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Abstract 

Although the source active regions of some coronal mass ejections (CMEs) were identified in 
CME catalogues, vast majority of CMEs do not have an identified source active region. We 
propose a method that uses a filtration process and machine learning to identify the sunspot 
groups associated with a large fraction of CMEs and compare the physical parameters of these 
identified sunspot groups with properties of their corresponding CMEs to find mechanisms 
behind the initiation of CMEs. These CMEs were taken from the Coordinated Data Analysis 
workshops (CDAW) database hosted at NASA’s website. The Helio-seismic and Magnetic 
Imager (HMI) Active Region Patches (HARPs) were taken from the Stanford University’s 
JSOC database. The source active regions of the CMEs were identified by the help of a custom 
filtration procedure and then by training a Long Short-Term Memory Network (LSTM) to 
identify the patterns in the physical magnetic parameters derived from vector and line of sight 
magnetograms. The neural network simultaneously considers the time series data of these 
magnetic parameters at once and learns the patterns at the onset of CMEs. This neural network 
was then used to identify the source HARPs for the CMEs recorded from 2011 till 2020. The 
neural network was able to reliably identify source HARPs for 4895 CMEs out of 14604 listed 
in the CDAW database during the afore-mentioned period. 

Keywords: Sun: activity, Sun: coronal mass ejections (CMEs), Sun: sunspots. 

  

Page 1 of 20

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



1. Introduction    

 Active regions are the patches of solar surface where there is an accumulation of strong 
magnetic field due to formation of sunspots. These patches are the source regions for solar 
activities, most prominently the solar flares and CMEs, as magnetic loops are intertwined and 
interacted to release free magnetic energy (Toriumi & Wang 2019). 

 The complex structure of the magnetic field within and among active regions allows 
plasma to get trapped around the magnetic loops that are formed among the closed magnetic 
field lines. These are observable and their height varies depending upon the complexity and 
strength of the source active regions. These magnetic loops can disintegrate, disconnect, 
rearrange, or undergo magnetic reconnection (Green 2016), a phenomenon where opposite 
magnetic field lines form new connections, to swirl plasma in the form of clouds into the 
interplanetary environment called CMEs. The CMEs can accelerate or decelerate near solar 
surface in the interplanetary environment depending on the conditions of their origin and their 
interaction with the solar wind. Initially fast CMEs are observed to decelerate in their 
propagation afterwards (Manoharan 2006). CMEs are sources of various space weather effects 
in the near-earth environment, such as geomagnetic storms, . The propagation  of CMEs can 
keep on going past 1 AU as was observed by Ulysses mission (Richardson 2014) and the effects 
can be seen around Mars (von Forstner et al. 2018). 

 Active Regions on the solar surface, are directly linked to magnetic activity on the solar 
surface and thus to flares, CMEs, interplanetary shock waves and other activities. The evolution 
in the magnetic field of these regions directly effects the initiation of these solar phenomena. 
Understanding the evolution and structure of magnetic is the key to the prediction of flares and 
CMEs. Various studies have been carried out for solar flare and coronal mass ejection 
predictions using machine learning (see, Yan, Qu & Kong 2011; Bobra & Ilonidis 2016). These 
techniques include the prediction of the CMEs related to solar flares and solar emission 
particles (e.g., Chandra et al. 2015; Liu et al. 2019; Liu et al. 2020). 

 This study attempts to define a method to relate the sunspot groups with CMEs so that 
magnetic parameters of such sunspot groups can be compared to the respective CMEs to 
investigate the mechanisms for the onset of CMEs. Machine learning, especially neural 
networks, has been employed before for the studies of, but not limited to, interplanetary 
environment, space weather forecast, and interplanetary shocks (Cavus et al. 2020). CMEs are 
in fact the primary sources for geomagnetic storms and interplanetary shocks (Gosling 1993; 
Hudson & Ryan 1995). In existing CME catalogues, only a small fraction of them have 
identified source regions. Our goal is to identify as many as possible the source ARs of CMEs. 
Machine learning based on the relationship between magnetic parameters in existing identified 
ARs and associated CMEs is used in this study. 

2. Material and Method 
2.1. Data mining and preparing the datasets: 

 The CME information is taken from the CDAW database  that uses data from the Large 
Angle and Spectrometric Coronagraph (LASCO)  onboard NASA’s Solar and Heliospheric 
Observatory (SOHO) spacecraft (URL-1). The AR magnetic properties are  extracted from data 
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of Stanford University’s Joint Science Operations Centre (JSOC). JSOC maintains databases 
of  Space-weather HMI Active Region Patches (SHARP). These HMI Active Region Patches 
will be referred to as HARPs from this point onwards. A variety of magnetic field parameters 
for these HARPs are derived from the vector magnetogram data (URL-2). These quantities are 
given below in Table 1. 

