cauchy with respect to the pre-inner product defined by q, i.e.

q(xn − xm, xn − xm) → 0,

then this sequence also converges to 0 with respect to q, i.e. q(xn, xn) → 0. If q is 
closable, then it has a minimal closed extension, q, with Dom q ⊆ H equal to the set of 
all h ∈ H so that there is a sequence hn ∈ Dom q, such that hn → h and (hn) is Cauchy 
in the norm of H(q + 1). A linear subset D ⊆ Dom q is called a form core for a closed 
form q if D is a dense linear subspace in H(q + 1). It follows that if q is closable with 
closure (minimal closed extension) q, then Dom q is a form core for q [23, Chapter VI, 
Theorem 1.21]. If q = qA is a closed, positive semi-definite quadratic form, then D is a 
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form core for q if and only if D is a core for 
√
A. In particular, DomA is a form core for 

q. Here, recall that a linear subspace D ⊆ DomA is called a core for a closed operator 
A, if D ⊕AD is dense in the (closed) graph of A.

In [41, Section 2], B. Simon proved that any densely-defined positive semi-definite 
quadratic form, q, acting in a Hilbert space H, has a unique Lebesgue decomposition:

q = qac + qs; qac, qs ≥ 0

where qac is the maximal closable form bounded above by q, qac ≤ q and qs = q−qac ≤ q. 
Here, a partial order on positive semi-definite quadratic forms with dense domains in a 
Hilbert space H is defined by q1 ≤ q2 if Dom q2 ⊆ Dom q1 and

q1(h, h) ≤ q2(h, h) ∀h ∈ Dom q2. (4.1)

If q is a positive semi-definite quadratic form with dense form domain, Dom q, in a 
separable Hilbert space, H, there is a natural, contractive co-embedding, E : H(q+1) ↪→
H, defined by Eh := h. We call this map a co-embedding as it has dense range so that 
E∗ is injective.

Theorem 2. ([41, Section 2], [37, Theorem S.15]) If q is a positive semi-definite quadratic 
form, densely-defined in a Hilbert space H, then there is a maximal closable positive 
semi-definite form qac bounded above by q, qac ≤ q, and Dom q is a form-core for qac. If 
E : H(q + 1) ↪→ H is the contractive co-embedding, and Qs is the orthogonal projection 
onto KerE, qac is given by the formula:

qac(h1, h2) = 〈h1, Qach2〉H(q+1) − 〈h1, h2〉H; Qac := I −Qs.

Remark 4. In the above, maximality refers to the partial order defined in Equation (4.1). 
This theorem yields the unique Lebesque decomposition

q = qac + qs; 0 ≤ qs = q − qac ≤ q,

where qac is absolutely continuous, i.e. closable, and qs is singular in the sense that the 
only closable positive semi-definite quadratic form bounded above by qs is the identically 
zero form.

The proof of the above Lebesgue decomposition theorem for quadratic forms is similar 
to von Neumann’s approach to Lebesgue decomposition theory [51, Lemma 3.2.3], and 
in fact recovers von Neumann’s classical proof of the Lebesgue decomposition of a finite 
positive and regular Borel measure (on say ∂D), μ, with respect to another, λ, if one 
takes H = L2(λ, ∂D), and qμ to be the quadratic form with the continuous functions 
C (∂D) ⊂ L2(λ) as a dense form domain,
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qμ(f, g) :=
∫
∂D

f(ζ)g(ζ)μ(dζ),

[41]. We are primarily interested in positive semi-definite quadratic forms arising from 
positive NC measures μ ∈ (Ad)†+:

Definition 5. A positive semi-definite sesquilinear form, q, with dense L−invariant do-
main Dom q ⊆ H2

d is called left Toeplitz if:

q(Ljg, Lkh) = δk,j q(g, h); g, h ∈ Dom q. (4.2)

Definition 6. A closed, positive semi-definite and densely-defined operator T : DomT ⊆
H2

d → H2
d will be called left Toeplitz if:

1. Dom
√
T is L−invariant, and

2. the associated closed quadratic form

qT (g, h) := 〈
√
Tg,

√
Th〉H2

d
; g, h ∈ Dom

√
T ,

is left Toeplitz.

In particular, if μ ∈ (Ad)†+ is any positive NC measure, then

qμ(a1, a2) := μ(a∗1a2); a1, a2 ∈ Ad, (4.3)

is a positive semi-definite left Toeplitz form with dense form domain Dom qμ = Ad ⊂ H2
d. 

Note that the left Toeplitz condition, Equation (4.2), is equivalent to:

q(Lαg, Lβh) =

⎧⎪⎨⎪⎩
q(Lγg, h) if α = βγ for some γ ∈ Fd,

q(g, Lγh) if β = αγ,

0 else.

Remark 5. One could further define unbounded left Toeplitz forms and operators which 
are not positive semi-definite, but we will have no need for this concept. Most left Toeplitz 
forms, q, and operators, T , we consider will be such that the free polynomials, C{z} =
C{z1, · · · , zd}, and the free disk algebra, Ad, are L−invariant cores for q and 

√
T .

Remark 6. By the Riesz representation lemma, a bounded sesquilinear form on H2
d is left 

Toeplitz if and only if it is the quadratic form of a bounded positive semi-definite left 
Toeplitz operator. Moreover, a bounded positive semi-definite operator, T ∈ L (H2

d), is 
left Toeplitz if and only if

L∗
kTLj = δk,jT.
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Such operators are called multi-Toeplitz in [33]. Here, recall that a bounded operator T on 
the Hardy space H2(D) is called Toeplitz if T = Tf = PH2Mf |H2 for some f ∈ L∞(∂D). 
A result of Brown and Halmos identifies the bounded Toeplitz operators as the set of all 
bounded operators T ∈ L (H2) with the Toeplitz property:

S∗TS = T,

where S = Mz is the shift on H2 [14, Theorem 6].

Lemma 2. If T is a closed positive semi-definite left Toeplitz operator so that Ad is a 
core for 

√
T , then Dom

√
T is L−invariant and C{z} is a core for 

√
T .

Proof. By assumption, Ad is a core for 
√
T . To see that Dom

√
T is L−invariant, given 

any x ∈ Dom
√
T , choose an ∈ Ad so that an → x in H2

d, and 
√
Tan →

√
Tx. Then for 

any 1 ≤ k ≤ d, Lkan ∈ Ad ⊆ Dom
√
T , Lkan → Lkx, and

‖
√
T (Lkan − Lkam)‖2

H2 = qT (Lk(an − am), Lk(an − am))

= qT (an − am, an − am) (qT is a left Toeplitz form)

= ‖
√
T (an − am)‖2

H2 ,

so that 
√
TLkan is also Cauchy and converges to some y ∈ H2

d. Since 
√
T is closed, it 

follows that 
√
TLkx = y, and Dom

√
T is L−invariant.

To show that C{z} is a core for 
√
T , it suffices to show that the set of all p ⊕

√
Tp

for p ∈ C{z} is dense in the set of all a ⊕
√
Ta for a ∈ Ad, since this latter set is dense 

in the graph of 
√
T . Since Ad = Alg{I, L1, · · · , Ld}−‖·‖, given any a(L) ∈ Ad, there 

exists a sequence of free polynomials pn(L) so that pn(L) → a(L) in operator norm. In 
particular, pn := pn(L)1 → a := a(L)1 in H2

d. For each 1 ≤ k ≤ d, define the linear map 
Πk on Ran

√
T by

Πk

√
Tx =

√
TLkx; x ∈ Dom

√
T .

This is well-defined since Dom
√
T is L−invariant. Since T is left Toeplitz, it is easy to 

check that the Πk define row isometries with pairwise orthogonal ranges: Given x, y ∈
Dom

√
T ,

〈Πk

√
Tx,Πj

√
Ty〉 = 〈

√
TLkx,

√
TLjy〉

= δk,j 〈
√
Tx,

√
Ty〉. (4.4)

Hence, Π := (Π1, · · · ,Πd) extends by continuity to a row isometry on HT := Ran
√
T . It 

follows that,
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‖
√
T (pn − pm)‖H2 = ‖

√
T (pn(L) − pm(L))1‖H2

= ‖ (pn(Π) − pm(Π))
√
T1‖

≤ ‖pn(Π) − pm(Π)‖‖
√
T1‖

≤ ‖pn(L) − pm(L)‖‖
√
T1‖.

In the above we have used that π(L) = Π extends to a unital ∗−representation of the 
Cuntz–Toeplitz C∗−algebra, Ed := C∗{I, L1, · · · , Ld}, and hence is completely contrac-
tive. (Alternatively, this also follows from a trivial application of Popescu’s NC von 
Neumann inequality [31].) Since the sequence pn(L) is Cauchy in operator norm, it fol-
lows that (

√
Tpn) is Cauchy in H2

d and converges to some y ∈ H2
d. As before, since 

√
T

is closed, it follows that 
√
Ta = y. This proves that C{z} is a core for 

√
T . �

4.2. Absolutely continuous and singular left Toeplitz forms

Let μ ∈ (Ad)†+ be any positive NC measure and let qμ be the left Toeplitz form 
with dense form domain Ad ⊂ H2

d defined by μ, see Equation (4.3). Then qμ has a 
Lebesgue decomposition into absolutely continuous (closable) and singular parts given 
by Theorem 2. We now define an NC measure, μ, to be absolutely continuous, or singular, 
if the concomitant left Toeplitz form qμ is absolutely continuous or singular, respectively.

