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Abstract

Solar energetic particles (SEPs) are an essential source of space radiation, and are hazardous for humans in space,
spacecraft, and technology in general. In this paper, we propose a deep-learning method, specifically a bidirectional
long short-term memory (biLSTM) network, to predict if an active region (AR) would produce an SEP event given
that (i) the AR will produce an M- or X-class flare and a coronal mass ejection (CME) associated with the flare, or
(ii) the AR will produce an M- or X-class flare regardless of whether or not the flare is associated with a CME. The
data samples used in this study are collected from the Geostationary Operational Environmental Satelliteʼs X-ray
flare catalogs provided by the National Centers for Environmental Information. We select M- and X-class flares
with identified ARs in the catalogs for the period between 2010 and 2021, and find the associations of flares,
CMEs, and SEPs in the Space Weather Database of Notifications, Knowledge, Information during the same period.
Each data sample contains physical parameters collected from the Helioseismic and Magnetic Imager on board the
Solar Dynamics Observatory. Experimental results based on different performance metrics demonstrate that the
proposed biLSTM network is better than related machine-learning algorithms for the two SEP prediction tasks
studied here. We also discuss extensions of our approach for probabilistic forecasting and calibration with
empirical evaluation.

Unified Astronomy Thesaurus concepts: Solar energetic particles (1491); Solar coronal mass ejections (310); Solar
flares (1496); Solar activity (1475)

1. Introduction

Solar eruptions including flares and coronal mass ejections
(CMEs) can endanger modern civilization. Solar flares are large
bursts of radiation released into space; they appear as sudden
and unexpected brightening in the solar atmosphere with a
duration ranging from minutes to hours. CMEs are significant
discharges of plasma and magnetic fields produced by the solar
corona into the interplanetary medium (Lin & Forbes 2000).
They are considered to be the largest-scale solar eruptions in
the solar system and occur on a quasi-regular basis (Chen 2011;
Webb & Howard 2012; Kilpua et al. 2017). Research shows
that both flares and CMEs are magnetic events, sharing a
similar physical process (Harrison 1995; Berkebile-Stoiser
et al. 2012); though more work is performed to understand the
correlation between them (Yashiro & Gopalswamy 2009;
Kawabata et al. 2018). Large flares and accompanied CMEs
cause solar energetic particles (SEPs). SEPs, composed of
electrons, protons, and heavy ions, are expedited by magnetic
reconnection or shock waves associated with the CMEs (Brito
et al. 2018; Huang et al. 2018). When SEP events are strong,
they cause nuclear cascades in the Earth’s upper atmosphere
and also represent a radiation hazard to equipment in space that
is not adequately protected (Reames et al. 2013; Jordanova
et al. 2018; Roeder & Jordanova 2020).

ARs, which manifest complex magnetic geometry and
properties (Benz 2008), are the source of flares and CMEs
(Chen 2011; van Driel-Gesztelyi & Green 2015). The lifetime
of ARs ranges from days to months (van Driel-Gesztelyi &
Green 2015). Recently, researchers combined machine learning
(ML) with physical parameters derived from vector magneto-
grams provided by the Helioseismic and Magnetic Imager
(HMI; Schou et al. 2012) on board the Solar Dynamics
Observatory (SDO; Pesnell et al. 2012) to predict flares, CMEs,
and SEPs. These physical parameters, including magnetic
helicity and magnetic flux (Leka & Barnes 2003; Schrijver
2007; Moore et al. 2012), are part of the vector magnetic data
products, named the Space-weather HMI Active Region
Patches (SHARP; Bobra et al. 2014), produced by the SDO/
HMI team.
ML has been popular in predictive analytics for many years.

ML is able to learn patterns from historical data and make
predictions on unseen or future data (Alpaydin 2016; Goodfellow
et al. 2016). For example, Liu et al. (2017) used random forests
(RF) and the SHARP parameters to predict the occurrence of a
certain class of flares in a given active region (AR) within 24 hr.
Jonas et al. (2018) employed ML to extract relevant information
from photospheric and coronal image data to perform flare
prediction. Florios et al. (2018) adopted multiple ML algorithms
including RF, multilayer perceptrons (MLP), and support vector
machines (SVM) for flare forecasting. More recently, researchers
started to use deep learning (DL), which is a branch of ML
focusing on the use of deep neural networks, to enhance the
learning outcome (Goodfellow et al. 2016). Huang et al. (2018)
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designed a convolutional neural network to learn patterns from
line-of-sight magnetograms of ARs and used the patterns to
forecast flares. Liu et al. (2019) adopted a long short-term memory
(LSTM) network for flare prediction. Chen et al. (2019) employed
LSTM and the SHARP parameters to identify solar flare
precursors; the authors later extended their work by investigating
solar cycle dependence (Wang et al. 2020). Similar ML and DL
methods have been applied to CME and SEP forecasting. Bobra
& Ilonidis (2016) used SVM to predict CMEs; Liu et al. (2020)
extended their work by adopting recurrent neural networks
including LSTM and gated recurrent units. Inceoglu et al. (2018)
employed SVM and MLP to forecast if flares would be
accompanied with CMEs and SEPs.

In this paper, we propose a new DL method, specifically a
bidirectional long short-term memory (biLSTM) network, for
SEP prediction using the SDO/HMI vector magnetic data
products. We aim to solve two binary prediction problems: (i)
predict whether an AR would produce an SEP event given that
the AR will produce an M- or X-class flare and a CME
associated with the flare (referred to as the FC_S problem); (ii)
predict whether an AR would produce an SEP event given that
the AR will produce an M- or X-class flare regardless of
whether or not the flare is associated with a CME (referred to as
the F_S problem). The proposed biLSTM is an extension of
LSTM (Hochreiter & Schmidhuber 1997), both of which are
well suited for time series forecasting (LeCun et al. 2015;
Goodfellow et al. 2016). Unlike LSTM, which works in one
direction, biLSTM works back and forth on the input data, and
then the patterns learned from the two directions are joined
together to strengthen the learning outcome. In SEP prediction,
the observations and physical parameters associated with ARs
form a time series, and hence biLSTM is suitable for our study.

The rest of this paper is organized as follows. Section 2
explains the data and data collection procedure used in our
study. Section 3 describes our proposed DL method. Section 4
reports the experimental results and discusses extensions of our
approach for probabilistic forecasting and calibration. Section 5
concludes the paper.

2. Data

In this work, we adopt SHARP (Bobra et al. 2014) that
were produced by the SDO/HMI team and released at the end
of 2012. These data are available for download, in the data
series hmi.sharp, from the Joint Science Operations Center
(JSOC).6 The SHARP data provide physical parameters of
ARs that have been used to predict flares, CMEs, and SEPs
(Bobra & Ilonidis 2016; Liu et al. 2017; Inceoglu et al. 2018;
Liu et al. 2019, 2020). We collected SHARP data samples from
the data series, hmi.sharp_cea_720s, using the Python package
SunPy (SunPy Community et al. 2015) at a cadence of 12
minutes. In collecting the data samples, we focused on the 18
physical parameters previously used for SEP prediction
(Inceoglu et al. 2018). These 18 SHARP parameters include
the absolute value of the net current helicity (ABSNJZH), area
of strong field pixels in the AR (AREA_AC), mean
characteristic twist parameter (MEANALP), mean angle of
field from radial (MEANGAM), mean gradient of horizontal
field (MEANGBH), mean gradient of total field (MEANGBT),
mean gradient of vertical field (MEANGBZ), mean
vertical current density (MEANJZD), mean current helicity

