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Abstract— Transform-domain least mean squares (TDLMS)
adaptive filters encompass the class of learning algorithms
where the input data are subjected to a data-independent
unitary transform followed by a power normalization stage as
preprocessing steps. Because conventional transformations are
not data-dependent, this preconditioning procedure was shown
theoretically to improve the convergence of the least mean
squares (LMS) filter only for certain classes of input data.
So, one can tailor the transformation to the class of data.
However, in reality, if the class of input data is not known
beforehand, it is difficult to decide which transformation to
use. Thus, there is a need to devise a learning framework to
obtain such a preconditioning transformation using input data
prior to applying on the input data. It is hypothesized that
the underlying topology of the data affects the selection of the
transformation. With the input modeled as a weighted finite
graph, our method, called preconditioning using graph (PrecoG),
adaptively learns the desired transform by recursive estimation
of the graph Laplacian matrix. We show the efficacy of the
transform as a generalized split preconditioner on a linear system
of equations and in Hebbian-LMS learning models. In terms
of the improvement of the condition number after applying
the transformation, PrecoG performs significantly better than
the existing state-of-the-art techniques that involve unitary and
nonunitary transforms.

Index Terms— Graph Laplacian, graph learning, Hebb-least
mean squares (LMS) learning, LMS filter, split preconditioner,
unitary transform.

I. INTRODUCTION

IN 1960, Widrow and Hoff [1] proposed a class of least
mean squares (LMS) algorithms to recursively compute the

coefficients of an N-tap finite impulse response (FIR) filter
that minimizes the output error signal. This computation may
be achieved by a stochastic gradient descent approach where
the filter coefficients are evaluated as a function of the current
error at the output. The LMS algorithm and its variants were
subsequently used in a myriad of applications, including echo
cancellation [2]–[5], inverse modeling [6], system identifica-
tion, signal filtering [7], [8], and several others.

Manuscript received July 23, 2021; revised December 23, 2021; accepted
January 12, 2022. (Corresponding author: Tamal Batabyal.)

Tamal Batabyal and Jaideep Kapur are with the Department of Neu-
rology, University of Virginia, Charlottesville, VA 22904 USA (e-mail:
tb2ea@virginia.edu).

Daniel Weller was with the Department of Electrical and Computer Engi-
neering, University of Virginia, Charlottesville, VA 22904 USA. He is now
with KLA Corporation, Ann Arbor, MI 48105 USA.

Scott T. Acton is with the Department of Electrical and Computer Engi-
neering, University of Virginia, Charlottesville, VA 22904 USA

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2022.3144637.

Digital Object Identifier 10.1109/TNNLS.2022.3144637

Two of the major issues with the aforementioned approach
are the convergence speed and stability. The filter coefficients
(or weights) converge in mean while showing minor fluctua-
tion in magnitude around the optimal values. The convergence
speed depends on the condition number of the autocorrelation
matrix of the input, where a condition number close to unity
connotes a fast and stable convergence. Later, adaptive tech-
niques, such as least square lattice (LSL) and gradient adap-
tive lattice (GAL) [9], [10] filters were designed to achieve
faster convergence, immunity to a poor condition number of
the input autocorrelation matrix, and better finite precision
implementation compared to the LMS filter. However, these
stochastic gradient filters may sometimes produce significant
numerical errors, and the convergence is poor compared to
recursive least squares (RLS) filters [11]. Although the RLS
algorithm has increased computational complexity compared
to that of the LMS algorithm, effective algorithms, such as
dichotomous coordinate descent [12] for low-complexity RLS
have been proposed to reduce the number of multiplication
operations.

A class of affine projection algorithms and their improve-
ments for real-time applications was proposed for faster
convergence of LMS tap weights [4], [13]–[15]. In many
applications, the performance of affine projection algorithms
depends on the projection order, initial configuration, signal
stationarity, and other factors. In general, the algorithms are
attempted to substitute the expensive matrix-inverse operation.
These algorithms can be easily incorporated into our proposed
framework, called preconditioning using graph (PrecoG). Pre-
coG transforms the input before the filter operation. The
question of how decorrelation of the input data using PrecoG
will affect the performance of such algorithms with regard to
the convergence of the LMS filter tap weights is outside the
scope of this work.

Due to the fact that the nature of the autocorrelation matrix
is data-dependent, improving its condition number using a
transformation is a way to circumvent the convergence issue
in the case of realtime data. To obtain well-conditioned auto-
correlation matrix of any real-world input data, we transform
the input data a priori. One such example of this approach
is popularly known as transform-domain LMS (TDLMS) (see
Section II). A schematic presentation of LMS and TDLMS
filters is provided in Fig. 1(C). The discrete Fourier transform
(DFT), discrete cosine transform (DCT) [16]–[19], and others
act as suitable off-the-shelf transformations of the input data
for such problems. The aforementioned step is immediately
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Fig. 1. (A) Schematic of our algorithm explaining how the PrecoG transformation is computed. (B) Online mode of LMS in case of PrecoG. Here, the
autocorrelation is estimated using an initial window of data. During that time, classical LMS is executed. Once the UN is computed, subsequent data are
processed in TDLMS mode. The input graph is also show here. (C) Equivalence between biological neurons and its simplified computational analog in LMS.
Synaptic scaling is achieved via power normalization stage. (D) Preconditioning matrix U is shown. Color indicates the strength of excitation or, equivalently,
inhibition. The interaction (not the input graph) among four neurons is also shown in the graph. (E) Condition ratios obtained by applying the algorithms
on (a) regularized Hilbert matrices with varied regularization parameters, (b) a set of random matrices containing entries ∼ Gaussian(0, 1), and (c) random
matrices of varied sparsity (for sparse linear systems). (F) PrecoGs (UN ) which are estimated at different lengths of initial data window. All matrices are
orthonormal. Given different windows of data, the estimated autocorrelations are different, leading to different UN s. The excitatory (more white) and inhibitory
(more black) behavior that drives by each filter tap (a neuron) onto its neighboring taps are evident. It is evident that PrecoG has a considerable magnitude
of inhibitory strength among four neurons compared to conventional transforms. However, after passing a considerable amount of data (for example, PrecoG
using 1100 1-D data samples tagged as R-est 1100 in the figure) to estimate PrecoG, the inhibition breaks down, leading to more excitatory strength. A list
of condition numbers when these matrices (UN ) are applied to the input is given in Table I. (G) Figure shows the preconditioners—DCT, DST, and PrecoG
(125 window length, AR(1) with ρ = 0.9). (H) (a) Plot showing the convergence of a tap weight in cases of DCT (black) and PrecoG (green), keeping the
values of all the parameters same for both cases. The double-headed arrows mark the iteration where the weights started converging to the actual filter tap
weight in each case. It shows that the LMS tap weight converges at 640th iteration in case of PrecoG when compared to 1590th iteration in case of DCT.
(b) PrecoG transformation matrices in case of an AR(1) process with ρ = 0.2, estimated at different window length are shown. That because the data are
comparatively decorrelated, PrecoG transformation contains pronounced inhibitory drives with small window length. AR(1) with higher correlated datastream
demands longer window length. (I) (a) Plot showing the convergence of a filter weight in cases of the DCT and PrecoG when applied on an AR(2) process
with ρ1 = 0.6 and ρ2 = 0.9. The double-headed arrows indicate the iteration interval where the tap weight starts converging. (b) Plot showing the error
as the datastream progresses. With PrecoG, the error is rapidly diminished. With the DCT, the error is reduced at first and then sustains. The values of the
parameters in both the experiments were kept the same.

followed by a power normalization stage [20], [21] and then
used as input to the LMS filter. As a geometrical interpre-
tation, the unitary transformation rotates the mean square
error (mse) hyperellipsoid without changing its shape on the
axes of LMS filter weights [21]. The rotation attempts to
align the axes of the hyperellipsoid to the axes of weights.
The power normalization is crucial in enhancing the speed
of convergence for the LMS filter. The normalization forces
the hyperellipsoid to cross all the axes at equal distance
from the center of the hyperellipsoid. For a perfect alignment
after the transformation, the normalization step turns the mse
hyperellipsoid into a hypersphere [21]. It is important to
note that these off-the-shelf transformations are still not data-

dependent. They work relatively well for certain classes of
data having autocorrelation matrices with special structures
(e.g., Toeplitz).