Definition 7. A positive NC measure μ ∈ (Ad)†+ is:

1. absolutely continuous (AC) with respect to NC Lebesgue measure, m, if qμ is an 
absolutely continuous (i.e. closable) quadratic form.

2. singular with respect to m, if qμ is singular, i.e. the maximal absolutely continuous 
part of the left Toeplitz form qμ vanishes identically.

In particular, if qμ = qac + qs is the Lebesgue decomposition of the left Toeplitz form 
qμ, then the explicit formula of Theorem 2 shows that the absolutely continuous form 
qac : Ad ×Ad → C can be expressed as:

qac(a1, a2) = 〈a1 + Nμ+m, Qac(a2 + Nμ+m)〉μ+m − 〈a1, a2〉H2
d

= 〈a1 + Nμ+m, (Qac −E∗E)(a2 + Nμ+m)〉μ+m. (4.5)

Here, Qs = I − Qac is the orthogonal projection onto the kernel of the contractive co-
embedding E : H2

d(μ + m) ↪→ H2
d = H2

d(m) defined by E(p(L) + Nμ+m) := p(L)1 =
p ∈ H2

d. (Note that E∗E ≤ PRanE∗ = Qac.) In general, given an arbitrary positive NC 
measure μ, it is not obvious whether or not there exist positive NC measures μac, μs ∈
(Ad)†+ so that qac = qμac

, qs = qμs
and μ = μac +μs. This will be established in the next 

section using NC Cauchy transform techniques, and this will yield a unique Lebesgue 
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decomposition of any μ ∈ (Ad)†+ into the sum of absolutely continuous and singular 
(positive) NC measures, see Theorem 4.

Remark 7. When d = 1, and μ̂ is the linear functional on C (∂D) corresponding to a 
finite, positive and regular Borel measure, μ, it is also not obvious that qac and qs, where 
qμ = qac+qs is the Lebesgue form decomposition, correspond to the linear functionals of 
the absolutely continuous and singular parts of the measure μ (with respect to normalized 
Lebesgue measure, m, on ∂D), as constructed in classical Measure Theory. The fact that 
one recovers the classical Lebesgue decomposition in this way follows from the results of 
our companion paper, see [19, Corollary 8.5].

Example 1. Given any x ∈ H2
d, let mx ∈ (Ad)†+ denote the positive vector functional:

mx(Lα) := 〈x, Lαx〉H2
d
.

The results of [20,17] show that given x ∈ H2
d, one can define xt(R) = MR

x , where 
xt(R)1 = x ∈ H2

d as a densely–defined, closed, and potentially unbounded right mul-
tiplier defined on a dense domain, Domxt(R) ⊇ Ad, in the Fock space with symbol in 
the (right) free Smirnov class N +

d (R), the set of all ratios of bounded right multipli-
ers B(R)A(R)−1 with outer (dense range) denominator. We will write xt(R) ∼ R∞

d to 
denote that xt(R) is an unbounded right multiplier affiliated to the right free analytic 
Toeplitz algebra R∞

d . That is, it commutes with the left free shifts in the sense that 
Dom xt(R) is L−invariant, and xt(R)Lkh = Lkx

t(R)h for any h ∈ Dom xt(R). The 
(generally unbounded) left–Toeplitz operator T := xt(R)∗xt(R) is then well-defined, 
closed, positive semi-definite and densely-defined, and qmx

agrees with qT on the dense 
form domain Ad. The form qmx

is then a closable left Toeplitz form with form closure 
qT , so that mx ∈ (Ad)†+ is an absolutely continuous (AC) positive NC measure. In fact, 
any AC positive NC measure is a vector state on the Fock space (although it may have 
the asymmetric form μ(Lα) = mx,y(Lα) = 〈x, Lαy〉H2

d
for some y �= x; x, y ∈ H2

d) [19, 
Remark 6.19, Corollary 6.23].

5. Cauchy transforms of NC measures

The goal of this section is to define absolutely continuous and singular NC measures, 
and to show that any positive NC measure μ ∈ (Ad)†+ has a unique Lebesgue decom-
position, μ = μac + μs, into absolutely continuous and singular parts, μac, μs ∈ (Ad)†+
by proving that the absolutely continuous and singular parts of the Lebesgue form de-
composition of μ are positive NC measures. If μ is any positive finite and regular Borel 
measure on ∂D, the space of all μ−Cauchy transforms,

(Cμg)(z) :=
∫ 1

1 − zζ∗
g(ζ)μ(dζ); g ∈ H2(μ), z ∈ D,
∂D
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of the analytic part, H2(μ) of L2(μ, ∂D), is the reproducing kernel Hilbert space, H +(hμ)
of functions in D (the Herglotz space of hμ) with reproducing kernel

Kμ(z, w) := 1
2
hμ(z) + hμ(w)∗

1 − zw∗ =
∫
∂D

1
1 − zζ∗

1
1 − ζw∗μ(dζ),

where hμ(z) is the Herglotz–Riesz transform of μ. In this setting, is not difficult to verify 
that domination of positive measures is equivalent to domination of the kernels for their 
spaces of Cauchy transforms:

μ ≤ t2λ ⇔ Kμ ≤ t2Kλ.

In particular, the following exact NC analogue of a reproducing kernel theory result due 
to Aronszajn applies [27, Theorem 5.1] [5, Theorem I, Section 7]:

Theorem 3. Let K1, K2 be CPNC kernels on an NC set Ω. Then K1 ≤ t2K2 for some 
t > 0 if and only if

Hnc(K1) ⊆ Hnc(K2),

and the norm of the embedding e : Hnc(K1) ↪→ Hnc(K2) is at most t.

As in the single-variable setting, it is easy to verify that domination of (positive) NC 
measures μ, λ ∈ (Ad)†+ is equivalent to domination of the NC kernels for their spaces of 
Cauchy transforms:

Lemma 3. Given μ, λ ∈ (Ad)†+, there is a t > 0 so that μ ≤ t2λ, if and only if Kμ ≤ t2Kλ. 
If Eμ : H2

d(λ) ↪→ H2
d(μ) and eμ : H +(Hμ) ↪→ H +(Hλ) are the co-embedding/embedding

defined by

Eμ (a(L) + Nλ) = a(L) + Nμ, and (eμh)(Z) = h(Z); Z ∈ Bd
N ,

then, Eμ = C ∗
μ e∗μCλ, ‖Eμ‖ = ‖eμ‖ ≤ t, and EμΠα

λ = Πα
μEμ.

The above lemma motivates our terminology of co-embedding for the map Eμ :
H2

d(λ) ↪→ H2
d(μ), as E∗

μ is injective and unitarily equivalent to the embedding of NC 
Herglotz spaces, eμ.

Proposition 1. Given any NC measure μ ∈ (Ad)†+, let E : H2
d(μ + m) ↪→ H2

d be the 
contractive co-embedding, and let Qs be the orthogonal projection onto KerE. Then Qs

is reducing for the GNS row isometry of μ + m.
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Proof. Since EΠα
μ+m = LαE, by Lemma 3, it is easy to check that RanQs = KerE∗E

is Πμ+m−invariant. Indeed, suppose that x ∈ KerE and set Πk := Πμ+m;k and check 
that

EΠkx = LkEx = 0.

Hence Qs is Π = Πμ+m−invariant so that Qac = I−Qs is co-invariant and projects onto 
Ker(E)⊥ = Ran (E∗)−‖·‖. Let I − Q̌s := Cμ+m(I −Qs)C ∗

μ+m be the projection onto

Cμ+mRan (E∗)−‖·‖ = Ran (e)−‖·‖
,

the closure of the range of the contractive embedding,

e : H2(Bd
N) ↪→ H +(Hμ+m),

in H +(Hμ+m). Let int(μ +m, m) = Ran e, the intersection of the NC Hardy space with 
the space of Cauchy transforms of μ + m, and let

Intμ+m(m) := int(μ + m,m)−‖·‖Hμ+m ,

the closure of the range of e. It follows that Intμ+m(m) is Vμ+m co-invariant, and it 
remains to prove that it is also invariant. Given f ∈ H +(Hμ+m) 

⋂
H2(Bd

N), observe 
that by Equation (3.6),

(Vμ+m;kf)(Z) − (Vμ+m;kf)(0n) = Zkf(Z)

= (ML
Zk

f)(Z) = (Vm;kf)(Z),

so that

(Vμ+m;kf)(Z) = (Vm;kf)(Z) + cIn,

where c := (Vμ+m;kf)(0) is constant. Since H2(Bd
N) contains the constant functions, we 

conclude that Vμ+m;kf ∈ H2(Bd
N) 
⋂

H +(Hμ+m) also belongs to the intersection space, 
so that the range of I − Q̌s is reducing for Vμ+m, and Qac = I − Qs, Qs are reducing 
projections for the GNS row isometry Πμ+m. �
Corollary 1. Given an NC measure μ ∈ (Ad)†+, the following are equivalent:

1. μ is absolutely continuous.
2. The intersection of H +(Hμ+m) with the NC Hardy space, H2(Bd

N), is dense in 
H +(Hμ+m).
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Proof. By the formula for qac, Equation (4.5), and by definition, μ is absolutely continu-
ous if and only if Qac = Iμ+m, the identity of H2

d(μ +m). Since Qac is the orthogonal pro-
jection onto the closure of RanE∗, we have that Qac = I if and only if E∗ has dense range. 
By Lemma 3, E∗ has dense range if and only if e = Cμ+mE∗C ∗

m : H2(Bd
N) ↪→ H +(Hμ+m)

has dense range. �
Corollary 2. An NC measure μ ∈ (Ad)†+ is singular if and only if

H2
d(μ + m) = H2

d(μ) ⊕H2
d.