(MEANJZH), mean photospheric magnetic free energy
(MEANPOT), mean shear angle (MEANSHR), sum of flux
near polarity inversion line (R_VALUE), sum of the modulus
of the net current per polarity (SAVNCPP), fraction of area
with shear >45° (SHRGT45), total photospheric magnetic free
energy density (TOTPOT), total unsigned current helicity
(TOTUSJH), total unsigned vertical current (TOTUSJZ), and
total unsigned flux (USFLUX).
Since the 18 SHARP parameters have different units and

scales, we normalized the parameter values using the min-max
normalization procedure as done in Liu et al. (2020). Each data
sample contains the 18 SHARP parameters. Let p k

i be the
original value of the ith parameter of the kth data sample. Let
qki be the normalized value of the ith parameter of the kth data
sample. Let mini be the minimum value of the ith parameter.
Let maxi be the maximum value of the ith parameter. Then

( )q
p min

max min
. 1i

k i
k

i

i i
=

-

-

Appropriately labeling the data samples is crucial for ML. We
surveyed M- and X-class flares that occurred between 2010 and
2021 with identified ARs in the GOES X-ray flare catalogs
provided by the National Centers for Environmental Informa-
tion (NCEI). As done in Bobra & Ilonidis (2016), we excluded
ARs that were outside±70° of the central meridian, because
the SHARP parameters cannot be calculated correctly based on
the vector magnetograms of the ARs that are near the limb due
to foreshortening and projection effects.7 We also excluded
flares with an absolute value of the radial velocity of SDO
being greater than 3500 m s−1, low-quality HMI data as
described by Hoeksema et al. (2014), and data samples with
incomplete SHARP parameters. In this way, we excluded data
samples of low quality, and kept qualified data samples of high
quality in our study. Furthermore, we collected and extracted
information from NASA’s Space Weather Database of
Notifications, Knowledge, Information (DONKI)8 to tag, for
any given M- or X-class flare, whether it produced a CME and/
or SEP event. We cross-checked the flare records in DONKI
and GOES X-ray flare catalogs to ensure that each flare record
was associated with an AR; otherwise the flare record was
removed from our study.
We then created two databases of ARs for the period

between 2010 and 2021. ARs from 2010, 2016, and
2018–2021 were excluded from the study due to the lack of
qualified data samples or the absence of SEP events associated
with M-/X-class flares and CMEs. Thus, the databases contain
ARs from six years, namely 2011–2015 and 2017. In our first
database, referred to as the FC_S database, each record
corresponds to an AR, contains an M- or X-class flare as well
as a CME associated with the flare, and is tagged by whether
the flare/CME produce an SEP event. In this database, there
are 31 records tagged by “yes” indicating they are associated
with SEP events while there are 97 records tagged by “no”
indicating they are not associated with SEP events. In our

6 http://jsoc.stanford.edu/

7 Notice that flaring ARs outside ±70° of the central meridian may produce
eruptive events that have increased probabilities to result in SEPs due to the
magnetic connectivity with Earth. Excluding these flaring ARs may reduce the
number of SEP events considered in the study. This is a limitation of our
approach.
8 http://kauai.ccmc.gsfc.nasa.gov/DONKI/
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second database, referred to as the F_S database, each record
corresponds to an AR, contains an M- or X-class flare, and is
tagged by whether the flare produces an SEP event regardless
of whether or not the flare initiates a CME. In this database,
there are 40 records tagged by “yes” indicating they are
associated with SEP events while there are 700 records tagged
by “no” indicating they are not associated with SEP events.

3. Methodology

3.1. Prediction Tasks

As mentioned in Section 1, we aim to solve the following two
binary prediction problems. [FC_S problem] Given a data sample
xt at time point t in an AR where the AR will produce an M- or
X-class flare within the next T hours of t and the flare initiates a
CME, we predict whether xt is positive or negative. Predicting xt
to be positive means that the AR will produce an SEP event
associated with the flare/CME. Predicting xt to be negative means
that the AR will not produce an SEP event associated with the
flare/CME. [F_S problem] Given a data sample xt at time point t
in an AR where the AR will produce an M- or X-class flare within
the next T hours of t regardless of whether or not the flare initiates
a CME, we predict whether xt is positive or negative. Predicting xt
to be positive means that the AR will produce an SEP event
associated with the flare. Predicting xt to be negative means that
the AR will not produce an SEP event associated with the flare.
For both of the two binary prediction problems, we consider T
ranging from 12 to 72 in 12 hr intervals as frequently considered
in the literature (Ahmed et al. 2013; Bobra & Ilonidis 2016;
Inceoglu et al. 2018; Liu et al. 2020).

In solving the two binary prediction problems, we first show
how to collect and construct positive and negative data samples
used in our study. Figure 1(a) (Figure 1(b), respectively)
illustrates how to construct positive (negative, respectively)
data samples for the FC_S problem where T= 24 hr. Refer to
the FC_S database described in Section 2, which indicates
whether a flaring AR that already produces an M- or X-class
flare/CME will initiate an SEP event associated with the flare/
CME. For the flaring AR, we collect data samples that are
within the T= 24 hr prior to the peak time of the flare.

1. If the flare/CME are associated with an SEP event, the
data samples belong to the positive class and are colored
(labeled) by blue as shown in Figure 1(a). Thus, for each
blue (positive) data sample, there is an M- or X-class flare
that is within the next 24 hr of the occurrence time of the
data sample, the flare initiates a CME, and the flare/CME
are associated with an SEP event.

2. If the flare/CME are not associated with an SEP event,
the data samples belong to the negative class and are
colored (labeled) by green as shown in Figure 1(b). Thus,
for each green (negative) data sample, there is an M- or
X-class flare that is within the next 24 hr of the
occurrence time of the data sample, the flare initiates a
CME, but the flare/CME are not associated with an SEP
event.

Constructing positive and negative data samples for the F_S
problem is done similarly, and its description is omitted.

Table 1 shows the numbers of positive and negative data
samples constructed for the FC_S and F_S problems respectively.
Consider the FC_S problem. The positive and negative data
samples are constructed based on the 31 records tagged by “yes”

and 97 records tagged by “no” in the FC_S database described in
Section 2. When T= 24 hr and the cadence is 12 minutes, one
would expect the total number of positive data samples to be
24 hr× 60 minutes hr−1× (1/12 minutes)× 31= 3720, and
the total number of negative data samples to be 24 hr×
60 minutes hr−1× (1/12 minutes)× 97= 11,640. However, the
total number of positive (negative, respectively) data samples is
2017 (5522, respectively). This happens because we removed
many data samples of low quality as described in Section 2. If a
gap occurs in the middle of a time series due to the removal, we
use a zero-padding strategy as done in Liu et al. (2020) to create a
synthetic data sample to fill the gap. The synthetic data sample has
zero values for all the 18 SHARP parameters. The synthetic data
sample is added after the normalization of the SHARP parameter
values, and hence the synthetic data sample does not affect the
normalization procedure.
After explaining how to construct the positive and negative

data samples, we now show how to solve the binary prediction
problems. Consider again the FC_S problem where T= 24 hr.
Here we want to predict whether a given test data sample xt at
time point t is positive (blue) or negative (green) given that
there will be an M- or X-class flare within the next 24 hr of t,
and the flare initiates a CME. If there is an SEP event
associated with the flare/CME, and we predict xt to be positive
(blue), then this is a correct prediction as illustrated in
Figure 1(c). If there is an SEP event associated with the
flare/CME, but we predict xt to be negative (green), then this is
a wrong prediction as illustrated in Figure 1(e). On the other
hand, if there is no SEP event associated with the flare/CME,
and we predict xt to be negative (green), then this is a correct
prediction as illustrated in Figure 1(d). If there is no SEP event
associated with the flare/CME, but we predict xt to be positive
(blue), then this is a wrong prediction as illustrated in
Figure 1(f). The F_S problem is solved similarly. In the
following subsection, we describe how to train our model and
use the trained model to make predictions.