The TDLMS filter is a flexible tool in that it does not attempt
to change the working principles and the architecture of LMS
filter. Therefore, the transform-domain module can precede
other algorithms, such as RLS, GAL, and LSL. Notice that the
conventional unitary transformations are independent of the
underlying data, hence not optimal in regularizing condition
numbers of the autocorrelation matrices of arbitrary real-time
datasets. As an example, the DCT has been shown to be
near-optimal for Toeplitz matrices. However, the DCT loses
its near-optimality in conditioning sparse linear systems.
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From a different perspective, the transformation of a matrix,
such as autocorrelation matrix to improve the condition
number is regarded as a subproblem of preconditioning of
matrices [22]–[24]. Jacobi [25], [26], Gauss–Seidel (GS) [27],
approximate inverse [28], [29], and incomplete lower-upper
(LU) factorization [30] preconditioners are examples of such
data-dependent transformations that utilize a decomposition of
the input matrix consisting of coefficients of linear equations.
These algorithms are well suited for solving linear system
of equations. In short, the transformation that improves the
performance of the LMS filter can also be applied to solving
linear systems of equations.

However, not all the strategies for solving linear sys-
tems of equations using matrix-preconditioner are suitable for
TDLMS. With careful attention, it can be seen that there is
a difference between TDLMS and linear systems in terms
of the usage of a preconditioner, as explained below. The
preconditioning action is implicit in TDLMS filters (split
preconditioner). The autocorrelation matrix is not explicitly
used in the LMS architecture. Instead, it is the input data or
the transformed input data that are channeled through the LMS
lattice and the update of weights is based on error-correcting
learning. While expressing the mse at the output as a function
of filter weights, it appears that the transformation matrix at
the input is attempting to condition the input autocorrelation
matrix and the convergence of the LMS algorithm depends on
the input autocorrelation matrix. On the other hand, in case of
solving linear system of equations, (Ax = b) type, the use of
a preconditioner is explicit, which is M−1 Ax = M−1b, with
M as a preconditioner matrix, such as the GS type.

Let A be a matrix to be preconditioned by another matrix
ζ . ζ is said to be a left, right, and split preconditioner if
ζ−1 A, Aζ−1, and U−1

1 AU−T
2 with ζ = U1U T

2 , respectively,
provide improved condition numbers compared to that of A.
GS, incomplete LU, and approximate inverse are examples
of a left preconditioner. The transformations in the TDLMS
algorithm are the unitary split preconditioner type. By the
unitary property, we have (U1U T

2 = I ) and U1 = U2 = U .
Therefore, it is the unitary split preconditioner matrix that can
be applied to TDLMS as well as to solving linear systems of
equations. In PrecoG, we aim to learn such unitary split pre-
conditioner from input data. In addition, as the transformation
is unitary, the energy of input data remains unchanged after
transformation.

It is to note that our approach does not follow the traditional
graph Laplacian regularization-based learning algorithms. For
example, the work in [31] employed graph regularization [32],
where feature vectors corresponding to each class are expected
to be in proximity after regularization. The main objective of
such works is the improvement of classification scores. In our
work, the condition number of the autocorrelation matrix of the
transformed data is expected to approach unity after learning
the input graph. Our objective is to speed up the convergence
of the LMS filter weights.

Unlike the off-the-shelf, data-independent transformations
in TDLMS, the derivation of the PrecoG unitary split condi-
tioner is motivated by the topology of the structured input data.
The topology determines neighborhood relationship between

data points, which can be represented using graph-theoretic
tools [33]–[35]. In recent years, manifold processing and reg-
ularization have shown promise in various applications [36],
[37]. Based on such evidence, we hypothesize that the intrin-
sic topology of the input data affects the construction of a
suitable preconditioner matrix. We estimate a data manifold
that provides a set of orthonormal bases acting as a split pre-
conditioning matrix. The data, when projected onto the basis,
are expected to be decorrelated. In fact, learning paradigms
that use the gradient descent approach as an intermediate step
to update model weights as a function of online data will be
substantially benefited from our work.

The main contributions of this work are as follows.
1) Unlike the traditional off-the-shelf transformations, Pre-

coG provides an optimi zation framework that recur-
sively finds the desired unitary transformation for the
preconditioning matrix. The optimization leverages the
estimation of the data manifold using a graph.

2) We show that our approach is equally applicable in
preconditioning arbitrary linear systems apart from ame-
liorating the convergence of LMS filters.

3) Another advantage of PrecoG is that it can be applied
without having a prior knowledge about the process that
generates the input data. The estimated autocorrelation
matrix serves our purpose.

To our knowledge, no mathematical framework has been
presented so far that could potentially generate such matrices
from the data.

A. Why a Graph Theoretic Approach?

For an N-dimensional data, there are N taps in the classical
LMS filter (see Appendices; LMS and TDLMS algorithms)
and these taps are independent of each other. Instead, in our
model, we assume that there is a relationship among the taps
that evolves as the data stream passes. The relationship can
be encoded using a graph with edge weights that are to be
estimated. By way of the theory of graph signal processing,
the Laplacian matrix provides a set of orthonormal bases for
the data. The set of bases acts as a preconditioning matrix.

In our brain, the neurons altogether form a complex net-
work [38]–[40]. The classical LMS filter bears a weak analogy
with brain neuronal networks, where each tap acts as a neuron.
The neurons “innervate” postsynaptically (considering only
monosynaptic connections) another neuron, which acts as a
summing node or an integrator [see Fig. 1(C)]. Each weight
mimics the synaptic strength. The weight update step utilizes
the LMS algorithm, which is error-correcting in nature by its
formulation. We assume that the input graph (barring the inte-
grator or summing neuron) to be fully-connected, undirected,
weighted graph [see Fig. 1(D)]. Using the transformation, a tap
(or equivalently a neuron) can exert positive (excitatory) or
negative (inhibitory) [41] effect on its neighbor, including itself
to precondition the input data as shown in Fig. 1(D).

II. LMS AND TDLMS ALGORITHMS (IN BRIEF)

Let X be a real-valued data that are channeled to a filter
with N tap delays, #(t) = [φ0(t),φ1(t), . . . ,φN−1(t)]. The
data vector at time t = n at the taps can be written as
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xn = [x(n−N +1), x(n−N +2), . . . , x(n)]. The filter output
is given by y(n) = #(n)T xn. Let the desired response be d(n).
Then, the error e(n) = d(n)− y(n) = d(n)−#(n)T xn.