Parameter Formula Description (unit) 

MEANPOT 𝜌  ∝
1

𝑁
Σ(𝐵𝑂𝑏𝑠 − 𝐵𝑃𝑜𝑡)2 

Mean photospheric excess magnetic 
energy density (erg/cm3) 

TOTPOT 𝜌𝑡𝑜𝑡  ∝ Σ(𝐵𝑂𝑏𝑠 − 𝐵𝑃𝑜𝑡)2𝑑𝐴 Total photospheric magnetic free energy 
density (erg/cm) 

USFLUX Φ = Σ|𝐵𝑧|𝑑𝐴 Total unsigned flux (Mx) 

MEANGAM 𝛾  ∝
1

𝑁
Σ arctan (

𝐵ℎ

𝐵𝑧

) Mean inclination angle (Deg) 

MEANGBT |∇𝐵𝑡𝑜𝑡
̅̅ ̅̅ ̅̅ ̅ | =

1

𝑁
Σ√(

𝜕𝐵

𝜕𝑥
)

2

+ (
𝜕𝐵

𝜕𝑦
)

2

 Mean gradient of total field (G/Mm) 

MEANJZD 𝐽𝑧  ∝
1

𝑁
Σ(

𝜕𝐵𝑦

𝜕𝑥
−

𝜕𝐵𝑥

𝜕𝑦
) Mean vertical current density (mA/m2) 

TOTUSJZ 𝐽𝑍𝑡𝑜𝑡𝑎𝑙 = Σ|𝐽𝑧|𝑑𝐴 Total unsigned vertical current (A) 

MEANGBH |∇𝐵ℎ
̅̅ ̅̅ ̅ | =

1

𝑁
Σ√(

𝜕𝐵ℎ

𝜕𝑥
)

2

+ (
𝜕𝐵ℎ

𝜕𝑦
)

2

 
Mean gradient of horizontal field 

(G/Mm) 

MEANGBZ |∇𝐵𝑧
̅̅ ̅̅ ̅ | =

1

𝑁
Σ√(

𝜕𝐵𝑧

𝜕𝑥
)

2

+ (
𝜕𝐵𝑧

𝜕𝑦
)

2

 
Mean value of the vertical field gradient, 

in G/Mm 

MEANALP 𝛼𝑡𝑜𝑡𝑎𝑙 ∝  
Σ𝐽𝑧𝐵𝑧

Σ𝐵𝑧
2

 Mean twist parameter, α (Deg) 

MEANJZH 𝐽𝑧  ∝
1

𝑁
Σ𝐵𝑧𝐽𝑧 Mean current helicity (G2/m) 

TOTUSJH 𝐻𝐶𝑡𝑜𝑡𝑎𝑙 ∝ Σ|𝐵𝑧 ∙ 𝐽𝑧| Total unsigned current helicity (G2/m) 

ABSNJZH 𝐻𝐶 𝑎𝑏𝑠 ∝ |Σ𝐵𝑧 ∙ 𝐽𝑧| Absolute value of the net current helicity 
(G2/m) 

SAVNCPP 𝐽𝑍𝑠𝑢𝑚 ∝ |Σ𝐵𝑧
+

𝐽𝑧𝑑𝐴| + |Σ𝐵𝑧
−

𝐽𝑧𝑑𝐴| Sum of the absolute value of the net 
current per polarity (A) 

MEANSHR Γ =
1

𝑁
Σarccos (

𝐵Obs ⋅ 𝐵Pot

|𝐵Obs||𝐵pot|
) Mean shear angle (Deg) 

SHRGT45 Area with shear greater than 45º/total area Area with shear angle greater than 45 
degrees (percent of total area) 

R_VALUE Φ = Σ|𝐵𝐿𝑂𝑆|𝑑𝐴 within R mask Flux along gradient-weighted neutral-
line length (Mx) 

Table 1. The HMI magnetic parameters obtained from JSOC used as inputs in this study. 

 The parameters of the photospheric magnetic field are correlated with the solar activity 
(Falconer et al. 2002; Leka and Barnes 2003a and 2003b; Schrijver 2007). The SDO is in an 
inclined geosynchronous circular orbit (IGSO) at approximately 35,756 km above Earth  
whereas SOHO is at Lagrange point L1 that is approximately 1.5 million km away from Earth.  

 The CME database (CDAW database hereafter) records all the events that are declared 
as CMEs. The database has parameters including the time, the central positional angle, width, 
linear speed, 2nd order initial speed, 2nd order final speed, 2nd order speed at 20R, acceleration 
of the CME, the mass, kinetic energy, and the mean positional angle of each recorded CME. 
Moreover, there is a comment section for each CME which indicates the quality of the event 
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i.e., good event or poor event based on the number of spatial points available for each 
observation and to measure the parameters because in some cases the number of data points 
available is small and the quality of the measurement suffers. The parameters e.g.  energy, are 
derived from the CME speed and estimated mass (Gopalswamy et al. 2009). In some cases, 
there is no measurement available for parameters including CME speed or mass. This catalogue 
combines results from the different chronograph instruments available in LASCO,  namely, 
LASCO C1, LASCO C2 and LASCO C3 (URL-1). 