Proof. Since m, μ ≤ μ + m, the co-embeddings E : H2
d(μ + m) ↪→ H2

d and Eμ : H2
d(μ +

m) ↪→ H2
d(μ) are contractions with dense ranges, and E∗E+E∗

μEμ = Iμ+m, the identity 
in L (H2

d(μ + m)). By the formula of Equation (4.5), μ is singular if and only if E∗E =
PRanE∗ = Qac, in which case Qs = I − Qac = I − E∗E = E∗

μEμ. It follows that E, Eμ

are co-isometries onto their ranges, and we can identify RanQac and RanQs with H2
d

and H2
d(μ), respectively. �

Theorem 4. (Non-commutative Lebesgue decomposition) Any positive NC measure μ ∈
(Ad)†+ has a unique Lebesgue decomposition,

μ = μac + μs,

into positive NC measures μac, μs ≤ μ. The NC measure μac is the maximal absolutely 
continuous NC measure bounded above by μ, and μs is a singular NC measure.

Proof. Consider the Lebesgue form decomposition qμ = qac + qs of the positive semi-
definite left Toeplitz form, qμ, with dense form domain Ad ⊂ H2

d. Given qac, we first 
define a self-adjoint linear functional μac : Ad + A∗

d → C by

μac(a∗1 + a2) := qac(a1, 1) + qac(1, a2); a1 ∈ Ad, a2 ∈ A(0)
d ,

where A(0)
d denotes the elements of Ad which vanish at 0, a2(0) = 0. Here, note that we 

do not take the norm closure of Ad + A∗
d. The fact that μac is self-adjoint follows as qac

is positive semi-definite, hence symmetric: Given a ∈ Ad,

μac(a) = qac (1, (a− a(0)1)) + qac(a(0)1, 1) = qac(1, a),

and

μac(a∗) = qac(a, 1) = qac(1, a) = μac(a),

since qac is a symmetric sesquilinear form. Observe that μac is bounded on Ad + A∗
d: 

Given a1 ∈ Ad, a2 ∈ A(0)
d , applying the formula of Equation (4.5) for qac, and using that 

Qac commutes with the GNS representation of μ + m by Proposition 1 yields
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|μac(a1 + a∗2)| = |qac(a1, 1) + qac(1, a2)|

=
∣∣∣〈Qac(I + Nμ+m), πμ+m(a∗1 + a2)Qac(I + Nμ+m)〉μ+m

− 〈1, (a1(L)∗ + a2(L)1〉H2
d

∣∣∣
≤ ‖πμ+m(a∗1 + a2)‖‖Qac(I + Nμ+m)‖2 + ‖a1(L)∗ + a2(L)‖

≤ ‖a1(L)∗ + a2(L)‖(2 + μ(I)).

In the above we have used that πμ+m is a unital ∗−representation of the Cuntz–Toeplitz 
C∗−algebra (the unital C∗−algebra generated by the left free shifts), and is hence com-
pletely positive and completely contractive. This proves that μac is bounded on its 
domain and hence extends by continuity to a bounded linear functional on the free 
disk system Ad = (Ad + A∗

d)−‖·‖.
It remains to prove that μac is a positive linear functional. By [16, Lemma 4.6], 

any positive element of Ad is the norm-limit of sums of squares of free polynomials 
pn ∈ C{z}, and so it suffices to check that μac(p(L)∗p(L)) is positive semi-definite for 
any free polynomial p. Given any free polynomial of homogeneous degree N ,

p(L) :=
∑

|α|≤N

pαL
α; pα ∈ C,

one can compute that

p(L)∗p(L) =
∑

|α|≤N

∑
|β|≤N

pαpβ(Lα)∗Lβ

=
∑

|α|,|γ|≤N ;
γ �=∅

pαpαγL
γ + IH2 · 1

2
∑

|α|≤N

|pα|2

︸ ︷︷ ︸
=:u(L)

+ u(L)∗, (5.1)

where u ∈ C{z} has homogeneous degree at most N . Then calculate that

μac(p(L)∗p(L)) = μac(u(L)∗ + u(L))

= qac(u(L), 1) + qac(1, u(L))

= 2Re 〈I + Nμ+m, (Qac −E∗E)u(L) + Nμ+m〉μ+m.

Let Π := Πμ+m. Since Qac commutes with Π by Proposition 1, and E intertwines Π with 
L by Lemma 3, i.e. EΠj = LjE, it follows that the positive semi-definite contraction 
D := Qac −E∗E is Π = Πμ+m−Toeplitz in the sense that

Π∗
kDΠj = δk,jD; 1 ≤ k, j ≤ d.
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This Π−Toeplitz property allows us to reverse the steps in Equation (5.1) to conclude 
that

u(Π)∗D + Du(Π) = p(Π)∗Dp(Π).

It then follows that

2Re 〈I + Nμ+m, (Qac − E∗E) (u(L) + Nμ+m)〉μ+m

= 〈p(L) + Nμ+m, (Qac −E∗E) p(L) + Nμ+m〉μ+m = qac(p, p) ≥ 0,

since qac is a positive semi-definite sesquilinear form. Hence μac ∈ (Ad)†+, and by con-
struction

μ(p(L)∗p(L)) − μac(p(L)∗p(L)) = qμ(p, p) − qac(p, p) ≥ 0.

Again, since sums of squares of free polynomials are norm dense in the cone of positive 
elements in Ad, μs := μ − μac ∈ (Ad)†+ and μ = μac + μs. By definition, μac is then an 
absolutely continuous NC measure, and μs is a singular NC measure. �
Theorem 5. Let μ ∈ (Ad)†+ be an absolutely continuous NC measure. The closure of the 
positive semi-definite left Toeplitz form, qμ, is the sesquilinear form of a unique closed, 
positive semi-definite left Toeplitz operator, T , and Ad is a core for 

√
T .

Proof. If μ is AC, then by definition, qμ, with form domain Dom qμ = Ad is AC, i.e.
closable. Hence the form closure qμ = qT is the positive semi-definite form of a unique 
closed, positive semi-definite left Toeplitz operator T ≥ 0, and by construction, Ad is a 
form-core for qT , hence a core for 

√
T . �

6. The Radon–Nikodym formula for NC measures

Consider μ = μB where B ∈ Ld = [H∞
d ]1 as before. By Theorem 4, μ has an NC 

Lebesgue decomposition

μ = μac + μs,

and by Theorem 5 and Lemma 2, there is a unique closed, densely-defined, positive left 
Toeplitz operator T such that Ad ⊂ Dom

√
T ,

μac(a∗2a1) = 〈
√
Ta1,

√
Ta2〉H2

d
= qT (a1, a2); a1, a2 ∈ Ad, (6.1)

C{z} ⊆ Dom
√
T is a core for 

√
T and Dom

√
T is L−invariant. The operator T can 

be thought of as the NC Radon–Nikodym derivative of μ with respect to NC Lebesgue 
measure, m. Our goal is to recover T from the function B, or, more precisely, from the 
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net of scaled right multipliers Br(R) := B(rR), 0 < r < 1. For each 0 < r < 1 we form 
the (bounded, positive, invertible, left Toeplitz) operator Tr:

Tr := ReHB(rR) > 0

= (I −B(rR)∗)−1 (I −B(rR)∗B(rR)) (I −B(rR))−1. (6.2)

Remark 8. Here, B(L) ∈ [L∞
d ]1 is a contraction, and so B(rL) is a strict contraction,

‖B(rL)‖ = sup
Z∈Bd

N

‖B(rZ)‖ = sup
Z∈rBd

N

‖B(Z)‖ < 1,

unless B(Z) = βIn, β ∈ ∂D, is identically constant, by [39, Theorem 3.1] and the NC 
maximum modulus principle of [39, Lemma 6.11]. Hence, B(rR) = UtB(rL)Ut is also a 
strict contraction for any 0 < r < 1.