The LMS algorithm is formulated as follows:

φi (n + 1) = φi (n)− µ
∂e2(n)

∂φi(n)

= φi (n)− 2µe(n)
∂
[
d(n)−#(n)T xn

]

∂φi (n)
= φi (n) + 2µe(n)x(n−i). (1)

Assume that φ(n) is independent of X(n) at the convergence
(because when #(n) converges to a stationary array, X(n) may
keep changing). Taking expectation on both sides of the above
expression, we get

E(#(n + 1)) = E(#(n)) + 2µE(e(n)xn)

= E(#(n)) + 2µE
(
xn

(
d(n)− x T

n #(n)
))

= E(#(n)) + 2µE(xnd(n))

−2µE
(
xn x T

n

)
E(#(n))

= E(#(n)) + 2µRdx − 2µRxx E(#(n))

= (1− 2µRxx )E(#(n)) + 2µRdx . (2)

Let us consider the term E(#(n))(1−2µRxx). Let us assume
Rxx = R and Rxx = U&U T . Therefore,

E(#(n))(1− 2µRxx ) = U(I − 2µ&)U T E(#(n))

= U(I − 2µ&)nU T E(#(0)). (3)

To converge E(W (n + 1)) to a stable value 2µRdx in (2),
(I−2µ&)n must converge to zero at n→∞. This is possible
only when (1 − 2µλi ) → 0∀i . So, the convergence will be
quickly achieved if (λmax/λmin)→ 1.

In TDLMS, let the transformation be T ∈ RN×N and the
transformed data vector is x ′N = T xN . The following step is
the normalization of power:

vi (n) =
x ′i(n)√

Pi (n) + eps
; eps = small number

Pi (n) = β Pi (n − 1) + (1− β)
(
x ′i(n)

)2
. (4)

Next, v(n) is channeled to the LMS filter. The expression can
be obtained simply by replacing x(n−i) with v(n − i) in (1).

III. GRAPH THEORY (IN BRIEF)

A graph can be compactly represented by a triplet (V, E,w),
where V is the set of vertices, E the set of edges, and w the
weights of the edges. For a finite graph, |V| = N which is
a finite positive integer, and | • | is the cardinality of a set.
By denoting wi j ∈ w as a real non-negative weight between
two vertices i and j with i, j ∈ {1, 2, . . . , N}, the adjacency
matrix, A of G can be given by ai j = wi j with aii = 0 for
a graph with no self-loop. A ∈ RN×N is symmetric for an
undirected graph and can be sparse based on the number of
edges. The incidence matrix, B ∈ RN×|E | of G is defined as
bi j = 1 or − 1 where the edge j is incident to or emergent
from the vertex i . Otherwise bi j = 0. The graph Laplacian
L ∈ RN×N , which is a symmetric positive-semidefinite matrix,
can be given by L = BW BT , where W is a diagonal matrix

containing w. Determining the topology of input data refers
to the estimation of A or L depending on the formulation of
the problem at hand.

IV. PROBLEM STATEMENT

Let xk = [x(k) x(k − 1) · · · x(k − N + 1)] be an
N-length real-valued tap-delayed input signal vector at kth
instant. The vector representation is convenient for estimat-
ing the input autocorrelation as an ergodic process. Let the
autocorrelation matrix, denoted by RN be defined as RN =
E(xN x T

N ). We assume that )Y is the main diagonal of a
square matrix Y ()Y = diag(Y )). Following this notation,
after power normalization the autocorrelation matrix becomes
SN = )−1/2

RN
RN )−1/2

RN
. In general, the condition number of SN ,

χSN , happens to be significantly large in practical datasets.
For example, the condition number of the autocorrelation
matrix of a Markov process with signal correlation factor
as 0.95 has a χ of O(103). Notice that we seek UN to
minimize the condition number of SN . Let a unitary trans-
formation be UN (UN U T

N = I ) such that the transformed
autocorrelation matrix becomes R̃N = E[U T

N xk x T
k UN ]. Next,

R̃N is subjected to a power normalization stage that produces
S̃N = )−1/2

R̃N
R̃N )−1/2

R̃N
. Precisely, we want the eigenvalues of

limN→∞ S̃N ∈ [1− ε2, 1 + ε1], where ε1 and ε2 are arbitrary
constants such that χmax ) ((1 + ε1)/(1− ε2)). A schematic
of our algorithm is given in Fig. 1.

Let us take an example of a first-order Markov input with
the signal correlation factor ρ and autocorrelation matrix, RN

as

RN = E
[
xk xH

k

]
=





1 ρ · · · ρn−1

ρ 1 · · · ρn−2

...
...

. . .
...

ρn−1 ρn−2 · · · 1




. (5)

It is shown in [21] that χSN ) ((1 + ρ)/(1− ρ))2, which
suggests that ε1 = ρ2 + 2ρ, and ε2 = 2ρ− ρ2. After applying
the DFT, the condition number becomes limN→∞ χS̃N

=
((1 + ρ)/(1− ρ)), which indicates that ε1 = ε2 = ρ.
On applying the DCT, limN→∞ χS̃N

= 1 + ρ with ε1 = ρ
and ε2 = 0.

The optimal convergence properties are obtained when S̃N

converges to the identity matrix in the rank zero perturbation
sense [21]: A and B with η = A−B have the same asymptotic
eigenvalue distribution if

lim
N−→∞

rank(η) = 0. (6)

In our case, with λ as an eigenvalue, this translates to

lim
N→∞

det
(
S̃N − λIN

) = 0 (7)

which can be expanded as

lim
N→∞

det
(
)−1/2

R̃N
R̃N)−1/2

R̃N
− λIN

)
= 0

lim
N→∞

det
(
R̃N − λ)R̃N

) = 0. (8)
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However, in the presence of the determinant in (8), obtaining
a closed-form expression for UN is difficult to obtain. To over-
come this obstacle, we apply the Frobenius norm in (9). The
modified optimization problem becomes

UN = argmin
UN∈O(N)

∥∥ R̃N − λ)R̃N

∥∥2
F . (9)

Here, O(N) is the set of unitary matrices. The Frobenius
norm imposes a stronger constraint compared to (7). In fact,
while (8) can be solved if at least one column of R̃N − λ)R̃N

can be expressed as a linear combination of rest of the
columns, (9) becomes zero only when R̃N − λ)R̃N

is a zero
matrix. In effect, the Frobenius norm reduces the search space
of UN . It is due to the fact that the set of UN that solves (9)
is a subset of the UN that are also the solutions of (8).

Here, we address two aspects of the problem. First, (9)
attempts to minimize the difference between R̃N , which is
U T

N RN UN , and the scaled diagonal matrix of R̃N . This is
necessary because it accounts for the spectral leakage [21]
as detailed later in this section. The second aspect is that (9)
attempts to diagonalize R̃N apart from attempting to make the
eigenvalues unity only. We relax the unity constraint by forcing
the eigenvalues to lie within a range [1−ε2, 1+ε1], expecting
the condition number to approximate ((1 + ε1)/(1− ε2)).

The question is: how to obtain such UN from the input data?
We consider the N-tap LMS filter as a graph having N nodes.
The graph is fully connected and weighted [see Fig. 1(C)].
Using this model, it can be seen that UN is a function of
edge weights, w (see Section III). It is to remind the readers
that w is not the set of weights of LMS filter taps. Instead, w
represents the set of edge weights of the input graph that we
modeled. This fictitious graph will provide UN . Next, this UN

will be applied to the input data. The transformed data will
be channeled to the LMS filter. The filter tap weights will
then be recursively updated using the LMS rule to adapt the
transformed data.

Incorporating the above discussion, the optimization prob-
lem with parameters p = (w, ε1, ε2) becomes

w∗ = argmin
w





‖ R̃N − s+)R̃N

‖2
F + ‖R̃N − s−)R̃N

‖2
F︸ ︷︷ ︸

E(p)

+ β
(
wT w − 1

)




(10)

where s+ = 1 + ε1 and s− = 1 − ε2 are the upper and lower
bounds, respectively, for the eigenvalues of SN . To prevent
each wi from erratic values during iteration, we impose 2-
norm on the weight vector w.