 A list of previously known active regions which have initiated events including CMEs 
or solar flares is being hosted at The Space Weather Database of Notifications, Knowledge, 
Information (DONKI)(URL-3) of The Community Coordinated Modelling Centre (CCMC). 
This provides us an opportunity to train a neural network to learn the patterns between the data 
of these events and then the trained network can be used to find all the related events in the 
previous years which have not been currently labelled/related. Of all the cases in the DONKI 
database 156 of them are CME events with known source regions. The above-mentioned 
magnetic parameters of 120 of these events could be traced and fetched from the SHARP 
database. The data from the SHARP database was obtained through the JSOC’s API (also  
available through SunPy) (Sunpy community et al. 2015). Datasets were formed that contain 
all mentioned magnetic parameters from the source regions of these CMEs along with their 
respective CMEs. At this stage, an analysis could be performed on the data by a neural network. 
This is achieved by training models including Random Forest, SVM, kNN, Decision tree and 
LSTM on the data that has been previously labelled. The events were taken from DONKI and 
the data for these events were taken from the SHARP (for active regions) database and CDAW 
(for CMEs) database.  

 The data of input parameters includes different lengths of time based on the dataset 
used i.e., 2 hours, 4 hours, 6 hours, 8 hours, 10 hours, and 12 hours. There are cases where the 
used data for HARPs have additional CMEs during the included time-period that are not listed 
in the DONKI database but are listed in the CDAW database. This implies presence of some 
other CMEs at the same time and in the same positional angle vicinity as the used HARP so 
data for such HARPs were omitted from the initial dataset used for training as these HARPs 
may be associated with the mentioned additional CMEs in the used dataset. Such data has 
points in the dataset which cannot be definitively labelled as either CME or NOT CME. Thus, 
the number of the HARPs used in the training procedure for  the LSTM was reduced depending 
on the length of the dataset as the probability of the presence of such points increases with the 
length of data used for each HARP. Table 2 below shows the final number of HARPs left after 
the omission of such HARPs. The length of each dataset is given in an array structure (e.g. 
(780, 5, 17) where 780 represents the number of total data points in the different timeseries 
given to the model, 5 represents the timestep meaning the 5 points are given at the same time 
to the model while training and then window slides one step in the forward direction, 17 
represents the number of features or the number of different timeseries given representing 17 
different but co-dependent features). This structure in fact helps show the length and 
configuration of the datasets. 
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Dataset Length of 
dataset 

Number of 
HARPs used 

Number of data 
samples labelled 

'CME' 

Number of data 
samples labelled 

'NOTCME' 
2-hour dataset (780,5,17) 78 78 702 
4-hour dataset (1200,5,17) 60 59 1141 
6-hour dataset (1320,5,17) 44 44 1276 
8-hour dataset (1240,5,17) 31 31 1209 
10-hour dataset (1150,5,17) 23 23 1127 
12-hour dataset (1200,5,17) 20 20 1180 

Table 2. An overview of the datasets used for the machine leaning models. 

 The time series data was normalized within each active region using [–1 to 1] scaling. 
This is done so the network can catch the patterns and not learn the specific values of the 
features. If not normalized the weights and bias of the network are severely affected due to the 
difference in the scale of the features between different active regions. By normalizing data 
this way, the features having significant differences in the minimum and maximum values are 
treated in an equivalent manner. This enables the creation of models that can generalize the 
problem otherwise the models are not able to maintain the weights within a mathematically 
usable limit. The weights quickly explode while the model tries to fit the data. Some data has 
missing time steps where data is not calculated and therefore there  are data gaps in the time 
series. These gaps were filled with averages of data before and after each gap. The amount of 
such filler data is less than  3%. Moreover, in some cases a padding was included in the time 
series data of some active regions to maintain the dimensions of the time series in preparation 
for the LSTM network. In order to include cases where there is no CME present, time periods 
where there were no CMEs were selected carefully verifying from the SHARP and CDAW 
data. 
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Figure 1. A representation of the pulse generated for the HARPs in the datasets. (a) shows the 
first HARP from the 6-hour dataset and (b) shows the first HARP from the 12-hour dataset. (c) 
shows the first HARP from the 12-hour dataset along with its pulse. The y-axis on left shows 
the magnetic parameters of the depicted HARPs and y-axis on the right shows the generated 
pulse for the HARP. Pulse is binary in the dataset and shown here as a bar in black. The active 
region 11158 appeared on 15th February 2011 is displayed in the figure where the number is 
assigned by National Oceanic and Atmospheric Administration (NOAA). The CME for the 
pulse shown here appeared on 15th February 2011. 

 For the labelling of the datasets, a parameter called pulse is formed which reflects the 
presence of a CME or the absence in binary. The pulse takes the value of 1 when CME is 
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present at the corresponding time else it takes the value of 0. Moreover, the cadence of the 
SHARP series used for active regions is 12 minutes(hmi.sharp_cea_720s). Some CMEs fall in 
between two consecutive datapoints of the active region data. To overcome this CME time 
have been shifted to round to multiples of 12 in order to calculate pulse for these cases. Fig. 1 
shows first HARPs from the 4-hour, 6-hour and the 12-hour dataset as an example. The 
magnetic parameters of the HARP  and the generated pulse is shown for those magnetic 
parameters in Fig. 1. The datasets were created so that usually the CME falls in the middle. So, 
the 2-hour dataset would be ±1 hour with respect to the CME, ±2 hours for 4-hour dataset and 
so on. There are some HARPs in datasets where there is no CME and there are some samples 
where there are 2 CMEs.  The number of datapoints increase in the datasets (from 2 hours 
towards 12 hours) because of an increase in the length of elapsed time as shown in Fig. 1.  

