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Complexity Analysis and u-net Based Segmentation
of Meningeal Lymphatic Vessels
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Abstract—This paper showcases a u-net based architecture
for the automated segmentation images of meningeal lymphatic
vessels. These lymphatic vessels surround the cerebral cortex
and have been recently found to drain waste from the brain.
Studies on mice have shown loss of memory and impairment
in cognitive ability if the vessels’ draining capacity does not
function adequately. As the meningeal lymphatic vasculature
itself is a recent discovery, there is no software tailored for
automatically segmenting these images. Instead, segmentation
must be performed by hand, which is a tedious and error-
prone process. By building an automatic segmentation tool for
these vessels, we can provide informatics for understanding and
researching them, in a quick and reliable way. A convolutional
neural network, called u-net, is adapted to the vessel segmentation
application, with the goal of teaching the network how to
segment the vessels. Segmentation using u-net is compared to
traditional non-learning based segmentation methods using Dice
coefficient. Three complexity measures are also proposed to
evaluate the segmentation quality: vessel ramification index,
porosity, and vessel length. The existence of a technique and
associated software to automatically segment and analyze these
vessels will drastically speed up subsequent neuroscience research
in the field.

Index Terms—u-net, segmentation, lymphatics, learning, vas-
culature, complexity, porosity, ramification

I. INTRODUCTION

In recent years, the lymphatic system present in our central
nervous system has come to the research forefront. The
lymphatic vessels surrounding the brain, which were unknown
just six years ago, have been shown to drain waste from
our brains. If this waste is not drained, it accumulates to
form plaque, which leads to neurodegenerative disease. Studies
on mice have shown loss of memory and impairment in
cognitive ability in cases where the vessels do not drain waste
adequately. [2]

Since these vessels were only recently discovered, there is
no tool available for automatically analyzing these images. By
building the first such tools, we can provide informatics that
enable the understanding these vessels.

The first step in analysis is segmentation, or detection of
vessel objects in an image. Neuroscientists currently analyze
these image data by hand, laboriously marking the boundaries
of vessels. The time required to segment one image into
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(a) Original image

(c) Confidence map (d) Binary segmentation result

Fig. 1: Example result. The original red channel image
(cropped to size 512x512 pixels) is shown in (a), the hand
created ground truth in (b). U-net generated confidence map
is shown in (c), and the binary segmentation result in (d) is
produced by thresholding the confidence map at 50%. The
Dice coefficient for this image is 0.89.

background and foreground regions is around two hours.
Manual processing is an incredibly slow and fallible method,
and serves as the main hindrance to further research involving
this data. The proposed work hopes to alleviate the time taken
to process the meningeal lymphatic vessel (MLV) images, and
therefore speed up research in the areas using these images.
Examples of traditional segmentation methods for vascular
datasets (neurons, blood vessels, etc.) include level-set seg-
mentation methods [1], [7], [8] and image matting [3]. These
methods are proven to work well on vascular data, but in
the case of retinal images, deep learning has recently shown
promise. Among the most prominent methods of computer
vision and machine learning are convolutional neural net-
works, or CNNs. This paper explores the application of CNNs
to segmenting meningeal lymphatic vessels in the brain via
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microscopy images, by applying existing medical-based CNN
architecture to improve the time taken to process MLV images.
An example result from our work is shown in Fig. 1.

Images of MLVs are similar to fundus images in morphol-
ogy, so using deep learning for segmentation may further en-
hance the quality of segmentation results. The main challenge
with using learning in this area is that the available datasets are
not large enough to train networks. For this reason, we choose
u-net [10] as the network of choice, because a necessary data
augmentation step is built-in to the network pipeline. U-net
was designed to handle datasets with few training images. This
paper documents the first time application of deep learning to
images of this kind.

Neuroscientists also currently process the vessels to quantify
certain parameters, such as average width of vessels. This
quantification process is also incredibly time consuming, and
any measurements would be more accurate and more repeat-
able if automated. A wider choice of informatics would also
yield more information about lymphatic vessels.

Our research questions thus are: can we improve the speed
and accuracy of segmenting the meningeal lymphatic ves-
sels by using CNNs as compared to traditional segmentation
methods? Also, can complexity measures be tuned specifically
for lymphatic vasculature in order to assess and analyze
segmentation results?