The cost function in (10) is nonconvex. Therefore, the
solution is not guaranteed to be a global optimum. In our work,
the required solution is obtained through gradient descent with
µ as the step size parameter

wt+1
i = wt

i (1− 2β)− µTr

([
∂ E(p)

∂UN

]T ∂UN

∂wi

)

; 0 < µ < 1.

(11)

t is the iteration index, and the computation of (∂ E(p)/∂UN )
is given in Appendix B.

V. METHODOLOGY

A. Laplacian Parametrization

The problem of finding a suboptimal transform by opti-
mizing (10) is solved by leveraging the graph framework.
In this framework, the input data are modeled with a finite,
single-connected, and undirected graph without self-loops and
is endowed with a set of vertices, edges, and edge weights. For
example, for an LMS filter with N taps, an input signal vector
xk has length N , which can be represented with N vertices.
Basically, each vertex corresponds to one tap of the LMS filter.
Using the graph, the unknowns of the optimization in (10) are
the number of edges and the associated edge weights. A fully-
connected graph with N vertices contains ((N(N − 1))/2)
edges. A deleted edge can be represented with zero edge
weight. We denote the set of unknown parameters as w, which
is the set of nonzero weights of the graph.

To find the desired transformation UN , the algorithm ini-
tializes the weights w with random numbers sampled from a
Gaussian distribution with zero mean and unit variance. Let
W is the diagonal matrix containing w. Then by definition, the
graph Laplacian, which is symmetric and positive semidefinite
by construction, is given by L = BW BT . B is the incidence
matrix as mentioned in Section III. The spectral decomposition
of L provides the matrix of eigenvectors U . Finally, U T xk is
the transformation that is expected to decorrelate the dataset,
which may not be possible due to random initialization. Then
the cost function (10) helps update the weights and the search
for the desired transformation continues in an iterative fashion
until the objective conditions are met.

As the cost function is nonconvex, the performance of
PrecoG depends on how the graph adjacency matrix is ini-
tialized. For all our experiments, we generated a matrix, S,
for which the entries are sampled from a random Gaussian
(zero mean, unit variance) distribution. Later, we performed
the following operation, S ←− |(S + S′)/2|, where ′ and
||̇ are the matrix transpose and elementwise absolute value
operations, respectively. This is followed by S←− S−diag(S)
to delete the diagonal entries of S to make the graph simple.
The absolute value operation is needed to make the edge
weights non-negative. Since the graph is fully connected, the
incidence matrix B is known beforehand [see Fig. 1(A)]. This
incidence matrix B is applied to (14).

B. Computation of Partial Derivatives

From Section III, we obtain that L = BW BT . Let
-i = (∂L/∂wi), which can be evaluated as (∂L/∂wi) =
B(∂W/∂wi)BT . In (11), the computation of (∂UN/∂wi ) is
performed by

∂uk,l

∂wi
= Tr

(
∂uk,l

∂L
-i

)
= Tr

([
∂L

∂uk,l

]−T

-i

)

(12)

where using J mn = δmkδnl , (∂L/∂ukl) can be given by

L = UN/U T
N -⇒

∂L
∂ukl

= UN /J mn + J nm/U T
N . (13)
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However, it is difficult to compute (11) because (∂L/∂ukl)
is non-invertible. The proof is given in Appendix C. One
can use diagonal compensation by adding α I (α < 0.001) to
(∂L/∂ukl) [42]. However, it produces erroneous solution.

We approach the problem of computing (∂UN/∂wi) using
first-order eigenvector perturbation (see Appendix D)

∂ui

∂w j
=

∑

p /=i
λp /=λi

1− δ
(
λi ,λp

)
(
λi − λp

)
〈
ui , B

∂W
∂w j

BT u p

〉
u p

+
∑

q /=i
λq=λi /=0

δ
(
λi ,λq

)

λi

〈
ui , B

∂W
∂w j

BT uq

〉
ui

+
∑

q /=i
λq=λi =0

δ
(
λi ,λq

)〈
ui , B

∂W
∂w j

BT uq

〉
ui . (14)

The above formulation can be plugged in (∂UN/∂w j) =
[(∂u1/∂w j) (∂u2/∂w j) · · · (∂uN /∂w j)] to be used in (11).
In (14), the space of incremental changes in an eigenvector
with respect to edge weight wi is a spanned by the
eigenvectors ui .

The data-dependent transformation matrix, U utilizes the
autocorrelation matrix of the input data [R̃N inside E(p)].

VI. RESULTS

We split the result section in three parts. The first part
considers systems where the matrix that is to be conditioned
is known a priori. The second presents the performance
of PrecoG on simulated on-line data, where autocorrelation
matrices are estimated using a window. Finally, the third
presents the complexity of PrecoG computation.

Part-I (Linear Systems): We show the effectiveness of our
approach in preconditioning different matrices against the
preconditioners—DCT, DFT, Jacobi (tridiagonal matrix type),
GS, and incomplete LU factorization. To represent the strength
of an individual algorithm, we incorporate the condition
number of each unconditional matrix with the aforementioned
methods. To scale the condition numbers obtained from several
methods with respect to ours, we define a metric, condition
ratio = (condition number obtained from a method)/
(condition number obtained by PrecoG). In some of the results,
we compute log10(condition ratio) to mitigate the enormous
variance present in the condition ratio scores.

First, we apply our method to precondition a Hilbert
matrix [43] which is severely ill-conditioned. Hilbert matrix,
H is defined as H (i, j) = (1/(i + j − 1)). In the experiment,
we add a regularizer using (αI) with 0 < α ≤ 1 as the
regularization coefficient. The condition ratios of the existing
algorithms, including PrecoG on preconditioning the Hilbert
matrices, which are regularized by changing the α, are shown
in Fig. 1(E-a). Notice that the X-axis is given in −log10 scale.
Therefore, smaller values at X coordinate indicates higher
regularization of the Hilbert matrix. On decreasing the value
of α, the Hilbert matrix becomes severely ill-conditioned,
and the performance of the competitive algorithms except GS
exhibit inconsistent behavior. The DCT performs better near
α = 1 (−log10(α) = 0) because of the diagonally dominant

nature of the matrix. PrecoG outperforms all the comparative
methods.

We also evaluate our algorithm on five different random pos-
itive definite matrices with the values taken from a zero-mean
and unit-variance Gaussian process. Here, we regularize the
matrices to ensure positive-definiteness. It is evident from
Fig. 1(E-b), the condition ratios obtained by applying PrecoG
outperforms the DCT, GS, DFT, and Jacobi transformations.

The condition ratios (in log10 scale) with respect to
PrecoG on sparse systems of equations are shown in
Fig. 1(E-c). For PrecoG, log10 of the condition ratio
is zero. So, it is not shown in the plot. The three
sparse matrices are random by construction with sparsity
(number of nonzero elements/total number of elements) lev-
els as [1/4, 2/7, 1/5], respectively. PrecoG significantly out-
performs the conventional transformations.

Part-II (Simulated Process): PrecoG is evaluated on
two simulated datasets from two different processes—first-
order Markov process and second-order autoregressive (AR)
process. The LMS algorithm is supervised on these datasets
in a sense that the desired output is known beforehand for
each dataset. The data are channeled to the filter in on-
line mode, and PrecoG is blinded against the customization
of the data. The autocorrelation matrices of both processes
are Toeplitz. So far, the DCT is known as the near-optimal
preconditioner for first- and second-order Markov processes.
We have also considered the performance of PrecoG on
unsupervised Hebbian-LMS learning [41].

