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!BSTRACT
! RECENT DISCOVERY IN NEUROSCIENCE PROMPTS THE NEED FOR INNOVATION IN IMAGE ANALYSIS�
.EUROSCIENTISTS HAVE DISCOVERED THE EXISTENCE OF MENINGEAL LYMPHATIC VESSELS IN THE BRAIN AND HAVE
SHOWN THEIR IMPORTANCE IN PREVENTING COGNITIVE DECLINE IN MOUSE MODELS OF !LZHEIMER�S DISEASE�
7ITH AGE� LYMPHATIC VESSELS NARROW AND POORLY DRAIN CEREBROSPINAL FLUID� LEADING TO PLAQUE
ACCUMULATION� A MARKER FOR !LZHEIMER�S DISEASE� 4HE DETECTION OF VESSEL BOUNDARIES AND WIDTH ARE
PERFORMED BY HAND IN CURRENT PRACTICE AND THEREBY SUFFER FROM HIGH ERROR RATES AND POTENTIAL
OBSERVER BIAS� 4HE EXISTING VESSEL SEGMENTATION METHODS ARE DEPENDENT ON USER
DEFINED
INITIALIZATION� WHICH IS TIME
CONSUMING AND DIFFICULT TO ACHIEVE IN PRACTICE DUE TO HIGH AMOUNTS OF
BACKGROUND CLUTTER AND NOISE� 4HIS WORK PROPOSES A LEVEL SET SEGMENTATION METHOD FEATURING
HIERARCHICAL MATTING� ,Y-0HI� TO PREDETERMINE FOREGROUND AND BACKGROUND REGIONS� 4HE LEVEL
SET FORCE FIELD IS MODULATED BY THE FOREGROUND INFORMATION COMPUTED BY MATTING� WHILE ALSO
CONSTRAINING THE SEGMENTATION CONTOUR TO BE SMOOTH� 3EGMENTATION OUTPUT FROM THIS METHOD HAS A
HIGHER OVERALL $ICE COEFFICIENT AND BOUNDARY &�
SCORE COMPARED TO THAT OF COMPETING ALGORITHMS�
4HE ALGORITHMS ARE TESTED ON REAL AND SYNTHETIC DATA GENERATED BY OUR NOVEL SHAPE DEFORMATION
BASED APPROACH� ,Y-0HI IS ALSO SHOWN TO BE MORE STABLE UNDER DIFFERENT INITIAL CONDITIONS AS
COMPARED TO EXISTING LEVEL SET SEGMENTATION METHODS� &INALLY� STATISTICAL ANALYSIS ON MANUAL
SEGMENTATION IS PERFORMED TO PROVE THE VARIATION AND DISAGREEMENT BETWEEN THREE ANNOTATORS�

�� )NTRODUCTION

4HE MENINGEAL LYMPHATICS ARE PRESENT AROUND MAJOR SINUSES IN THE MENINGES� THREE MEMBRANES THAT LINE THE
SKULL AND VERTEBRAL CANAL� ENCLOSING THE BRAIN AND SPINAL CORD� "OTH THE FLUID PART OF THE CEREBROSPINAL FLUID
�#3&	 AND IMMUNE CELLS ARE DRAINED THROUGH THE SURROUNDING LYMPHATIC VESSELS� ALL THE WAY TO THE DEEP
CERVICAL LYMPH NODES� 4HIS DRAINAGE OCCURS IN STEADY STATE ;�=� 2ECENT WORK SHOWS THAT IN OLD AGE� LYMPHATIC
DRAINAGE IS REDUCED BY SHRINKING OF THE LYMPHATIC VESSELS ;�=� LEADING TO COGNITIVE DECLINE AND LOSS OF
MEMORY� WHICH IS COMMON IN !LZHEIMER�S DISEASE �!$	 ;�=� )N THE CASE OF MULTIPLE SCLEROSIS� IT IS EVIDENT THAT
THE LYMPHATIC VESSELS ARE USED TO TRANSPORT THE IMMUNE CELLS RESPONSIBLE FOR AUTOIMMUNE ATTACK ;�� �=� 3UCH
ATTACKS OCCUR ON THE MYELIN SHEATHS OF NEURONS� WHICH CAN RESULT IN PARALYSIS�

4HE UNDERLYING QUESTION FOR NEUROSCIENTISTS THEN REMAINS� CAN WE PREDICT ONSET OF THESE DISEASES OR
DIAGNOSE PATIENTS BY STUDYING AN INDIVIDUALS LYMPHATIC VASCULATURE ;�=� 4HROUGH THE STUDY OF LYMPHATICS VIA
IMAGE ANALYSIS� THIS PAPER TAKES A MAJOR STEP TOWARDS THIS GOAL� 4HERE EXIST NO SPECIALIZED IMAGE PROCESSING
TOOLS FOR MENINGEAL LYMPHATICS�THIS WORK PROPOSES THE FIRST APPROACH� 7E HAVE DEVELOPED A TOOLKIT FOR
ANALYSIS OF MENINGEAL LYMPHATIC VESSELS THAT IS TWO
PRONGED� A NOVEL SEGMENTATION APPROACH IS PROPOSED� AND
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THEN TESTED ON REAL AND SYNTHETIC DATA THAT HAS BEEN GENERATED USING A UNIQUE APPLICATION OF SHAPE
DEFORMATION�

&IRST� SOME REVIEW AND BACKGROUND OF THE CURRENT FINDINGS CONCERNING THE MENINGEAL LYMPHATICS WILL BE
COVERED� "ACKGROUND OF TRADITIONAL SEGMENTATION METHODS WILL SUBSEQUENTLY BE INCLUDED� 3ECTION �
INTRODUCES OUR METHOD� ,Y-0HI �,YMPHATIC -ATTED 0HI	� A LEVEL
SET SEGMENTATION METHOD POWERED BY
IMAGE MATTING� THE FIRST OF ITS KIND� 3ECTION � COVERS THE IMAGE DATASETS� INCLUDING HOW THE MANUAL
SEGMENTATION IS PERFORMED� 4HIS SECTION IS ALSO DEVOTED TO A SHORT LITERATURE REVIEW OF SHAPE ANALYSIS� AS WELL
AS OUR INNOVATIVE SHAPE DEFORMATION BASED DATA AUGMENTATION METHOD� 3ECTION � PRESENTS THE SEGMENTATION
RESULTS ON ALL DATASETS USING AUTOMATED SEGMENTATION METHODS� INCLUDING ,Y-0HI� 3ECTION � ILLUSTRATES THE
FALLIBILITY OF MANUAL ANNOTATION BY USING STATISTICAL ANALYSIS� !FTERWARDS� THE FINAL DISCUSSIONS AND CONCLUSIONS
ARE PRESENTED�

�� "ACKGROUND ONMENINGEAL LYMPHATICS

4HE MENINGES COMMUNICATE TO THE BRAIN PERIPHERY VIA THE LYMPHATIC SYSTEM� BECAUSE THE MENINGEAL
COMPARTMENT LACKS A BLOOD BRAIN BARRIER� 4HE MENINGEAL LYMPHATIC SYSTEM IS A CENTRAL REGULATOR OF #.3
HOMEOSTASIS� -ENINGEAL 4
LYMPHOCYTES PRODUCE CYTOKINES �SUCH AS INTERLEUKIN
� AND INTERFERON
GAMMA	
THAT REGULATE COGNITIVE AND SOCIAL BEHAVIOR IN MICE� 4HERE ARE MANY DIFFERENT IMMUNE CELLS IN THE BRAIN�
$URING NEUROINFLAMMATION �MODELED BY %XPERIMENTAL !UTOIMMUNE %NCEPHALOMYELITIS IN MICE	� LYMPHOID
CELLS � �GROUP � INNATE LYMPHOID CELLS� OR ),#�	 AND MAST CELLS PLAY AN IMPORTANT ROLE� ,YMPHOID CELLS �
GENERATE A PRO
INFLAMMATORY ENVIRONMENT AND ENCOURAGE FILTRATION OF CELLS THROUGH THE BRAIN PARENCHYMA�
4HE IMMUNE CELLS IN THE MENINGES ACTIVATE PATHOGENIC 4
CELLS AND REGULATE THEIR MIGRATION INTO THE CENTRAL
NERVOUS SYSTEM �#.3	 ;�=�

4HE LACK OF A BLOOD BRAIN BARRIER IS IMPORTANT �THE PARENCHYMA HAS A BLOOD BRAIN BARRIER	� HOWEVER� MORE
IMPORTANT IS THE LYMPHATIC SYSTEM WHICH CONNECTS THE #.3 TO THE PERIPHERAL IMMUNE SYSTEM ;�=�

4HE MENINGEAL LYMPHATIC SYSTEM WAS FIRST DESCRIBED IN ���� BY -ASCAGNI AND 3ANCTIUS ;�= BUT IT WAS
EXCLUDED FROM ANATOMICAL TEXTBOOKS� AND ONLY RECENTLY RE
DISCOVERED IN ���� ;�=� -ENINGEAL LYMPHATIC
VASCULATURE �-,6	 DEVELOPS POSTNATALLY� UNLIKE OTHER LYMPHATIC NETWORKS� $EVELOPMENT OF THE -,6
DEPENDS ON THE 6ASCULAR %NDOTHELIAL 'ROWTH &ACTOR C�6ASCULAR %NDOTHELIAL 'ROWTH &ACTOR 2ECEPTOR �
�6%'&C
6%'&2�	 PATHWAY� JUST AS PERIPHERAL LYMPHATIC NETWORKS DO �THOSE OUTSIDE THE MENINGES	� 4HE
-,6 NETWORK REMAINS DEPENDENT ON THIS PATHWAY WELL AFTER THE DEVELOPMENTAL STAGE� !LSO� TRANSCRIPTOMIC
ANALYSIS OF THE -,6 SHOWS THAT THE GENES REGULATING DEVELOPMENT AND MAINTAINING OF THE VASCULATURE ARE
UNIQUE FROM THOSE OF THE PERIPHERAL LYMPHATIC SYSTEM� 4HIS IMPLIES THAT WHILE THE -,6 AND PERIPHERAL
LYMPHATIC ENDOTHELIAL CELLS �,%#S	 SHARE MOLECULAR FEATURES� ATYPICAL PATHWAYS ARE INVOLVED IN FORMING AND
MAINTAINING THE -,6 ;�=� 4HIS IS EXTREMELY IMPORTANT� 4HEREFORE� IT IS REASONABLE TO CONCLUDE THAT THE
STRUCTURE COULD ALSO BE DIFFERENT FROM REGULAR LYMPHATIC NETWORKS� SINCE THE GENES ENCODING DEVELOPMENT
AND MAINTENANCE ARE DIFFERENT ;�=�

!LSO� THE SPINAL REGION CONTAINS LYMPHATIC VESSELS� A NETWORK OF COLLECTING LYMPHATICS IS OBSERVED AT EACH
NERVE ROOT BETWEEN THE LUMBAR AND CERVICAL REGIONS OF THE SPINAL CORD� 4HESE ARE THE LYMPHATIC VESSELS WE WILL
ANALYZE IN OUR IMAGES OF THE SPINAL MENINGES� !NALYSIS OF THESE SPINAL LYMPHATICS SHOWCASES A PERMEABLE
LYMPHATIC PHENOTYPE� WHICH SCALES POSITIVELY WITH COMPLEXITY� ,ESS COMPLEX JUNCTIONS ARE FOUND TO BE
IMPERMEABLE� SUCH AS THE ZIPPER
LIKE JUNCTIONS FOUND ALONG THE TRANSVERSE AND SUPERIOR SAGITTAL
SINUSES ;�� �� �� ��=�

4HE -,6 IS CAPABLE OF UPTAKE OF #3&� WHICH WAS FOUND IN STUDIES PERFORMED BY ;�=� WHERE THE -,6 WAS
ABLATED� RESULTING IN LESS #3& DERIVED MACROMOLECULES FOUND IN THE CERVICAL LYMPH NODES� (OWEVER� THIS DID
NOT CAUSE BUILDUP IN #3& PRESSURE� SO UNLIKE PERIPHERAL LYMPHATICS� THE -,6 IS NOT RESPONSIBLE FOR RECYCLING
OF INTERSTITIAL FLUIDS�THAT AMOUNT OF FLUID WOULD BE TOO LARGE FOR -,6 UPTAKE ;�=�

3TILL� THE -,6 IS DEFINITELY A REGULATOR OF THE GLYMPHATIC SYSTEM� WHICH REMOVES WASTES FROM THE #3& INTO
THE BRAIN PARENCHYMA� $URING AGING� RESTORING IMPAIRED -,6 USING 6%'&C RESULTS IN IMPROVEMENT IN
DRAINAGE� GLYMPHATIC FUNCTION �WASTE OR PROTEIN REMOVAL	 AND COGNITIVE DECLINE� WHICH WAS OBSERVED IN ;�=�
!MYLOID BUILDUP IS REDUCED� AND THE BEHAVIORAL EFFECTS CAN BE DEMONSTRATED IN MICE ;�=� 4HESE OBSERVATIONS
ARE NOT FULLY UNDERSTOOD� 7HEN -,6 ARE IMPAIRED� THIS MIGHT CHANGE THE COMPOSITION OF THE #3&� MEANING
CELL CONCENTRATIONS WILL BE SHIFTED� CHANGING THE CELLS� ABILITY TO REMOVE WASTES� 0ARKINSON�S DISEASE �0$	� LIKE
!$� IS ANOTHER NEURODEGENERATIVE DISEASE THAT DISPLAYS ABNORMAL ACCUMULATION OF PROTEINS IN THE BRAIN
PARENCHYMA� -ODULATING THE -,6 FUNCTION DOES AFFECT BOTH 0$ AND !$ IN TERMS OF PHYSIOPATHOLOGY� THE
REDUCED DRAINAGE LEADS TO MORE PROTEIN BUILDUP FOR BOTH DISEASES� WHICH FURTHER INCURS NEURONAL DAMAGE AND
BEHAVIORAL DEGENERATION ;�=�

4HE -,6 PROMOTE FLUID HOMEOSTASIS� BUT LIKE OTHER LYMPHATIC NETWORKS� ALSO AID IN THE RECYCLING OF
IMMUNE CELLS� )N MULTIPLE SCLEROSIS �-3	 MODELS� ABLATING THE -,6 HAS A POSITIVE EFFECT� BECAUSE THIS ALLOWS