3.2. Prediction Method

We consider one of the recurrent neural networks (RNNs) that
is called LSTM (Hochreiter & Schmidhuber 1997; Goodfellow
et al. 2016) to build our model. LSTM has shown good results in
solar eruption prediction (Liu et al. 2019, 2020). We create a
model using biLSTM. Generally, a bidirectional RNN (Schuster
& Paliwal 1997) functions by duplicating the initial recurrent layer
in the network to obtain two layers so that one layer uses the input
as is, and the other duplicated layer uses the input in a reverse
order. This design allows biLSTM to discover additional patterns
that cannot be found by LSTM with only one recurrent layer
(Siami-Namini et al. 2019). In addition, the data used in our study
is time series, and biLSTM has shown an improvement over
LSTM for general time series forecasting (Althelaya et al. 2018;
Kang et al. 2020). As our experimental results show later,
biLSTM also outperforms LSTM in SEP prediction.
Figure 2 presents the architecture of our neural network,

which accepts as input a data sequence with m consecutive
data samples. (In the study presented here, m is set to 10.)
The neural network consists of a biLSTM layer configured
with 400 neurons. In addition, the neural network contains an
attention layer motivated by Goodfellow et al. (2016) to
direct the network to focus on important information and
characteristics of input data samples. The attention layer is
designed to map and capture the alignment between the input
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and output by calculating a weighted sum for input data
sequences. Specifically, the attention context vector for the
output ŷi, denoted CVi, is calculated as follows:

( )CV W H , 2i
j

m

i j j
1

,å=
=

where m is the input sequence length, Hj is the hidden state
corresponding to the input data sample xj, and W contains
weights applied to the hidden state. W is computed by a
softmax function as follows:

( )W
e

e
. 3i j

S

k
m S,

1

i j

i k

,

,
=

å =

Here Si,j is a score function calculated as follows:

( ( )) ( )V W S HS tanh , , 4i j i j, = ´ ¢

where (·)tanh is the hyperbolic tangent function, Si is the output
state corresponding to the output ŷi, V and W¢ are weight
matrices learned by the neural network. The attention layer
passes its resulting vector to a fully connected layer.
During training, our biLSTM network takes as input

overlapping data sequences where each data sequence contains
m= 10 consecutive data samples. The label (color) of a
training data sequence is defined to be the label (color) of the
last (i.e., tenth) data sample in the data sequence while the
labels (colors) of the other nine data samples in the data
sequence are ignored. Thus, if the tenth data sample is positive
(blue), then the training data sequence is positive; if the tenth

Figure 1. Collecting and constructing positive and negative data samples on a flaring AR for the FC_S problem where T = 24 hr and making predictions based on the
collected data samples. The data samples are collected at a cadence of 12 minutes. Each rectangular box corresponds to 1 hr and contains five data samples. The red
vertical line shows the peak time of an M- or X-class flare. (a) The blue rectangular boxes contain data samples that are within the 24 hr prior to the peak time of an M-
or X-class flare that produces a CME and an SEP event; these blue data samples belong to the positive class. (b) The green rectangular boxes contain data samples that
are within the 24 hr prior to the peak time of an M- or X-class flare that produces a CME but no SEP event; these green data samples belong to the negative class. (c)
Illustration of a correct prediction for a test data sample xt that is predicted to be positive. (d) Illustration of a correct prediction for a test data sample xt that is predicted
to be negative. (e) Illustration of a wrong prediction for a test data sample xt that is predicted to be negative. (f) Illustration of a wrong prediction for a test data sample
xt that is predicted to be positive.
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data sample is negative (green), then the training data sequence
is negative. We feed one training data sequence at a time to our
biLSTM network when training the model. Figure 3(a)
illustrates three positive data sequences used to train our
biLSTM model. Figure 3(b) illustrates three negative data
sequences used to train our biLSTM model.

The loss function used in our biLSTM model is the weighted
binary cross-entropy (WBCE; Goodfellow et al. 2016; Liu
et al. 2020). Let N denote the total number of data sequences
each having m consecutive data samples in the training set. Let
w0 denote the weight for the positive class (i.e., minority class),
and let w1 denote the weight for the negative class (i.e.,
majority class). The weights are calculated based on the ratio of
majority and minority class sizes with more weight assigned to
the minority class. Let yi denote the observed probability of the
ith data sequence; yi is 1 if the ith data sequence is positive and
0 if the ith data sequence is negative. Let ŷi denote the predicted
probability of the ith data sequence. The WBCE, calculated as
follows, is suitable for imbalanced data sets such as those
tackled here where the negative class has more data samples
than the positive class; see Table 1.

( ˆ ) ( ) ( ˆ ) ( )w y y w y yWBCE log 1 log 1 . 5
i

N

i i i i
1

0 1å= + - -
=

We configure the network to use a fraction (1/10) of the
training set as the internal validation subset. We employ
progressive learning with early stopping and adopt the strategy
of saving the highest-performing model during the iterative
learning process. The performance of a model is measured by
the WBCE on the internal validation subset where the smaller
the WBCE is, the better performance the model has. In each
iteration, the process checks the performance of the models in
the current and previous iterations to decide which model to
use for the next iteration. If the model in the current iteration
has a better performance, the process copies its weights as
starting weights for the next iteration; otherwise, it copies the
weights of the model in the previous iteration as starting
weights for the next iteration. This progressive process
improves the weights of the network’s hidden layers, and as
a result, the overall performance of the network is also
improved. In addition, during the iterations, if the performance
of the network degrades, the process stops and selects the
highest-performing model it identifies within the iterations.

During testing/prediction, we are given a test data sample xt,
and our biLSTM model will predict the label (color) of xt, i.e.,
predict whether xt is positive or negative. We pack the m− 1
data samples preceding xt, namely xt−m+1, xt−m+2, K, xt−1,
along with xt into a test data sequence with m consecutive data
samples and feed this test data sequence to our biLSTM model
as shown in the input layer in Figure 2. Figure 3(c) illustrates a
test data sequence where m is 10. The output layer of our
biLSTM model calculates a probability between 0 and 1 for the

test data sequence. We compare the probability with a
threshold, which is set to 0.5. If the probability is greater than
or equal to the threshold, our biLSTM model outputs 1
indicating the test data sequence, more precisely the test data
sample xt, is positive; otherwise our model outputs 0 indicating
the test data sequence, more precisely xt, is negative.

4. Results

4.1. Performance Metrics and Experiment Setup

We conducted a series of experiments to evaluate the
performance of the proposed method and compare it with
related ML methods. For the data sample xt at time point t, we
define the following:

1. xt to be true positive (TP) if our model (network) predicts
that xt is positive and xt is indeed positive, i.e., an SEP
event will be produced with respect to xt;

2. xt to be false positive (FP) if our model predicts that xt is
positive while xt is actually negative, i.e., no SEP event
will be produced with respect to xt;

3. xt to be true negative (TN) if our model predicts xt is
negative and xt is indeed negative;

4. xt to be false negative (FN) if our model predicts xt is
negative while xt is actually positive.