When feeding the networks, the data samples are created by sliding a window forward. This 
window can be thought of as fixed number of consecutive data samples from the datasets. The 
window (e.g., will span 5 data points that corresponds to 1 hour) slides skipping one data 
sample at a time i.e., 5 data samples are taken from the start at first. The target label (value of 
parameter ‘pulse’) is selected based upon the last data point in that set of data samples. So, in 
fact it answers the question: ‘Does the change in this set of data points result in a CME?’ The 
window starts from the beginning of a dataset till the end. The datasets in this manner are 
transformed into timeseries data suitable for machine learning. For predictions, the pulse for 
each data sample is predicted and this process in reverse is applied to get the predicted source 
region for that CME. 

2.2. Using LSTM to learn the patterns in the magnetic parameters of HARPs. 

 The objective was to find the patterns in the magnetic features of the active regions to 
identify the initiation of CMEs and thus find the source regions for CMEs identified from the 
years between 2011 and 2020. The magnetic parameters mentioned above make a set of co-
dependant time series, which in return becomes near impossible to analyse without the 
employment of any machine learning algorithm. The problem here is to identify a set of 
changes in these parameters simultaneously with respect to the initiation of CME and then use 
the acquired information to identify source regions for other CMEs. However, the magnitude 
of the effect caused by individual changes within the set of identified changes is essential to 
correctly predict the source regions and thus machine learning is employed in this matter 
frequently (see, Bobra & Ilonides 2016; Inceoglu et al. 2018). Hence, this study tries to use a 
machine learning technique, called  Long Short-Term Memory neural network LSTM, to 
produce a model that can successfully learn these patterns and then the model can be employed 
to identify source regions for a large number of CMEs.  

 Five different machine learning algorithms were employed in this study to identify the 
best algorithm for the problem at hand. These include Decision Tree, Support Vector Machines 
(SVM), Random Forest (RF), k-nearest neighbour (kNN) and LSTM. The datasets were 
divided to form training and test datasets. 75% of the data were used for training and 25% of 
the data were used as test dataset. These datasets do not include common data and were used 
for evaluation of the models. Due to the presence of an imbalance in the frequency of the classes 
i.e., CME class and NOTCME class in the used datasets (Table 2), it is impossible to train any 
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model as the models regard the CME class as noise and do not learn to distinguish between the 
classes. The ratio of CME class to NOTCME class is 78:702 (11%) for the 2-hour dataset, 
59:1141 (4.9%) for 4-hour and so on. To overcome this problem, in the data, weights were 
applied to the two classes present in the data depending on their frequency of occurrence within 
the datasets. This implementation rewards and penalizes the models differently for different 
classes and forces the models to not regard the smaller class as noise depending on the 
frequency of the class in the data. For Decision Tree the minimum number of instances in 
leaves, the minimum split subset, and the maximal tree depth were set to  95, 11 and 4, 
respectively. The minimum number of neighbours was set to 17 as this generally gave the 
optimal results. The weight metric was determined to be Manhattan distance in the used kNN 
models. The number of attributes considered at each split, depth of individual trees and the 
smallest split size for Random Forest were set to 5, 3 and 5, respectively. The cost was set at 1 
for SVM and iteration limit was determined to be 100.  

 Results produced by the best models based on these techniques are given in Table 3. 
The results show that the complexity of the problem is quite high for Decision Tree, SVM, RF 
and kNN as these models were not able to produce reliable and acceptable results. The results 
shown in Tables 3 and 6 depict a large contrast between these techniques and the LSTM 
network. 

 Model Precision Recall F1 score Accuracy 

2-
ho

ur
 

da
ta

 Decision Tree 0.59 0.59 0.58 0.63 
SVM 0.50 0.47 0.43 0.47 
kNN 0.63 0.61 0.59 0.61 

Random Forest 0.64 0.63 0.63 0.63 

4-
ho

ur
 

da
ta

 Decision Tree 0.63 0.62 0.62 0.62 
SVM 0.51 0.50 0.48 0.51 
kNN 0.59 0.56 0.58 0.59 

Random Forest 0.58 0.56 0.54 0.56 

6-
ho

ur
 

da
ta

 Decision Tree 0.61 0.60 0.60 0.60 
SVM 0.57 0.54 0.51 0.54 
kNN 0.44 0.45 0.43 0.45 

Random Forest 0.65 0.65 0.64 0.65 

8-
ho

ur
 

da
ta

 Decision Tree 0.33 0.33 0.32 0.37 
SVM 0.44 0.45 0.38 0.45 
kNN 0.52 0.50 0.47 0.50 

Random Forest 0.63 0.62 0.61 0.62 

10
-h

ou
r 

da
ta

 Decision Tree 0.43 0.44 0.39 0.44 
SVM 0.21 0.44 0.29 0.44 
kNN 0.45 0.45 0.40 0.45 

Random Forest 0.47 0.46 0.41 0.46 

12
-h

ou
r 

da
ta

 Decision Tree 0.51 0.51 0.50 0.51 
SVM 0.51 0.51 0.51 0.51 
kNN 0.48 0.48 0.44 0.48 