We observe that in one variable, the quadratic form induced by the Toeplitz operator 
Tr is

〈Trf, g〉H2 =
∫
∂D

f(ζ)g(ζ)1 − |b(rζ)|2
|1 − b(rζ)|2 m(dζ); f, g ∈ H2,

and by Fatou’s theorem, we have that the Radon–Nikodym derivative of μb is:

μb(dζ)
m(dζ) = 1 − |b(ζ)|2

|1 − b(ζ)|2 = lim
r↑1

1 − |b(rζ)|2
|1 − b(rζ)|2 .

Thus T can be recovered from the br by forming the Toeplitz operators Tr and taking 
a.e. limits of the symbols, so that T is the densely defined Toeplitz operator with L1

symbol

1 − |b(ζ)|2
|1 − b(ζ)|2 ; ζ ∈ ∂D. (6.3)

In the non-commutative setting, we seek to recover the ‘NC Radon–Nikodym deriva-
tive’, T , from its radial values, Tr, by re-casting the original Fatou Theorem in purely 
operator–theoretic or functional analytic terms. One technical hurdle is that while the 
operators Tr are bounded, T generically is not. It turns out that the notion of strong 
resolvent convergence (i.e. strong operator topology convergence of resolvents) of posi-
tive semi-definite operators is appropriate. This notion is defined in Subsection 6.2. The 
main goal of this section is to prove:

Theorem 6 (Non-commutative Fatou Theorem). Let μ = μB ∈ (Ad)†+ be the NC Clark 
measure of B ∈ [H∞

d ]1 with NC Lebesgue decomposition μ = μac + μs. If T ≥ 0 is the 
positive semi-definite left Toeplitz operator so that qT = qμac

, and Tr := ReHB(rR), 
0 < r < 1, as above, then Tr converges to T in the strong resolvent sense as r ↑ 1.
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Using this theorem (and without appeal to Fatou’s original result) it is not too difficult 
to show, in the one variable case, that T is the (possibly unbounded) Toeplitz operator 
with the symbol given above in Equation (6.3), as of course must be the case.

6.1. Radial approximation of NC Herglotz functions

Let B ∈ Ld = [H∞(Bd
N)]1 be a contractive NC function in the NC unit ball, and let 

Bt ∈ Rd be its transpose–conjugate in the right free Schur class. For any 0 < r < 1, 
define

Br(Z) := B(rZ), Br(R) = B(rR) = MR
Bt

r
, and μr := μBr

∈ (Ad)†+ .

Lemma 4. The net B(rR) converges SOT − ∗ to B(R) as r ↑ 1.

Proof. One can show, as in [40, Theorem 3.5.5], that Br(R) SOT→ B(R). In fact, 
Br(R) SOT−∗→ B(R) = MR

Bt(Z), since for any kernel function K{Z, y, v},

‖(Br(R) −B(R))∗K{Z, y, v}‖2 = ‖K{Z, y, (Bt(rZ) −Bt(Z))v}‖2

=
(
y,K(Z,Z)[(Bt(rZ) −Bt(Z))vv∗(Bt(rZ) −Bt(Z))∗]y

)
Cn → 0.

Using that the set of all kernel functions is dense in H2
d, and that the net Br(R) is 

uniformly norm-bounded, it follows that B(rR)∗ converges SOT to B(R)∗. �
Lemma 5. μr = μBr

converges pointwise to μB as r ↑ 1. That is, for any a1, a2 ∈ Ad, 
μr(a∗1a2) → μB(a∗1a2).

Proof. This follows from the formula for the NC Clark measure of Definition 3, and that 
Ht

B(rZ) converges pointwise to Ht
B(Z) as r ↑ 1. (Or, equivalently, one can apply the 

Taylor–Taylor series formula for HB(rZ) of Equation (3.2).) �
6.2. Strong resolvent convergence of self-adjoint operators

It will be useful to recall some basic facts about convergence of unbounded self-adjoint 
operators. Our main reference for this is [37, Chapter VIII.7]:

Definition 8. Let An, A be closed, self-adjoint operators. The sequence An converges to 
A in the strong resolvent (SR) sense if (An−λI)−1 → (A −λI)−1 in the strong operator 
topology (SOT) for any λ ∈ C \R.

To show strong resolvent convergence it suffices to check SOT convergence of the 
resolvents at any fixed point λ ∈ C \R:
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Theorem 7. ([37, Theorem VIII.19]) Let An, A be self-adjoint operators. Then An
SR→ A

if and only if there is a λ0 ∈ C \R so that (An − λ0I)−1 SOT→ (A − λ0I)−1.

Remark 9. We will be primarily interested in positive semi-definite An, A, in which case 
one can instead choose λ0 ∈ (−∞, 0). In particular, it suffices to show (I + An)−1 SOT→
(I + A)−1.

6.3. Strong resolvent convergence of positive free harmonic functions

Recall that we have defined

Tr = (I −B(rR)∗)−1 (I −B(rR)∗B(rR)) (I −B(rR))−1 > 0; 0 < r < 1.

To investigate the strong resolvent convergence of the Tr, we define Δr(ε) := (εI +Tr)−1

for any ε > 0. In particular, if Δr := Δr(1), then

Δr = (I + Tr)−1 = 1
2(I −B(rR)) (I − ReB(rR))−1 (I −B(rR)∗).

Since the spectrum, σ(I + Tr) ⊆ [1, ∞), it follows that 0 ≤ Δr ≤ I for any 0 < r < 1. 
Also note that r 
→ Δr is SOT−continuous for r ∈ (0, 1).

Our strategy will be to prove that if Δ(ε) := (εI + T )−1, where T ≥ 0 is the closed, 
positive semi-definite NC Radon–Nikodym derivative of μ = μB with respect to NC 
Lebesgue measure, i.e. qμac

= qT , then

Δr(ε)
WOT→ Δ(ε) = (εI + T )−1,

where WOT denotes weak operator topology. Using the resolvent formula, it will then 
follow that Δr = Δr(1) SOT→ Δ, so that Tr converges to T in the strong resolvent sense.

6.4. Factorization of unbounded left Toeplitz operators

Any strictly positive left Toeplitz operator which is bounded above and below has an 
analytic outer factorization:

Theorem 8. (Popescu [33, Theorem 1.5]) Any positive left Toeplitz T ∈ L (H2
d) which is 

bounded below, T ≥ εI, can be factored as: T = F (R)∗F (R) for some outer F (R) ∈ R∞
d .

Here, recall that F (R) ∈ R∞
d is called outer if it has dense range. The goal of this 

subsection is to extend this factorization result to closed, unbounded left Toeplitz oper-
ators.

Theorem 9. Let τ ≥ 0 be a closed, positive semi-definite left Toeplitz operator so that 
Ad is a core for 

√
τ . Then, for any fixed ε > 0 there is a right-outer x[ε](R) ∼ R∞

d , 



M.T. Jury, R.T.W. Martin / Advances in Mathematics 400 (2022) 108293 37
Dom x[ε](R) = Dom
√
τ so that x[ε](R)∗x[ε](R) = εI + τ , and xt

[ε] = x[ε](R)1 ∈ H2
d. The 

closed right multiplier x[ε](R) is unique up to a unimodular constant.

In the above, recall that the notation x(R) ∼ R∞
d means that x(R) is a potentially 

unbounded, closed right multiplier affiliated to the operator algebra R∞
d , see Example 1. 

That is, Dom x(R) is L−invariant and x(R)Lkh = Lkx(R)h for any h ∈ Dom x(R). Any 
such unbounded multiplier can be expressed as x(R) = B(R)A(R)−1 with B(R), A(R) ∈
R∞

d bounded right multipliers so that A(R) is NC outer, i.e. has dense range [17]. The 
above theorem is essentially [33, Theorem 1.1, Corollary 1.4], without the assumption 
that τ is bounded. We pause to observe that in one variable this result is a familiar 
consequence of the theory of outer functions: If h is a non-negative L1 function on the 
circle, (think of this as the symbol of τ), then 1 + h is log-integrable on the unit circle 
∂D, hence there is an H2 outer function g such that 1 + h = |g|2 almost everywhere on 
∂D [15, Chapter IV], or, (ignoring technicalities about domains)

I + Th = T1+h = T ∗
g Tg.

(Of course h itself need not be log-integrable and hence need not factor.)

Definition 9. Let Π be a row isometry on a separable Hilbert space H. A closed, densely-
defined operator X : DomX ⊆ H2

d → H is called an intertwiner if DomX is L−invariant 
and

XLkx = ΠkXx; x ∈ DomX.

Theorem 10. Let Π be a cyclic row isometry on H. Suppose X : DomX ⊆ H2
d → H is 

an intertwiner which is densely-defined, closed, surjective and bounded below. Then Π is 
unitarily equivalent to L.

Any X satisfying the above theorem has a bounded inverse, by the open mapping 
theorem. This result is essentially [11, Theorem 2.8], without the assumption that X is 
bounded. Our proof follows the same lines, though the unbounded case requires some 
care.