We also use TP (FP, TN, FN, respectively) to denote the total
number of TPs (FPs, TNs, FNs, respectively) produced by a
method.
The following performance metrics are used in our study:

( )Recall
TP

TP FN
, 6=

+

( )Precision
TP

TP FP
, 7=

+

( )

( )⎛
⎝

⎞
⎠

Balanced Accuracy BACC
1

2
TP

TP FN

TN

TN FP
, 8

=

´
+

+
+

( )

( )
( )

( ) ( ) ( ) ( )
9

Heidke Skill Score HSS
2 TP TN FP FN

TP FN FN TN TP FP FP TN
,=

´ ´ - ´
+ ´ + + + ´ +

( ) ( )True Skill Statistics TSS
TP

TP FN

FP

FP TN
. 10=

+
-

+
BACC (García et al. 2009) is an accuracy measure mainly

for imbalanced data sets. HSS (Heidke 1926) and TSS
(Bloomfield et al. 2012) are commonly used for flare, CME,
and SEP predictions (Bloomfield et al. 2012; Florios et al.
2018; Inceoglu et al. 2018; Liu et al. 2019, 2020). HSS ranges

Table 1
Numbers of Positive and Negative Data Samples Constructed for Different Hours for the FC_S and F_S Problems Respectively

12 hr 24 hr 36 hr 48 hr 60 hr 72 hr

FC_S Positive 994 2017 3055 4143 5221 6336
Negative 2952 5522 7864 9976 11,687 13,135

F_S Positive 1260 2561 3863 5207 6517 7864
Negative 19,593 31,534 40,619 48,189 54,718 59,821
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from−∞ to +1. The higher HSS value a method has, the better
performance the method achieves. TSS ranges from −1 to +1.
Like HSS, the higher TSS value a method has, the better
performance the method achieves. In addition, we use the

weighted area under the curve (WAUC; Bekkar et al. 2013) in
our study. The area under the curve (AUC) in a receiver
operating characteristic curve (Marzban 2004) indicates how
well a method is capable of distinguishing between two classes

Figure 2. Architecture of the proposed biLSTM network. Yellow boxes represent biLSTM cells. These cells are connected to an attention layer (A) that contains m
neurons, which are connected to a fully connected layer (FCL). (In the study presented here, m is set to 10.) During testing/prediction, the input to the network is a test
data sequence with m consecutive data samples xt−m+1, xt−m+2 ...xt−1, xt where xt is the test data sample at time point t. The trained biLSTM network predicts the label
(color) of the test data sequence, more precisely the label (color) of xt. The output layer of the biLSTM network calculates a probability (ŷ) between 0 and 1. If ŷ is
greater than or equal to a threshold, which is set to 0.5, the biLSTM network outputs 1 and predicts xt to be positive, i.e., predicts the label (color) of xt to be blue; see
Figure 1. Otherwise, the biLSTM network outputs 0 and predicts xt to be negative, i.e., predicts the label (color) of xt to be green; see Figure 1.

Figure 3. Example data sequences used to train and test our biLSTM network where each data sequence contains 10 consecutive data samples. (a) Three positive
training data sequences taken from a flaring AR. (b) Three negative training data sequences taken from a flaring AR. In (a) and (b), the label (color) of a training data
sequence is defined to be the label (color) of the last data sample in the training data sequence while the labels (colors) of the other nine data samples in the training
data sequence are ignored. (c) A test data sequence formed for predicting the label (color) of the last data sample xt in a flaring AR.
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in binary prediction with the ideal value of one. When
calculating the AUC, we do not distinguish between the
accuracy on the minority class (positive class) and the accuracy
on the majority class (negative class). In contrast, when
calculating the WAUC, which is an extension of the AUC and
mainly for imbalanced data sets like those tackled here, the
accuracy on the minority class has a larger contribution to the
overall performance of a model than the accuracy on the
majority class. As a consequence, we assign more weight to the
accuracy on the minority class where the weight is defined to
be the ratio of the sizes of the minority and majority classes. All
the metrics mentioned above are calculated using the confusion
matrices obtained from the cross-validation (CV) scheme. With
CV, we train a model using a subset of data, called the training
set, and test the model using another subset of data, called the
test set, where the training set and test set are disjointed. We
consider six years, namely 2011–2015 and 2017, as mentioned
in Section 2. Data samples from each year in turn are used for
testing in a run, and data samples from all the other five years
together are used for training in the run. There are six years,
and hence there are six runs in total. For each performance
metric, the mean and standard deviation over the six runs are
calculated and recorded.

4.2. Parameter Ranking and Selection

We first assessed the importance of the 18 SHARP
parameters described in Section 2 to understand which
parameters are the most important ones with the greatest
predictive power by utilizing a parameter ranking method,
called Stability Selection (Meinshausen & Bühlmann 2010).
This method is based on the Least Absolute Shrinkage and
Selection Operator algorithm (Tibshirani 1996). Table 2
presents the rankings of the parameters with respect to
T= 12, 24, 36, 48, 60, and 72 for the FC_S and F_S problems
respectively. The parameter ranked first is the most important
one while the parameter ranked 18th is the least important one.
ABSNJZH is ranked consistently high for the FC_S problem
while SAVNCPP and TOTUSJH are ranked high for the F_S

problem. AREA_ACR, TOTUSJZ, and USFLUX are ranked
consistently low for both of the FC_S and F_S problems.
We then used the recursive parameter elimination algorithm

(Butcher & Smith 2020) in combination with our biLSTM
model to select a set of parameters that achieves the best
performance where the performance is measured by TSS. The
parameter elimination algorithm is an interactive procedure. It
selects parameters by recursively considering smaller and
smaller sets of parameters where the least important parameters
are successively pruned from the current set of parameters.
Figure 4 presents the parameter selection results for the FC_S
and F_S problems respectively. It can be seen from the figure
that using the top 15 most important parameters achieves the
best performance for both of the FC_S and F_S problems.
When using the top k, 1� k� 14, most important parameters,
the less parameters we use, the worse performance our model
achieves. Using the top-ranked, most important parameter
alone would yield a lower TSS than using all the top 15 most
important parameters together. In subsequent experiments, we
used the top 15 most important parameters for our biLSTM
model. That is, we removed the three least important
parameters AREA_ACR, TOTUSJZ, and USFLUX from data
samples, and each data sample contained only the top 15 most
important SHARP parameters.

4.3. Performance Comparison

Next, we compared our biLSTM network with four related
ML methods, including MLP, SVMs, RF, and long short-term
memory (LSTM; Liu et al. 2019). These four methods are
commonly used to predict solar flares, CMEs, and SEPs (Bobra
& Ilonidis 2016; Liu et al. 2017; Florios et al. 2018; Inceoglu
et al. 2018; Chen et al. 2019; Liu et al. 2019, 2020; Wang et al.
2020; Abduallah et al. 2021).
MLP (Rosenblatt 1958; Arias del Campo et al. 2021) is a

feed-forward artificial neural network (Braspenning et al. 1995)
that consists of an input layer, an output layer, and one or more
hidden layers. The number of hidden layers is set to 3 with 200
neurons in each hidden layer. SVM (Cristianini & Ricci 2008)
is trained with the Radial Basis Function kernel, and the cache

Table 2
Importance Rankings of the 18 SHARP Parameters Used in Our Study for the FC_S and F_S Problems Respectively

SHARP 12 hr 24 hr 36 hr 48 hr 60 hr 72 hr

Keyword FC_S F_S FC_S F_S FC_S F_S FC_S F_S FC_S F_S FC_S F_S

ABSNJZH 3 3 1 4 1 10 1 10 1 2 5 1
AREA_ACR 17 16 17 16 17 16 17 16 16 16 16 16
MEANALP 13 15 3 15 3 15 3 15 2 15 6 15
MEANGAM 4 14 4 14 4 14 4 14 4 14 8 14
MEANGBH 5 13 5 13 5 13 5 13 14 13 14 7
MEANGBT 6 12 6 12 6 12 6 12 13 12 13 13
MEANGBZ 7 11 7 3 7 4 7 4 12 11 4 4
MEANJZD 8 10 8 11 8 11 8 11 11 10 12 12
MEANJZH 2 9 2 10 2 5 2 5 10 9 11 10
MEANPOT 10 8 10 9 10 9 10 9 9 8 1 11
MEANSHR 11 7 11 8 11 8 11 8 8 7 10 3
R_VALUE 12 6 12 7 12 1 12 3 7 6 2 2
SAVNCPP 1 2 13 2 13 3 13 1 6 1 3 5
SHRGT45 14 5 14 6 14 7 14 7 5 5 9 9
TOTPOT 15 4 15 5 15 6 15 6 15 4 15 8
TOTUSJH 9 1 9 1 9 2 9 2 3 3 7 6
TOTUSJZ 16 17 16 17 16 17 16 17 17 17 17 17
USFLUX 18 18 18 18 18 18 18 18 18 18 18 18

7

The Astrophysical Journal Supplement Series, 260:16 (18pp), 2022 May Abduallah et al.



size is set to 20,000 to speed the training process. RF (Breiman
et al. 1984) is an ensemble algorithm that has two
hyperparameters for performance tuning: m (the number of
SHARP magnetic parameters randomly selected and used to
split a node in a tree of the forest) and n (the number of trees to
grow). We set m to 2 and n to 500. The implementation of
LSTM follows that described in Liu et al. (2020). The
hyperparameters not specified here are set to their default

values provided by the scikit-learn library in Python (Pedregosa
et al. 2011).
As done in biLSTM, we used the recursive parameter

elimination algorithm (Butcher & Smith 2020) to identify and
select the best parameters for the four related ML methods
based on the importance rankings of the 18 SHARP parameters
in Table 2 for the FC_S and F_S problems respectively. Our
experiments showed that, like biLSTM, using the top 15 most

Figure 4. Parameter selection results for (a) the FC_S problem, and (b) the F_S problem.
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important parameters achieved the best performance for the
four related ML methods. Consequently, we used the top 15
most important parameters for the four ML methods in the
experimental study.