�
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THE ANTIGENS� INCLUDING THOSE THAT ATTACK THE MYELIN SHEATH OF NEURONS� DO NOT TRAVEL AS FREELY ;�=� 4HERE IS A
SIGNAL SENT FROM THE BRAIN TO THE LYMPH NODES THAT REQUESTS IMMUNE CELLS TO REENTER THE BRAIN� 4HESE IMMUNE
CELLS TRAVEL THROUGH THE LYMPHATIC VESSELS AND ARE RESPONSIBLE FOR AUTOIMMUNE ATTACK� WHICH CAN RESULT IN
PARALYSIS ;�=� 4HE POSITIVE EFFECT IS SHOWN BY LOWERING PARALYSIS IN MICE ;�=� 2EMOVING THE VESSELS DOES
DECREASE THE NUMBER OF IMMUNE CELLS PRESENT� BUT DOES NOT COMPLETELY REMOVE -3 FROM A MOUSE� 7E NEED TO
FURTHER UNDERSTAND HOW THE SIGNAL IS SENT �CELLULAR� MOLECULAR� ETC	 BEFORE RESEARCHING TREATMENT OPTIONS�
)NTRESTINGLY� CONTRARY TO IN !$� DURING NEUROINFLAMMATION� THERE IS LITTLE CHANGE IN THE SIZE OR COMPLEXITY IN
THE LYMPHATIC VESSELS ;�=�

,YMPHANGIOGENESIS IS THE REMODELING OF PERIPHERAL LYMPHATIC NETWORKS DURING INFLAMMATION� $URING
THE INFLAMMATORY STATE� THERE IS NO CHANGE IN THE DORSAL OR SPINAL -,6� (OWEVER� THE CRIBIFORM PLATE -,6
EXPANDS� SIMILAR TO PERIPHERAL LYMPHANGIOGENESIS ;�� ��=� 7ITH AGE� THE DORSAL -,6 DEGENERATE AND THE BASAL
-,6 UNDERGO HYPERPLASIA ;�� ��=� (YPERPLASIA IS ENLARGEMENT� A MORPHOLOGICAL CHANGE� )N STROKE� THE
METHOD OF STROKE AFFECTS THE MORPHOLOGY OF THE -,6� &OR EXAMPLE� PHOTOTHROMBOSIS �04	 INDUCES
LYMPHANGIOGENESIS� WHILE IN TRANSIENT MIDDLE CEREBRAL ARTERY OCCLUSION �T-#!/	� LYMPHANGIOGENESIS IS NOT
OBSERVED� /N THE OTHER HAND� THE ABSENCE OF -,6 DURING T-#!/ WORSENS THE STROKE CONDITIONS� BUT THIS IS
NOT THE CASE DURING 04 ;�=�

"ASED ON THIS REVIEW OF WHAT IS CURRENTLY KNOWN ABOUT THE MENINGEAL LYMPHATICS� IT IS CLEAR THAT MUCH
REMAINS UNKNOWN� 4HE CURRENT APPROACHES FOR STUDYING THE -,6 ARE NOT TRANSFERABLE TO CLINICS AND HUMAN
PATIENTS AS OF YET� 4HUS� RESEARCHING THE MECHANICS AND MOLECULAR DYNAMICS OF HOW THE -,6 CHANGE THE
MENINGEAL AND PARENCHYMAL BRAIN COMPARTMENTS IS OF GREAT NECESSITY ;�=� )T IS CLEAR ALSO TO SEE THAT
STRUCTURALLY� THERE ARE GREAT CHANGES IN THE -,6 IN DIFFERENT CONDITIONS� AND THAT THESE STRUCTURAL CHANGES
RESULT IN GREAT MOLECULAR CHANGES IN THE CENTRAL NERVOUS SYSTEM� WHICH EITHER WORSEN OR IMPROVE DISEASE
PROGNOSIS� 4O STUDY THE VASCULAR STRUCTURE� AND IN THE FUTURE HOPEFULLY MODEL THESE DYNAMIC CAUSAL EFFECTS�
ACCURATE SEGMENTATION OF THE -,6 IS OF THE UTMOST IMPORTANCE�

�� #URRENT SEGMENTATION OF -,6

)MAGE SEGMENTATION IS NEEDED TO ISOLATE VESSELS FROM THE BACKGROUND SO THEY CAN BE ANALYZED FURTHER AND SO
THAT INFORMATICS CAN BE COMPUTED� -ICROSCOPIC IMAGES OF LYMPHATIC VASCULATURE ARE CURRENTLY SEGMENTED AND
QUANTIFIED BY WAY OF MANUALLY DRAWING A BOUNDARY AROUND THE EDGES OF A VESSEL� 7HILE PERFORMING MANUAL
QUANTIFICATION� WE FOUND THAT THIS MANUAL SEGMENTATION TENDS TO OVERESTIMATE VESSEL CONTENT AND CANNOT
ACCOUNT FOR SMALL HOLES OR LOOPS IN VASCULATURE� %VIDENCE OF OVERESTIMATION IS PROVIDED IN FIGURE �� !NOTHER
CHALLENGE WITH MANUAL QUANTIFICATION IS THAT IT DEPENDS ON THE OPERATOR� AND THUS THERE IS OR CAN BE SIGNIFICANT
VARIABILITY� I�E� THIRTY PERCENT DIFFERENCE IN THE MEASUREMENTS FOUND OF THE SAME IMAGE BY DIFFERENT OPERATORS
;�=� &URTHERMORE� MANUAL QUANTIFICATION IS A TEDIOUS AND LABORIOUS PROCESS WHICH CAN TAKE A SIGNIFICANT
AMOUNT OF TIME� &OR EXAMPLE� THE SEGMENTATION OF A SINGLE ����× ���� PIXEL IMAGE CAN TAKE OVER TWO HOURS�

/UR METHOD� ,Y-0HI �,YMPHATIC -ATTED 0HI� WHERE 0HI IS THE LEVEL SET VARIABLE	� IS THE FIRST AUTOMATED
METHOD FOR SEGMENTATION OF MENINGEAL LYMPHATIC VESSELS� DEVELOPED TO ADDRESS THE AFOREMENTIONED PROBLEMS
OF USER
BASED SEGMENTATION AND THE FOLLOWING INADEQUACIES OF EXISTING LEVEL
SET SEGMENTATION METHODS�

,EVEL SET SEGMENTATION IS A GEOMETRIC ADAPTIVE TECHNIQUE THAT BENEFITS FROM EASILY VARYING THE TOPOLOGY OF
ACTIVE CONTOURS BY SPLITTING AND MERGING ;��=� 4HIS GEOMETRIC SEGMENTATION UTILIZES A HIGHER
DIMENSIONAL
FUNCTION φ WHERE THE ZERO LEVEL SET REPRESENTS THE OBJECT BOUNDARY ;��=� 4HE MOTION OF THE OBJECT CONTOUR IS
PERFORMED BY WAY OF MINIMIZING AN ENERGY FUNCTIONAL E(φ) THAT YIELDS A ZERO LEVEL SET BOUNDARY ;��n��=�

,EVEL SET SEGMENTATION METHODS THAT TARGET TUBULAR STRUCTURES HAVE BEEN PROPOSED� :HAO ET AL ;��= USES A
REGIONAL KERNEL FOR VARIATIONAL LEVEL SET FORMULATION ;��= TO MAINTAIN THE CONTINUITY OF SEGMENTED RETINAL
VESSELS WITH VARIANT INTENSITY� WHERE THE KERNEL PARAMETERS ARE MANUALLY ADJUSTED FOR OPTIMAL PERFORMANCE�
,�3 ;��=� OR ,EGENDRE ,EVEL 3ET� MODELS THE INHOMOGENEITY OF TUBULAR STRUCTURES AND INTRA
REGION
ILLUMINATION VARIATION USING ,EGENDRE 0OLYNOMIALS� ,�3 IS HEAVILY BIASED TO THE INITIALIZATION OF THE LEVEL SET
FUNCTION� 4UBULARITY &LOW &IELD �4U&&	 ;��= IS A LEVEL SET METHOD DEVELOPED FOR NEURON SEGMENTATION� 7ITH
4U&&� TO COMPUTE CURVE EVOLUTION� AN ATTRACTION FORCE IS PROPOSED TO RECONNECT THE DISJOINT VESSEL
COMPONENTS THAT ARE LOST USING TRADITIONAL LEVEL SET SEGMENTATION METHODS�

&OR THE LEVEL SET METHODS DESCRIBED ABOVE ;��n��=� INITIALIZATION� OR AN OFFSET�THRESHOLD VALUE FOR THE LEVEL
SET BOUNDARY� IS CRITICAL TO THE FINAL RESULT� -OST LEVEL SET ALGORITHMS USE INTENSITY THRESHOLDING� COMBINED
WITH SEARCH OF SPECIFIC OBJECT SCALES WITHIN THE IMAGE� .EITHER OF THESE BASE METHODS ARE SUBSTANTIAL ESPECIALLY
FOR MENINGEAL LYMPHATIC SEGMENTATION BECAUSE OF THE WIDE VARIABILITY OF INTENSITY AND SCALE WITHIN EVEN ONE
SINGLE VESSEL�

4HE FOLLOWING ARE THE MAIN ROADBLOCKS TO SUCCESSFULLY SEGMENTING MENINGEAL LYMPHATIC VESSEL IMAGES� THE
VARIANT THICKNESS OF VESSELS� THE INHOMOGENEITY OF INTENSITIES WITHIN THE VESSELS� NOISE� AND BACKGROUND
CLUTTER� 4HE BACKGROUND CLUTTER IS PERHAPS THE MOST CHALLENGING ASPECT� IT CONSISTS OF BLOOD VESSELS WITH WHICH

�
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&IGURE �� %VIDENCE OF OVER
SEGMENTATION WHEN USING MANUAL ANNOTATION� /N THE LEFT IS A MANUAL SEGMENTATION CREATED BY A SINGLE
NEUROSCIENCE EXPERT� OUTLINING THE LYMPHATIC VESSELS IN YELLOW� 4HIS IS THE CURRENT STANDARD FOR LYMPHATIC VESSEL SEGMENTATION� /N
THE RIGHT IS AN EXAMPLE OF SEGMENTATION USING THE PROPOSED METHOD� ,Y-0HI�THE SEGMENTATION BOUNDARY IS DISPLAYED IN RED�
!RROWS INDICATE LOCATIONS AT WHICH THE USER IS UNABLE TO ANNOTATE HOLES� OR GAPS� IN THE VESSELS� 4HE IMAGE DEPICTS SPINAL
LYMPHATICS IN A MOUSE AFTER CONTUSION INJURY�

THE LYMPHATICS VESSELS ARE INTERTWINED� AS WELL AS OTHER CELL TYPES THAT ARE ALSO STAINED� 4HE CLUTTER CANNOT BE
REMOVED WITH THRESHOLDING BECAUSE THE VESSEL STAINING VARIES WIDELY IN INTENSITY� %XISTING LEVEL SET METHODS
DO NOT ACCOMMODATE THESE UNIQUE CHALLENGES OF LYMPHATIC VASCULATURE IMAGES� )N ORDER TO REMOVE
BACKGROUND CLUTTER� 4U&&� FOR INSTANCE� RELIES ON CONSISTENT VESSEL SIZE� WHICH CANNOT BE USED IN IMAGES OF
LYMPHATIC VASCULATURE� ,YMPHATIC VESSEL STRUCTURE VARIES WIDELY IN SHAPE� THICKNESS� AND STRUCTURE� )N
RESPONSE TO THESE CHALLENGES� WE PROPOSE A NEW METHOD WHICH WE CALL ,YMPHATIC -ATTED φ� OR ,Y-0HI TO
PERFORM IMAGE ANALYSIS OF LYMPHATIC VASCULATURE� ,Y-0HI UTILIZES A TECHNIQUE CALLED MATTING WHICH HAS BEEN
USED BY OTHERS AS APPLIED TO RETINAL IMAGES ;��=� (OWEVER� TO OUR KNOWLEDGE� THIS IS THE FIRST EVER REPORTED
WORK THAT FURTHER DEVELOPS AND USES MATTING APPLIED TO THE IMAGE ANALYSIS OF LYMPHATIC VASCULATURE�
&URTHERMORE� ,Y-0HI IS THE FIRST LEVEL
SET METHOD POWERED BY MATTING TO REDUCE CLUTTER IN SEGMENTATION�

-ANY OF THE MAJOR SEGMENTATION AND ANALYSIS CHALLENGES ARE SHOWN IN FIGURE �� %VEN FOR A NEUROSCIENTIST�
DETERMINING WHICH PARTS OF THE IMAGE BELONG TO THE LYMPHATIC VESSEL SET IS DIFFICULT� )N FIGURE ��C	� THERE ARE
SMALL ENDOTHELIAL CELLS AT THE BOTTOM MIDDLE CLUTTERING THE IMAGE� 4HE BOUNDARIES OF THE VESSELS ARE NOT
ALWAYS WELL
DEFINED� AND ARE SURROUNDED BY NOISE� (AND ANNOTATION� THUS� IS UNRELIABLE AS WELL AS
TIME
CONSUMING� 2EMOVING THESE REPEATING NOISY ARTIFACTS WHILE ACCURATELY SEGMENTING THE VESSEL BOUNDARY
MANUALLY IS CHALLENGING� AS THE DIFFERENCE IN INTENSITY BETWEEN THE NOISE AND THE VESSEL BOUNDARY IS SMALL�

�� 3EGMENTATIONMETHOD� ,YM0HI

���� -ATTING
,Y-0HI USES HIERARCHICAL IMAGE MATTING� A METHOD DEVELOPED FOR SEPARATION OF FOREGROUND VESSELS FROM
BACKGROUND IN FUNDUS IMAGES� -ATTING IS A TECHNIQUE USED TO SEPARATE FOREGROUND PIXELS FROM BACKGROUND
PIXELS� WHICH IS NECESSARY TO REMOVE THE BACKGROUND CLUTTER MENTIONED ABOVE� 4HE FOLLOWING MATTING
ALGORITHM IS CALLED HIERARCHICAL IMAGE MATTING ;��= AND IS COMPOSED OF THREE STEPS�

������ )NITIAL TRIMAP
)MAGE MATTING BEGINS WITH AN INITIAL TRIMAP� COMPOSED OF FOREGROUND VESSEL �6	� BACKGROUND �"	� AND
UNKNOWN �5	 PIXELS� )N THE ORIGINAL MATTING METHOD� THE TRIMAP IS GENERATED USING SIZE CRITERIA ON THE BLOOD
VESSELS� 3INCE LYMPHATIC VESSELS VARY WIDELY IN SIZE AND SHAPE� AND ENOUGH STUDIES HAVE NOT BEEN PERFORMED TO
SET A BOUND ON MAXIMUM OR MINIMUM VESSEL WIDTH� ,Y-0HI USES INTENSITY THRESHOLDS TO GENERATE THE INITIAL
TRIMAP� /N DATASETS WHERE THE STAINING STRENGTH VARIES HEAVILY �SPINAL AND SYNTHETIC DATASETS	� /TSU
MULTITHRESHOLDING IS USED TO PROVIDE TWO THRESHOLD LEVELS� LOW AND HIGH ;��=� /TSU MULTITHRESHOLDING HAS
BEEN SHOWN TO BE A SUCCESSFUL PRE
SEGMENTATION STEP FOR IRIS SEGMENTATION� FOLLOWED BY GEODESIC ACTIVE
CONTOURS IN ;��=� &OR THE PARTIAL AND WHOLE MOUNT DATASETS� THE LOWER THRESHOLD IS ��� AND THE UPPER
THRESHOLD IS ���� OUT OF ��� FOR A GRAYSCALE IMAGE �SINGLE CHANNEL	� 4HE LOWER THRESHOLD IS USED AS THE CUTOFF
FOR "� WHILE THE UPPER THRESHOLD IS USED FOR DEMARKING 6� 4HE PIXELS WITH INTENSITY BETWEEN THE TWO THRESHOLD
LEVELS FALL IN THE SET 5�

�
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&IGURE �� /NE EXAMPLE IMAGE� 4HE ORIGINAL IMAGE IS SHOWN ON THE LEFT �A	� AND THE CONTRAST ENHANCED IMAGE IS SHOWN ON THE RIGHT
�B	� 4HE CONTRAST ENHANCEMENT DISPLAYS THE CHALLENGES OF NOISE� ARTIFACTS� INTENSITY VARIATION� AND BACKGROUND CLUTTER� 4HE FINAL
IMAGE �C	 IS A DETAIL IMAGE FROM �B	�

������ 3TRATIFICATION
4HE MINIMUM DISTANCE FROM A VESSEL PIXEL IN 6� DI� IS CALCULATED FOR EACH PIXEL IN 5� 4HE PIXELS IN 5 ARE
STRATIFIED INTO HIERARCHIES BASED ON THIS MINIMUM DISTANCE� 5NKNOWN PIXELS� �PIXELS THAT FALL BETWEEN THE
HIGHER AND LOWER THRESHOLDS	� WITH THE SAME DISTANCE� DI ARE COLLECTED INTO ONE HIERARCHY� 4HE HIERARCHIES ARE
ORDERED BASED ON DISTANCE� WITH THE FIRST HIERARCHY CONTAINING ALL UNKNOWN PIXELS WITH THE LOWEST DISTANCE
FROM FOREGROUND PIXELS� 4HE UNKNOWN PIXELS ARE LABELED IN THE NEXT STEP� IN ORDER OF HIERARCHY�

������ (IERARCHICAL UPDATE
4HE HIERARCHIES ARE UPDATED IN ORDER� FROM CLOSEST DISTANCE TO 6 TO FARTHEST� )N A GRID CENTERED ON EACH
UNKNOWN PIXEL� CORRELATIONS ARE CALCULATED BETWEEN THE UNKNOWN PIXEL AND SURROUNDING KNOWN
PIXELS�ALREADY LABELED AS BACKGROUND OR FOREGROUND FROM THE INITIAL TRIMAP OR LOWER HIERARCHIES	� )N THE
FOLLOWING� A SUBSCRIPT OF U REFERS TO AN UNKNOWN PIXEL� AND THE SUBSCRIPT K REFERS TO A PIXEL IN THE KNOWN SET�
4HE CORRELATION FUNCTION IS COMPOSED OF A COLOR COST FUNCTION �βC�U� K		 AND A SPATIAL COST FUNCTION �βS�U� K		�
4HE COLOR COST FUNCTION IS DEFINED AS βC(U,K) = ||CU − CK||� WHERE CU AND CK ARE THE INTENSITIES OF THE UNKNOWN
AND KNOWN PIXELS� RESPECTIVELY� 4HE INTENSITY IS TAKEN IN THE RED CHANNEL OF THE ORIGINAL IMAGE� 4HE SPATIAL

COST FUNCTION IS βS(U,K) =
‖XU−XK‖−XMIN

XMAX−XMIN
� WHERE XU AND XK ARE THE SPATIAL COORDINATES OF THE PIXELS U AND K�

RESPECTIVELY� XMAX AND XMIN ARE NORMALIZATION TERMS� NAMELY� THE MAXIMUM AND MINIMUM DISTANCES BETWEEN
THE UNKNOWN PIXEL U AND ANY KNOWN PIXEL K IN THE SURROUNDING GRID�

4HE COMBINED CORRELATION FUNCTION IS

β(U,K) =
�

βC(U,K)+βS(U,K)
��	

WHERE U IS THE UNKNOWN PIXEL AT THE CENTER OF THE WINDOW AND K IS THE KNOWN PIXEL WITHIN THE WINDOW BEING
USED FOR COMPARISON�

!N UNKNOWN PIXEL IS LABELED AS FOREGROUND IF β(U,6)> β(U,")� AND VICE VERSA� !FTER ALL UNKNOWN PIXELS
IN A HIERARCHY HAVE BEEN LABELED� THE NEXT HIERARCHY IS UPDATED USING THE INITIAL FOREGROUND AND THE NEWLY

�
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&IGURE �� 4HE TOP SHOWS THE INITIAL TRIMAP� CONSISTING OF BACKGROUND� UNKNOWN PIXELS� AND ESTIMATED FOREGROUND� )MAGES ARE
BINARY� WHITE INDICATING BELONGING TO THE SET IN QUESTION� I�E� BACKGROUND� FOREGROUND� UNKNOWN� !FTER IMAGE MATTING� THE
CALCULATED BACKGROUND AND FOREGROUND HAVE CONVERGED� &INAL SEGMENTATION RESULTS ON THIS IMAGE ARE SHOWN IN FIGURE ���

LABELED PIXELS FROM THE PREVIOUS HIERARCHIES� 4HE TRANSITION FROM INITIAL TRIMAP TO THE FINAL MATTING RESULT IS
SHOWN IN FIGURE �� 4HE MATTING ALGORITHM PROVIDES MORE SEPARATION BETWEEN BACKGROUND AND FOREGROUND
ELEMENTS THAN SIMPLE THRESHOLDING� (OWEVER� THE MATTING RESULT IS NOT SMOOTH BECAUSE THE METHOD IS NOT
ITERATIVE AND HAS NO SMOOTHNESS CONSTRAINTS� WHICH IS WHY IT IS IN COMBINATION WITH LEVEL
SET SEGMENTATION�

���� #URVE EVOLUTION
4O ADDRESS THE CHALLENGE OF SEGMENTING LYMPHATIC VESSELS� WE LEVERAGE AND EXTEND 4U&& ;��= AS THE BACKBONE
OF OUR PROPOSED LEVEL SET SEGMENTATION METHOD� -INIMIZATION OF THE ENERGY FUNCTIONAL E(φ) IS SOLVED BY
GRADIENT DESCENT� USING

∂φ

∂T
= FREG(X)+FEVOLVE(X)+FATTR(X) ��	

FROM ;��=� FREG� FEVOLVE� AND FATTR ARE FORCES� WHICH ARE DEFINED AND APPLIED WITH RESPECT TO THE NORMAL

DIRECTION OF THE IMPLICIT FUNCTION� ∂φ
∂T �AS DESCRIBED BELOW	� 4HE FREG TERM REGULARIZES THE LENGTH OF THE ZERO

LEVEL SET� WHICH CONTROLS THE SMOOTHNESS OF THE CONTOUR� FEVOLVE DRIVES THE EVOLUTION OF THE CURVE WHERE A
COMBINATION OF AXIAL AND ORTHOGONAL VECTOR FIELD IS USED TO ACHIEVE THE CURVE PROPAGATION PERPENDICULAR TO
THE VESSEL BOUNDARY AND ALONG THE VESSEL AXIS� RESPECTIVELY� )N 4U&&� THIS VECTOR FIELD IS CREATED USING A
EDGEMAP OF THE VESSELNESS RESPONSE MAP� PRODUCED BY ;��=� AND TUNED BY THE SCALE PARAMETER DETERMINING
THE THICKNESS OF THE VESSELS� !S TUNING THIS PARAMETER IS DIFFICULT FOR LYMPHATIC VESSELS� WHERE THE VESSEL SCALE
VARIES GREATLY� IN ,Y-0HI� THE EDGEMAP IS INSTEAD COMPUTED ON THE ORIGINAL IMAGE�

FATTR ACTS FOR CONNECTING THE DISCONTINUOUS FRAGMENTS IN A WAY OF CREATING AN ATTRACTION FORCE FIELD USING
VECTOR FIELD CONVOLUTION �6&#	 ;��=� 4HE VECTOR X IS A POSITION IN THE IMAGE� FREG = ν�DIV[N(X)]δε(φ) WHILE

FATTR(X) = ν�

P∑

I=�

P∑

J#=I

F (I,J)
ATTR (X),∀X ∈ Ω. ��	

4HE EXPRESSION OF FEVOLVE AND THE FULL FORMS AND DERIVATIONS OF ALL FORCES CAN BE FOUND IN ;��=�
&ORFREG� ν� IS A SMOOTHING PARAMETER� N(X) IS THE INWARD NORMAL UNIT VECTOR TO φ� AND δε IS THE REGULARIZED

$IRAC DELTA FUNCTION ;��=� &OR FATTR� ν� DECIDES THE EFFECT OF THE ATTRACTION FORCE� AND P IS THE NUMBER OF
DISJOINT CONNECTED COMPONENTS THAT CAN POTENTIALLY BE ATTRACTED TO ONE ANOTHER� Ω IS THE IMAGE� AND D IS THE

DIMENSION OF SAID IMAGE� 4HE LOCAL ATTRACTION FORCE IS DEFINED AS FOLLOWS� F (I,J)
ATTR (X) = κI 〈ΓI(X),−N(X)〉θJ(X)�

�
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I� J REFER TO TWO DIFFERENT CONNECTED
COMPONENTS� κI IS THE NORMALIZED MASS OF THE @CHILD� COMPONENT� WHICH
CAN BE AN ISOLATED SEGMENT THAT IS THE SMALLER OF THE TWO� 4HE INDICATOR FUNCTION θJ(X) DETERMINES IF A CHILD
COMPONENT IS WITHIN THE CONVEX HULL OF THE @PARENT�� THE LARGER OF THE TWO COMPONENTS� USUALLY A BRANCH OF THE
NEURON� ΓI IS THE ATTRACTION FORCE FIELD COMPUTED VIA THE 6&# TECHNIQUE ;��=�

,EVEL SET EVOLUTION IS AN ITERATIVE PROCESS� WHERE THE LEVEL SET BOUNDARY MOVES CLOSER TO THE OBJECT
BOUNDARY OVER MANY ITERATIONS� ! NOVEL MODIFICATION WE MAKE TO LEVEL SET CURVE EVOLUTION TAKES PLACE DURING
THE ITERATION PROCESS� 7E DESIGN A FORCE FIELD OVER THE IMAGE THAT IS MADE UP OF THE COMPONENT FORCES�

&(I, J) = &REG(I, J)+ &EVOLVE(I, J)+ &ATTR(I, J). ��	

4HIS FORCE FIELD IS THE VELOCITY OF THE LEVEL SET EVOLUTION� OR ∂φ
∂T � 4HE VELOCITY AT EACH POINT �I� J	 HAS A

MAGNITUDE AND A DIRECTION� 4HE MAGNITUDE IS THE SPEED AT WHICH WE MOVE THE ZERO LEVEL SET INWARDS OR
OUTWARDS TOWARDS THE OBJECT BOUNDARY �MOVING THE LEVEL SET ELEVATION UP OR DOWN	� CALCULATED FROM THE
COMPONENT FORCES� (OWEVER� WE MODIFY THE DIRECTION OF THE VELOCITY ACCORDING TO THE MATTING RESULT� AS
EXPLAINED BELOW�

������ -ODIFYING THE VELOCITY FIELD
,Y-0HI CHANGES THE SIGN OF THE VELOCITY FIELD AT EACH PIXEL ACCORDING TO WHETHER IT IS LABELED FOREGROUND OR
BACKGROUND BY MATTING� !FTER COMPUTING ∂φ

∂T FROM ��	� ,Y-0HI USES THE FOLLOWING DECISION RULE

∂φ

∂T I,J
=






∣∣∣ ∂̂φ∂T I,J
∣∣∣ IF PI,Jε6

−
∣∣∣ ∂̂φ∂T I,J

∣∣∣ IF PI,Jε"
��	

TO CHANGE THE SIGN OF ∂φ
∂T AT EACH PIXEL LOCATION �I� J	� P IS THE MATTING RESULT AT LOCATION �I� J	 AND 6�" ARE THE

FOREGROUND AND BACKGROUND MAPS PRODUCED BY MATTING� ∂̂φ
∂T I,J

IS THE ORIGINAL LEVEL SET PROPAGATION AT EACH

ITERATION BEFORE MODIFICATION� )F P AT I� J BELONGS TO THE FOREGROUND MAP �6	 CREATED BY MATTING� THE SIGN ON
∂φ
∂T IS MADE POSITIVE� TO DRIVE THE ZERO LEVEL SET TOWARDS THE VESSEL BOUNDARY� 4HE CONTOUR WILL EVOLVE ACCORDING
TO THE REASSIGNED VELOCITY FUNCTION TO SEGMENT THE TRUE VESSEL BOUNDARY�

! CARTOON ILLUSTRATION IS SHOWN IN FIGURE � AT ITERATION T� !T TIME T� THE ORIGINAL VELOCITY FIELD� CALCULATED
FROM THE 4U&& FORCES� IS SHOWN BY BROWN ARROWS� 4HE YELLOW SHAPE REPRESENTS THE CALCULATED FOREGROUND� 6�
FROM HIERARCHICAL MATTING� )N �!	� THE RED ARROWS REPRESENT AN INCORRECT DIRECTION FOR CURVE EVOLUTION� 4HESE
ARROWS ARE DRIVING φ INSIDE THE VESSEL� 4HESE DIRECTIONS ARE CORRECTED IN �"	� USING THE MATTING LABEL
CALCULATED� 4HE NOW GREEN ARROWS OF THE CONTOUR EVOLUTION SPEED HAVE BEEN CHANGED IN THE NORMAL DIRECTION�

�� )MAGES OF -,6

���� $ESCRIPTION OF THE DATASETS USED
4HERE ARE THREE REAL IMAGE DATASETS USED FOR THE EXPERIMENTS PERFORMED� !LL THREE DATASETS CONTAIN CONFOCAL
MICROSCOPY IMAGES TAKEN OF LYMPHATIC VESSELS IN MICE� STAINED WITH ,96%
�� 4HE IMAGES WERE ACQUIRED BY THE
+IPNIS LABORATORY AT THE #ENTER FOR "RAIN )MMUNOLOGY AND 'LIA �")'	� THEN AT THE 5NIVERSITY OF 6IRGINIA
3CHOOL OF -EDICINE� $EPARTMENT OF .EUROSCIENCE� 4HE CURRENT IMAGING TECHNOLOGY PRODUCES �$ IMAGES� AS
THE LYMPHATIC VESSELS ARE LAID ON A SLIDE AND THEN IMAGED� )N THE FUTURE� WE HOPE TO EXTEND ,Y-0HI�
PARTICULARLY THE MATTING ALGORITHM� TO �$ IMAGES OF LYMPHATICS�

4HERE ARE �� IMAGES IN TOTAL� 3EVENTEEN OF THESE ARE IMAGES OF THE SUPERIOR SAGITTAL SINUS IN THE MOUSE
BRAIN� WITH NINE IMAGES TAKEN IN WHOLE
MOUNT� AND EIGHT IN PARTIAL
MOUNT� !N EXAMPLE OF THE WHOLE
MOUNT
SINUS IS SHOWN IN FIGURE ��� 4HE IMAGES ARE �� BITS PER PIXEL FOR THE SPINAL DATASET� AND � BITS PER PIXEL FOR THE
WHOLE AND PARTIAL MOUNT DATASETS� 4HE IMAGE SIZE VARIES WITHIN EACH DATASET� 4HE WHOLE
MOUNT IMAGES ARE
����× ��� PIXELS� WITH ONE IMAGE HAVING DIMENSIONS ����× ��� PIXELS� 4HE RESOLUTION IS ���� PIXELS PER
MICRON� 4HE PARTIAL
MOUNT IMAGES VARY MORE WIDELY IN DIMENSION� WITH THE MINIMUM WIDTH AND HEIGHT
BEING ���� AND ���� PIXELS� RESPECTIVELY� 4HE MAXIMUM WIDTH AND HEIGHT ARE ���� AND ���� PIXELS�
2ESOLUTION IS ���� PIXELS PER MICRON�

4HE TWENTY
TWO REMAINING IMAGES ARE OF LYMPHATIC VESSELS IN THE MOUSE SPINAL CORD POST
INJURY� 4HESE
IMAGES ARE REFERRED TO AS THE SPINAL DATASET� AN EXAMPLE OF WHICH IS SHOWN IN FIGURE ��� 7HILE THESE VESSELS DO
NOT ORIGINATE FROM THE SPINAL MENINGES� THEY ARE PHENOTYPICALLY RELATED TO THE MENINGEAL LYMPHATIC VESSELS�
4HE SPINAL DATASET ORIGINAL IMAGES VARY THE MOST WIDELY IN DIMENSION� 4HE MINIMUM WIDTH AND HEIGHT ARE
���� AND ��� PIXELS� AND THE MAXIMUM WIDTH AND HEIGHT ARE ���� AND ���� PIXELS� 4HE RESOLUTION FOR THESE
IMAGES IS ����� PIXELS PER MICRON�

)T IS VALUABLE TO HAVE THREE DATASETS WITH DIFFERENT RESOLUTIONS BECAUSE DIFFERENT LEVELS OF VESSEL DETAILS ARE
CAPTURED� 4HE VESSEL SIZE AND STRUCTURE VARIES WIDELY FOR EACH DATASET� 4HE WHOLE
MOUNT IMAGES CONTAIN THE

�
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&IGURE ��-ODIFYING THE VELOCITY FIELD THAT DRIVES CURVE EVOLUTION� 4HE ZERO LEVEL SET CONTOUR IS SHOWN WITH A PURPLE DASHED LINE�
4HE YELLOW SHAPE REPRESENTS THE FOREGROUND CALCULATED BY HIEARCHICAL MATTING� )N �!	� THE RED ARROWS ALONG THE LEVEL SET CONTOUR
ARE DRIVING CURVE EVOLUTION FURTHER TOWARDS THE VESSEL INTERIOR� )N �"	� THIS IS CORRECTED USING THE DECISION RULE ��	� 4HE CORRECTED
VELOCITY FIELD DRIVES CURVE EVOLUTION AT SUBSEQUENT ITERATIONS TOWARDS THE OUTER VESSEL BOUNDARY�

MOST CLUTTER� AS THEY HAVE THE ENTIRE STRUCTURE OF THE BLOOD VESSEL NETWORK PRESENT IN THE SINUS� SHOWING THE
LYMPHATIC VESSELS GROWING ON TOP OF AND AROUND THE BLOOD VESSEL NETWORK �SHOWN IN FIGURE ��	� 4HE
PARTIAL
MOUNT IMAGES PROVIDE FINER DETAIL ALONG WITHIN THE SINUS� GENERALLY DISPLAYING THE OVERALL VESSEL
STRUCTURE AT FINER DETAIL�WHICH NECESSARILY REMOVES HIGHER LEVEL STRUCTURE� SUCH AS BRANCHING OR LOOPING� )N
THE SPINAL DATASET� LYMPHATIC VESSELS AGGREGATE IN ROUNDER SHAPES� WITH A LARGE AMOUNT OF HOLES OR GAPS IN THE
VESSELS� AS SHOWN IN FIGURE �� 4HE VESSELS IN THE SPINAL IMAGES ARE OVERALL NOT AS THIN OR ELONGATED AS THE
MENINGEAL LYMPHATIC VESSELS SHOWN IN THE OTHER TWO DATASETS�

4HE DRIVING BIOLOGICAL INTEREST IN THIS APPROACH IS IN SEGMENTING MENINGEAL LYMPHATICS IN THE SINUS� BUT
BECAUSE OF LIMITED DATA ��� IMAGES	� TESTING IS ALSO PERFORMED ON THE SPINAL IMAGES� (IGH PERFORMANCE OF
,Y-0HI ON THE SPINAL DATASET MAY IMPLY PROMISING APPLICATION TO GENERALIZED LYMPHATIC VESSEL IMAGES�

���� #REATION OF MANUAL ANNOTATION
-ANUAL SEGMENTATION WAS PERFORMED FOR COMPARISON WITH AUTOMATED SEGMENTATION METHODS� 4HREE
OPERATORS CREATED SEPARATE ANNOTATIONS FOR EACH DATASET� AND THE IMAGES WERE MERGED USING MAJORITY VOTING TO
CREATE ONE CONSENSUS SEGMENTATION IMAGE FOR COMPARISON� 4HE VESSELS ARE PRIMARILY DISTINGUISHED BY
BRIGHTNESS OR COLOR� AND ALSO BY SHAPE AND RELATION TO SURROUNDINGS� 4HIS MANUAL QUANTIFICATION WAS
PERFORMED USING THE SOFTWARE &)*) �)MAGE*	� A *AVA
BASED IMAGE EDITING SOFTWARE PACKAGE� 4HE MANUAL
ANNOTATION IS GENERATED BY USING THE @#LEAR� TOOL UNDER @%DIT�� WITH @&REEHAND� SELECTION� 4HE USER DRAWS
REGIONS AROUND OBJECTS IN THE IMAGE THAT ARE NOT CONSIDERED LYMPHATIC VESSEL� AND THESE ARE CLEARED
SUCCESSIVELY� UNTIL ONLY LYMPHATIC VESSEL CONTENT REMAINS IN THE IMAGE� !NNOTATING IN THE VICINITY OF SMALL
HOLES AND GAPS IN THE VESSEL PRESENTS DIFFICULTLY� ZOOMING INTO THESE SMALLER REGIONS MEANS THAT THE INTENSITY
VARIATION BETWEEN VESSEL AND NON
VESSEL ARE LESS EASILY DETECTABLE BY THE HUMAN EYE� DUE TO NOISE� /FTEN� THESE
HOLES OR GAPS ARE OVERLOOKED OR IMPROPERLY MANUALLY SEGMENTED� 7E THUS ADD A SYNTHETIC DATASET TO OUR
TESTING DATA� TO PROVIDE UNIMPEACHABLE GROUND TRUTH�

���� 3YNTHETIC DATASET
7E ALSO TEST PERFORMANCE ON A SYNTHETIC DATASET OF ��� IMAGES� 7E CHOOSE TO TEST USING SYNTHETIC DATA IN
ADDITION TO REAL DATA� BECAUSE THERE ARE ERRORS IN THE HAND ANNOTATION� DUE TO NOT REMOVING THE MANY HOLES
PRESENT IN THE VESSELS� 4HUS� ONLY TESTING WITH REAL DATA MEANS THAT INSTEAD OF COMPARING OUR RESULTS TO GROUND
TRUTH� WE ARE COMPARING THE SIMILARITY TO ANOTHER FLAWED MEASUREMENT� /UR METHOD� ,Y-0HI� MAY IN FACT
CAPTURE MORE ACCURATELY THE TRUE SHAPE OF LYMPHATIC VASCULATURE� 4HEREFORE� WE TEST ALL METHODS ON A

�
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&IGURE �� 3HOWING THE EVOLUTION OF ONE VESSEL SHAPE �VESSEL �	 TO ANOTHER SHAPE �VESSEL �	 ALONG A GEODESIC PATH� I�E� MORPHING
BETWEEN ONE SHAPE TO ANOTHER� !T THE TOP LEFT ARE SHOWN THE TWO REGISTERED SHAPES�

SYNTHETIC DATASET OF OUR OWN CREATION� WHERE GROUND TRUTH PERFECTLY CAPTURES THE TRUE VESSELS SO THAT ANY
COMPARISONS ARE MORE MEANINGFUL�

4HERE IS ALSO A LIMITED AMOUNT OF DATA FOR ANALYSIS PURPOSES� $ATA COLLECTION IS EXPENSIVE IN THREE WAYS�
TIME� MONEY� AND ANIMAL LIFE�AS EACH IMAGE OF MENINGEAL LYMPHATICS REQUIRES THE SACRIFICE OF ONE MOUSE� )N
THIS SECTION� WE PROPOSE A METHOD FOR CREATING SYNTHETIC VESSEL DATA SO THAT EVERYONE WHO WISHES TO STUDY THE
MENINGEAL LYMPHATICS CAN HAVE ACCESS TO THESE DATA�

7E BUILD OUR OWN DEFORMATION MODEL FOR LYMPHATIC VESSELS� ALLOWING US TO MORPH THE VESSELS INTO
REASONABLE FORMATIONS� !LL OF OUR DEFORMATIONS CAN BE RUN BY NEUROSCIENTISTS TO ENSURE THEY ARE IN LINE WITH
WHAT CHANGES THE VESSELS NATURALLY UNDERGO� %LASTIC DEFORMATION OF SHAPES IS A MUCH EXPLORED AREA OF INTEREST
WITHIN IMAGE PROCESSING� 3IMILAR OBJECT MORPHING APPROACHES ARE USED THROUGHOUT THE IMAGE PROCESSING
LITERATURE�

)N ;��=� DEFORMATION IS USED TO STRETCH AND BEND IMAGES OF CELLS INTO NEW� BIOLOGICALLY PLAUSIBLE
SHAPES�THUS CREATING MORE DATA� 4HE AUTHORS BUILD A CONVOLUTIONAL NEURAL NETWORK FOR SEGMENTING CLOSED
LOOP STRUCTURES� I�E� CELLS� IN BIOLOGICAL MICROSCOPY IMAGES� 4HE SECOND MAJOR CONTRIBUTION THAT THE AUTHORS
MAKE IS TO USE THEIR OWN ELASTIC DEFORMATION MODEL TO CREATE NEW TRAINING DATA FROM THE LIMITED DATA
AVAILABLE� 4HE DEFORMATIONS ARE CREATED BY RANDOMLY DISPLACING PIXEL INTENSITIES ALONG A �× � WINDOW� 4HE
INTERIOR PIXEL DISPLACEMENTS ARE THEN INTERPOLATED� 5SING THE AUGMENTED DATA AND THE TRAINED U
NET�
SEGMENTATION RESULTS ARE VASTLY IMPROVED COMPARED TO OTHER COMPETING METHODS�

4HE FUNDAMENTAL DRAWBACK OF USING DEFORMATION AS DESCRIBED IN THE U
NET PAPER IS THAT THE DEVIATIONS
TAKE PLACE IN %UCLIDEAN SPACE� 4HESE DEFORMATIONS ARE NOT GUARANTEED TO BE MEANINGFUL� I�E� HAVE ANY
SIMILARITY TO REAL BIOLOGICAL SHAPES� 4O ENSURE THAT THE DEFORMATIONS WE USE TO GENERATE NEW DATA ARE
BIOLOGICALLY SOUND� WE MOVE TO DEFORMATIONS ALONG THE SHAPE SPACE� )N ;��=� THE AUTHORS USE THIS IDEA OF SHAPE
SPACES TO SHOW THAT SHAPES RESIDE ON HIGH DIMENSIONAL MANIFOLDS� "ETWEEN DIFFERENT SHAPES ON THIS MANIFOLD�
A GEODESIC CAN BE TAKEN� WHICH IS THE SHORTEST PATH BETWEEN TWO SHAPES ON A MANIFOLD� 3AMPLING POINTS ALONG
THIS GEODESIC SHOWCASES THE EVOLUTION OF ONE SHAPE TO ANOTHER SHAPE� !N EXAMPLE OF THIS IS SHOWN IN
TRAJECTORY USING LYMPHATIC VESSEL DATA IS SHOWN IN FIGURE �� 4HE SAMPLE SHAPES THAT LIE IN BETWEEN ARE
DEFORMATIONS OF THE ORIGINAL SHAPES ;��=� 7E PROPOSE TO BUILD A LARGE LYMPHATIC DATASET BY SAMPLING THESE
DEFORMATIONS FOUND BETWEEN THE TRUE VESSEL DATA AVAILABLE�

3RIVASTAVA ET AL ;��= INTRODUCES THE SQUARE ROOT VELOCITY �326	 TRANSFORM FOR SHAPES TO REMOVE
TRANSLATION� SCALING� AND ROTATION DISCREPANCIES� ! SHAPE SPACE IS ROTATION AND SCALE INVARIANT� 4HE AUTHORS
ALSO INTRODUCE A PATH STRAIGHTENING APPROACH TO FIND THE GEODESICS BETWEEN SHAPES ON THE SHAPE SPACE� 7E
PROPOSE USING THE SQUARE ROOT VELOCITY FUNCTION �326&	 TO TRANSFORM SHAPES OF LYMPHATIC VESSELS INTO NEW
SHAPES� AS A METHOD FOR DATA AUGMENTATION�

4HE FOLLOWING WORKFLOW EXPLAINS HOW THE SYNTHETIC IMAGES WERE CREATED� 4O BEGIN� NEW VESSEL SHAPES
MUST BE GENERATED� %LASTIC DEFORMATION IS USED TO STRETCH EXISTING VESSEL SHAPES INTO NEW VESSELS ;��=�

�
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&IGURE �� ! REPRESENTATION OF THE 326& COMPUTED AT LOCATIONS ON THE CLOSED VESSEL BOUNDARY SHOWN IN WHITE� 4HE FUNCTION ALLOWS
THE CURVE TO STRETCH ELASTICALLY INTO ANOTHER SHAPE� /N THE LEFT� THE ORIGINAL POINTS ARE LABELED β�T	� STARTING AT T= � AT ONE END OF
THE SHAPE AND ENDING AT T= � AFTER TRAVERSING THE WHOLE SHAPE� )N THE MIDDLE� THE GRADIENT� OR TANGENT SLOPE� AT EACH POINT IS
CALCULATED� 4HE RIGHTMOST SHAPE HAS THE LABELED POINTS Q�T	 AFTER THE 326 FUNCTION ��	� HAS BEEN UTILIZED�

������ 6ESSEL SHAPE GENERATION
&IRST� FROM THE MANUAL SEGMENTATION OF PARTIAL MOUNT IMAGES� ISOLATE EACH INDIVIDUAL VESSEL SEGMENT� 4HE
MANUAL SEGMENTATION MUST BE USED IN THIS STEP� TO PREVENT BIAS FROM ANY AUTOMATED SEGMENTATION METHODS�
4HEN� USE THE SQUARE ROOT VELOCITY FUNCTION �326&	 TO REPRESENT EACH SHAPE� THUS ACCOUNTING FOR ROTATION�
SHIFT� AND SCALE VARIANCE ;��=� 4HESE ARE JUST THE OUTER CONTOURS�

4O USE THE 326&� FIRST� THE SHAPE BOUNDARY IS SAMPLED IN X� Y
SPACE� 4HREE HUNDRED SAMPLE POINTS ARE
USED TO ACHIEVE A SMOOTH SHAPE BOUNDARY� 5SING FEWER SAMPLE POINTS WILL NOT ALLOW FOR A SMOOTH BOUNDARY�
BUT USING MORE THAN THREE HUNDRED SAMPLE POINTS WILL GREATLY SLOW THE OVERALL SHAPE GENERATION PROCESS
WITHOUT MUCH BENEFIT IN TERMS OF SMOOTHNESS� 4HESE SAMPLE POINTS� DENOTED β� ARE LOCATIONS� WHICH ARE
TRANSFORMED BY

Q(T) =
˙β(T)√

‖ ˙β(T)‖
��	

THE 326 EQUATION ;��� ��=� ˙β(T) IS THE GRADIENT AT EACH POINT β�T	 ON THE ORIGINAL CURVE�
0RIOR TO USING 326� UNIT LENGTH CURVES ARE ENFORCED ON CLOSED CURVES �WHICH BEGIN AND END AT THE SAME

LOCATION	 TO REMOVE SCALING EFFECTS� %ACH LOCATION ON THE SHAPE IS A FUNCTION OF THE PARAMETER T ∈ ;�� �=� WITH
T= � AND T= � BEING THE BEGINNING AND END OF THE CURVE� 4HE PROCESS IS ILLUSTRATED IN THE SCHEMATIC SHOWN IN
FIGURE �� !FTER THE 326& HAS BEEN APPLIED� THE NEW POINTS ON THE CURVE� Q�T	� HAVE BEEN TRANSFORMED FROM P�T	
INTO THE SHAPE SPACE� WHERE ELASTIC BENDING� STRETCHING� AND SHRINKING IS POSSIBLE� 326 IS A SHAPE TRANSFORM
WHERE WE CAN STILL USE %UCLIDEAN COORDINATES TO DESCRIBE THE TRANSFORMED SHAPE� 326 SUPPORTS ELASTIC
DEFORMATION� UNLIKE PREVIOUS METHODS� SUCH AS ;��=� WHICH ONLY INCLUDE BENDING� AND NOT STRETCHING ENERGY�
4HE SAME DEFORMATION PROCESS IS REPEATED TO REPRESENT ANY HOLES� OR CAPILLARY LOOPS IN A VESSEL�

&ROM ANY TWO ORIGINAL VESSEL SHAPES� MORPH ALONG A SHAPE GEODESIC TO FIND NEW INTERPOLATED VESSEL
SHAPES� 4HE INTERPOLATED VESSELS ARE STRETCHED AND BENT VERSIONS OF THE ORIGINAL VESSELS� I�E� INTERMEDIATE
DEFORMATIONS ;��=� %SSENTIALLY� SAMPLE THE GEODESIC PATH TO GET CLOSED CURVE SHAPES� REPRESENTING THE VESSEL
EXTERIOR� 4HE SAMPLING CAN BE PERFORMED FINELY OR SPARSELY TO CREATE ANY NUMBER OF NEW SHAPES�

"ECAUSE THE MANIFOLD CONTAINING 326 TRANSFORMED SHAPES IS LOCALLY %UCLIDEAN� AFFINE TRANSFORMATIONS ARE
POSSIBLE� 3HAPE INTERPOLATION IS PERFORMED BY TAKING CONVEX COMBINATIONS OF Q� αQ� +(�−α)Q�� WHERE Q�
AND Q� ARE TWO 326 TRANSFORMED SHAPES� AND α∈ ;�� �= �INTERMEDIATE ALGORITHMIC TIME
STEPS	� Q� AND Q� MUST
HAVE THE SAME DIMENSIONS� &OR A TWO
DIMENSIONAL SHAPE� THE DIMENSION OF EACH Q IS N× �� WHERE N IS THE
NUMBER OF SAMPLES TAKEN TO CHARACTERIZE THE SHAPE �IN OUR CASE� ���	�

4HE 326 TRANSFORM ALSO ENABLES TRANSPORT OF DEFORMATION FROM ONE SHAPE TO ANOTHER SHAPE� 5SING
DEFORMATION TRANSPORT ;��=� THE HOLE SHAPES CAN BE MORPHED WITH THE SAME AMOUNT OF STRETCHING AND
BENDING AS THE INTERPOLATED VESSEL �AS USED FOR THE EXTERIOR	� %SSENTIALLY� WE USE THE SAME BENDING AND
STRETCHING ENERGY ON A NEW SHAPE� 'IVEN AN 326
TRANSFORMED SHAPE Q� AND AN INTERMEDIATE DEFORMATION TO A
SECOND KNOWN 326
TRANSFORMED SHAPE� THE SHOOTING VELOCITY V� CAN BE CALCULATED� 4HIS V� SIGNIFIES WHICH
DIRECTION AND HOW FAR TO TRAVEL ALONG THE MANIFOLD BEFORE REACHING THE DESIRED DEFORMATION� @4RANSPORT�
MEANS FINDING THE PARALLEL TRANSLATION OF V� �CALL IT V�	 FOR MORPHING THE NEW SHAPE�IN THIS CASE� A VESSEL
HOLE� &IGURE � SHOWS THIS INTUITIVELY�

,ET [QA�] AND [QB�] BE THE SHAPES OF A LYMPHATIC VESSEL� AT TWO POINTS ALONG A GEODESIC PATH� [QA�] IS THE
ORIGINAL VESSEL SHAPE IN 326
SPACE �INITIAL TIME τ A	� AND [QB�] IS SOME ARBITRARY DEFORMATION OF THE ORIGINAL
SHAPE� 7E CAN THINK OF THIS DEFORMATION HAVING OCCURRED AFTER A CERTAIN AMOUNT OF TIME� SAY AFTER TIME τ B�

��
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&IGURE �� )F V� IS THE VELOCITY USED TO REACH THE INTERMEDIATE DEFORMATION� V� IS THE VELOCITY TO APPLY THE SAME AMOUNT OF
DEFORMATION ON THE NEW SHAPE� IN THIS CASE� A HOLE� 4HE LOWER LEFT PANEL IS THE LARGE HOLE WITHIN THE VESSEL IN THE UPPER RIGHT PANEL�
3INCE SHAPE SPACES ARE OVERALL NONLINEAR MANIFOLDS� THE DEFORMATIONS OF ONE SHAPE CANNOT SIMPLY BE APPLIED TO ANOTHER� 4HE
MANIFOLD IS ONLY LINEAR WHEN THE SHAPE IS OF THE SAME TYPE�

4HIS CONTOUR DEFORMATION DEPENDS ON THE GEOMETRY OF THE LYMPHATIC VESSEL� .OW� TAKE A DIFFERENT OBJECT� A
VESSEL HOLE FROM THE ORIGINAL VESSEL SHAPE� WHICH IS SIMILAR TO THE LYMPHATIC VESSEL� BUT OBVIOUSLY NOT IDENTICAL
GEOMETRICALLY� 'IVEN ITS INITIAL SHAPE [QA�]� PRIOR TO ANY DEFORMATION� WE WISH TO PREDICT ITS SHAPE [QB�] AFTER THE
SAME AMOUNT OF TIME� τ B AS FOR THE EXTERIOR LYMPHATIC VESSEL� 7E THUS TAKE THE DEFORMATION THAT DEFORMED
[QA�] TO [Q

B
�] AND THEN APPLY THIS DEFORMATION TO [QA�]� USING THE FOLLOWING�

�A	 ,ET α��τ 	 BE A GEODESIC BETWEEN THE SHAPES [QA�] AND [QB�] IN THE 326& TRANSFORMED SHAPE SPACE AND
V� ≡ α̇�(τA) BE ITS INITIAL VELOCITY� �Q� AND Q� REPRESENT TWO DIFFERENT SHAPES� AND A OR B MEAN A
DEFORMATION	�

�B	 5SING FORWARD PARALLEL TRANSLATION� WE TRANSPORT V� TO [QA�]� ,ET α�− ��τ 	 BE A GEODESIC FROM [QA�] TO [QA�] IN
THE SAME SHAPE SPACE� #ONSTRUCT A VECTOR FIELD ωτ SUCH THAT ω� = V� AND

$ω
Dτ = � FOR ALL THE POINTS ALONG

α�− �� 0LEASE SEE ;��= FOR ADDITIONAL DETAILS� &IGURE � SHOWS THE RELATIONSHIP BETWEEN Q� AND Q� FOR MORE
CLARITY�

�C	 4HEN� V�≡ω��	 IS A PARALLEL TRANSLATION OF V��
�D	 5SING V� AS THE INITIAL VELOCITY� FORM A GEODESIC STARTING AT [QA�]� WHICH AT TIME
STEP τ B WILL END IN

DEFORMATION [QB�]�

4HE ORIGINAL WORK ;��= ON DEFORMATION TRANSPORT IS FOR APPLICATIONS WHERE VIEWING ANGLES OF OBJECTS
CHANGE� (ERE� WE SUBSTITUTE THE CHANGE IN @VIEWING ANGLE� FOR A MOMENT IN TIME� EITHER BEFORE OR AFTER
DEFORMATION� 4HIS IS THE FIRST USE OF THE THEORY FOR MODULATING THE INTERIOR OF A AN OBJECT� SINCE A SHAPE
NECESSARILY ONLY RETAINS THE BOUNDARY�

! NEW� COMPLETE VESSEL SHAPE INCLUDES AN INTERPOLATED SHAPE PLUS SIMILARLY DEFORMED HOLES PLACED
PROPORTIONALLY �SEMI
RANDOMLY	 ACCORDING TO VESSEL SIZE WITHIN THE INTERPOLATED VESSEL� ! VESSEL SKELETON IS
GENERATED USING THE METHODOLOGY IN ;��=� AND THE RADIUS OF THE VESSEL AT EACH SKELETON POINT IS CALCULATED�
USING SIZE
CONSTRAINED INSCRIBED SPHERES ;��=� #ONSIDERING THE ORIGINAL SIZE OF THE HOLE PRIOR TO DEFORMATION�
THE POINT WITHIN THE VESSEL IS FOUND WHERE THE VESSEL DIAMETER BEST MATCHES THE ORIGINAL HOLE SIZE� AND THE
DEFORMED HOLE IS PLACED AT THE BEST DIAMETER MATCH� 4HIS ENSURES THE DEFORMED HOLE FITS WITHIN THE BOUNDARY
OF DEFORMED VESSEL� 0LACING THE HOLES BASED ON THE ORIGINAL HOLE LOCATION UNFORTUNATELY DOES NOT SCALE AS THE
VESSEL MAY SHRINK AT CERTAIN POINTS TO WHERE THE HOLE WILL NO LONGER FIT�

.EW �FINAL	 BINARY VESSEL IMAGES ARE PRODUCED AT THIS STAGE� !N EXAMPLE IS SHOWN IN FIGURE ��
"IOINFORMATICS CAN BE COMPUTED ON THESE NEW SHAPES� 4HE FULL DIAGRAM ILLUSTRATING THE SHAPE INTERPOLATION
PROCESS IS SHOWN IN FIGURE ��

)N SUMMARY� WE CAN LOOP THROUGH COMBINATIONS OF VESSELS�TO CREATE A NEW VESSEL� MORPH BETWEEN TWO
VESSEL SHAPES ON THE SHAPE SPACE� 4HE TWO ORIGINAL VESSEL SHAPES ARE PICKED FROM ALL POSSIBLE VESSEL PAIRS� &OR

��
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&IGURE �� /UTPUT FROM THE SHAPE DEFORMATION PROCESS IS AN INDIVIDUAL BINARY VESSEL� WITH FITTED DEFORMED HOLES�

&IGURE �� 3HAPE INTERPOLATION�FROM AN IMAGE TO A SHAPE� 3TREAMLINED� GENERALIZABLE WORKFLOW FROM IMAGES TO NEW� COMPLETE
VESSEL SHAPES�

EXAMPLE� IN A DATASET OF �� IMAGES� WHERE THERE ARE ��� ORIGINAL VESSELS� THE TOTAL NUMBER OF VESSEL PAIRS IS
��� ���� 4O CREATE A FULL MENINGEAL LYMPHATIC IMAGE� COMBINATIONS OF THESE NEW VESSEL SHAPES ARE USED� !S THE
TOTAL NUMBER OF POSSIBLE INTERPOLATED VESSELS IS INCREDIBLY LARGE �THERE ARE MULTIPLE INTERPOLATIONS POSSIBLE FOR
EACH OF THOSE ��� ��� PAIRS	� AND NEW VESSEL SHAPES CAN BE ENDLESSLY COMBINED IN DIFFERENT SELECTIONS OR
GROUPINGS� TRULY� THE AMOUNT OF SYNTHETIC DATA THAT CAN BE GENERATED THROUGH THIS PROCESS IS NEARLY INFINITE�

4HERE IS A POSSIBILITY FOR USING SHAPE DEFORMATION TO SIMULATE LYMPHANGIOGENESIS� THINNING OF VESSELS� OR
LYMPHATIC REGRESSION� WHICH IS THE SHORTENING OF THE LYMPHATIC VESSELS ALONG THE SINUS WITH AGE� 4HIS COULD BE
FORMULATED SIMILARLY TO NEURODEGENERATION� WHICH HAS ALREADY BEEN SHOWN IN ;��=�

������ 3YNTHETIC IMAGE FORMATION
! FLOWCHART OF THE IMAGE GENERATION PROCESS IS SHOWN IN FIGURE ��� !S BOTH THE SHAPE GENERATION AND IMAGE
GENERATION PROCESSES ARE GENERALIZABLE� OTHER AREAS WHERE SYNTHETIC DATA WOULD BE OF BENEFIT COULD USE THESE
PROCEDURES TO AUGMENT EXISTING DATASETS�

3ELECTIONS OF VESSEL SHAPES ARE USED TO CREATE FOREGROUND AND BACKGROUND LAYERS OF A NEW SYNTHETIC IMAGE�
%ACH LAYER IS ����× ���� PIXELS� WHICH IS ALSO THE SIZE OF THE FINAL SYNTHETIC IMAGES� 4HIS IS A SIMILAR SIZE TO THE
IMAGES FOUND IN THE PARTIAL MOUNT DATASET� 3ELECT A RANDOM NUMBER OF VESSELS TO INCLUDE �BASED ON REAL
IMAGES	� 4HESE VESSELS ARE THE GENERATED VESSELS FROM THE SHAPE DEFORMATION DISCUSSED PREVIOUSLY� 4HE IMAGES
CONTAINING THESE RANDOM ASSORTMENTS OF VESSELS ARE LAYERS FOR OUR FINAL IMAGE� &IRST� THERE ARE SOME STEPS
NEEDED TO PRODUCE THE FOREGROUND LAYERS OF THE FINAL IMAGES�

4HE FOREGROUND LAYER IS USED AS GROUND TRUTH� BEFORE BEING CONVOLVED WITH A 'AUSSIAN FILTER TO ATTENUATE
THE SIGNAL AT VESSEL EDGES� 4HIS MIMICS THE TRUE IMAGES� AND IS THE REASON WHY SIMPLE THRESHOLDING WILL NOT

��
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&IGURE ��� 'ENERATING THE FULL SYNTHETIC IMAGES� 3TREAMLINED� GENERALIZABLE WORKFLOW FROM MORPHED VESSELS TO REALISTIC� COMPLETE
VESSEL IMAGES�

&IGURE ��� ! TRIMMED 'AUSSIAN FILTER IS USED OVER THE FOREGROUND IMAGE LAYER TO ATTENUATE SIGNAL INTENSITY� 4HIS MIMICS THE TRUE
VARIATION IN INTENSITY IN THE MICROSCOPY IMAGES�

SOLVE THE SEGMENTATION PROBLEM� 3ET THE INTENSITY OF THE VESSELS IN THIS LAYER TO THE MAXIMUM INTENSITY� AT ����
4HE MAXIMUM INTENSITY VESSEL IMAGE IS USED AS THE GROUND TRUTH�

4HEN� A TRIMMED 'AUSSIAN FILTER IS APPLIED OVER EACH ROW IN THE IMAGE WHERE THE VESSEL EXISTS TO ATTENUATE
THE INTENSITY OF THE VESSEL AT BOUNDARIES� 4HIS MIMICS THE TRUE IMAGES� AND IS THE REASON WHY SIMPLE
THRESHOLDING WILL NOT SOLVE THE SEGMENTATION PROBLEM� 4HE RESULT IS SHOWN IN FIGURE ���

&OR EACH VESSEL IN THE FOREGROUND LAYER� THE ROWS IN THE LAYER WHERE THE VESSEL EXISTS MUST BE IDENTIFIED�
4HEN� FOR EACH OF THOSE IDENTIFIED ROWS� TAKE THE LENGTH �THE NUMBER OF PIXELS IN THAT ROW THAT BELONG TO VESSEL
FOREGROUND	 AS N� ! �$ 'AUSSIAN FILTER OF SIZE �M+ �� WHEREM= N IF N IS EVEN� ANDM= N+ � IF N IS ODD� IS
USED TO ATTENUATE THE VESSEL AT EACH ROW� #ENTERED AT THE CENTER PIXEL IN THE VESSEL ROW� THIS LONGER 'AUSSIAN
FILTER GIVES THE TRIMMED 'AUSSIAN EFFECT�

.EXT� ON THE BACKGROUND LAYERS� WHICH SIMULATE CLUTTER� SOME ADDITIONAL PERTURBATIONS NEED TO BE ADDED�
#REATE THREE BACKGROUND LAYERS WITH THE GENERATED VESSELS BUT SET THESE INTENSITIES AT �� PERCENT OF THE
POSSIBLE HIGHER FOREGROUND INTENSITY �� TO � SIGNAL TO CLUTTER RATIO	� SO THAT THERE IS SOME OVERLAP BETWEEN THE
FOREGROUND AND BACKGROUND WITHIN THE LOWER INTENSITIES� 4HE BACKGROUND LAYERS REPRESENT THE CLUTTER OF
BLOOD VESSELS IN THE ORIGINAL IMAGES�

7E THEN COMBINE THE FOREGROUND AND BACKGROUND LAYERS TOGETHER� 4HE FOLLOWING ARE ADDING BLUR AND
NOISE TO THE COMBINED IMAGE� 'AUSSIAN BLUR AND 0OISSON NOISE ;��= ARE ADDED TO COMPLETE THE SYNTHETIC
IMAGES� 'AUSSIAN BLUR IS ADDED WITH SIGMA BETWEEN ��� AND ���� 4HE STATIC BACKGROUND INTENSITY IS RAISED UP
TO �� OUT OF ���� WHICH IS SIMILAR TO THE BACKGROUND LEVELS IN REAL DATA� 4HIS IS DONE TO MAKE SURE THAT WHEN
0OISSON NOISE IS APPLIED TO THE IMAGE� THE BACKGROUND ALSO BECOMES NOISY�IF THE BACKGROUND INTENSITY IS
ZERO� THE 0OISSON NOISE IN THE BACKGROUND WILL HAVE NO EFFECT� 0OISSON NOISE IS BASED ON THE SIGNAL INTENSITY IN
THE IMAGE�

7E USE THE 0OISSON NOISE MODEL ON THE SYNTHETIC DATA BECAUSE IN CONFOCAL MICROSCOPY USING FLUORESCENCE
EMISSION TO STAIN BIOLOGICAL SPECIMENS� 0OISSON NOISE IS A SIGNIFICANT VARIABLE� 4HE 0OISSON NOISE MODEL IS
USED TO REFLECT THE SMALL NUMBER AND EXTREME VARIATION OF DETECTED PHOTONS ;��=� !LTERNATIVELY� USING A SPATIAL
LIGHT MODULATOR COULD ALSO EMULATE THE PARTICLE NATURE OF LIGHT AS OBSERVED USING A REAL CONFOCAL MICROSCOPE�

��
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&IGURE ��� 0LOTTING THE SMALL BACKGROUND REGION IN A MICROSCOPY IMAGE �LEFT	 AND A SYNTHETIC IMAGE �RIGHT	� 4HERE IS MORE FAINT
BACKGROUND CLUTTER IN THE ORIGINAL IMAGE THAT WE DO NOT SIMULATE� BUT THE BACKGROUND INTENSITY IS IN A SIMILAR RANGE� )N THE
SYNTHETIC IMAGES� THE BACKGROUND INTENSITY CANNOT BE LOWERED TOO MUCH� OTHERWISE THE 0OISSON NOISE EFFECTS ARE NO LONGER
APPARENT� WHICH IS WHY THE STATIC BACKGROUND IN THE SYNTHETIC IMAGE IS HIGHER� (ISTOGRAMS OF A NEAR CONSTANT INTENSITY REGION IN
BOTH IMAGES ARE PRESENTED ON THE BOTTOM PANEL� IN A MICROSCOPY IMAGE �LEFT	 AND A SYNTHETIC IMAGE �RIGHT	�

4HERE ARE SOME CONSIDERATIONS THAT NEED TO BE MADE WHEN DESIGNING SUCH A SYSTEM� HOWEVER� )MAGE BORDERS�
AND IMAGE RESOLUTION MAY BECOME DISTORTED DURING THE PROCESS� AND CARE NEEDS TO BE TAKEN NOT TO OVER
BLUR
THE IMAGE IN THE EFFORT TO SIMULATE THE NOISE�

#OMPARISONS IN TERMS OF NOISE ARE SHOWN IN FIGURE ��� 4HE NOISE LEVELS ARE NOT EXACTLY THE SAME� BUT ARE
SIMILAR IN LEVEL AND SPREAD GIVEN THE VARIATIONS IN NOISE ACROSS THE MANY IMAGES IN THE THREE MICROSCOPY
DATASETS� )N THE HISTOGRAMS� THE FREQUENCY COUNT FOR THE MICROSCOPY REGION IS HIGHER BECAUSE THE REGION IS
SLIGHTLY LARGER� 4HE INTENSITY IN THE HISTOGRAMS HAS BEEN SCALED FROM � TO ��

&IGURE �� SHOWCASES ONE SYNTHETIC IMAGE� 4HE GROUND TRUTH IS SHOWN AS WELL TO DISPLAY WHERE THE CLUTTER
RESIDES�

�� !UTOMATED SEGMENTATION RESULTS

4HREE LEVEL
SET METHODS� INCLUDING ,Y-0HI� ARE COMPARED ON THE DATASETS DESCRIBED ABOVE� %ACH METHOD IS
INITIALIZED BY THRESHOLDING A SMALL AMOUNT OF NOISE AND BACKGROUND CLUTTER� IN ORDER TO RETAIN THE MAJORITY OF
THE FOREGROUND� &OR 4U&&� THE SCALE PARAMETER IS SET TO �� FOR THESE IMAGES� WHICH DEFINES THE WIDTH OF THE
'AUSSIAN FUNCTIONS USED FOR THE &RANGI VESSEL ENHANCEMENT ;��=� 4HIS IS THE BEST CHOICE FOR SCALE
ENHANCEMENT IN THESE IMAGES� IN ORDER TO ENHANCE THE MOST PROMINENT VESSELS� 4HE OTHER LEVEL
SET METHOD
TESTED IS ,�3� !LL THREE LEVEL
SET METHODS ARE RUN FOR ��� ITERATIONS� (IERARCHICAL IMAGE MATTING IS TESTED AS
DESCRIBED IN SECTION ����

4HE METHODS DESCRIBED ABOVE ARE RUN ON EACH OF THE FOUR DATASETS� )NCLUDING CREATION OF THE MATTING
INITIALIZATION� ,Y-0HI RUN
TIME IS APPROXIMATELY � H FOR A SPINAL LYMPHATICS IMAGE WITH SIZE ����× ����
PIXELS� ON A STANDARD 7INDOWS× �� ��
BIT DESKTOP WITH �'" 2!-� 4HIS IS SIMILAR TO THE COMPUTING TIME FOR
THE OTHER LEVEL
SET METHODS TESTED� %ACH RESULT WAS COMPARED TO EITHER THE MANUAL MAJORITY VOTED ANNOTATION
OR THE GENERATED GROUND TRUTH USING THE 3�RENSONn$ICE COEFFICIENT TO MEASURE ACCURACY ;��=� 4HIS MEASURES
THE PIXEL OVERLAP BETWEEN THE ANNOTATION AND THE EXPERIMENTAL RESULTS �OR FOR THE SYNTHETIC CASE� GROUND

��
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&IGURE ��� /NE EXAMPLE IMAGE FROM THE SYNTHETIC DATASET� 4HE GROUND TRUTH IS SHOWN ON THE RIGHT� AND A CLOSE
UP OF THE SYNTHETIC
IMAGE IN A RED
BASED COLORMAP IN �C	� IN ORDER TO SHOW THE ADDED NOISE� BLUR� INTENSITY VARIATION� AND BACKGROUND CLUTTER�

TRUTH VS� EXPERIMENTAL	� AND COMBINES EVALUATION METRICS SUCH AS SENSITIVITY� SPECIFICITY� AND ACCURACY THAT
ARE ALSO OFTEN USED FOR EVALUATION SEGMENTATION RESULTS ;��=� 4HE RESULTS ARE SHOWN IN TABLE �� WITH THE
3�RENSONn$ICE COEFFICIENT AVERAGED OVER EACH DATASET PER METHOD� 4HE $ICE COEFFICIENT HAS A RANGE FROM ZERO
TO ONE� WITH ONE SIGNIFYING A PERFECT MATCH� 4HE $ICE COEFFICIENT IS COMPLEMENTED BY THE "OUNDARY &�
SCORE�
A MEASURE COMPUTED FROM PRECISION AND RECALL ON THE SEGMENTED BOUNDARY ;��=� 4HIS IS DENOTED BY "&
SCORE
IN TABLE �� 4HE "OUNDARY &�
SCORE ALSO RANGES FROM ZERO TO ONE� ONE MEANING A PERFECT BOUNDARY MATCH� 4HE
"&
SCORES ARE ALSO AVERAGED OVER EACH DATASET� 3TANDARD DEVIATIONS FOR EACH DATASET ARE PROVIDED IN TABLE ��

&OR ALL FOUR DATASETS� ,Y-0HI HAS THE MAXIMUM AVERAGE AND MEDIAN $ICE COEFFICIENT MEASURED FROM ALL
FOUR METHODS� AS SHOWN IN TABLES � AND �� 4HE MEDIAN $ICE COEFFICIENTS ARE ALSO SHOWN AS THESE VALUES ARE LESS
AFFECTED BY OUTLIERS� SUCH AS IMAGES WITH OVERALL WEAKER STAINING� 4U&& PERFORMS WELL WHEN VESSEL SCALES DO
NOT VARY WIDELY� (OWEVER� 4U&& PERFORMS POORLY WHEN THE SCALE IS HIGHLY VARIABLE� THIS METHOD RETAINS TOO
LITTLE OF THE VESSEL IN THE SEGMENTATION RESULT� !S LYMPHATIC VASCULATURE VARIES SO WIDELY IN SIZE COMPARED TO
NEURON BRANCHES� THE SCALE ENHANCEMENT USED IN 4U&& TENDS TO DISCOUNT LARGER MORE BLOB
LIKE VESSEL REGIONS�
)F A LARGER SCALE PARAMETER IS USED� THINNER VESSEL STRUCTURES ARE OMITTED FROM THE SEGMENTATION RESULT� /N
SYNTHETIC DATA� ANY NOISE THAT IS NOT ERADICATED IN THRESHOLDING IS MAGNIFIED BY 4U&&� WHERE THE ATTRACTION
FORCE �EVEN WHEN USED AT A MINIMUM	 JOINS NOISY ELEMENTS TOGETHER� 2EDUCTION OF CLUTTER APPEARING IN THE
SEGMENTATION RESULT� USING EXISTING TECHNIQUES� INEVITABLY REMOVES VESSEL INFORMATION THAT CANNOT ALWAYS BE
FULLY RECOVERED BY REGION GROWING METHODS� ,�3� WHEN INITIALIZED FINELY� PERFORMS BETTER� AS ON THE SPINAL
DATASET� (OWEVER� IF INITIALIZATION IS COARSER �AND THUS INACCURATE	� ,�3 RETAINS MUCH OF THE BACKGROUND
CLUTTER �BECAUSE OF THE FOCUS OF THE METHOD ON RESOLVING HIGH INTENSITY VARIATION WITHIN NOISY FOREGROUND	�

-EAN "&
SCORES ARE ALSO SHOWN IN TABLE �� !GAIN� ,Y-0HI OUTPERFORMS OR HAS EQUIVALENT PERFORMANCE TO
THE OTHER METHODS TESTED� ,Y-0HI�S "& SCORES ARE CLOSE TO �� 7HEN ANALYZING WHY THE "&
SCORE FOR ,Y-0HI IS
HIGHER COMPARED TO THE OTHER METHODS� IT IS OBSERVED THAT ,Y-0HI HAS THE HIGHEST PRECISION VALUES ON THE
BOUNDARY FOR ALL DATASETS� 4HIS MEANS THERE IS A HIGHER PROPORTION OF RELEVANT BOUNDARY PIXELS RETURNED BY
,Y-0HI� BECAUSE THE OTHER METHODS RETURN TOO MANY POSITIVE PIXELS� 3OMETIMES PRECISION IS MORE IMPORTANT
THAN RECALL� WHICH COULD BE ARGUED IN THIS CASE� 0RECISION IS IMPORTANT FOR GETTING MORE ACCURATE COMPLEXITY
MEASUREMENTS� )NCLUDING TOO MUCH BACKGROUND MATTER IN THE LYMPHATIC SEGMENTATION COULD GROSSLY
OVERESTIMATE THE AMOUNT OF LYMPHATICS PRESENT�

!DDITIONALLY� THE STANDARD DEVIATION OF $ICE COEFFICIENT AND "&
SCORE IS PRESENTED IN TABLE �� ,Y-0HI HAS
THE LOWEST STANDARD DEVIATION FOR BOTH $ICE COEFFICIENT AND "&
SCORE� !LONGSIDE THE AVERAGE SCORES REPORTED
IN TABLE �� THE RESULTS SHOW THAT ,Y-0HI IS THE MOST CONSISTENTLY HIGH
PERFORMING METHOD ACROSS ALL DATASETS�

��
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4ABLE ��-EDIAN $ICE COEFF� FOR ALL METHODS�

-ETHOD 4U&& ,�3 -AT� ,Y-0HI

0ARTIAL ���� ���� ���� ����
7HOLE ���� ���� ���� ����
3PINAL ���� ���� ���� ����
3YNTHETIC ���� ���� ��� ����

&OR THE SPINAL DATASET� WHERE HIERARCHICAL IMAGE MATTING ALSO HAS A HIGH "&
SCORE� ,Y-0HI BY COMPARISON HAS
A SLIGHTLY LOWER STANDARD DEVIATION� /NE REASON WHY HIERARCHICAL IMAGE MATTING PERFORMS WELL ON THE SPINAL
DATASET IS BECAUSE� IN THE SPINAL IMAGES� THE VESSEL MASS IS LARGER THAN IN MENINGEAL IMAGES� 4HIS ALLOWS FOR
MORE INFORMATION WHEN COMPARING UNKNOWN PIXELS TO THE HIGHER INTENSITY FOREGROUND�INCREASING THE
NUMBER OF CONNECTED KNOWN FOREGROUND PIXELS IMPROVES THE LABELING OF THE UNKNOWN PIXELS� )T IS IMPORTANT
TO NOTE� HOWEVER� THAT THE OVERALL VESSEL BOUNDARY IN THE SEGMENTATION IS NOT SMOOTH AS A RESULT OF IMAGE
MATTING� AND APPEARS PIXELATED� EVEN WITH THESE HIGH RESOLUTION IMAGES� !DDITIONALLY� ALTHOUGH HIERARCHICAL
IMAGE MATTING PARTIALLY PROVIDES THIN BRANCHES THAT ARE IGNORED BY OTHER METHODS� THIS INCLUSION COMES AT
THE EXPENSE OF INCLUDING IRRELEVANT CELL TYPES�

4HE VESSEL SIZE �AREA AND DIAMETER	 EXTRACTED BY ,Y-0HI MOST CLOSELY MATCHES THE MANUAL ANNOTATION�
4U&& RESULTS IN AN UNDERSEGMENTATION� OR THINNING OF VESSELS� AND ,�3 FREQUENTLY OVERSEGMENTS� NOT ADHERING
TO THE OUTER VESSEL BOUNDARY� -ATTING� WHILE MORE CORRECTLY EXTRACTING VESSEL SIZE� INCLUDES EXTRANEOUS
CELLULAR MATTER� WHICH OBFUSCATES THE MEASURED AMOUNT OF LYMPHATIC VASCULATURE� 4HUS� ,Y-0HI� DUE TO ITS
INCORPORATION OF MATTING� IS THE MOST ROBUST METHOD OF THE THREE FOR DETECTING THINNING OF MENINGEAL
LYMPHATIC VESSELS� A PRECURSOR TO !$�

3AMPLE SEGMENTATION RESULTS ARE SHOWN IN FIGURE ��� )T CAN BE SEEN THAT ,Y-0HI HAS CAPTURED LESS OF THE
BACKGROUND CLUTTER WHILE PRESERVING THE THICKNESS OF THE VESSELS� )N FIGURE ��� IT IS CLEAR FROM THE DISPLAYED
RESULTS THAT ,Y-0HI HAS RETAINED LESS OF THE CLUTTER PRESENT AT THE TOP AND BOTTOM RIGHT OF THE IMAGE� ,Y-0HI
HAS THE MOST CONSISTENT RESULTS �MAXIMUM $ICE COEFFICIENT	 ACROSS ALL DATASETS�

4HE RESULTS ARE POOREST� FOR ALL METHODS� ON THE WHOLE
MOUNT DATASET �OUT OF THE REAL DATASETS	 DUE TO
POOR CHANNEL SEPARATION� )N THESE IMAGES� THE LYMPHATIC VESSELS ARE PRESENT IN THE GREEN CHANNEL� BUT THE
BACKGROUND CLUTTER OF BLOOD VESSELS AND ENDOTHELIAL CELLS ALSO HAVE STRONG REPRESENTATION IN THE GREEN
CHANNEL� AS SHOWN IN FIGURE ��� 4HIS LEADS TO POOR SEGMENTATION BY ALL METHODS� (OWEVER� ,Y-0HI STILL
OUTPERFORMS THE OTHERS IN THIS CHALLENGING CIRCUMSTANCE�

���� 3TABILITY OF ,Y-0HI
/NE IMPORTANT FACET OF ,Y-0HI IS ITS STABILITY AND ROBUSTNESS TO VARIOUS STARTING POINTS DUE TO INITIALIZATION�
4HIS ROBUSTNESS CANNOT BE OFFERED BY OTHER LEVEL
SET METHODS TESTED ON THE LYMPHATIC DATA� 7E HAVE FOUND
THAT INITIALIZATION PLAYS AN ENORMOUS PART IN THE FINAL ACCURACY OF THE RESULTS FOUND BY USING ,�3 OR 4U&& ON
OUR DATA� AND THIS INITIALIZATION IS DIFFICULT TO TUNE FROM IMAGE TO IMAGE� 4HE STAINING VARIES IN EACH VESSEL
SAMPLE� LEADING TO VARIABLE SIGNAL STRENGTH� 5SING TOO LOW AN INITIAL THRESHOLD RETAINS TOO MUCH CLUTTER� WHILE
USING TOO HIGH A THRESHOLD REMOVES PART OF THE VESSEL THAT IS LOWER IN INTENSITY� ,Y-0HI CAN SEGMENT
LYMPHATIC VESSELS EVEN WITH A COARSER INITIALIZATION� WHICH MAY BE NECESSARY TO RETAIN SIGNAL ACROSS A DATASET�

4HE MATTING PROCEDURE HAS ALREADY PRODUCED A VESSEL FOREGROUND THAT HAS REMOVED MUCH OF THE
BACKGROUND CLUTTER� SO THE FIRST ITERATIONS CAN QUICKLY MOVE THE LEVEL SET BOUNDARY CLOSE TO THE CALCULATED
VESSEL FOREGROUND� 4HIS IS DONE BY CHANGING THE FORCE FIELD� OR VELOCITY� OF PHI� 3UBSEQUENT UPDATES SMOOTH
THE ZERO LEVEL SET CONTOUR�

4WO VARIANTS OF INITIALIZATION ARE SHOWN IN FIGURE ��� WITH THEIR RESPECTIVE SEGMENTATION RESULTS USING
4U&& AND ,Y-0HI�

4HE 4U&& RESULT USING THE FINER INITIALIZATION INDEED ONLY CAPTURES A FEW ELEMENTS OF CLUTTER� "UT THE LEVEL
SET BOUNDARY TENDS TO OVERALL CREEP INSIDE THE TRUE VESSEL BOUNDARY� 4HIS COULD BE DUE TO INTENSITY
INHOMOGENEITY AND LOWER SIGNAL STRENGTH AT THE VESSEL BOUNDARY� AS WELL AS DIFFICULTY TUNING THE VESSEL SCALE
PARAMETER� )F THE SCALE PARAMETER IS MADE LARGER TO PREVENT SUCH UNDERSEGMENTATION� THIS WILL LEAD TO MISSING
THINNER VESSEL SEGMENTS IN THE SEGMENTATION RESULT� 4HE 4U&& RESULT USING COARSER INITIALIZATION PICKS UP
MUCH MORE BACKGROUND CLUTTER� AS EXPECTED� 4HE LEVEL SET BOUNDARY HAS EXTENDED AT MORE POINTS OUTSIDE THE
VESSEL BOUNDARY� LEADING TO OVERSEGMENTATION�

4HE ,Y-0HI RESULT USING THE FINER INITIALIZATION STILL PICKS UP SOME BACKGROUND CLUTTER� WITH A BIT MORE
CLUTTER RETAINED WHEN USING THE COARSER INITIALIZATION� (OWEVER� THE MAIN ADVANTAGE OF ,Y-0HI IS THAT IT
CAPTURES THE TRUE VESSEL WIDTH WHICH 4U&& CANNOT� 7IDTH IS A MEASURE OF SIGNIFICANT INTEREST TO
NEUROSCIENTISTS� AS THEY USE IT TO QUANTIFY LYMPHATIC PRESENCE�
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&IGURE ��� 3EGMENTATION RESULTS ON ONE IMAGE FROM THE SPINAL DATASET� 4HE RESULTS ARE DISPLAYED AS GRAY
SCALE IMAGE DATA AND
OVERLAYS WITH THE FINAL SEGMENTATION CONTOURS IN RED� #APTIONED IS THE $ICE SCORE�

�� !NALYSIS OF MANUAL SEGMENTATION

���� !NALYSIS OF AGREEMENT BETWEEN ANNOTATORS
4HE RESULTS SHOWN PRIOR ONLY COMPARE AUTOMATED SEGMENTATION RESULTS BETWEEN DIFFERENT SEGMENTATION
ALGORITHMS� 3INCE THE MANUAL ANNOTATION OBTAINED IS COMBINED INPUT FROM THREE ANNOTATORS� IN THIS SECTION
THE AGREEMENT AND KAPPA STATISTICS BETWEEN THE ANNOTATORS IS COMPARED� AS WELL AS THE STATISTICS BETWEEN THE
CHOSEN SEGMENTATION ALGORITHMS AND THE ANNOTATIONS�

&LEISS�S +APPA IS USED FOR COMPARING THE THREE ANNOTATIONS CREATED BY THREE SEPARATE OPERATORS FOR EACH
VESSEL IMAGE� &LEISS�S +APPA MEASURES THE RELIABILITY OF THE AGREEMENT BETWEEN THE THREE ANNOTATORS IN THIS
CASE ;��=� )NSTEAD OF CREATING A VOTING MATRIX AND STORING ANNOTATOR LABELS FOR EACH PIXEL IN A DATASET� WHICH
WOULD REQUIRE A MATRIX OF EXTREMELY LARGE SIZE� RUNNING COUNTS WERE KEPT OF OVERALL VOTING PROPORTIONS AND
PROBABILITIES� 0ERCENT AGREEMENT AND &LEISS�S +APPA ARE SHOWN IN TABLE ��

4HE &LEISS�S +APPA VALUES BETWEEN ANNOTATORS ARE BETWEEN ��� AND ����� INDICATING MODERATE AGREEMENT
BETWEEN ANNOTATORS ON WHERE VESSEL IS PRESENT� &OR THE SPINAL DATASET� THE +APPA VALUE IS HIGHEST� INDICATING
BETTER AGREEMENT THAN FOR THE OTHER TWO DATASETS� (OWEVER� NONE OF THE +APPA VALUES HAVE REACHED �� OR ���
WHICH ARE MORE PREFERRED +APPA VALUES�SHOWING THAT THERE IS STILL CONSIDERABLE DISAGREEMENT BETWEEN
ANNOTATORS� AND THAT CREATING ACCURATE GROUND TRUTH FOR THESE IMAGES IS NOT A TRIVIAL PROBLEM ;��=�

!GREEMENT AND THE KAPPA STATISTIC ARE CALCULATED FOR ALL IMAGES IN EACH DATASET� BETWEEN THE SEGMENTATION
ALGORITHM AND THE MAJORITY VOTED GROUNDTRUTH� #OHEN�S +APPA IS USED IN THIS CASE BECAUSE THERE ARE TWO
RATERS BEING COMPARED� THE AUTOMATED SEGMENTATION ALGORITHM IN QUESTION� AND THE CONSENSUS SEGMENTATION�
#OHEN�S +APPA IS CONSIDERED TO BE MORE RELIABLE OF A MEASURE THAN PERCENT AGREEMENT� AS THE +APPA TAKES

��
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&IGURE ��� 3EGMENTATION RESULTS ON ONE IMAGE FROM THE WHOLE
MOUNT DATASET� 4HE RESULTS ARE DISPLAYED AS GRAY
SCALE IMAGE DATA
AND OVERLAYS WITH THE FINAL SEGMENTATION CONTOURS IN GREEN�

&IGURE ��� 4HE FIRST ROW SHOWS TWO INITIAL SEGMENTATION IMAGES OF A PARTIAL MOUNT IMAGE� �A	 IS FINE
GRAINED INITIALIZATION� AND
�B	 IS A ROUGHER THRESHOLDING KEEPING MUCH OF THE BACKGROUND CLUTTER� 4HE SECOND ROW SHOWS TWO 4U&& RESULTS AFTER ��� ITERATIONS�
USING EACH INITIALIZATION� 4HE THIRD ROW SHOWS TWO ,Y-0HI RESULTS AFTER ��� ITERATIONS� 4HE RESPECTIVE $ICE COEFFICIENT �DENOTED
WITH @$�	 IS DISPLAYED UNDERNEATH EACH RESULT� 4HERE IS A MARKED DECREASE IN $ICE COEFFICIENT OF ALMOST ��� DEPENDING ON THE
INITIALIZATION USED� WHEREAS ,Y-0HI CHANGES IN $ICE COEFFICIENT BY ONLY ���� EVEN WHEN THE INITIALIZATION BECOMES MUCH COARSER�

��
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4ABLE �� !GREEMENT AND &LEISS�S +APPA BETWEEN ANNOTATORS�

$ATASET !GREEMENT +APPA

0ARTIAL ���� ����
7HOLE ���� ����
3PINAL ���� ����

4ABLE �� !GREEMENT AND #OHEN�S +APPA BETWEEN ALGORITHMS AND ANNOTATORS�

-ETHOD 4U&& ,�3 -AT� ,Y-0HI

3TATISTIC !GR� +AP� !GR� +AP� !GR� +AP� !GR� +AP�

0ARTIAL ���� ���� ���� ���� ���� ���� ���� ����
7HOLE ���� ���� ���� ���� ���� ���� ���� ����
3PINAL ���� ���� ���� ���� ���� ���� ���� ����

INTO CONSIDERATION THE PROBABILITY OF RANDOM AGREEMENT ;��=� 0ERCENT AGREEMENT IS A SIMPLE MEASURE OF TRUE
POSITIVE AND TRUE NEGATIVE RATE� UNLIKE $ICE COEFFICIENT OR "OUNDARY &�
SCORE� WHICH ALSO CONSIDER FALSE
POSITIVE AND FALSE NEGATIVE RATE� 0ERCENT AGREEMENT AND #OHEN�S +APPA ARE PROVIDED IN TABLE �� !GREEMENT IS
DENOTED BY !GR� AND +APPA BY +AP�

&ROM TABLE �� AGREEMENT BETWEEN ,Y-0HI AND ANNOTATORS LARGELY OUTPERFORMS INTER
ANNOTATOR AGREEMENT
IN THE PARTIAL MOUNT DATASET� 4HUS� FOR THIS DATASET� IT CAN BE STATED THAT ,Y-0HI IS SUPERIOR TO MANUAL
SEGMENTATION� )N THE OTHER DATASETS� THE +APPA VALUE IS LOWER THAN THE +APPA VALUES SHOWN IN TABLE ��
MEANING THAT ,Y-0HI HAS NOT YET SURPASSED HAND ANNOTATION FOR THESE DATASETS� (OWEVER� THE +APPA VALUES
FOR ,Y-0HI DO OUTPERFORM THE AGREEMENT BETWEEN ANNOTATION AND THE OTHER SEGMENTATION ALGORITHMS TESTED�
4HIS FURTHER AFFIRMS THAT ,Y-0HI IS BETTER SUITED FOR SEGMENTATION OF MENINGEAL LYMPHATIC VESSELS THAN OTHER
AUTOMATED METHODS�

4O FURTHER RESEARCH HOW THE RESOLUTION OF THE IMAGE AFFECTS THE RESULT OF MANUAL SEGMENTATION� THE
FOLLOWING DETAILS ARE PROVIDED� )N ORDER OF HIGHEST RESOLUTION TO LOWEST� THE DATASETS ARE AS FOLLOWS�
PARTIAL
MOUNT� WHOLE
MOUNT� AND SPINAL� "ASED ON &LEISS�S +APPA IN TABLE �� THE AGREEMENT� AND +APPA
VALUES� BETWEEN ANNOTATORS DOES NOT HAVE A LINEAR RELATIONSHIP WITH RESOLUTION� 4HE HIGHEST RESOLUTION IMAGES
ONLY HAVE THE MEDIAN +APPA VALUE OF �����

-ORE THAN IMAGE RESOLUTION� IMAGE CONTRAST AND IMAGE NOISE OR ARTIFACTS HAVE A GREATER IMPACT ON THE
MANUAL ANNOTATION RELIABILITY� &ROM AN IMAGING STANDPOINT� IF STAINING CAN BE IMPROVED AND THE PRESENCE OF
ARTIFACTS CAN BE DECREASED� THIS WILL GREATLY IMPROVE THE QUALITY OF THE MAJORITY VOTED ANNOTATION� AS WELL AS
THE AUTOMATED SEGMENTATION RESULTS�

���� 0ERFORMANCE OF ,Y-0HI AND EACH ANNOTATOR AS MEASURED BY 34!0,%
!N EXAMPLE OF WHERE DISAGREEMENT CAN OCCUR IS SHOWN IN FIGURE ��� 7HEN COMBINING THREE ANNOTATIONS
USING THE 34!0,% ALGORITHM ;��=� NOISY REGIONS� SUCH AS IN THE TOP OF THE IMAGE IN FIGURE ���A	 CAN STILL
REMAIN� 4HE IMAGES ARE DIFFICULT TO ANNOTATE DUE TO LOW
LEVEL NOISE THAT MUST BE REMOVED� $UE TO THE LOW
IMAGE CONTRAST� PATCHES OF NOISE MAY BE MISSED BY AN INDIVIDUAL ANNOTATOR� .OISE AND OTHER CHALLENGES LEAD
TO ANNOTATOR DISAGREEMENT� 5SING MAJORITY VOTING� AS SHOWN IN FIGURE ���C	� CAN REDUCE THE EFFECTS OF THE
DISAGREEMENT DUE TO NOISY BACKGROUND� HOWEVER� SOME SMALL AMOUNTS OF NOISE DO REMAIN� WHICH CREATE
DIVERGENCE WHEN COMPARING WITH ,Y-0HI AND OTHER AUTOMATED ALGORITHMS�

!LTHOUGH WE USE MAJORITY VOTED MANUAL ANNOTATION FOR COMPARISON INSTEAD OF THE 34!0,% CONSENSUS
SEGMENTATION� USING THE 34!0,% ALGORITHM CAN ALSO PROVIDE AN ESTIMATE OF SENSITIVITY AND SPECIFICITY OF RATERS
;��=� )N TABLE �� THE SENSITIVITY AND SPECIFICITY OF THE THREE ANNOTATORS AS WELL AS ,Y-0HI ARE COMPARED�
3ENSITIVITY REFERS TO THE NUMBER OF TRUE POSITIVES THAT ARE MEASURED� AND SPECIFICITY THE NUMBER OF TRUE
NEGATIVES ;��=� 4HIS IS IN COMPARISON TO THE 34!0,% ESTIMATED CONSENSUS SEGMENTATION� WHICH HAS BEEN
SHOWN TO HAVE SOME FLAWS�SO THESE SENSITIVITY�SPECIFICITY MEASUREMENTS ARE ALSO ONLY ESTIMATES�

3PECIFICITY IS SO HIGH ACROSS ALL RATERS AND DATASETS BECAUSE THE NUMBER OF NEGATIVES� OR NON
LYMPHATIC
PIXELS� IS SO LARGE� AND IT IS EASIER TO MARK THESE CORRECTLY� (IGH SENSITIVITY� HOWEVER� IS MORE DIFFICULT TO
ACHIEVE� ,Y-0HI OUTPERFORMS ON SENSITIVITY FOR THE PARTIAL MOUNT DATASET� WHICH IS IN ACCORDANCE WITH THE
DISCUSSION OF +APPA VALUES IN SECTION ���� 4HIS MEANS THAT ,Y-0HI IS BETTER AT DISTINGUISHING THE LYMPHATIC
VESSELS THAN EITHER OF THE RATERS INDIVIDUALLY� OR WHEN THEY ARE CONSIDERED TOGETHER� !LTHOUGH THIS IS NOT THE
CASE FOR THE REMAINING TWO DATASETS� IT IS INTERESTING TO NOTE THAT FOR THE WHOLE MOUNT DATASET� THE SENSITIVITY
VALUE FOR 2ATER � IS LOWER THAN THAT OF ,Y-0HI ����� COMPARED TO ����	� 3O� IN CASES WHERE MULTIPLE
ANNOTATORS CANNOT BE REACHED TO PERFORM A CONSENSUS SEGMENTATION� THERE IS GREAT RISK RELYING ON A SINGLE
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&IGURE ��� #ONSENSUS SEGMENTATION RESULTS ON A PORTION OF AN IMAGE FROM THE SPINAL DATASET� 4HE RESULTS ARE DISPLAYED AS BINARY�
4HE LEFT IMAGE SHOWS A CONSENSUS SEGMENTATION OBTAINED VIA THE 34!0,% ALGORITHM� 4HE RIGHT IMAGE IS THE MANUAL ANNOTATION WE
USED FOR COMPARISON� OBTAINED BY MAJORITY VOTING�

4ABLE �� 3ENSITIVITY AND SPECIFICITY�

$ATASET 0ARTIAL 7HOLE 3PINAL

!NNOTATOR 3ENSITIVITY 3PECIFICITY 3ENSITIVITY 3PECIFICITY 3ENSITIVITY 3PECIFICITY

!NNOTATOR � ���� ���� ���� ���� ���� ����
!NNOTATOR � ���� ���� ���� ���� ���� ����
!NNOTATOR � ���� ���� ���� ���� ���� ����
,Y-0HI ���� ���� ���� ���� ���� ����

&IGURE ��� #ONSENSUS SEGMENTATION RESULTS ON A PORTION OF AN IMAGE FROM THE PARTIAL MOUNT DATASET� 4HE SEGMENTATION RESULTS ARE
DISPLAYED AS BINARY� 4HE TOP LEFT IMAGE SHOWS THE ORIGINAL VESSEL FROM THE CROPPED IMAGE� 4HE TOP RIGHT IMAGE IS THE MANUAL
ANNOTATION� OBTAINED BY MAJORITY VOTING� 4HE BOTTOM IMAGE IS SEGMENTATION PERFORMED BY ,Y-0HI �$ICE= ����	�

ANNOTATOR FOR A CORRECT SEGMENTATION OF THE LYMPHATIC VESSELS� ! SINGLE ANNOTATOR IS THE CURRENT STANDARD FOR
-,6 SEGMENTATION� THE DANGERS OF WHICH HAVE BEEN SHOWN IN FIGURE � AS WELL AS IN THE ABOVE SENSITIVITY
ANALYSIS� !S MENTIONED BEFORE� MANUAL ANNOTATION TAKES A GREAT DEAL OF TIME� A MORE ACCURATE SEGMENTATION
MAY BE FOUND IN LESS TIME BY USING ,Y-0HI� INSTEAD OF RELYING ON A POTENTIALLY FLAWED HAND SEGMENTATION�

���� &AILURE TO ANNOTATE BOUNDARY BY MANUAL SEGMENTATION
#OMBINED ERRORS OF SENSITIVITY AND SPECIFICITY AT THE FINE
GRAINED LEVEL ALONG THE VESSEL BOUNDARY SHOWS THAT
OUR LEVEL
SET METHOD� ,Y-0HI� BETTER CAPTURES THE TRUE VESSEL BOUNDARY THAN MANUAL SEGMENTATION� 4HIS CAN
BE SHOWN IN FIGURE ��� WHERE THE RED CIRCLE IN FIGURE ���C	 SHOWS THAT THE BOUNDARY FOUND BY ,Y-0HI BETTER
MATCHES THAT IN FIGURE ���A	�THE BOUNDARY IN FIGURE ���B	 HAS BEEN FLATTENED AND DOES NOT PROVIDE ACCURATE
CURVATURE OF THE VESSEL EDGE�

��
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�� #ONCLUSION

4HE MAIN CONTRIBUTIONS OF THIS PAPER CAN BE SUMMARIZED AS FOLLOWS� &IRST� A MATTING BASED LEVEL
SET
SEGMENTATION APPROACH� ,Y-0HI� IS PROPOSED TO OBTAIN ROBUST LYMPHATIC VESSEL SEGMENTATION BY REMOVING
BACKGROUND CLUTTER AND RETAINING VESSEL SMOOTHNESS� %SSENTIALLY� ,Y-0HI HAS ENABLED THE SEGMENTATION OF A
RECENTLY DISCOVERED ANATOMY �LYMPH IN THE BRAIN	� ALLOWING QUANTIFICATION OF THE DELICATE VESSELS THAT VARY IN
WIDTH AND INTENSITY� 3ECOND� ,Y-0HI IS AUTOMATED� UNLIKE THE CURRENT MANUAL SEGMENTATION USED BY
NEUROSCIENTISTS� OR TRADITIONAL LEVEL
SET SEGMENTATION PROCEDURES� WHICH MAY REQUIRE DIFFICULT
TO
TUNE
INTENSITY AND SCALE THRESHOLDS� 4HIRD� EXTENSIVE EXPERIMENTS ARE CONDUCTED ON FOUR TYPES OF LYMPHATIC VESSEL
DATASETS TO VALIDATE THE PERFORMANCE OF ,Y-0HI COMPARED TO OTHER STATE
OF
THE
ART SEGMENTATION ALGORITHMS�
! NOVEL APPROACH TO SYNTHETIC DATA AUGMENTATION IS PROPOSED� BASED ON SHAPE DEFORMATION OF THE REAL
LYMPHATIC VESSELS� 3EGMENTATION OUTPUT FROM ,Y-0HI HAS A HIGHER OVERALL $ICE COEFFICIENT COMPARED TO THAT
OF COMPETING ALGORITHMS AS WELL AS A HIGHER "&
SCORE� WHILST BEING STABLE UNDER DIFFERENT INITIAL CONDITIONS�
&INALLY� AN IN
DEPTH ANALYSIS IS PERFORMED OF THE MANUAL ANNOTATION� SHOWING THE FALLACY IN HOLDING MANUAL
SEGMENTATION AS THE GOLD STANDARD IN LYMPHATIC ANALYSIS�

)N THE LONG
TERM� STUDYING SEGMENTED VESSELS MAY LEAD TO FUTURE DISCOVERIES ON THE ROLE OUR MENINGEAL
LYMPHATIC SYSTEM PLAYS IN DISEASES OF THE CENTRAL NERVOUS SYSTEM� #OMPLEXITY MEASURES BUILT ON
SEGMENTATION CAN LEAD TO FUNDAMENTAL UNDERSTANDING OF THESE VESSELS� HOW THEY GROW� DECLINE� AND
ULTIMATELY� THE INTRICACIES OF THEIR FUNCTION�

$ATA AVAILABILITY STATEMENT

4HE DATA THAT SUPPORT THE FINDINGS OF THIS STUDY ARE OPENLY AVAILABLE AT THE FOLLOWING 52,�$/)� HTTP���
DX�DOI�ORG����������FCXZWBPT�S���
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