A. First-Order Markov or AR(1) Process

We simulate a first-order AR process with a set of sig-
nal correlation factors, ρ. As mentioned in the third claim
of our main contributions, PrecoG is shown to performed
significantly well without the prior knowledge of asymptotic
autocorrelation matrix of the input data.

For each ρ, we have simulated 2000 samples of 1-D data
and convolved the data with a filter defined by coefficients
h = [1 − 0.8 6 3] to generate the desired output. The
data power is taken as unity. The output is added with a
white Gaussian noise of signal power 0.01. The goal is to
converge the filter weight to the impulse function of the
convolution filter. Conventional transformations, such as the
DCT and the DST are applied at the beginning. However,
due to data-dependent nature of PrecoG, we consider a part
of initial data to estimate the time-averaged autocorrelation
function. The final unitary preconditioner of PrecoG depends
on the length of the initial data. The step length of the LMS
algorithm is set as 0.002. For a fixed length of initial data,
we have created a search space of L2 coefficients and PrecoG
learning rate, to find out the transformation.

It is evident from Fig. 1(F) that the number of taps in the
LMS filter is 4. We have investigated the relationship between
these four taps (neurons) by varying the initial data window.
Here, R − est 25 means that the estimated autocorrelation is
averaged over the first 25 data and the “gray”-scaled matrix
is the PrecoG transformation UN . The grayscale describes the
strength of excitatory (toward white) and inhibitory (toward
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TABLE I

TABLE LISTS THE CONDITION NUMBERS THAT ARE OBTAINED BY THE

DCT AND PRECOG TRANSFORMATIONS ON AR(1) DATA WITH ρ = 0.95.

WITH DIFFERENT INITIAL WINDOW LENGTHS, THE ESTIMATED

AUTOCORRELATION MATRICES (Rest ) VARY. THE SECOND AND THE

FOURTH COLUMNS SHOW THE CONDITION NUMBERS BY APPLYING

PRECOG AND DCT ON THE ESTIMATED R , RESPECTIVELY. USING

SIMPLE DERIVATIONS, THE ASYMPTOTIC Rasymp IS GIVEN IN (5). THE

EFFECT OF PRECOG AND THE DCT ARE GIVEN IN THE THIRD AND FIFTH

COLUMNS, RESPECTIVELY. THIS TABLE SHOWS THAT WITH HIGH

SIGNAL CORRELATION FACTOR, SUCH AS ρ = 0.95, WE NEED AT LEAST

75 LENGTH INITIAL WINDOW TO ESTIMATE R , WHEN THE CONDITION

NUMBER BY PRECOG DROPS JUST BELOW THE DCT WHEN APPLIED ON

THE ASYMPTOTIC R

black) drives. The relationship (matrix) is asymmetric. As an
example to interpret this asymmetry, it can be seen that
for R − est 25, neuron 1 inhibits neuron 2, but neuron
2 applies excitatory postsynaptic potential to neuron 1. For
example, neuron 1 in R-est 25 exerts an excitatory drive onto
itself (R-est 25 (1,1) is above zero). Fig. 1(G) exhibits the
transformation of the DCT, the DST, and PrecoG, where the
PrecoG transformation is obtained from a different instance of
AR(1) process with same h.

A comparison between the DCT and PrecoG in terms of the
convergence of filter weights is given in Fig. 1(H). The DCT
is applied to the input data prior to resuming the LMS filter
operation. PrecoG functions in two stages. At first, PrecoG
computes the transformation using an initial data window (in
this example, window length is 200), during which the filter
taps are updated without applying any transformation to the
input. Once the transformation is obtained, it is applied to
the rest of the data stream (TDLMS). It can be verified from
Fig. 1(F) and (G) that with DCT, the tap weight takes a longer
time to converge compared with PrecoG. The learning rate for
LMS is static for both of these processes.

TABLE II

TABLE LISTS THE CONDITION NUMBERS THAT ARE OBTAINED BY THE

DCT AND PRECOG TRANSFORMATIONS ON AR(1) DATA WITH ρ = 0.2.

THIS TABLE SHOWS THAT WITH SMALL SIGNAL CORRELATION FACTOR,

SUCH AS ρ = 0.2, WE DO NOT NEED TO HAVE A LONGER WINDOW TO

ESTIMATE R . IN OUR SIMULATION, AT THE INITIAL WINDOW LENGTH OF

25, THE CONDITION NUMBER BY PRECOG DROPS JUST BELOW THE DCT

WHEN APPLIED ON THE ASYMPTOTIC R . THIS MAKES SENSE AS THE

DATA DOES NOT HAVE ENOUGH CORRELATION AMONG ADJACENT

SAMPLES BECAUSE OF THE LOW CORRELATION FACTOR. SO, ANY

PRECONDITIONING MATRIX WILL TAKE A RELATIVELY SHORT TIME TO

FURTHER DECORRELATE R

A relevant question is: how long does the initial data
window have to be to compute an effective preconditioner?
Table I in Fig. 1 and Table II in Fig. 2 provide an answer
to that question. In each table, we provide results for a set
of attributes. First, DCT and PrecoG are tested regarding
how they perform on the estimated time-averaged R (Rest)
and asymptotic R [see (5)]. Let us take the first row of
Table I. With the initial data window of length 25, we have
obtained a transformation U . The DCT gives the condition
number of 1.2390 on Rest, where applying PrecoG yields the
condition number of 1.0094 on Rest. It might appear that
PrecoG performed well over the DCT if the initial 25 data
samples are considered. However, the third column reveals that
with U (PrecoG) at hand, it yields the condition number of
1.3550 when the asymptotic R is considered and it is inferior
to the DCT (1.15). This due to the fact that Rest is not a
robust approximation of the asymptotic R. It is not until the
data window of length 75 that we can observe that PrecoG
(1.1251) starts performing better than the DCT (1.15) on the
asymptotic R.

Tables I and II are the results on AR(1) process at two
different signal correlation factors 0.95 and 0.2, respectively.
One can see that PrecoG starts performing better than DCT
with the data window length 25 in case of ρ = 0.2. This
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observation is harmonious with the theory of TDLMS. AR(1)
with ρ = 0.95 is a highly correlated datastream. Therefore,
a longer data window is required to estimate R to decorrelate
the data. Fig. 1(H-b) shows the transformation matrices at
three different initial length of data window for AR(1) process
with ρ = 0.2. When compared to Fig. 1(F) (AR(1) with
ρ = 0.95), it is evident that with smaller size data window,
PrecoG contains a large number of inhibitory drives when the
signal correlation factor is relatively low.

B. Second-Order Autoregressive Process

In Fig. 2(a), we present the condition ratios computed by
applying the algorithms on the autocorrelation matrices of
eight second-order AR process with parameters (ρ1,ρ2) [16].

The input autocorrelation matrix RN of such process is
given by RN = c1 RN (ρ1) + c2 RN (ρ2). RN (ρ1) and RN (ρ2)
are two Toeplitz matrices, similar to RN of first-order Markov
process. c1 and c2 are constants and are given by c1 = ((ρ1(1−
ρ2

2 ))/((ρ1−ρ2)(1+ρ1ρ2))), c2 = ((−ρ2(1−ρ2
1 ))/((ρ1−ρ2)(1+

ρ1ρ2))). As shown in Fig. 2(a), PrecoG outperforms DCT in
all the above cases, implying that it has better decorrelating
ability than the DCT.