Figures 5 and 6 present the confusion matrices of the five
ML methods (RF, MLP, SVM, LSTM, biLSTM) for the FC_S
and F_S problems respectively. For each T, T= 12, 24, 36, 48,
60, 72, and each ML method, the figures show the minimum,
average, maximum (displayed from top to bottom) TP, FN, TN,
FP, respectively, from the six runs based on our CV scheme.
For example, refer to T= 12 and biLSTM in Figure 5. The
minimum (maximum, respectively) TP obtained by biLSTM
from the six runs is 87 (246, respectively); the average TP over
the six runs is 139. It can be seen from Figures 5 and 6 that the
average TN values are much larger than the average FP values
for both of the FC_S and F_S problems. This happens because
there are many negative training data samples in our data sets
(see Table 1). As a consequence, the ML methods gain
sufficient knowledge about the negative data samples and
hence can detect them relatively easily. For the FC_S problem,

the average TP values (TN values, respectively) are consis-
tently larger than the average FN values (FP values,
respectively), indicating that the ML methods can solve the
FC_S problem reasonably well. For the F_S problem, the
average TP values are close to, or even smaller than, the
average FN values in many cases, suggesting that the ML
methods have difficulty in detecting positive data samples. This
is understandable given that there are much fewer positive
training data samples than negative training data samples for
the F_S problem (see Table 1).
Tables 3 and 4 compare the performance of the five ML

methods for the FC_S and F_S problems respectively. The
tables present the mean performance metric values averaged
over the six runs based on our CV scheme with standard
deviations enclosed in parentheses. Best average metric values
are highlighted in boldface. It can be seen from Tables 3 and 4
that our biLSTM network outperforms the four related ML
methods in terms of BACC, HSS, TSS, and WAUC.
Furthermore, the five ML methods generally perform better
in solving the FC_S problem than in solving the F_S problem.

Figure 5. Confusion matrices of RF, MLP, SVM, LSTM, and biLSTM for the FC_S problem. For each T, T = 12, 24, 36, 48, 60, 72, and each machine-learning
method, the figure shows the minimum, average, maximum (displayed from top to bottom) TP, FN, TN, FP, respectively, from the six runs based on our cross-
validation scheme.
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This result indicates that one can predict SEP events more
accurately when ARs will produce both flares and associated
CMEs. Using flare information alone to predict SEP events is
harder and would produce less reliable prediction results.

4.4. Probabilistic Forecasting and Calibration

The five ML methods (RF, MLP, SVM, LSTM, biLSTM)
studied here are inherently probabilistic forecasting models in
the sense that they calculate a probability between 0 and 1. We
compare the probability with a threshold, which is set to 0.5, to
determine the output produced by each ML method. The output
is either 1 or 0 (see Figure 2), and hence each method is
essentially a binary prediction model. In addition to comparing
the methods used as binary prediction models, we also compare
the methods used as probabilistic forecasting models, where the
output produced by each model is interpreted as follows. [FC_S
problem] Given a data sample xt at time point t in an AR where
the AR will produce an M- or X-class flare within the next T
hours of t and the flare initiates a CME, based on the SHARP

parameters in xt and its preceding m− 1 data samples xt−m+1,
xt−m+2, K, xt−1, we calculate and output a probabilistic
estimate of how likely it is that the AR will produce an SEP
event associated with the flare and CME. [F_S problem] Given
a data sample xt at time point t in an AR where the AR will
produce an M- or X-class flare within the next T hours of t
regardless of whether or not the flare initiates a CME, based on
the SHARP parameters in xt and its preceding m− 1 data
samples xt−m+1, xt−m+2, K, xt−1, we calculate and output a
probabilistic estimate of how likely it is that the AR will
produce an SEP event associated with the flare.
The distribution and behavior of the predicted probabilistic

values may not match the expected distribution of observed
probabilities in the training data. One can adjust the distribution
of the predicted probabilities to better match the expected
distribution observed in the training data through calibration.
Here, we adopt isotonic regression (Kruskal 1964; Sager &
Thisted 1982) to adjust the probabilities. Isotonic regression
works by fitting a free-form line to a sequence of data points
such that the fitted line is nondecreasing (or nonincreasing)

Figure 6. Confusion matrices of RF, MLP, SVM, LSTM, and biLSTM for the F_S problem. For each T, T = 12, 24, 36, 48, 60, 72, and each machine-learning
method, the figure shows the minimum, average, maximum (displayed from top to bottom) TP, FN, TN, FP, respectively, from the six runs based on our cross-
validation scheme.
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everywhere, and lies as close to the data points as possible.
Calibrated models often produce more accurate results. We add
a suffix “+C” to each model to denote the calibrated version of
the model.

To quantitatively assess the performance of a probabilistic
forecasting model, we adopt the Brier Score (BS; Wilks 2010)
and Brier Skill Score (BSS; Wilks 2010), defined as follows:
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Here, N is the total number of data sequences each having m
consecutive data samples in the test set (see Figure 2 where a
test data sequence with m consecutive data samples is fed to
our biLSTM model); yi denotes the observed probability, and ŷi
denotes the predicted probability of the ith test data sequence
respectively; ȳ y

N i
N

i
1

1= å = denotes the mean of all the
observed probabilities. The BS values range from 0 to 1, with
0 being a perfect score, whereas the BSS values range
from−∞ to 1, with 1 being a perfect score.

Table 5 compares the performance of the five ML methods
used as probabilistic forecasting models for the FC_S and F_S
problems respectively. The table presents the mean BS and
BSS values averaged over the six runs based on our CV

scheme with standard deviations enclosed in parentheses. Best
BS and BSS values are highlighted in boldface. It can be seen
from Table 5 that the probabilistic forecasting models generally
perform better in solving the FC_S problem than in solving the
F_S problem, suggesting that F_S is a harder problem, and
hence the forecasting results for the F_S problem would be less
reliable. These findings are consistent with those in Tables 3
and 4 where the ML methods are used as binary prediction
models. Furthermore, the calibrated version of a model is better
than the model without calibration. Overall, biLSTM+C
performs the best among all the models in terms of both BS
and BSS.