II. SEGMENTATION
A. Choice of Network

We chose the u-net architecture due to its proven success
in biomedical segmentation problems, especially for retinal
vessel images [13]. U-net also has built-in methods to augment
data, such as rotation, cropping, adding noise/blur, etc. These
augmentation techniques are useful for our dataset, as the size
is limited.

B. Training Data

One of the central problems of biomedical images in regards
to machine learning is the size of the data set; most images
are hard to come by because each image represents one
(expensive) mouse being sacrificed. The original images of
meningeal lymphatic vessels are 2D confocal microscopy
image acquired by the Kipnis lab in the University of Virginia
department of Neuroscience. There are 39 images in total,
which does not constitute a sufficient dataset to train a deep
neural network.

Once the data had been processed and augmented, training
was ready to begin. The version of u-net we modeled can be
found in the following repository [13]. A 3-operator majority
voted ground truth was created by the authors and used for
training labels. We executed our deformation pipeline and
generated 1000 images of size 512x512 to act as training and
testing for the ground truth masks and original images, and
split those up into 750 training and 249 testing, based off
of the original 39 images split into 30 train/9 test. Splitting
of the data into train and test datasets occurred prior to data
augmentation, making sure not to include any original images

or deformed images from training within the test data set. The
network then read in and trained on the 750 image pairs, and
then was tested on the 249 test images. Data normalization
was added after each convolutional layer to further reduce the
noise of output images. The network hyperparameters were as
follows, as well as the training times and hardware:

1) Training Time: 2 Hours

2) Hardware: Nvidia Titan X and Nvidia Titan XP x2

3) Optimizer: ADAM with o = 1 x 10~° learning rate

4) Loss: Binary Cross Entropy

5) Implemented On: Tensorflow with Keras

6) Number of Epochs: 100

7) Steps/Epoch: 10

In the experiments, the original images varied in size
from 4000x2000 to 2000x10000, and the network was only
trained on sizes 512x512. This subsampling was performed
to aid computation speed. Results are promising with the
above configuration on 512x512 size images, as demonstrated
below. However, increasing the image size to 1024x1024
created output of an all-black confidence map, which leads
us to believe that this method of data augmentation does not
generate enough new features for larger image size, possibly
leading to vanishing gradients within the CNN [9].

III. ASSESSING SEGMENTATION RESULTS

The trained u-net was tested on 249 test images, augmented
from the real dataset. The u-net output is a confidence map in
grayscale, higher confidence represented by higher intensity
(on a scale of 0 to 1.) 100 percent confidence that a pixel
belongs to the foreground set is denoted by intensity 1, and
the color white. Thresholding was performed on the outputted
confidence map at 0.5, or 50 percent confidence, to produce a
binary segmentation. The confidence maps and binary results
are shown in Fig. 1.

Fig. 2 contains images with segmentation results. The
original red channel image of meningeal lymphatics is shown
in the top left corner. The majority voted ground truth is
shown on the top right. The u-net output is a confidence map,
which we threshold at confidence level 0.5 to get a binary
segmentation result, with resulting Dice coefficient of 0.89.
This is a high segmentation result, as the highest value the
Dice coefficient can take is 1, which indicates a perfect match
with the ground truth. Dice coefficients above 0.8 show strong
segmentation performance.

TABLE I: Dice and Hausdorff Distance for Test Set

Metric Dice Coefficient | Hausdorff Distance (microns)
Average 0.72 5.87
Standard Deviation 0.15 1.16
Mode 0.78 4.8
Median 0.76 5.86

This binary segmentation was evaluated compared to the
hand-labeled ground truth by using Dice coefficient [12]. A
higher Dice coefficient indicates closer alignment with the
ground truth. The Hausdorff distance is shown in microns [4],
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(a) Original image (b) Ground truth image

(c) Confidence map (d) Binary segmentation result

Fig. 2: Example result on the partial mount dataset. The
original red channel image (cropped to size 512x512 pixels)
is shown in (a), the hand created ground truth in (b). U-net
generated confidence map is shown in (c), and the binary
segmentation result in (d) is produced by thresholding the
confidence map at 50%. The Dice coefficient for this image
is 0.89.
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Fig. 3: Statistics of Dice coefficient calculated for all segmen-
tation results.