Next, we apply PrecoG to a simulated 3200-length data
sample from an AR(2) process with ρ1 = 0.6 and ρ2 = 0.9.
The AR(2) data power is set to unity. We assume that there are
three filter taps. The convolution filter h = [1 0.8 −3] to gen-
erate the desired output. The convolved response is corrupted
with additive white Gaussian noise with normalized signal
power of 0.01. For each data x , we set LMS learning step as
0.001, and the power normalization factor beta as 0.85. The
length of initial data window to estimate the autocorrelation
matrix is set as 200. Fig. 1(I-a) shows the behavior of a filter
tap in the cases of DCT-LMS and PrecoG-LMS where each
data sample is processed. The tap weight attains convergence
faster in PrecoG accompanied by an accelerated reduction in
error [see Fig. 1(I-b)] when compared with the DCT.

C. Hebbian Learning and Hebb-LMS Algorithm

In 1949, Hebb [44] postulated that concurrent synaptic
changes occur as a function of pre and postsynaptic activity,
which was elegantly stated as “neurons that are wired together
fire together.” This classical remark of Hebb attempted to
explain the plausible role of synaptic changes in learning and
memory. Hebbian and LMS were predominantly regarded as
two distinct forms of learning. Hebbian form of learning is
unsupervised in nature, whereas LMS is primarily supervised.
However, Hebbian rule, when translated into computational
filters, leads to instability. Neuroscience researchers explained
that neurons and the network collectively maintain stabil-
ity by scaling the data at the input synapses (homeostatic
plasticity) [45], [46]. From the computational point of view,
a parallel of this Hebbian learning and synaptic scaling
with our work is given in Appendix A (Hebb-LMS algo-
rithm). Widrow et al. [41], inventor of LMS filters, proposed
Hebb-LMS algorithm in 2019. It describes a mechanism of
learning in equilibrium (analog of homeostatic learning) using

Fig. 2. (a) Plot shows comparative performances of DCT, DFT, Jacobi, and
GS with respect to PrecoG (condition ratio in log10) on six AR(2) datastreams
with (ρ1, ρ2) as (0.15, 0.1), (0.75, 0.7), (0.25, 0.01), (0.75, 0.1), (0.9, 0.01),
and (0.99, 0.7). (b) Error profile over epochs in case of Hebb-LMS, and the
effect of PrecoG and the DCT on the Hebb-LMS process. With PrecoG, the
error is reduced significantly within 60 epochs.

a sigmoid. PrecoG performs efficaciously in comparison using
transformed domain Hebb-LMS algorithm.

The relevance of this Hebbian learning and homeostatic rule
(synaptic scaling) in our work can be speculated from a com-
putational point of view. The error at the output corresponding
to an input data is backpropagated and eventually updates
the weights. A data vector is an array of real numbers. The
positive entries in a vector collectively constitute an excitatory
drive and the negative entries constitute an inhibitory drive to
the postsynaptic neuron, where the drives are summed and
later nonlinearly (such as, a sigmoid function) transformed.
An ideal transformation (TDLMS) should have the property
that it can regulate the magnitude of both the drives. A suitable
transformation is expected to assess the balance of excitatory
and inhibitory drives and modulate the input to achieve decor-
relation. We resort to the input autocorrelation matrix that may
provide such assessment. It is to remind the reader that input
data is transformed prior to passing to the filter. Therefore,
the transformation “scales” the data for the LMS filter. So,
it acts as a regularizer for the adaptation of filter weights.
If this philosophy is true, PrecoG should also work in the
unsupervised settings because finding the transformation is
independent of how the filter weights are updated.

The experimental setting considers a 3200 length data
generated by an AR(1) process with a Gaussian noise with zero
mean and a variance of 3. We assume that there are four filter
taps. For each data x , the desired output is Sigmoid(W T x).
We set the slpha of the sigmoid as 0.5, gamma as 0.5, the
LMS learning rate as 0.001, and power normalization factor
beta as 0.85. The length of initial data window to estimate
the autocorrelation matrix is set as 100. We run 500 epochs
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Fig. 3. Error profile over epochs in case of Hebb-LMS, and the effect of
PrecoG and the DCT on the Hebb-LMS process on an AR(2) data. The data
are shuffled at each epoch prior to passing to the filter. R is estimated from
the shuffled in the first epoch. With PrecoG, the error is reduced significantly
within 30 epochs.

TABLE III

COMPUTATION TIME IN SECONDS (MEAN ± STANDARD DEVIATION)
OF PRECOG OBTAINED USING MATLAB. THE COMPUTATION TIME

INCLUDES THE TIME REQUIRED TO FIND PRECOG IN THE SEARCH
PACE. FOR N = 16, 64, 128, WE USED 4-REGULAR GRAPHS

to inspect the behavior of error. In each epoch, weights are
continuously updated after each data sample is passed and the
datastream is randomly shuffled. We compute the Euclidean
norm of the 3200 errors in each epoch to plot. The setting is
fixed for all Hebb-LMS, DCT-Hebb-LMS and PrecoG-Hebb-
LMS methods. In TDLMS using PrecoG, the output error is
reduced when compared to Hebb-LMS and DCT-Hebb-LMS.
A similar conclusion can be drawn when PrecoG and DCT are
tested on an AR(2) process with a Gaussian noise with zero
mean and variance 5 (see Fig. 3).

Part-III (Complexity): The update of weights wi requires the
computation of three partial derivatives, which needs eigende-
composition of the Laplacian in every iteration. Eigendecom-
position of a matrix has a computational complexity of O(N3).
Note that B(∂W/∂w j)BT is fixed for w j . By definition, L =
BW BT . So, E = (∂L/∂w j) = B(∂W/∂w j)BT . E has exactly
four nonzero entries—E(k, k) = E(q, q) = 1, E(k, q) =
E(q, k) = −1∀w j = wkq . Therefore, B(∂W/∂w j)BT up

requires constant computation. For example, if w j = w13, then
B(∂W/∂w j)BT u p = [u p1−u p3, 0, u p3−u p1, 0, 0, ..]T , having
nonzero entries at the first and third locations. It implies that
〈ui , B(∂W/∂w j)BT uq〉 requires constant computation. Now,
each ui has length N . For each i , (∂ui/∂w j) requires O(N)
time to add for all (N − 1) vectors. So, the time complexity
to compute (∂UN/∂w j ) is O(N2). For N taps and I itera-
tions, the computational complexity becomes O(N3 I ). A large
search space of the learning rate (11) and regularization (10)
incurs additional computational load (see Table III).

It is to note that the constructions of preconditioners for
solving linear systems by comparative methods, such as
Jacobi (O(N2)), successive over-relaxation (SOR) (O(N3)),
symmetric SOR (O(N3)), and GS (O(N3)) have faster associ-
ated run times compared to PrecoG. Here, complexity accounts

TABLE IV

COMPARISON OF THE NUMBER OF ITERATIONS AMONG PRECONDI-
TIONING METHODS FOR SOLVING LINEAR EQUATIONS. A IS A

HILBERT MATRIX ADDED WITH αI . b IS GENERATED FROM A
GAUSSIAN DISTRIBUTION G(0, 1). WE USED GAUSS–SIEDEL

LINEAR SOLVER (TOLERANCE = 10−5 ). IN PRECOG,
WE TAKE FULLY CONNECTED, SIMPLE GRAPHS FOR

N = 5, 11 AND A 3-REGULAR GRAPH FOR
N = 256 (∗)

for the inversion of each preconditioner matrix. However, the
acceleration in the convergence of the LMS filter using PrecoG
is also expected to partially compensate for the computational
overload of PrecoG. This is shown in Table IV. For a large
N , we used a sparse graph to avoid a large number of edge
weights in a fully connected graph.