5. Discussion and Conclusions

We develop a biLSTM network for SEP prediction. We
consider two prediction tasks. In the first task (FC_S), given a
data sample xt at time point t in an AR where the AR will
produce an M- or X-class flare within the next T hours of t and
the flare initiates a CME, based on the SHARP parameters in xt
and its preceding m− 1 data samples xt−m+1, xt−m+2, K, xt−1,
our biLSTM, when used as a binary prediction model, can
predict whether the AR will produce an SEP event associated
with the flare/CME. Furthermore, our biLSTM, when used as a
probabilistic forecasting model, can provide a probabilistic
estimate of how likely it is that the AR will produce an SEP
event associated with the flare/CME. In the second task (F_S),
given a data sample xt at time point t in an AR where the AR

Table 3
Performance Comparison of RF, MLP, SVM, LSTM, and biLSTM Based on Our CV Scheme for the FC_S Problem

12 hr 24 hr 36 hr 48 hr 60 hr 72 hr

Recall RF 0.593 (0.106) 0.617 (0.120) 0.660 (0.078) 0.632 (0.134) 0.721 (0.082) 0.767 (0.095)
MLP 0.542 (0.175) 0.617 (0.149) 0.679 (0.110) 0.618 (0.143) 0.711 (0.088) 0.766 (0.093)
SVM 0.543 (0.175) 0.666 (0.088) 0.663 (0.125) 0.686 (0.123) 0.714 (0.090) 0.761 (0.093)
LSTM 0.658 (0.113) 0.663 (0.099) 0.699 (0.064) 0.714 (0.100) 0.745 (0.071) 0.788 (0.089)
biLSTM 0.825 (0.058) 0.710 (0.112) 0.758 (0.064) 0.748 (0.086) 0.777 (0.077) 0.843 (0.058)

Precision RF 0.554 (0.113) 0.483 (0.151) 0.556 (0.163) 0.532 (0.165) 0.548 (0.155) 0.661 (0.171)
MLP 0.478 (0.153) 0.432 (0.166) 0.501 (0.155) 0.471 (0.161) 0.524 (0.164) 0.605 (0.161)
SVM 0.486 (0.168) 0.520 (0.132) 0.543 (0.158) 0.574 (0.163) 0.514 (0.176) 0.603 (0.175)
LSTM 0.609 (0.102) 0.516 (0.142) 0.581 (0.158) 0.599 (0.155) 0.569 (0.153) 0.680 (0.166)
biLSTM 0.777 (0.061) 0.587 (0.148) 0.619 (0.149) 0.669 (0.155) 0.656 (0.160) 0.739 (0.133)

BACC RF 0.707 (0.045) 0.672 (0.047) 0.719 (0.036) 0.688 (0.051) 0.713 (0.030) 0.790 (0.043)
MLP 0.663 (0.061) 0.641 (0.062) 0.690 (0.049) 0.641 (0.051) 0.691 (0.046) 0.752 (0.023)
SVM 0.668 (0.070) 0.706 (0.022) 0.709 (0.045) 0.730 (0.032) 0.687 (0.053) 0.753 (0.029)
LSTM 0.751 (0.047) 0.704 (0.035) 0.744 (0.029) 0.750 (0.031) 0.734 (0.025) 0.807 (0.041)
biLSTM 0.868 (0.029) 0.757 (0.040) 0.784 (0.029) 0.796 (0.037) 0.795 (0.032) 0.852 (0.021)

HSS RF 0.404 (0.091) 0.315 (0.100) 0.406 (0.088) 0.354 (0.100) 0.386 (0.063) 0.545 (0.099)
MLP 0.314 (0.119) 0.249 (0.123) 0.343 (0.105) 0.259 (0.098) 0.343 (0.098) 0.468 (0.067)
SVM 0.325 (0.138) 0.377 (0.063) 0.391 (0.101) 0.431 (0.080) 0.332 (0.114) 0.468 (0.083)
LSTM 0.489 (0.090) 0.373 (0.086) 0.450 (0.084) 0.468 (0.079) 0.423 (0.057) 0.579 (0.099)
biLSTM 0.722 (0.057) 0.481 (0.097) 0.522 (0.080) 0.562 (0.086) 0.551 (0.086) 0.669 (0.064)

TSS RF 0.413 (0.090) 0.344 (0.094) 0.437 (0.072) 0.376 (0.101) 0.426 (0.061) 0.579 (0.085)
MLP 0.326 (0.123) 0.281 (0.125) 0.379 (0.098) 0.283 (0.101) 0.382 (0.092) 0.504 (0.046)
SVM 0.336 (0.140) 0.413 (0.045) 0.417 (0.091) 0.459 (0.063) 0.374 (0.106) 0.507 (0.057)
LSTM 0.501 (0.093) 0.407 (0.071) 0.487 (0.059) 0.499 (0.063) 0.468 (0.051) 0.615 (0.082)
biLSTM 0.737 (0.057) 0.515 (0.081) 0.567 (0.059) 0.592 (0.073) 0.590 (0.063) 0.703 (0.041)

WAUC RF 0.453 (0.056) 0.375 (0.071) 0.476 (0.048) 0.410 (0.063) 0.459 (0.040) 0.621 (0.057)
MLP 0.354 (0.033) 0.301 (0.032) 0.415 (0.088) 0.304 (0.072) 0.410 (0.024) 0.543 (0.085)
SVM 0.361 (0.087) 0.453 (0.068) 0.457 (0.023) 0.503 (0.064) 0.405 (0.040) 0.553 (0.085)
LSTM 0.541 (0.074) 0.436 (0.071) 0.526 (0.020) 0.535 (0.052) 0.510 (0.051) 0.671 (0.026)
biLSTM 0.794 (0.041) 0.563 (0.039) 0.609 (0.086) 0.646 (0.043) 0.642 (0.048) 0.764 (0.073)
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will produce an M- or X-class flare within the next T hours of t,
based on the SHARP parameters in xt and its preceding m− 1
data samples xt−m+1, xt−m+2, K, xt−1, our biLSTM, when used
as a binary prediction model, can predict whether the AR will
produce an SEP event associated with the flare, and when used
as a probabilistic forecasting model, can provide a probabilistic
estimate of how likely it is that the AR will produce an SEP
event associated with the flare, regardless of whether or not the
flare initiates a CME. For both tasks, T ranges from 12 to 72 in
12 hr intervals.

We surveyed and collected data samples from the JSOC
website, in the period between 2010 and 2021. Each data
sample contains 18 SHARP parameters. ARs from 2010,
2016, and 2018–2021 were excluded from the study due to
the lack of qualified data samples or the absence of SEP
events associated with M-/X-class flares and CMEs. We then
performed a CV study on the remaining six years (2011–2015
and 2017). In the CV study, training and test sets are
disjointed, and hence our biLSTM model can make predic-
tions on ARs that were never seen before. We evaluated the
performance of our model and compared it with four related
ML algorithms, namely RF (Liu et al. 2017), MLP (Inceoglu
et al. 2018), SVM (Bobra & Ilonidis 2016), and a previous
LSTM network (Liu et al. 2019). The five ML methods
including our biLSTM can be used both as binary prediction

models and as probabilistic forecasting models. Our main
results are summarized as follows.

1. The data samples in an AR are modeled as a time series.
We employ the biLSTM network to predict SEP events
based on the time series. To our knowledge, this is the
first study using a deep neural network to learn the
dependencies in the temporal domain of the data for SEP
prediction.

2. We evaluate the importance of the 18 SHARP parameters
used in our study. It is found that using the top 15
SHARP parameters achieves the best performance for
both the FC_S and F_S tasks. This finding is consistent
with the literature that indicates using fewer high-quality
SHARP parameters often achieves better performance for
eruption prediction than using all the SHARP parameters
including low-quality ones (Alpaydin 2016; Bobra &
Ilonidis 2016; Liu et al. 2020).

3. Our experiments show that the proposed biLSTM
outperforms the four related ML methods in performing
binary prediction and probabilistic forecasting for both
the FC_S and F_S tasks. Furthermore, we introduce a
calibration mechanism to enhance the accuracy of
probabilistic forecasting. Overall, the calibrated biLSTM
achieves the best performance among all the probabilistic
forecasting models studied here.