Random Forest 0.58 0.57 0.55 0.57 
Table 3. Performance of different machine learning algorithms used on test data for different 

datasets used in this study. 
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 These results highlight the fact that the number of features for each sample is too large 
for these used machine learning algorithms and thus a more sophisticated technique i.e., LSTM 
was employed for this study. These algorithms form base models, and better results were 
obtained by LSTM model described in detail later in this section. The performance of the 
LSTM model used is given at the end of this section. Table 4 shows the confusion matrix for 
the respective results given above where the prediction of the models is shown vertically and 
the actual data of those predictions horizontally. Results for all the test datasets are included in 
the table which highlights the performance of these model based on target classes i.e., CME 
and NOTCME which in this case represent the presence and absence of CMEs, respectively.  

 Algorithm  Predicted 
NOTCME CME 

2-
ho

ur
 d

at
a 

Decision Tree NOTCME 

A
ct

ua
l 

58.3% 41.2% 
CME 41.7% 58.8% 

SVM NOTCME 47.4% 52.6% 
CME 52.6% 47.4% 

kNN NOTCME 69.3% 41.6% 
CME 30.7% 58.4% 

Random Forest NOTCME 59.3% 30.2% 
CME 40.7% 69.8% 

4-
ho

ur
 d

at
a 

Decision Tree NOTCME 61.0% 35.0% 
CME 39.0% 65.0% 

SVM NOTCME 50.1% 47.7% 
CME 49.9% 52.3% 

kNN NOTCME 57.7% 40.7% 
CME 42.3% 59.3% 

Random Forest NOTCME 54.0% 38.7% 
CME 46.0% 61.3% 

6-
ho

ur
 d

at
a 

Decision Tree NOTCME 59.4% 37.2% 
CME 40.6% 62.8% 

SVM NOTCME 52.8% 38.7% 
CME 47.2% 61.3% 

kNN NOTCME 46.4% 56.7% 
CME 53.6% 43.3% 

Random Forest NOTCME 62.2% 30.4% 
CME 37.8% 69.6% 

8-
ho

ur
 d

at
a 

Decision Tree NOTCME 40.5% 72.9% 
CME 59.5% 27.1% 

SVM NOTCME 46.6% 57.6% 
CME 53.4% 42.4% 

kNN NOTCME 49.2% 45.1% 
CME 50.8% 54.9% 

Random Forest NOTCME 58.3% 31.9% 
CME 41.7% 68.1% 

10
-h

ou
r 

da
ta

 Decision Tree NOTCME 44.9% 58.1% 
CME 55.1% 41.9% 

SVM NOTCME 45.7% 100% 
CME 54.3% 0.0% 

kNN NOTCME 45.9% 55.0% 
CME 54.1% 45.0% 

Random Forest NOTCME 46.6% 52.4% 
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CME 53.4% 47.6% 
12

-h
ou

r 
da

ta
 Decision Tree NOTCME 51.0% 48.2% 

CME 49.0% 51.8% 

SVM NOTCME 51.4% 47.6% 
CME 48.6% 52.4% 

kNN NOTCME 49.1% 52.8% 
CME 50.9% 47.2% 

Random Forest NOTCME 55.3% 38.9% 
CME 44.7% 61.1% 

Table 4. Confusion matrix for the produced models of Decision Tree, SVM, kNN and RF. 

 There are some active regions for which there is no data available in SHARP. These 
were omitted from the analysis. The datasets prepared with various lengths were all trained in 
order to determine the best dataset on which a model could be trained. The objective here was 
to maximize the performance of the model.  

 LSTM networks are proven to be capable and very efficient in learning patterns in time 
series data and the classification of time series data. (Karim et al. 2019). The output layer of 
the network was categorized so that there exist two classes one for the presence of CME and 
the other for the absence of the CME. For this, one-hot-encoding was performed to categorize 
the presence of CME in the input data and vice versa. For LSTM, 70% of the data were used 
as training data and 15% of the data was used as validation during the training of the LSTM 
model to tune the hyperparameters. The remaining 15% of the dataset was used as test dataset 
used for testing the model after the training. LSTM networks were programmed in python using 
Tensorflow and Keras. Table 5 shows the lengths of the datasets for the 4-hour dataset as an 
example. The format is same as the format used to describe the features of datasets used 
discussed in Section 2.1 and Table 2. 

Type Size 
Total Dataset (1200,5,17) 

Total training dataset (837,5,17) 
Total validation dataset (179,5,17) 

Total test dataset (179,5,17) 
Table 5. An example for the datasets used for the LSTM model. This example depicts the 

division of 4-hour dataset. 