Proof. The Cuntz part of Π is supported on:

K :=
∞⋂
k=1

⎛⎝ ∨
|α|=k

Ran Πα

⎞⎠
=

∞⋂ ⎛⎝ ∨
ΠαXDomX

⎞⎠ (by surjectivity of X)

k=1 |α|=k
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=
∞⋂
k=1

⎛⎝ ∨
|α|=k

XLαDomX

⎞⎠
We now prove that the space 

⋂∞
k=1

(∨
|α|=k XLαDomX

)
is {0}. Let

Mk =
∨

|α|=k

LαDomX, k = 1, 2, . . .

(here we are taking just the linear span, not its closure). We have Mk ⊂ DomX for each 
k, and

∞⋂
k=1

Mk ⊂
∞⋂
k=1

⎛⎝ ∨
|α|=k

LαH2
d

⎞⎠ = {0}.

Supposing that h ∈ K =
⋂∞

k=1 XMk, we want to prove h = 0. For each k there is a 
gk ∈ Mk such that h = Xgk. Since X is assumed bounded below, we have

‖h‖ = ‖Xgk‖ ≥ c‖gk‖

for some absolute constant c > 0, and all k. Thus the sequence gk is uniformly bounded, 
so there is a subsequence (gnk

) converging weakly to some g ∈ H2
d. Since the Mk are 

nested, this g must belong to the intersection of all the Mk, which we have just observed 
is {0}. Thus g = 0. Let now f ∈ DomX∗, which is a dense subspace since X is closed. 
We have

〈h, f〉 = 〈Xgnk
, f〉 = 〈gnk

, X∗f〉 → 0.

Since this holds for all f ∈ DomX∗, we conclude h = 0. We have shown that K = {0}, 
hence Π is of pure type−L, i.e. Π is unitarily equivalent to copies of L. Since Π is cyclic, 
its wandering space is one-dimensional, and Π is unitarily equivalent to L. �
Proof of Theorem 9. Without loss in generality assume ε = 1 and consider 

√
I + τ . This 

is closed, bounded below, strictly positive, and hence bijective in H2
d (its range is all 

of H2
d and it is injective on its dense domain). Both 

√
τ and 

√
I + τ are (generally 

unbounded) closed positive semi-definite operators, and it follows from spectral theory 
that Dom

√
τ = Dom

√
I + τ . It is further easy to check that the norms

‖h‖2
G(

√
τ) := ‖h‖2 + ‖

√
τh‖2, and ‖h‖2

I+τ := ‖
√
I + τh‖2,

coincide on Dom
√
τ . (Indeed, it is clear that they coincide on Dom τ , which is a core for 

both 
√
τ and 

√
I + τ .) Set X :=

√
I + τ and define a row isometry, Π, on RanX = H2

d

by the equation:
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ΠkXy := XLky; y ∈ DomX.

As in Equation (4.4), Π is a row isometry since qI+τ = qτ + qm (where m denotes the 
Lebesgue vacuum state) is a left Toeplitz form. Recall that since τ is a closed, positive 
semi-definite left Toeplitz operator with Ad a core for 

√
τ , that Dom

√
τ is L−invariant 

and contains the free polynomials as a core by Lemma 2. The free disk algebra is also 
a core for 

√
I + τ : Recall that Ad is a core for 

√
τ or 

√
I + τ if and only if it is a form 

core for the closed forms qτ , qI+τ , respectively, see Subsection 4.1. By definition, Ad

is a form core for qτ , or qI+τ if and only if Ad is dense in H(qτ + 1) or H(qI+τ + 1)
respectively. The norms of H(qτ + 1), H(qI+τ + 1) are equivalent and therefore Ad is a 
core for 

√
I + τ . In conclusion, Lemma 2 implies that the free polynomials are a core 

for 
√
I + τ , Dom

√
I + τ is L−invariant and X is a closed intertwiner. Since C{z} is a 

core for X =
√
I + τ , any h =

√
I + τg ∈ RanX is the norm-limit of vectors of the form 

Xpn(L)1, for pn ∈ C{z}. Hence,

h = lim
n→∞

pn(Π)X1,

so that X1 is cyclic for Π. In summary, X : DomX → H2
d is a densely-defined, closed 

and bijective intertwiner, and Π is a cyclic row isometry so that Theorem 10 implies that 
Π 
 L is unitarily equivalent to L via a unitary U on H2

d, U∗ΠU = L. The operator 
U∗X then commutes with the left free shifts:

U∗XLkh = U∗ΠkXh = LkU
∗Xh; h ∈ DomX,

and it follows that U∗X = x(R) ∼ R∞
d is a right-Smirnov multiplier affiliated to the 

right multiplier algebra of the NC Hardy Space [17, Corollary 4.26], and

x(R)∗x(R) = X∗X = I + τ.

Since x(R) = U∗√I + τ , the free polynomials are a core for x(R), and Ranx(R) is dense 
in H2

d so that x(R) is right-outer. Since 1 ∈ Dom
√
I + τ = Dom x(R) it follows that 

xt = x(R)1 ∈ H2
d is an L−cyclic vector. To prove uniqueness, suppose that y(R) =

MR
yt ∼ R∞

d is an outer right multiplier so that x(R)∗x(R) = I + τ = y(R)∗y(R). Since 
both x(R), y(R) are outer (i.e. they have dense range), x(R)∗, y(R)∗ are injective. Also, 
any x(R) ∼ R∞

d is necessarily injective by [17, Lemma 4.9, Corollary 4.26]. By the polar 
decomposition for closed operators, [28, Proposition 5.3.18], it follows that there are 
unitary operators U, V so that

x(R) = U
√
I + τ , and y(R) = V

√
I + τ ,

and hence x(R) = UV ∗y(R). Then, for any h ∈ Dom y(R),

(Lkx(R) − x(R)Lk)h = 0 ⇒ (LkUV ∗ − UV ∗Lk)y(R)h = 0.
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Since y(R) has dense range, we conclude that UV ∗ commutes with the left shifts so 
that UV ∗ = W (R) ∈ R∞

d is a unitary right multiplier [12, Theorem 1.2]. However, the 
only normal elements of R∞

d are scalar multiples of the identity, and it follows that 
W (R) = ζI, ζ ∈ ∂D is a unitary constant [12, Corollary 1.5]. �
Remark 10. In the above, since I + τ ≥ I is bounded below by 1 (under the assumption 
that ε = 1), it follows that x(R)−1 is a contractive right multiplier.

Lemma 6. For any ε > 0, the bounded operators x[ε](rR)−1x[ε](rR)−∗ converge in the 
strong operator topology to (εI + τ)−1 as r ↑ 1.

In the above, and throughout, we employ the notation (A∗)−1 =: A−∗.

Proof. Immediate, by Lemma 4. �
Theorem 11. Let τ ≥ 0 be any closed, positive semi-definite left Toeplitz operator so that 
Ad is a core for 

√
τ . If ε > 0 is fixed and y[ε](R) ∼ R∞

d is the potentially unbounded 
outer right multiplier so that εI + τ = y[ε](R)∗y[ε](R) and yt

[ε] = y[ε](R)1 ∈ H2
d, then 

y[ε](R) = (MR
ψε

)−1 where

ψε = 1√
〈1, (εI + τ)−11〉

· (εI + τ)−11.

Proof. This is an extension of [33, Theorem 1.5] to closed, unbounded left Toeplitz 
operators, and the proof is similar. Again, without loss in generality we assume that 
ε = 1. Let ϕ := (I + τ)−11. We first claim that MR

ϕ defines a bounded operator in R∞
d . 

To see this note that ϕ ∈ Dom (I + τ) = Dom y(R)∗y(R) ⊂ Dom y(R). Hence y(R)ϕ ∈
Dom y(R)∗ and for any α ∈ Fd, Lαy(R)ϕ = y(R)Lαϕ ∈ Dom y(R)∗ since Dom y(R)∗
is L−invariant by [17, Corollary 4.27] and also Lαϕ ∈ Dom y(R). We conclude that 
Lαϕ ∈ Dom y(R)∗y(R) for any α ∈ Fd. Given any free polynomial, p(L) :=

∑
α pαL

α ∈
C{L1, · · · , Ld}, we have that p(L)ϕ ∈ Dom (I + τ) and

‖MR
ϕ p‖2 = ‖p(L)ϕ‖2

≤ ‖
√
I + τp(L)ϕ‖2 well-defined as Dom

√
I + τ = Dom y(R),

=
∑
α,β

pαpβ〈Lαϕ, (I + τ)Lβϕ〉

=
∑
α

|pα|2 · 〈ϕ, (I + τ)ϕ〉 +
∑

γ �=∅,α
pαpαγ〈ϕ, (I + τ)Lγϕ〉 + c.c.