Table 4
Performance Comparison of RF, MLP, SVM, LSTM, and biLSTM Based on Our Cross-validation Scheme for the F_S Problem

12 hr 24 hr 36 hr 48 hr 60 hr 72 hr

Recall RF 0.414 (0.099) 0.468 (0.066) 0.592 (0.137) 0.550 (0.123) 0.522 (0.120) 0.590 (0.109)
MLP 0.367 (0.138) 0.457 (0.098) 0.398 (0.172) 0.501 (0.148) 0.520 (0.153) 0.568 (0.150)
SVM 0.433 (0.064) 0.471 (0.058) 0.495 (0.189) 0.575 (0.106) 0.518 (0.160) 0.567 (0.145)
LSTM 0.468 (0.146) 0.456 (0.166) 0.592 (0.155) 0.591 (0.140) 0.546 (0.155) 0.624 (0.127)
biLSTM 0.520 (0.103) 0.508 (0.122) 0.597 (0.095) 0.545 (0.197) 0.548 (0.090) 0.629 (0.120)

Precision RF 0.178 (0.052) 0.253 (0.119) 0.267 (0.159) 0.314 (0.144) 0.285 (0.166) 0.370 (0.177)
MLP 0.164 (0.073) 0.215 (0.106) 0.227 (0.140) 0.254 (0.136) 0.247 (0.138) 0.315 (0.158)
SVM 0.152 (0.035) 0.218 (0.096) 0.278 (0.130) 0.287 (0.129) 0.234 (0.136) 0.306 (0.154)
LSTM 0.184 (0.076) 0.252 (0.114) 0.432 (0.124) 0.340 (0.141) 0.329 (0.162) 0.404 (0.161)
biLSTM 0.366 (0.159) 0.473 (0.110) 0.527 (0.155) 0.377 (0.200) 0.405 (0.170) 0.485 (0.166)

BACC RF 0.627 (0.033) 0.656 (0.030) 0.684 (0.052) 0.681 (0.038) 0.650 (0.025) 0.702 (0.036)
MLP 0.599 (0.049) 0.635 (0.031) 0.605 (0.062) 0.634 (0.036) 0.618 (0.040) 0.665 (0.032)
SVM 0.616 (0.052) 0.641 (0.028) 0.655 (0.039) 0.676 (0.035) 0.605 (0.055) 0.654 (0.052)
LSTM 0.647 (0.046) 0.653 (0.079) 0.739 (0.061) 0.703 (0.022) 0.677 (0.059) 0.720 (0.029)
biLSTM 0.721 (0.046) 0.714 (0.047) 0.765 (0.037) 0.706 (0.076) 0.708 (0.015) 0.754 (0.027)

HSS RF 0.154 (0.031) 0.218 (0.066) 0.239 (0.117) 0.265 (0.077) 0.212 (0.069) 0.311 (0.086)
MLP 0.128 (0.073) 0.171 (0.049) 0.156 (0.098) 0.181 (0.050) 0.152 (0.048) 0.235 (0.049)
SVM 0.119 (0.040) 0.175 (0.038) 0.233 (0.082) 0.235 (0.042) 0.128 (0.064) 0.218 (0.087)
LSTM 0.170 (0.064) 0.216 (0.091) 0.414 (0.110) 0.303 (0.068) 0.270 (0.100) 0.352 (0.078)
biLSTM 0.365 (0.137) 0.418 (0.100) 0.493 (0.099) 0.345 (0.159) 0.353 (0.079) 0.448 (0.089)

TSS RF 0.254 (0.066) 0.313 (0.060) 0.368 (0.103) 0.362 (0.075) 0.301 (0.050) 0.405 (0.071)
MLP 0.198 (0.098) 0.270 (0.062) 0.211 (0.125) 0.269 (0.072) 0.236 (0.080) 0.329 (0.064)
SVM 0.233 (0.104) 0.282 (0.057) 0.309 (0.078) 0.353 (0.070) 0.210 (0.110) 0.309 (0.104)
LSTM 0.293 (0.092) 0.305 (0.158) 0.479 (0.122) 0.405 (0.044) 0.353 (0.119) 0.440 (0.058)
biLSTM 0.441 (0.093) 0.428 (0.093) 0.529 (0.075) 0.412 (0.151) 0.416 (0.031) 0.509 (0.055)

WAUC RF 0.276 (0.022) 0.338 (0.067) 0.403 (0.021) 0.388 (0.035) 0.330 (0.021) 0.431 (0.042)
MLP 0.212 (0.084) 0.290 (0.079) 0.226 (0.024) 0.294 (0.034) 0.256 (0.085) 0.359 (0.075)
SVM 0.254 (0.084) 0.307 (0.048) 0.334 (0.062) 0.381 (0.074) 0.230 (0.060) 0.334 (0.027)
LSTM 0.319 (0.056) 0.328 (0.047) 0.514 (0.033) 0.432 (0.038) 0.382 (0.073) 0.474 (0.020)
biLSTM 0.480 (0.076) 0.467 (0.034) 0.574 (0.085) 0.450 (0.035) 0.448 (0.087) 0.552 (0.016)
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4. When both an M-/X-class flare and its associated CME
will occur, predicting whether there is an SEP event
associated with the flare and CME is an easier problem
(FC_S). Our biLSTM can solve the FC_S problem with
relatively high accuracy. In contrast, when an M-/X-class
flare will occur in the absence of CME information,
predicting whether there is an SEP event associated with
the flare is a harder problem (F_S). Our biLSTM solves
the F_S problem with relatively low accuracy, and hence
the prediction results would be less reliable.

5. The findings reported here are based on the CV scheme in
which six years (2011–2015 and 2017) are considered,
data samples from each year in turn are used for testing,
and data samples from the other five years together are
used for training. To further understand the behavior of
our biLSTM network and the four related ML methods,
we have performed additional experiments using a
random division (RD) scheme. With RD, we randomly

select 10% of all positive data sequences and 10% of all
negative data sequences, and use them together as the test
set. The remaining 90% of the positive data sequences
and 90% of the negative data sequences are used together
as the training set. We repeat this experiment 100 times.
The average values and standard deviations of the
performance metrics are calculated. Tables 6 and 7 in
the Appendix present results of the five ML methods used
as binary prediction models for the FC_S and F_S
problems respectively. Table 8 presents results of the five
ML methods used as probabilistic forecasting models for
the FC_S and F_S problems respectively. It can be seen
from these tables that the results obtained from the RD
scheme are consistent with those from the CV scheme;
though the performance metric values from the RD
scheme are generally better than those from the
CV scheme. This happens probably because with the
RD scheme the ML methods are trained by more diverse

Table 5
Probabilistic Forecasting Results of RF, MLP, SVM, LSTM, and biLSTM with and without Calibration Based on Our CV Scheme for the FC_S and F_S Problems

Respectively

12 hr 24 hr 36 hr 48 hr 60 hr 72 hr

FC_S BS RF 0.372 (0.083) 0.342 (0.075) 0.365 (0.060) 0.342 (0.092) 0.355 (0.051) 0.269 (0.040)
RF+C 0.332 (0.070) 0.331 (0.101) 0.324 (0.056) 0.302 (0.085) 0.328 (0.047) 0.252 (0.037)
MLP 0.362 (0.136) 0.393 (0.080) 0.335 (0.095) 0.315 (0.050) 0.335 (0.083) 0.280 (0.025)

MLP+C 0.329 (0.124) 0.366 (0.076) 0.309 (0.088) 0.283 (0.050) 0.301 (0.073) 0.255 (0.027)
SVM 0.359 (0.052) 0.344 (0.037) 0.337 (0.075) 0.353 (0.049) 0.306 (0.087) 0.298 (0.034)

SVM+C 0.322 (0.047) 0.303 (0.030) 0.297 (0.066) 0.306 (0.035) 0.284 (0.080) 0.267 (0.035)
LSTM 0.337 (0.064) 0.356 (0.054) 0.300 (0.058) 0.288 (0.032) 0.298 (0.038) 0.274 (0.028)