 LSTM networks have a window (also known as the lookback of an epoch) that is moved 
through the length of a time series data while training for output data/labels to learn the patterns. 
The window/lookback was tuned according to the performance of the data and the performance 
were discovered to be at one hour. The hyperparameters of the models were tweaked for 
different datasets used in this study to optimize for performance. The LSTM network for the 
10-hour dataset has 150 neurons in the LSTM layer, the input and output layers are designed 
according to the input and output of the network while the 4-hour dataset has 50 neurons. These 
parameters change for different datasets as they perform differently with different 
hyperparameters with some having different number of dense layers. The activation function 
used in the LSTM layer is ‘tanh’. The categorical cross-entropy with logits in the layer was 
used as the loss function as the data used is categorical. The Adaptive Moment Estimation 
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‘Adam’ (Kingma & Ba 2015) was used as optimizer, a method for stochastic gradient descent, 
which produced the most reliable and consistent training results. Class weights were added to 
the CME and NOTCME classes as there is a severe imbalance (consult Table 2). The weight 
was calculated based on the frequency of classes in their respective datasets. An early stopping 
criterion was added over the evaluation function to save time in the training process and to 
avoid overfitting.  

 A dropout amount was set to 0.2 in the training process of the LSTM networks to avoid 
overfitting. Fig. 2 shows the loss of the model based on the number of epochs; the loss 
continuously reduces until the early stopping criterion kicks in due to absence of meaningful 
further improvement in the quality of predictions during that training session. A patience 
setting of 5 for the early stopping criterion was determined to be optimal for this study. Table 
6 shows the performance of LSTM models during training on training and validation data while 
Table 7 shows the results of the LSTM models for different lengths of datasets on test datasets. 
Since, the CMEs were shifted forward to multiples of 12 in minutes where necessary in order 
to compensate for the cadence (12 minutes) of the SHARP series used for active regions, CME 
predictions with an error no more than 12 minutes were considered correct. The results for the 
model used later in the study to identify source active regions are given in bold. Note that the 
results here are all higher than the results obtained from other algorithms used given in Table 
3. It was determined based on these results that the 4-hour dataset produces the best results 
based on accuracy, precision and f1 score. This dataset was used for the prediction of the source 
regions for CMEs between 2011 and 2020 discussed in the next section. The importance of the 
precision metric for this study is discussed further in the results section.  

Metric 
 

Size of the training data   
2-hour 4-hour 6-hour 8-hour 10-hour 12-hour 

Accuracy 
training 0.96 0.97 0.95 0.82 0.91 0.87 

Validation 0.87 0.90 0.85 0.72 0.94 0.85 
All 0.93 0.94 0.92 0.80 0.89 0.87 

Table 6. Performance of different LSTM models on different datasets used in this study 
during training. 
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Figure 2. The loss of the LSTM model vs the epoch during training. 

Result Metric Size of the training data  
2-hour 4-hour 6-hour 8-hour 10-hour 12-hour 

Accuracy 0.80 0.86 0.87 0.77 0.71 0.81 
Recall 0.79 0.77 0.86 0.81 0.86 0.83 

Precision 0.65 0.81 0.52 0.38 0.32 0.25 
F1 score 0.72 0.79 0.65 0.54 0.46 0.39 

Table 7. Results for different LSTM models based on different datasets used in this study. 
Boldface is used for the model used later for the identification of source active regions. 

 The accuracy, precision and recall of the selected model is 86%, 81%, 77% respectively 
i.e., the model trained on 4-hour data. This model is considered well trained to be used for the 
task of determining the source ARs for each CME event from 2011 till 2020. A time-based 
representation of the pulse is shown in Fig. 3. Each line in the graphs in Fig. 3 represents a 
CME in the dataset hence the y-axis shows 1 or 0 depending on the presence or absence of 
CME. The dispersion of datasets on the x-axis shows the shuffling of used data for the training, 
validation, and test. A detail is given in the legend. Fig. 3 depicts the model’s ability to 
generalize the problem and an absence of overfitting the test dataset is also depicted which was 
not fed to the models during training. This LSTM model was used later for further optimization 
and the identification of source regions for CMEs from 2011 till 2020 mentioned in the next 
section. 

Figure 3. The performance of the selected model during and after training on different 
datasets. Here training data is represented in blue, the validation data in black and test data is 

represented in red. The prediction of the LSTM is depicted in green. (a) shows the actual 
dataset and (b) shows the predictions made by the LSTM. 

2.3. AR-Pool for each CME and predictions using the LSTM network.  

 Before making predictions on the data between 2011-2020, the ARs were passed 
through the following filter for each CME. The filter can be described as having a predefined 
criterion for the HARPs with respect to a particular selected CME. We divide the filtration 
criteria in the following steps. 

 For a selected CME: 
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1) All ARs that are present at the same time as the CME are selected. 
2) Within those ARs those within ± 90° of positional angle as the CME are selected. 
3) Within the selected ARs in stage 2, only those that spend at least 4 hours in the area as 

determined in the stage 2 of the filter are selected. 

 To achieve the above-mentioned filtration, process the mean positional angle (MPA) 
for each HARP was calculated from the average values of the latitude and longitude of the 
HARP at a particular instance. Some morphologic calculations were performed and the whole 
process was automized for the whole SHARP database. The third stage in the filter is designed 
in mentioned manner so that the data is suitable for LSTM network to perform predictions. 
Also, the ARs which happen to be at the edges of the determined area for each CME in stage 
2 could be ignored this way as they continue to displace to an area that cannot be correlated to 
the initiation of that CME. In this way several ARs responsible for the initiation of each CME 
from 2011 to 2020 were selected. The number of these ARs vary from 3 to 13 depending upon 
the CME and the solar cycle. For some CMEs in 2014 during the solar maximum the maximum 
number of responsible ARs determined is 13 whereas for some CMEs in 2019 during the solar 
minimum the maximum number of responsible ARs selected for that CME is 3. Since, more 
than one AR could be associated with each CME after this step an AR-pool was formed.   