VII. DISCUSSION

LMS filters play pivotal roles in several applications, and
convergence of the algorithm in terms of the filter weights,
which are updated at each iteration, poses critical challenges
to the quality of performance of LMS filters. TDLMS offers
a solution to overcome the convergence issue by transforming
the data prior to channeling it to the LMS filter. Conventional
transforms serve as a palette of such transformation. However,
the convergence of LMS is mediated by the shape of the
real-life data manifold. If the shape of the data manifold
is known a priori, only then we can robustly evaluate the
efficacy of the transformations. This issue is largely over-
looked in the existing literature. PrecoG provides a solution
to this problem by presenting an optimization framework that
intelligently encodes data manifold into the transformation
matrix. The “data” are absorbed into the actual or estimated
autocorrelation matrix. The edge weights of the input graph
are varied over iterations till the condition number of the
transformed autocorrelation matrix approaches unity. This is
how each edge weight is an implicit function of the input data.
Apart from symmetry by definition in case of real-valued data,
autocorrelation matrices containing distinct structures, such as
diagonally dominant, Toeplitz, Hankel, and circulant appear in
special circumstances. For example, the autocorrelation matrix
of first-order Markov process possesses Toeplitz structure.
If the autocorrelation at two time points depends only on
the time difference, then the autocorrelation matrix becomes
Toeplitz. However, these assumptions are rarely valid in cases
of data with dynamic changes over time. PrecoG evaluates
the data manifold after each interval and accordingly finds
the unitary preconditioner. Users can set a time interval
after which the preconditioning matrix will be computed
periodically to incorporate dynamic changes into the matrix.
Nevertheless, this flexibility comes at the price of an additional
computational overhead.
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Fig. 4. Profiles of a tap of an LMS filter weight over iterations and at different
noise power. An AR(0.9) process with unit signal power is transformed
using PrecoG and is channeled through the four-tap LMS filter. Gaussian
noise N (0, 1) with varied power (σn ) is added to the output. When the
noise power is high, the input autocorrelation matrix approaches RN ∼ σ 2

n I ,
approximating unit condition number. The convergence becomes faster, as is
evident in this plot. With lower noise power, the input becomes a highly
correlated (ρ = 0.9) AR process. The difference in profiles of the tap weight
over varying noise power can be observed in the encircled area.

PrecoG is shown to significantly outperform the conven-
tional transformations that are considered in this article on AR
datasets and different linear systems of equations. PrecoG is
shown to have improved performance when the autocorrelation
matrix of the process is estimated, making PrecoG amenable
to be deployed in online scenarios. For AR datasets, we also
examined the variation of the initial window length with
the signal correlation factor. It is shown to be effective in
unsupervised settings also, when we investigated PrecoG’s
performance in the Hebbian-LMS settings.

The coefficients # of a TDLMS filter are stable in mean and
variance after applying the unitary transformation. In general,
the step length µ affects the stability of # and a practical
bound on µ can be given as 0 < µ < (2/tr(RN )), where tr
is the matrix trace operator. This bound ensures that φ ∈ #
will not diverge. In TDLMS, R̃N = U T

N RN UN . Now, it can
be shown that tr(AT B) = tr(B AT ); A, B ∈ Rm×n . Using this
result, it can be seen that tr(U T

N RN UN ) = tr(UN U T
N RN ) =

tr(RN ). Therefore, the stability of the TDLMS tap weights is
not different from that of LMS if µ lies within the bound.
With added noise power, the behavior of a filter tap of an
LMS filter is shown in Fig. 4.

Practical applications, such as echo cancellation require
a large number of filter taps (such as 512 or 1024) [3],
[9]. In these applications, adaptive algorithms, such as RLS
are not preferred because of large computational overhead.
Algorithms, such as proportionate normalized LMS (PNLMS)
and its variants are used in these applications. PrecoG has a
large initial computational overhead for a large N . This over-
head can be reduced in several ways: by finding a Bayesian
framework for the search space to find the optimal learning
rate and regularization parameter, by utilizing a sparse input
graph structure, by way of eigendecomposition of a sparse
matrix. We will explore these options in our future work.

VIII. CONCLUSION

In this work, we present a method to obtain a unitary
split preconditioner by utilizing nonconvex optimization, graph
theory and first-order perturbation theory. We demonstrate the

efficacy of our approach over prevalent state-of-the-art tech-
niques on Markov datasets and linear systems of equations.
We inspect PrecoG in supervised and unsupervised settings.
As a future endeavor, we will attempt to exploit the signal
structure, input graph structure, and embed them into the
optimization framework by including a set of constraints.

APPENDIX

A. Hebb-LMS Algorithm

In 1949, Hebb [44] postulated that concurrent synaptic
changes occur as a function of pre and postsynaptic activity,
which was elegantly stated as “neurons that are wired together
fire together.” This classical remark of Hebb attempted to
explain the plausible role of synaptic changes in learning and
memory.

So, Hebbian and LMS were predominantly regarded as
two distinct forms of learning. Hebbian form of learning is
unsupervised in nature, whereas LMS is primarily supervised.
However, when Hebb’s rule was applied to a linear filter to
learn patterns in data by adaptively changing the weights,
it posed a problem. If the concurrent pre and postsynaptic
activities strengthen over time, there is nothing to scale the
activity down. Researchers attempted to introduce a “forget-
ting” term inside the Hebb’s rule. In 1982, Oja [47] introduced
a modification to stabilize the computational analog of Hebb
rule. In effect, the linear filter was able to learn the principal
components of the input data. However, such modifications
are ad hoc and, therefore, difficult to interpret.

Widrow et al. [41] proposed an algorithm that integrates
Hebbian and LMS learning paradigms and it contains two
equilibrium states for excitatory and inhibitory drives. The
mathematical expression is given by

W (n + 1) = W (n) + 2µe(n)x(n)

e(n) = SGM
(
W (n)T x(n)

)
− γ W (n)T x(n)

y(n) =
{

SGM
(
W (n)T x(n)

)
, if S > 0

0, o.w.
(15)

Here S = SGM(W (n)T x(n)) and SGM is the polar sigmoid
function. This algorithm is unsupervised because the target
response of x(n) is S. It contains two stable equilibrium points
1 (excitatory) and −1 (inhibitory) on the SGM curve.

B. Evaluation of [(∂ E(p)/∂UN )]

Let, M(ε) = ||U T RU − (1 + ε)U T RU ◦ I||2F . Then

M(ε) = Tr
({

U T RU − (1 + ε)U T RU ◦ I
}

×
{
U T RU − (1 + ε)U T RU ◦ I

}T
)
. (16)

Equation (16) on expansion gives

M(ε) = Tr
(

U T R2U − 2(1 + ε)
(
U T RU ◦ I

)

×
(
U T RU

)
+ (1 + ε)2(U T RU ◦ I

)2
)
. (17)

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 16,2022 at 17:12:57 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BATABYAL et al.: EFFICIENT LEARNING OF TDLMS FILTER USING GRAPH LAPLACIAN 11

Equation (17) is obtained using the fact that UU T = I.
By performing the partial derivative

∂M(ε)

∂U
= ∂Tr

(
U T R2U

)

∂U

− 2(1 + ε)
∂

∂U
Tr

{(
U T RU ◦ I

)(
U T RU

)}

+ (1 + ε)2 ∂

∂U
Tr

(
U T RU ◦ I

)2
.

= 2R2U − 4(1 + ε)RU + (1 + ε)2(U T RU ◦ I
)
RU.

Next, (∂ E(p)/∂U) is computed using (∂M/∂U) as
(∂ E(p)/∂U) = ((∂M(+ε1))/∂U) + ((∂M(−ε2))/∂U)

∂ E(p)

∂Un
=2

[
2Rn − 2(2 − ε1 − ε2)I

−
{
(1+ε1)

2+(1−ε2)
2}U T

n RnUn ◦ I
]
RnUn . (18)

C. Proof

(∂L/∂ukl) = UN/J mn + J nm/U T
N is non-invertible.