=
∑
α

|pα|2 · 〈(I + τ)−11, (I + τ)(I + τ)−11〉

+
∑

γ �=∅,α
pαpαγ 〈(I + τ)−11, (I + τ)Lγϕ〉︸ ︷︷ ︸+ c.c.
=0 (as γ �= ∅)
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=
∑
α

|pα|2 · 〈1, (I + τ)−11〉 = ‖p‖2
H2

d
〈1, (I + τ)−11〉H2

d
,

where c.c. denotes complex conjugate of the previous term. This proves that MR
ϕ extends 

to a bounded operator. Moreover, a similar calculation shows that for any p, q ∈ C{z},

〈(MR
ϕ )∗(I + τ)MR

ϕ p, q〉 = 〈p, q〉H2
d
〈1, (I + τ)−11〉H2

d
,

so that

(MR
ϕ )∗(I + τ)MR

ϕ = I〈1, (I + τ)−11〉,

or, defining ψ as in the theorem statement,

(MR
ψ )∗(I + τ)MR

ψ = I. (6.4)

We claim that MR
ψ =: F (R) ∈ R∞

d is outer, i.e. that ψ is cyclic for L. To see this 
suppose that h ∈ H2

d is orthogonal to 
∨
Lαψ, or equivalently, to 

∨
Lαϕ. Since (I + τ)−1

is bounded, the closed operator I + τ is surjective which means that h = (I + τ)g for 
some g ∈ H2

d. Then,

(I + τ)g ⊥ Lα(I + τ)−11,

for any α ∈ Fd. In particular, taking α = ∅ shows g∅ = 0 so that g = LL∗g Hence,

0 = 〈(I + τ)LL∗g, Lkϕ〉H2
d

= 〈
√
I + τLL∗g,

√
I + τLkϕ〉H2

d

= 〈
√
I + τL∗

kg,
√
I + τϕ〉H2

d

= 〈L∗
kg, (I + τ)ϕ〉 = 〈g, Lk1〉,

and this shows that all Taylor coefficients of order 1 of g also vanish. Repeating this 
argument shows that all Taylor coefficients vanish so that g ≡ 0, both ϕ, ψ are L−cyclic, 
and F (R) = MR

ψ is right-outer (and hence has a right-Smirnov inverse affiliated to R∞
d

[20,17]).
By previous calculation we have (MR

ψ )∗y(R)∗y(R)MR
ψ = I, and it follows that 

y(R)MR
ψ ∈ R∞

d is a bounded, unitary right multiplier. However, the only normal ele-
ments of R∞

d are scalar multiples of the identity [12, Corollary 1.5], so that y(R)MR
ψ = αI

for some α ∈ ∂D, and we can assume, without loss in generality, that α = 1
and MR

ψ = y(R)−1. Finally, by Equation (6.4), y(R)−∗(I + τ)y(R)−1 = I, so that 
I + τ = y(R)∗y(R). Here, recall our notation: y(R)−∗ := (y(R)∗)−1. �
Remark 11. Theorem 9 and Theorem 11 can be readily extended to general positive left 
Toeplitz operators, τ ≥ εI > 0, such that Dom

√
τ contains an L−cyclic vector, h ∈ H2

d.
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Remark 12. Taking τ = T ≥ 0 to be the NC Radon–Nikodym derivative of μ = μB with 
respect to NC Lebesgue measure, i.e. qT is the closure of qμac

, the above results can be 
applied to any Δ(ε) = (εI + T )−1 for any ε > 0. In particular, Δ = Δ(1) = (I + T )−1

factors (uniquely up to ζ ∈ ∂D) as:

Δ = x(R)−1x(R)−∗, and I + T = x(R)∗x(R), (6.5)

where x(R)−1 ∈ [R∞
d ]1 is contractive, right-outer, x(R) ∼ R∞

d , and x(R)1 = xt ∈ H2
d is 

L−cyclic.

6.5. Radial approximation of free harmonic functions

For any 0 < r < 1 consider the map Φr : R∞
d → R∞

d defined by:

Φr(Rk) := rRk.

Since rR is a strict row contraction, it follows that Φr extends to a completely positive 
and unital map on the (right) free Toeplitz system (R∞

d + (R∞
d )∗)−weak−∗ [32, Corollary 

2.3].
Observe that T has well-defined Taylor coefficients:

Tα := 〈
√
TLα1,

√
T1〉H2

d
,

and that by definition,

T∅ = ReHμac;∅ and Tα = 1
2Hμac;αt , α �= ∅,

are (up to a constant) the Taylor coefficients of the NC Herglotz function, Hμac
, since qT

is the closure of qμac
. It follows that we can define the bounded left Toeplitz operators 

Φr(T ) by the Taylor coefficients:

Φr(T )∅ := T∅ and Φr(T )α := Tαr
|α| = 1

2Hμac;αtr|α|; α �= ∅,

and it follows that

qΦr(T ) = (μac)r,

as defined in Lemma 5 so that

0 ≤ Φr(T ) = ReHμac
(rR) ≤ ReHμ(rR) = Tr.

In the disk, if h is a bounded, positive harmonic function and we have h(ζ) = |g(ζ)|2
on the circle, for some bounded analytic g, then |g(z)|2 ≤ h(z) inside the disk, since h is 
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harmonic, |g|2 is subharmonic, and they have the same boundary values. An NC version 
of this, adapted to our purposes, is the following:

Lemma 7. For any 0 < r < 1, we have the harmonic majorant inequality:

x(rR)∗x(rR) ≤ I + Φr(T ) ≤ I + Tr. (6.6)

In the above statement, recall that x(R) ∼ R∞
d is as defined in Remark 12, 

x(R)∗x(R) = I + T .

Proof. By the Schwarz inequality for unital 2−positive maps [26, Proposition 3.3], for 
any a(R) ∈ R∞

d , it follows that

a(rR)∗a(rR) ≤ Φr(a(R)∗a(R)),

and we need to show that this inequality holds for potentially unbounded right multipli-
ers, x(R) ∼ R∞

d .
Let xt

N be the Nth partial sum of xt = x(R)1 =
∑

xαtLα1, xt
N =

∑
|α|≤N xαtLα1, 

so that xt
N → xt in H2

d, and define

I + TN := xN (R)∗xN (R).

Observe that for any α ∈ Fd,

lim
N→∞

(Φr(I + TN ))α = |r|α lim(I + TN )α

= |r|α lim〈Lα1, xN (R)∗xN (R)1〉

= |r|α lim〈Lαxt
N , xt

N 〉

= |r|α〈Lαxt, xt〉

= |r|α〈x(R)Lα1, x(R)1〉

= |r|α〈
√
I + TLα1,

√
I + T1〉

= |r|α(I + T )α = (I + Φr(T ))α.

It follows that if

p(L) =
∑

|α|≤M

pαL
α,

is any free polynomial, then
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lim
N→∞

〈p,Φr (I + TN ) p〉H2
d

= lim
∑
α

|pα|2(I + TN )∅ + lim
∑
α,γ
γ �=∅

pαpαγ 〈1,Φr(I + TN )Lγ1〉︸ ︷︷ ︸
=r|γ|(I+TN )γ

+c.c.

= 〈p, (I + Φr(T ))p〉H2
d
, (6.7)

by the previous calculation. In the above c.c. denotes complex conjugate of the previous 
term. Hence,

〈x(rR)p, x(rR)p〉 = ‖p(L)x(rR)1‖2

= lim
N

‖p(L)xN (rR)1‖2

= lim〈p, xN (rR)∗xN (rR)p〉

≤ lim〈p,Φr (xN (R)∗xN (R)) p〉

= lim〈p,Φr(I + TN )p〉

= 〈p, (I + Φr(T ))p〉,

by Equation (6.7), and this proves that

x(rR)∗x(rR) ≤ I + Φr(T ),

which is in turn bounded above by I + Tr by the discussion preceding the lemma. �
Consider the net Δr, 0 < Δr ≤ I, for 0 < r < 1. Since this net is uniformly bounded, 

there is a WOT−convergent subsequence Δk := Δrk with limit 0 ≤ δ ≤ I. To show that 
the entire net Δr converges in the weak operator topology to δ, it suffices to show that 
any WOT−convergent subsequence of the net Δr has the same limit.

Proposition 2. Let Δr := (I + Tr)−1. Then Δr
WOT→ Δ, where Δ := (I + T )−1.

This proposition does most of the work of proving our NC Fatou Theorem; once it is 
established it remains only to improve WOT convergence to SOT convergence, which is 
a routine argument using the resolvent identity. To prove the proposition, we begin with 
a lemma.

Lemma 8. Let Δk := Δrk be any WOT−convergent subsequence of Δr with limit δ. Then 
0 < δ ≤ I is injective, so that δ−1 is a closed, positive operator.