 After this process, the data of these ARs from the AR-pool for each CME were fed to 
the model and predictions were made to narrow down the selected ARs from the AR-pool for 
each CME. The normalization and data modification steps performed on the data are the same 
as those for the data used during the formation of the LSTM model. 

3. Results and Discussion  

Table 8 shows results based on the filtration process and Table 9 shows results obtained 
after the data obtained from the filtration process was subjected to the LSTM prediction 
process. 

The total number of CMEs found the CDAW database used in this study from 2011 till 
the 8th month of 2020 is 14604. Of these 12451 were associated with Active Regions based on 
the filtration process discussed in Section 2.3 (Table 8). This formed an AR-pool for their 
corresponding CMEs. These cases were then subjected to the LSTM model prediction process 
to narrow down the source AR-pool for each CME. The ‘total predictions made’ column shows 
the total predictions made by the LSTM model including errors and cases where more than one 
HARP was selected by the model from the AR pool. In 4895 cases a single AR responsible for 
the initiation of the CME was determined are given in Table 9. These are the cases where the 
neural network only chose one AR from the AR-pool of the corresponding CME. A database 
of these CMEs along with their respective AR is consequently produced in this study. The 
produced database and data used in this study is openly available (Raheem et al. 2021).  

Year  CMEs 
Total CMEs listed in CDAW For which an AR-pool could be formed 

2011 1990 1817 
2012 2177 1955 
2013 2338 2183 
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2014 2477 2323 
2015 2057  1894 
2016 1392  1251 
2017 785  565 
2018 475  193 
2019 548  144 
2020 365 126 

Table 8. Statistics after the filtration process also discussed in Section 2.3. 

Year 
 

Total 
Predictions made 

Cases where the LSTM model selected one 
HARP from the AR-pool 

2011 873  616 
2012 1124  700 
2013 1352  781 
2014 1817  924 
2015 1192  715 
2016 682 468 
2017 565 325 
2018 293 151 
2019 214 107 
2020 186 108 

Table 9. Statistics after data of filtered ARs were subjected to the LSTM prediction process (URL-4).  

 The relationship between the magnetic parameters of the identified source regions with 
their respective CMEs is analysed from the database produced as an outcome of this study. The 
change in some current related parameters (i.e., MEANJZD, TOTUSJZ and SAVNCPP) of the 
source regions with respect to the linear speed, acceleration, mass, and kinetic energy of the 
initiated CME, since these are motion related, is given in Fig. 4. The data was normalized 
between 0 and 1 to overcome the obvious large differences between the ranges of these 
parameters. Acceleration of CMEs and MEANJZD of the source regions were normalized 
between -1 and 1 due to the presence of negative values in original data. The results of these 
analyses can be summarized as the following: 

1. The minimum and maximum values of the mean vertical current density (MEANJZD) 
of HARPs in the SHARP database are given as -4.39 and 7.69 mA/m2, respectively. 
The mean vertical current density of the identified source regions for their respective 
CMEs is between -1.39 mA/m2 and 2.86 mA/m2. This implies that only source 
regions within this range seem to be playing a role in the initiation of CMEs. 
Similarly, the value of the total unsigned vertical current (TOTUSJZ) of the identified 
source regions is around 6.5e+13 A whereas, the average value of the parameter is 
around 7.6e+12 A in the SHARP database. The sum of the absolute value of the net 
current per polarity (SAVNCPP) of the identified source regions for the CMEs is 
generally around 3e+13A (consult Fig. 4 and URL-4).  

2. The CMEs initiated by these source regions have linear speeds below 1058.54 km/s, 
masses below 1.33e+16 g and kinetic energies normally around 6.20e+31 erg (consult 
Fig. 4(a) through Fig. 4(l)).   
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3. Fig. 4 highlights the fact that the kinetic energy of the CMEs and the total unsigned 
vertical current of their source regions are inversely proportional to each other and 
have an asymptotic relation with each other. The same can be said for the sum of the 
absolute value of the net current per polarity of the source regions and the kinetic 
energies of CMEs initiated by them. This can be observed in Fig. 4(k) and Fig. 4(l). 

4. Generally, the mass of CME is inversely proportional to the sum of the absolute value 
of the net current per polarity and the total unsigned vertical current of its source 
region (consult Fig. 4(h) and Fig. 4(i)).  

5. Accelerating CMEs usually originate from source regions having a negative mean 
vertical current value according to results obtained in this study (see, Fig. 4(d)).  

6. The average momentum of the CMEs for which a source region could be identified is 
7.88e+17 gkm/s. 84.42% of the CMEs in the database are below this average value.   

 

Figure 4. The relationship between linear speed, acceleration, mass, and KE of CMEs with 
MEANJZD, TOTUSJZ and SAVNCPP of their source regions. 