By definition, J mn = δmkδnp. Let F = /J mn . Then

F(x, y) =
{

λk, if x = k and y = p
0, o.w.

(19)

Therefore,

UN /J mn(x, y) =
{

λkuxk , if y = p
0, o.w.

(20)

So, UN /J mn has one column (at y = p) that has a set
of nonzero entries. It is evident that H = (UN/J mn)T =
J nm/U T

N . Therefore, (∂L/∂ukl) has one row and one col-
umn of possibly nonzero entries by construction. Assume
m is that row index and the corresponding entry of H is
[Hm1, Hm2, . . . , HmN ]. Assume that q ∈ {1, 2, . . . , N} is the
column index, where H receives entries from UN /J mn . One
can find any two columns i, j ∈ {1, 2, . . . , N}− {q} such that
the following transformation Ci −→ (Ci/Hmi) and C j −→
(C j/Hmj) would give two identical columns.

D. Proof of (14)

Let us assume A0 is a real-valued, finite-dimensional (∈
RN ), positive semi-definite matrix with eigenvectors U0 =
[u1, u2, . . . , uN ] and the corresponding eigenvalues λ0 =
[λ1,λ2, . . . ,λN ] (arranged in the decreasing order). In our
case, A0 = L, the graph Laplacian matrix. By definition
λN = 0.

Let us also assume that A, U and λ are real-valued functions
of a continuous parameter τ and they are analytic in the
neighborhood of τ0 such that A(τ0) = A0, U(τ0) = U0 and
λ(τ0) = λ0

A(τ )ui (τ ) = λi (τ )ui (τ )

Ȧ(τ )ui(τ ) + A(τ )u̇i = λ̇i (τ )ui + λi u̇i . (21)

Now, because of the facts that ui is analytic and ||ui || = 1
(orthonormal), u̇i⊥ui . Taking inner product with ui on both
sides and plugging 〈u̇i , ui〉 = 0, it can be found that

〈
Ȧui , ui

〉
+

〈
Au̇i , ui

〉
=

〈
λ̇ui , ui

〉
〈
Ȧui , ui

〉
=

〈
λ̇ui , ui

〉
. (22)

Here, 〈Au̇i , ui〉 = 〈u̇i , Aui 〉 [because A is symmetric (self-
adjoint)]. Using Aui = λi ui , we get 〈u̇i , Aui 〉 = 〈u̇i ,λi ui 〉 =
λi 〈u̇i , ui 〉 = 0. From (22), we obtain the expression for λ̇i as
λ̇i = 〈Ȧui , ui〉.

Taking the inner product of (21) with u j; j /= i and using
the fact that ui⊥u j we obtain
〈
Ȧui , u j

〉
+

〈
Au̇i , u j

〉
= λi

〈
u̇i , u j

〉
〈
Ȧui , u j

〉 + 〈
u̇i , Au j

〉 = λi
〈
u̇i , u j

〉
〈
Ȧui , u j

〉 + 〈
u̇i ,λ j u j

〉 = λi
〈
u̇i , u j

〉
〈
Ȧui , u j

〉
=

(
λi − λ j

)〈
u̇i , u j

〉
; λi /= λ j

〈
u̇i , u j

〉
= 1(

λi−λ j
)
〈
Ȧui , u j

〉
; λi /= λ j . (23)

Equation (23) (λi /= λ j ) and the fact that 〈u̇i , ui 〉 = 0 (λi =
λ j ) suggest that u̇i can be expressed as a linear combination of
eigenvectors u j; j ∈ {1, 2, . . . , N}. Let us consider τ = amn ,
where amn is an entry of A

∂ui

∂amn
=

∑

p /=i

1(
λi − λp

)
〈

∂ A
∂amn

ui , u p

〉
up; λi /= λp. (24)

It can be seen that u̇i is spanned by the eigenvectors of A,
when all the eigenvalues are numerically different. Due to
the fact that A is real and symmetric, (∂ A/∂amn) is also
symmetric. Therefore, (24) can be rearranged as

∂ui

∂amn
=

∑

p /=i

1(
λi − λp

)
〈
ui ,

∂ A
∂amn

up

〉
up; λi /= λp. (25)

Next, we can use the fourth step of (23) to derive the
expression of u̇i in case of λi = λ j

〈
Ȧui , u j

〉
= 0; λi = λ j〈

Ȧui , u j
〉
= λi

〈
u̇i , ui

〉
; u̇i⊥ui〈

ui , Ȧu j
〉
= λi

〈
u̇i , ui

〉
; Ȧ is symmetric

〈
Ȧu j , ui

〉 = λi
〈
u̇i , ui

〉

u̇i =






1
λi

∑

j /=i

〈
Ȧui , u j

〉
ui ; λi = λ j /= 0

∑

j /=i

〈
Ȧui , u j

〉
ui ; λi = λ j = 0.

(26)

Combining (25) and (26)

∂ui

∂amn
=

∑

p /=i

1− δ
(
λi ,λp

)
(
λi − λp

)
〈
ui ,

∂ A
∂amn

up

〉
up

+
∑

q /=i
λq /=0

δ
(
λi ,λq

)

λi

〈
ui ,

∂ A
∂amn

uq

〉
ui

+
∑

q /=i
λq=0

δ
(
λi ,λq

)〈
ui ,

∂ A
∂amn

uq

〉
ui . (27)
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Here δ is the Kronecker delta function. By definition

∂uk

∂w j
=

∑

m,n

∂uk

∂Lmn

∂Lmn

∂w j
(28)

where Lmn indicates the (m, n)th element of the symmetric
matrix L. Let us first find the expression for λi /= λ j .
Inserting (25) by replacing A with L to the above equation,
we get

∂uk

∂w j
=

∑

m,n




∑

k /=q

1(
λk − λq

)
〈

∂L
∂Lmn

uk, uq

〉
uq



∂Lmn

∂w j

=
∑

k /=q

(
1

λk − λq

)[
∑

m,n

〈
∂L

∂Lmn
uk, uq

〉
uq

]
∂Lmn

∂w j

=
∑

k /=q

(
1

λk − λq

)[
∑

m,n

〈
uk,

∂L
∂Lmn

uq

〉
uq

]
∂Lmn

∂w j

=
∑

k /=q

(
1

λk − λq

)〈

uk,
∑

m,n

(
∂L

∂Lmn

∂Lmn

∂w j

)
uq

〉

uq

=
∑

k /=q

(
1

λk − λq

)〈
uk, B

∂W
∂w j

BT uq

〉
uq

=
∑

k /=q

〈

uk,
1(

λk − λq
) B

∂W
∂w j

BT uq

〉

uq . (29)

From (29), it can be observed that the eigenvector uq is
projected by the operator (1/(λk − λq))B(∂W/∂w j )BT prior
to the inner product. Applying the same definition the final
expression can be found using (27)

∂ui

∂w j
=

∑

p /=i
λp /=λi

1− δ
(
λi ,λp

)
(
λi − λp

)
〈
ui , B

∂W
∂w j

BT u p

〉
u p

+
∑

q /=i
λq=λi /=0

δ
(
λi ,λq

)

λi

〈
ui , B

∂W
∂w j

BT uq

〉
ui

+
∑

q /=i
λq=λi =0

δ
(
λi ,λq

)〈
ui , B

∂W
∂w j

BT uq

〉
ui . (30)

CODE AVAILABILITY

The code is made publicly available in Code Ocean
(https://codeocean.com/capsule/7564483/tree) and github
(https://github.com/50-Cent/PrecoG).
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