Proof. Suppose that δ has kernel so that there is a non-zero h ∈ H2
d so that δh = 0. It 

follows that
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0 = 〈h, δh〉 = lim
rk↑1

〈Δrkh, h〉

= 1
2 lim

k→∞
〈gk, (I − ReB(rkR))−1gk〉,

where gk := (I − B(rkR)∗)h. By the NC Schwarz inequality and Möbius transforms, 
B(rkR) is a strict contraction so that 0 < (I − ReB(rkR)) < 2I is invertible for 0 <
rk < 1 [34, Theorem 2.4]. (Alternatively, B(rR) is a strict contraction for any 0 < r < 1
by the NC maximum modulus principle, see Remark 8.) By spectral mapping,

1
2I ≤ (I − ReB(rkR))−1,

so that

0 = 〈h, δh〉

= 1
2 lim

k
〈gk, (I − ReB(rkR))−1gk〉

≥ 1
4 lim

k
‖gk‖2

= 1
4 lim

k
‖(I −B(rkR)∗)h‖2

= 1
4‖(I −B(R)∗)h‖2.

Since B(R) is a contraction, it follows also that (I − B(R))h = 0. However, since we 
assume that B ∈ Ld is non-constant and hence strictly contractive in the NC unit 
row-ball, I −B(Z) must be invertible. Hence,

0 = Ut(I −B(R))h = Ut(I −B(R))U∗
t Uth

= (I −B(L))ht,

so that for any Z,

0 = (I −B(Z))ht(Z).

We conclude that h ≡ 0 and that δ is injective. �
The following familiar fact will be used repeatedly in the sequel:

Lemma 9. Let Hnc(K) be an NC-RKHS on an NC set Ω ⊆ Cd
N with CPNC kernel K. A 

sequence, (hj), in Hnc(K) converges weakly to some h ∈ Hnc(K) if and only if (hj) is 
uniformly norm-bounded and hj → h pointwise in Ω.

Assume that Hnc(K) contains the constant function id(Z) := In. A sequence, (Hj), 
of (left or right) NC multipliers of Hnc(K) converges in the weak operator topology to a 
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(left or right) multiplier H (in the sense that MR
Hj

WOT→ MR
H or ML

Hj

WOT→ ML
H) if and 

only if left or right multiplication by Hj, respectively, is uniformly bounded in operator 
norm and Hj → H pointwise in Ω.

Proof. If hj
w→ h, where w denotes weak convergence, then this sequence is bounded in 

Hilbert space norm and for any (Z, y, v) ∈ Ωn ×Cn ×Cn,

y∗hj(Z)v = 〈K{Z, y, v}, hj〉Hnc(K) → 〈K{Z, y, v}, h〉Hnc(K) = y∗h(Z)v.

Similarly if id ∈ Hnc(K) and MR
Hj

WOT→ MR
H , then (MR

Hj
) is uniformly bounded in 

operator norm, and if hj := MR
Hj

· id ∈ Hnc(K) then hj
w→ h := MR

H · id and hj(Z) =
Hj(Z), h(Z) = H(Z).

Conversely, the linear span of the NC kernels K{Z, y, v} is dense in Hnc(K) (in fact, 
linear combinations of NC kernels are NC kernels), so pointwise convergence and uniform 
boundedness readily implies weak or WOT convergence. �
Proof of Proposition 2. Let Δk be any WOT−convergent subsequence with limit δ. It 
suffices to show that δ = Δ = (I + T )−1, where recall that qT is the closure of qμac

, and 
μ = μB . This will prove that every WOT−convergent subsequence of the Δr has the 
same limit, Δ, so that the entire net converges in WOT to Δ. By the previous lemma, 
δ−1 is closed, positive and bounded below by 1, and we can define T ′ := δ−1 − I. By 
spectral mapping, T ′ is positive semi-definite.

By [33, Theorem 1.5], for any 0 < r < 1, there is a bounded y(r)(R) ∈ R∞
d so that 

Δ−1
r = I + Tr = y(r)(R)∗y(r)(R), where

y(r)(R) = c−1
r (MR

Δr1)−1; cr := 〈1,Δr1〉−1/2,

so that y(r)(R)−1 = crM
R
Δr1. Here, note that any right outer y(R) ∼ R∞

d is always 
pointwise invertible in the NC unit ball Bd

N [17, Lemma 3.2]. Moreover,

Δr = (I + Tr)−1 = y(r)(R)−1y(r)(R)−∗,

so that ‖y(r)(R)−1‖ ≤ 1. The Taylor coefficients of y(r)(R)−1 are then:

〈Lα1, y(r)(R)−11〉 = cr〈Lα1,Δr1〉.

Consider the operator cMR
δ1 where c := 〈1, δ1〉− 1

2 , initially defined on free polynomials. 
Then, since Δk = Δrk

WOT→ δ, we claim cMR
δ1 defines a contractive right multiplier, 

y(R)−1 so that yk(R)−1 := y(rk)(R)−1 converges in the weak operator topology to 
y(R)−1. Indeed, for any α, β ∈ Fd,

〈Lα1, (cMR
δ1 − yk(R)−1)Lβ1〉 =

⎧⎪⎨⎪⎩
〈Lγ1, (δ − Δk)1〉 α = βγ

〈1, Lγ(δ − Δk)1〉 = 0 β = αγ, γ �= ∅
0 else

⎫⎪⎬⎪⎭ −→ 0,
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and so the same holds replacing the free monomials Lα, Lβ with any free polynomials 
p, q. Since the free polynomials are dense in H2

d and the sequence yk(R)−1 is uniformly 
norm bounded, it follows that

yk(R)−1 WOT→ cMR
δ1,

so that y(R)−1 := cMR
δ1 is a contractive right multiplier. We claim that δ =

y(R)−1y(R)−∗. Indeed this follows because

Δk = yk(R)−1yk(R)−∗ WOT→ δ.

For any (Z, y, v) and another (W, b, c) ∈ Bd
m ×Cm ×Cm,

〈K{Z, u, v}, δK{W, b, c}〉 = lim
k
〈K{Z, u, v},ΔkK{W, b, c}〉.

Since yk(R)−1 WOT→ y(R)−1, Lemma 9 implies that yt
k(Z)−1 converges pointwise to 

yt(Z)−1 in the NC unit ball,

〈K{Z, u, v},ΔkK{W, b, c}〉 = 〈(yk(R)−1)∗K{Z, u, v}, yk(R)−∗K{W, b, c}〉
= 〈K{Z, u, yt

k(Z)−1v},K{W, b, yt
k(W )−1c}〉

=
(
u,K(Z,W )[yt

k(Z)−1vc∗yt
k(W )−∗]b

)
Cn

→
(
u,K(Z,W )[yt(Z)−1vc∗yt(W )−∗]b

)
Cn

= 〈K{Z, u, v}, y(R)−1y(R)−∗K{W, b, c}〉,

and the claim follows. Consider yk(R) := y(rk)(R). Observe that the sequence yt
k =

yk(R)1 is uniformly bounded in H2
d:

‖yk(R)1‖2 = 〈1, (I + ReHB(rkR))1〉H2
d

= 1 + μBrk
(I) = 1 + ReHBrk

;∅

= 1 + ReHB(0) = 1 + μB(I) < +∞.

It follows that there is a weakly convergent subsequence yt
j = yt

kj
with limit ỹt ∈ H2

d. 
However, we already know that for any Z ∈ Bd

N , yt
k(Z)−1 converges to yt(Z)−1 so that 

yt
k(Z) converges to yt(Z) pointwise in Bd

N . By Lemma 9, it follows that the subsequence 
yt
j = yt

kj
converges pointwise to both yt and ỹt so that yt = ỹt ∈ H2

d. In particular, for 
any free polynomial, p,

‖y(R)p‖2 = ‖p(L)yt‖2

= lim
k
〈p(L)yt

k, p(L)yt〉

≤ ‖y(R)p‖ lim sup ‖p(L)yt
k‖,
k
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and it follows that

‖y(R)p‖2 ≤ lim sup
k

‖p(L)yt
k‖2

= lim sup
k

〈p, yk(R)∗yk(R)p〉

= lim sup
k

〈p, (I + ReHB(rkR))p〉

= lim
k

μBrk
(p∗p) + m(p∗p)

= (μB + m)(p∗p), by Lemma 5.

Since finite and positive sums of squares, p∗p, of free polynomials, p ∈ C{z}, are norm-
dense in the cone of positive elements in Ad, this proves that the vector state myt(Lα) :=
〈yt, Lαyt〉H2

d
is bounded above by μ +m = μB +m [16, Lemma 4.6]. However, as proven 

above, δ = y(R)−1y(R)−∗, so that by definition I + T ′ = δ−1 = y(R)∗y(R). Hence,

qy(a1, a2) := myt(a∗1a2); a1, a2 ∈ Ad

= qI+T ′(a1, a2).

That is, given Dom (qμB
+ qm) = Ad,

qT ′ + qm = qI+T ′ = qy ≤ qμB+m = qμB
+ qm,

in the sense of the partial order on positive semi-definite quadratic forms, see Equation 
(4.1). This proves that qT ′ is a closable positive semi-definite quadratic form obeying 
qT ′ ≤ qμB

. By Theorem 4 the closure of qμac
is qT , and qμac

is the maximal closable 
positive semi-definite quadratic form bounded above by qμ. Maximality then implies 
that T ′ ≤ T in the sense that qT ′ ≤ qT . That is, Dom

√
T ⊆ Dom

√
T ′, and

‖
√
T ′h‖2 = qT ′(h, h) ≤ qT (h, h) = ‖

√
Th‖2,

for all h ∈ Dom
√
T .