 These results are based on the predictions of the  LSTM network which was trained on 
a very limited data present in the DONKI database. The uncertainty of the database is not 
quantified. There also exists noise in the data obtained from the DONKI database and the 
parameters then obtained from SHARP database. However, the model behaves in a desired 
manner as we tried to keep the precision value as high as possible without signs of overfitting. 
The recall metric was of low priority during the training as the correctness of the predictions 
was of utmost importance. Determination of high number of correct labels of CMEs rather than 
a high frequency of labels determined were aimed during the design of the models. This was 
set so that when the predictions were made on the data from 2011 to 2020 the confidence level 
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of prediction could be kept high. Therefore, the model makes less predictions as compared to 
the total number of CMEs present during that timeframe. These prediction numbers and quality 
can be enhanced if more data is fed to the model which at this stage is not possible. This study 
is unique as it is the first attempt to our knowledge at creation of an automated large scale 
identification method of the source regions for CMEs.   

 

Figure 5. The variation of the total CMEs listed in CDAW and the ones for which an AR-
Pool could be formed based on the criteria given in Section 2.3 and shown in Table 8 over the 

years from 2011 to 2020. 

 When we look at the data from a statistical point of view, 4895 of 14604 CMEs have 
been associated with their respective active region patches that makes 33.5% of the total CMEs. 
The results provide a huge catalogue of source HARPs with respect to CMEs if we consider 
that the data used for the active regions in this study comes from coronagraphs and hence the 
field of view (FOV) is limited as it is from the Earth’s FOV. It can be said that if a HARP data 
from behind the seen solar surface were to be added as well to the training data simultaneously 
the number of these cases with associated HARPs would be around 67%.  

 Finally, yet importantly, the correlation between the total number of CMEs in the 
CDAW database and the CME cases with AR-pools associated as a result of our filtration 
process with respect to years is 99.8%. This can be observed in Fig. 5 in a graphical form. And 
the correlation between the total number of predictions made by the LSTM and the cases with 
one associated HARP with its respective CMEs is 97.9%. Fig. 6 depicts this correlation. This 
shows that the variation in the number of cases selected through the filtration process over the 
years (2011-2020) is similar to the actual cases in CDAW database and the variation in the 
model prediction for the same period is also similar. This result indicates that the produced 
model has in fact generalized the problem and was able to learn the patterns for the onset of 
the CMEs. The correlation of the predictions where a source AR was selected from the AR-
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pool with the sunspot number from the Sunspot Index and Long-term Solar Observations 
(SILSO) and the American Association of Variable Star Observers (AAVSO) organizations is 
98.1% and 98.5%, respectively. This shows that the produced results are consistent with the 
solar cycle as well. Although the solar cycle is not graphed in Fig. 6 the recent solar maximum 
can be observed in the figure at the start of 2014 (refer to the horizontal axis of Fig. 6), the 
same can also be observed in Fig. 5. This is due to the positive correlation with the solar cycle. 
A detail of these correlations with individual parameters is listed in Table 10. Aggregated 
annual values of the parameters of associated events were calculated before checking these 
correlations. 

Parameter Correlation 
With SILSO 

Correlation 
With AAVSO Mean Correlation 

Linearspeed 0.96 0.97 0.97 
Second order initial speed 0.95 0.96 0.96 
Second order final speed 0.96 0.97 0.97 

Second order speed at 20R 0.96 0.97 0.96 
Mass 0.86 0.87 0.87 
KE 0.79 0.81 0.80 

Momentum 0.83 0.85 0.84 
MEANJZD 0.85 0.87 0.86 
TOTUSJZ 0.94 0.95 0.94 
SAVNCPP 0.81 0.82 0.81 

Table 10. The correlations between the parameters of the CME events associated as a result 
of this study with each other and the sunspot number from SILSO and AAVSO 

organizations. 
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Figure 6. The variation of the total predictions made by the LSTM model and the cases where 
the model selected one HARP from the AR-pool of the CME also given in Table 9. 

 Table 11 shows the correlations between the CME parameters and the parameters of 
their associated source regions aggregated annually. These correlations are all above 0.80 and 
the highest is 0.96.  This shows that the LSTM model used for the predictions is consistent in 
its predictions and does not produce random results. 

CME Parameters Source Region Parameters 

  MEANJZD TOTUSJZ SAVNCPP 
Linearspeed 0.95 0.96 0.87 

Second order initial speed 0.95 0.96 0.87 
second order final speed 0.94 0.96 0.87 

Second order speed at 20R distance 0.92 0.95 0.87 
Mass 0.96 0.88 0.81 
KE 0.96 0.87 0.80 

Momentum 0.96 0.87 0.80 
Table 11. The correlations between the parameters of CMEs and those of their respective 

source regions as a function of their annual total number. 

 The DONKI database only lists 120 source ARs for the CMEs. We believe the 
technique shown in this study can accelerate the studies regarding the investigation of onset of 
CMEs. This database provides a unique opportunity to study the triggering mechanism for the 
onset of the CME and its identification as any study related to this kind of investigation 
fundamentally needs a large dataset. A later study is planned to further investigate the 
relationships between different magnetic parameters of HARPs to study the mechanism for the 
onset of CMEs based on this database.   
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