TABLE II: Dice Coeff. and Hausdorff Dist.
Competing Methods

(microns) for

Method | Chan-Vese L2S Mat. TuFF
Metric | Dice | Hau. | Dice | Hau. | Dice | Hau. | Dice | Hau.
Avg. 0.63 | 7.07 | 0.62 | 6.99 | 0.58 | 6.98 | 0.50 | 8.07
Std. Dev. | 0.19 | 1.86 | 0.18 | 1.77 | 0.15 | 1.59 | 0.23 | 2.16
Mode | 0.68 | 6.09 | 0.56 | 5.19 | 0.53 | 5.09 | 0.57 | 6.70
Median | 0.68 | 6.64 | 0.64 | 6.86 | 0.61 | 7.02 | 0.51 | 7.63

Histogram of Dice Coefficient

Frequency

Dice Coefficient

Fig. 4: Histogram of Dice coefficients for test data.

also in Table I. Lower Hausdorff distance means a better match
with the ground truth.

The same 249 images were used to test four separate meth-
ods for vessel segmentation: Chan-Vese [1], L2S (Legendre
Level Set) [7], Hierarchical Image Matting [3], and TuFF
(Tubularity Flow Field) [8]. The Dice coefficent was computed
for all the results, reading across the top row (in bold), with
statistics reported in the subsequent rows. The average Dice
coefficient for the segmentation results is 0.72, as shown in
Fig. 3. It is clear to see that the average Dice score for u-net,
is much higher than any of the competing algorithms, and that
the standard deviation is also comparable or lower. Hausdorff
distance for the other methods is shown in Table II as well, and
it is clear to see that using the other methods produces higher
Hausdorff distance than when using u-net for segmentation.

The average Dice coefficent for the segmentation results
is 0.72, as shown in Fig. 3. It is clear to see that the average
Dice score for u-net, is much higher than any of the competing
algorithms, and that the standard deviation is also comparable
or lower. Though the average Dice coefficient using u-net is
0.72, in Fig. 4, it is seen that the most frequent Dice coefficient
values are between 0.8 and 0.9, which are reasonably high
scores in terms of segmentation accuracy.

In Fig. 5 we show results on a spinal lymphatic image with
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L2S: Dice = 0.80 TuFF: Dice = 0.79

Matting: Dice = 0.62

Fig. 5: Example result on the spinal dataset. The original
ground truth image (cropped to size 512x512 pixels) is shown
in the first panel, the segmentation results following. U-
net generated binary segmentation result in the top row is
produced by thresholding the confidence map at 50%. The
Dice coefficient for this image is 0.92.

other state of the art segmentation methods. Chan-Vese, L2S,
and TuFF are all level-set segmentation methods. Hierarchical
image matting, in the bottom right corner, is a correlation
based segmentation method developed for segmentation of
retinal images. Using u-net provides a Dice score of 0.92,
a very high Dice score in its own right, and much higher
than all the other competing methods. The details in the u-net
segmentation result are much clearer, even though the staining
in the original image is weak between branches of the vessel.

A. New Measures for Complexity Analysis

To further assess the segmentation results, we introduce
three informatics into the study of lymphatic vasculature:
vessel length, vessel ramification index, and vessel porosity.

We can first build a skeleton from the segmentation to start
the automated complexity analysis. Skeletons are one-pixel
wide backbones of image objects. One measure of interest for
lymphatic vessels is vessel length. This can measure lymphatic
regression; regression is where the vessel grows shorter in
length over time, with age. The vessel length is calculated as
the total number of pixels along the skeleton, as the skeleton
is one-pixel wide. Vessel length was computed for all binary
segmentation output by first skeletonizing. This complexity
measure is commonly used for neruonal analysis [11].

Another measure of interest is the ramification index. A
ramification index has been calculated for cells such as mi-
croglia and is typically defined as the ratio of the perimeter of
the cell to the area, normalized by the same ratio for a circle
of that area. This index quantifies how ramified a cell is, or
how spread out the branches (processes) of the microglia are.
[6] This index does not directly translate to lymphatic vessels,
as the vessels are not a single cell with processes.