Conversely, for any 0 < r < 1, the harmonic majorant inequality of Lemma 7 implies 
that

x(rR)∗x(rR) ≤ I + Tr. (6.8)

(Recall that x(R)∗x(R) = I + T .) By [23, Chapter VI, Theorem 2.21] (see also [41, 
Proposition 1.1]), closed positive semi-definite operators T1, T2 obey qT1 ≤ qT2 if and 
only if (λI + T2)−1 ≤ (λI + T1)−1 for any λ > 0. It follows that the above inequality 
(6.8) is equivalent to:

(I + Tr)−1 = Δr ≤ x(rR)−1x(rR)−∗.
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In the above, recall that x(R)−1 and hence x(rR)−1 are contractions. In particular, for 
each r = rk,

Δrk︸︷︷︸
WOT→ (I+T ′)−1

≤ x(rkR)−1x(rkR)−∗︸ ︷︷ ︸
SOT→ (I+T )−1

,

where the SOT convergence of x(rR)−1x(rR)−∗ to (I + T )−1 follows from Lemma 6. 
Again by [23, Chapter VI, Theorem 2.21], we conclude that

I + T ≤ I + T ′,

so that qT ≤ qT ′ and hence qT = qT ′ . By the uniqueness of the Riesz representation of 
closed, densely-defined positive semi-definite quadratic forms, T = T ′ [23, Chapter VI, 
Theorem 2.1, Theorem 2.23]. �
Remark 13. Observe that with x(R)∗x(R) = I + T , and y(r)(R)∗y(r)(R) = I + Tr, we 
have that x(rR)1 → x(R)1 = xt in H2

d, and similarly since (I+Tr)−1 converges in WOT

to (I + T )−1, one can argue that y(r);t := y(r)(R)1 converges weakly to x(R)1 in H2
d. 

(That y(r);t := y(r)(R)1 converges weakly to x(R)1 in H2
d was shown in the proof of 

Proposition 2.) However, y(r);t generally does not converge in norm to xt, as this would 

imply that μ = μac, which is generally not true. Indeed, if y(r);t H2

→ xt, then for any 
a1, a2 ∈ Ad,

μr(a∗1a2) + m(a∗1a2)︸ ︷︷ ︸

=

→ μ(a∗1a2) + m(a∗1a2) by Lemma 5

my(r);t(a∗1a2) → mxt(a∗1a2) = μac(a∗1a2) + m(a∗1a2).

Remark 14. Since T ′ = T , Equation (6.6) becomes:

x(rR)∗x(rR) ≤ I + Tr = 2(I −B(rR)∗)−1(I − ReB(rR))(I −B(rR))−1. (6.9)

Equivalently, setting X(rR) := x(rR)(I −B(rR)),

X(rR)∗X(rR) ≤ 2(I − ReB(rR)). (6.10)

This shows that the free harmonic function 2(I −ReBt(Z)) is a harmonic majorant for 
the free pluri-subharmonic function Xt(Z)∗Xt(Z).

We are finally in position to prove our main theorem.

Proof of NC Fatou Theorem. We have proven that Δr := (I + Tr)−1 converges to Δ :=
(I + T )−1 in WOT and a similar analysis for Δr(s) = (sI + Tr)−1, s > 0 shows that 
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Δr(s) converges WOT to Δ(s) = (sI + T )−1. Using WOT convergence of the Δr(s) =
(sI + Tr)−1 to Δ(s) for 1 ≤ s ≤ 2 implies, by the resolvent formula,

1
ε

(
(I + Tr)−1 − ((1 + ε)I + Tr)−1) = (I + Tr)−1((1 + ε)I + Tr)−1,

is WOT-convergent to

(I + T )−1((1 + ε)I + T )−1,

for any ε ∈ [0, 1]. Since (I + Tr)−1((1 + ε)I + Tr)−1 is uniformly bounded for ε ∈ [0, 1]
and 0 < r < 1, taking the limit as ε ↓ 0 shows that

(I + Tr)−2 WOT→ (I + T )−2,

is WOT−convergent, and this implies SOT−convergence of (I + Tr)−1 since

‖(I + Tr)−1h‖2 = 〈h, (I + Tr)−2h〉.

Hence Tr → T in the strong resolvent sense. �
Having proved that T is recovered from the Tr in the sense of strong resolvent conver-

gence, we consider the problem of exhibiting T more explicitly. Ideally, one would like 
to prove that

T = (I −B(R)∗)−1(I −B(R)∗B(R))(I −B(R))−1

(suitably interpreted). One way of making this precise would be to claim that 
Ran (I −B(R)) belongs to Dom

√
T and that for all f, g ∈ H2

d

〈T (I −B(R))f, (I −B(R))g〉 = 〈(I −B(R)∗B(R))f, g〉.

If this were true unrestrictedly, it would prove, for example, that T = 0 (equivalently, 
μac = 0, that is, μ is singular) if and only if B(R) is an isometry (that is Bt is a right NC 
inner function). This correspondence–that a function b is inner if and only if its Clark 
measure μb is singular–of course holds in one variable, via the standard form of Fatou’s 
theorem as described in the introduction. Here, at present, our results are somewhat less 
satisfactory, but we are able to prove the desired inequality in one direction:

Theorem 12. Dom
√
I + T contains Ran (I −B(R)) and

(I −B(R)∗)(I + T )(I −B(R)) ≤ 2(I − ReB(R)). (6.11)
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Proof. By Theorem 9 we have that x(R)∗x(R) = I + T , x(R) = U∗√I + T (by con-
struction and also by polar decomposition) so that Domx(R) = Dom

√
I + T . We claim 

that Ran (I −B(R)) ⊆ Dom
√
I + T = Dom x(R). First define, for each 0 < r < 1, 

X(rR) := x(rR)(I −B(rR)). Then by Lemma 7,

X(rR)∗X(rR) = (I −B(rR)∗)x(rR)∗x(rR)(I −B(rR))

≤ (I −B(rR)∗)(I + Tr)(I −B(rR))

= 2(I − ReB(rR)). (6.12)

It follows that X(rR) is uniformly norm-bounded for 0 < r < 1. Let Xk(R) = X(rkR)
be any WOT−convergent subsequence with limit X̃(R). Then Xt(rkZ) necessarily con-
verges pointwise to X̃t(Z) for any Z ∈ Bd

N by Lemma 9. However, we also have

Xt(rkZ) = (I −Bt(rkZ))xt(rkZ) → Xt(Z) := (I −Bt(Z))xt(Z).

This proves that any such WOT limit is unique and equal to X(R) = x(R)(I − B(R)), 
so that, in particular, Ran (I −B(R)) ⊆ Dom x(R), and X(rR) WOT→ X(R). Moreover, 
by Lemma 4, since X(rR) is uniformly norm bounded, X(rR) SOT−∗→ X(R). Taking the 
limit of Equation (6.12) then yields:

X(R)∗X(R) ≤ 2(I − ReB(R)). �
Corollary 3. Let μ = μB be the NC Clark measure of B ∈ Ld = [H∞

d ]1. If B is inner 
(that is, B(R) = MR

Bt is an isometry) then μ is singular.

Proof. Recall that B is inner if and only if B(L), or equivalently B(R) = UtB(L)Ut are 
isometries. We have that the closure of qμac

is qT where T is the strong resolvent limit 
of the Tr = ReHB(rR) if μ = μB . In particular for any h := (I − B(R))g, if B is inner 
then:

q(I+T )(h, h) ≤ 2〈g, (I − ReB(R))g〉

= 〈(I −B(R))g, g〉 + 〈g, (I −B(R))g〉

= 〈(I −B(R))g, (I −B(R))g〉 Using that B(R)∗B(R) = I

= 〈h, h〉 = qI(h, h).

This proves that I + T ≤ I so that T ≡ 0. �
Inspecting the proof of Theorem 12, it is not too hard to show that we would obtain 

equality (rather than just the one inequality) if we knew that for all B(R) we could 
factor
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2I −B(R)∗ −B(R) = G(R)∗G(R), (6.13)

for some G ∈ R∞
d . Indeed, if this is so then for all r < 1 we would have

(I −B(rR)∗)(I + Tr)(I −B(rR)) ≥ G(rR)∗G(rR),

and by taking SOT limits

(I −B(R)∗)x(R)∗x(R)(I −B(R)) ≥ G(R)∗G(R) = 2(I − ReB(R)),

as desired. In one variable the factorization (6.13) always holds, indeed on the circle we 
have

2 − b(ζ) − b(ζ) = |1 − b(ζ)|2 + 1 − |b(ζ)|2 ≥ |1 − b(ζ)|2,

so that 2 − b(ζ) − b(ζ) is log-integrable, and hence there is an outer function g with 
2 − b(ζ) − b(ζ) = |g(ζ)|2. Thus our results allow us to fully recover the known form of 
the Radon–Nikodym derivative in the one-variable case.
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