(a) Simple Vessel

(b) Complex Vessel

Fig. 6: Two types of vessels.

TABLE III: Ramification Indices

Vessel Type RI Vessel RI
Simple Vessel 7.50 2.99
Complex Vessel | 31.28 21.56

Calculation of the ramification index was performed next on
two types of vessels: one simpler vessel, and a “more ramified”
vessel. These are both shown in Figure 6. The RI does indeed
scale with complexity within vessels. However, there could be
more meaningful ways of calculating complexity that are more
directly applicable to lymphatic vessels.

A modified ramification measure is proposed here to better
fit lymphatic vessels. The approach is to compare the perime-
ter/area ratio of a vessel to the ratio of a “similar” vessel that
has no holes or capillary loops. Instead of comparing to a
circle of the same area, the comparison was performed with
a simpler, filled vessel - a vessel with one smooth contour all
along the outside, a filled vessel. The boundary was traced
roughly in Fiji to create a smooth vessel approximation, for
visual purposes only. A depiction of the process is shown in
Figure 7. As it was done by hand, the boundary is much wider
than the vessel (boundary in yellow.) In the experiments, the
vessel boundary lies directly on the edge of the vessel.

The vessel ramification index is defined as

Periq Perio

RInew =

Area; = Areas’ 0

where Peri; and Area; refer to the perimeter and area of
the original vessel, and Periy and Areas are the perimeter
and area of the simplified vessel. This scales with the original
ramification index, with a larger ramification index indicating
a more ramified, or complex vessel.

The new RI is able to discriminate distinctively between
simpler and more complex vessels. The simpler vessel has
a ramification index (RI) of 7.50 and the more complex
vessel has an RI of 31.28, with a new RI of 2.99 and 21.56,
respectively. These results are depicted in Table III. While the
previous RI for microglia also is discriminative between two
vessel types, we suggest that the new one developed is more
intuitive and informative for the application.
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(a) Tracing Vessel Boundary

(b) Simplified Vessel Result

Fig. 7: Simplification of vessel.

Another similar measure we developed is inspired by poros-
ity for materials. Porosity, or void fraction, is a measure of the
void or empty spaces in a material. It is the fraction of the
volume of voids over the total volume. Porosity is always a
number between 0 and 1, unless it is described as a percentage.
A material has high porosity if it contains large spaces.

The vessel porosity is calculated as the area of capillary
loops, which are the gaps where a vessel branches and
reconnects to the larger network, over the total surface area
of the vessel. This calculation is similar to the calculation of
porosity for materials. We use area instead of volume because
the images are 2D. Vessel porosity is similar to ramification
index in that it measures how much space is filled within the
larger vessel boundary.

TABLE IV: Mean Squared Error of Complexity Measures

Metric | Chan-Vese L2S TuFF Matting u-net
Length | 3.77x10% | 4.05x10% | 4.24x10% | 2.41x107 | 1.63x10°
RI 0.508 0.515 0.538 0.478 0.228

Porosity 0.015 0.015 0.015 0.015 0.009

All three metrics were run on all segmentation results, and
compared to the ground truth using mean squared error. The
u-net segmentation results have the lowest error for all three

measures compared to the ground truth complexity values, as

shown in Table IV.
IV. CONCLUSION

The main outcome revolves around the improved processing
times for the data given. Neuroscientists using the tool need
not waste valuable resources on hand quantifying the images.
Another glaring issue is that of accuracy and reproducibility;
different observers can and do segment the images differently.
Therefore, a lack of consistency among the data analysis is
prevalent. The complexity measures proposed in this paper
are automatically calculated, and would serve to benefit the
scientists that wish to use the data to draw conclusions.

Our adaptation of CNNs to the segmentation problem for
vessels is also useful for anyone in the future wishing to
segment vessel data. Our trained network can be used quickly
and efficiently on any new images. Scientists using our tools
can spend more time developing a better understanding of
the lymphatic system’s relationship with disease. There is
hope that the onset of disease could be predicted by studying
lymphatic vasculature [5]. If so, drugs can be developed
(indeed neuroscientists have already started such studies) to
improve vessel function and to possibly improve outcomes in

diseases such as Alzheimer’s.
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