LSTM+C 0.271 (0.062) 0.302 (0.045) 0.262 (0.053) 0.244 (0.032) 0.273 (0.035) 0.232 (0.021)
biLSTM 0.248 (0.028) 0.272 (0.052) 0.270 (0.048) 0.281 (0.040) 0.297 (0.021) 0.279 (0.015)

biLSTM+C 0.215 (0.021) 0.249 (0.038) 0.223 (0.025) 0.235 (0.033) 0.270 (0.043) 0.202 (0.014)

BSS RF 0.273 (0.166) 0.316 (0.164) 0.282 (0.124) 0.316 (0.180) 0.325 (0.118) 0.466 (0.067)
RF+C 0.341 (0.140) 0.343 (0.189) 0.362 (0.115) 0.396 (0.167) 0.340 (0.109) 0.501 (0.062)
MLP 0.290 (0.262) 0.274 (0.100) 0.320 (0.202) 0.382 (0.082) 0.323 (0.179) 0.436 (0.048)

MLP+C 0.355 (0.239) 0.325 (0.094) 0.372 (0.187) 0.445 (0.087) 0.392 (0.158) 0.486 (0.052)
SVM 0.281 (0.128) 0.310 (0.086) 0.333 (0.142) 0.295 (0.101) 0.388 (0.178) 0.406 (0.057)

SVM+C 0.355 (0.115) 0.392 (0.065) 0.412 (0.125) 0.389 (0.074) 0.432 (0.164) 0.469 (0.059)
LSTM 0.338 (0.124) 0.306 (0.114) 0.388 (0.128) 0.425 (0.073) 0.406 (0.074) 0.458 (0.052)

LSTM+C 0.466 (0.121) 0.395 (0.099) 0.466 (0.115) 0.513 (0.068) 0.456 (0.068) 0.542 (0.037)
biLSTM 0.513 (0.050) 0.450 (0.110) 0.464 (0.097) 0.424 (0.086) 0.417 (0.046) 0.450 (0.018)

biLSTM+C 0.578 (0.035) 0.498 (0.080) 0.558 (0.046) 0.518 (0.065) 0.470 (0.087) 0.587 (0.020)

F_S BS RF 0.393 (0.094) 0.391 (0.075) 0.449 (0.126) 0.459 (0.077) 0.381 (0.063) 0.317 (0.056)
RF+C 0.341 (0.078) 0.351 (0.062) 0.380 (0.109) 0.383 (0.063) 0.334 (0.043) 0.276 (0.044)
MLP 0.433 (0.042) 0.429 (0.053) 0.395 (0.063) 0.404 (0.105) 0.394 (0.134) 0.366 (0.072)

MLP+C 0.376 (0.031) 0.381 (0.046) 0.340 (0.057) 0.357 (0.100) 0.341 (0.111) 0.329 (0.069)
SVM 0.429 (0.071) 0.391 (0.043) 0.381 (0.032) 0.379 (0.075) 0.403 (0.067) 0.390 (0.100)

SVM+C 0.390 (0.073) 0.354 (0.038) 0.336 (0.025) 0.336 (0.061) 0.363 (0.067) 0.346 (0.082)
LSTM 0.373 (0.093) 0.359 (0.077) 0.381 (0.048) 0.347 (0.042) 0.377 (0.074) 0.276 (0.034)

LSTM+C 0.341 (0.088) 0.315 (0.074) 0.336 (0.049) 0.314 (0.036) 0.319 (0.052) 0.247 (0.034)
biLSTM 0.267 (0.054) 0.345 (0.038) 0.318 (0.069) 0.344 (0.040) 0.346 (0.034) 0.307 (0.028)

biLSTM+C 0.231 (0.042) 0.294 (0.035) 0.226 (0.060) 0.291 (0.044) 0.289 (0.021) 0.220 (0.029)

BSS RF 0.267 (0.182) 0.206 (0.160) 0.232 (0.224) 0.228 (0.066) 0.313 (0.131) 0.360 (0.093)
RF+C 0.322 (0.150) 0.329 (0.133) 0.293 (0.216) 0.354 (0.078) 0.322 (0.093) 0.441 (0.072)
MLP 0.282 (0.078) 0.138 (0.109) 0.226 (0.105) 0.284 (0.076) 0.259 (0.222) 0.345 (0.085)

MLP+C 0.336 (0.059) 0.235 (0.093) 0.335 (0.088) 0.368 (0.069) 0.358 (0.183) 0.411 (0.086)
SVM 0.122 (0.163) 0.228 (0.083) 0.251 (0.051) 0.247 (0.151) 0.204 (0.137) 0.310 (0.119)

SVM+C 0.201 (0.165) 0.301 (0.075) 0.339 (0.043) 0.332 (0.122) 0.283 (0.135) 0.388 (0.091)
LSTM 0.256 (0.204) 0.297 (0.150) 0.230 (0.092) 0.309 (0.080) 0.342 (0.152) 0.430 (0.129)

LSTM+C 0.319 (0.193) 0.383 (0.144) 0.323 (0.096) 0.385 (0.067) 0.447 (0.145) 0.489 (0.122)
biLSTM 0.464 (0.106) 0.309 (0.092) 0.451 (0.144) 0.314 (0.083) 0.351 (0.072) 0.437 (0.091)

biLSTM+C 0.535 (0.083) 0.410 (0.084) 0.513 (0.100) 0.420 (0.087) 0.457 (0.047) 0.521 (0.089)
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data and hence are more knowledgeable, yielding more
accurate results than with the CV scheme.

It should be pointed out that, in solving the FC_S problem,
the condition (in which we have a data sample xt at time point t
in an AR that will produce an M- or X-class flare within the
next T hours of t, and the flare initiates a CME) is given. That
is, we assume an M- or X-class flare and its associated CME
will occur. In an operational system, one can determine in two
phases if an AR will produce an M- or X-class flare within the
next T-hours of a given time point t and if the flare initiates a
CME, as follows (Liu 2020). In the first phase, one can use a
flare prediction tool (e.g., Liu et al. 2017; Florios et al. 2018;
Jonas et al. 2018; Nishizuka et al. 2018; Liu et al. 2019) to
predict whether there will be an M- or X-class flare within the
next T hours of t. If the answer is yes, then in the second phase
one can use a CME prediction tool (e.g., Liu et al. 2020) to
predict whether the flare initiates a CME. If the answer is also
yes, then one can use the proposed biLSTM to predict whether
there is an SEP event associated with the flare and CME. On
the other hand, to solve the F_S problem, one only needs to
execute the first phase. If the answer from the first phase
indicates that an M- or X-class flare will occur within the next T
hours of t, one can then go ahead to use the proposed biLSTM
to predict whether there is an SEP event associated with the
flare. Thus, the proposed biLSTM does not function in a stand-
alone manner. Rather, it first requires the other tools to provide
flare/CME predictions. As such, the performance of the
operational biLSTM system depends on the performance of

the other tools. A wrong prediction from the other tools would
affect the accuracy of our approach.

We thank the referee and scientific editor for very helpful
and thoughtful comments. We also thank the team of SDO/
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DONKI. This work was supported by U.S. NSF grants AGS-
1927578 and AGS-1954737. J.W. thanks Manolis K. Geor-
goulis for helpful conversations in the SHINE 2019 Con-
ference. Q.L. and H.W. acknowledge the support of NASA
under grants 80NSSC18K1705, 80NSSC19K0068, and
80NSSC20K1282.

Appendix

Tables 6 and 7 present results of the five ML methods (RF,
MLP, SVM, LSTM, biLSTM) used as binary prediction
models for the FC_S and F_S problems respectively. Table 8
presents results of the five ML methods used as probabilistic
forecasting models for the FC_S and F_S problems respec-
tively. The tables show the mean performance metric values
averaged over the 100 experiments based on the RD scheme
with standard deviations enclosed in parentheses. Best average
metric values are highlighted in boldface.
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Table 6
Performance Comparison of RF, MLP, SVM, LSTM, and biLSTM Based on the Random Division Scheme for the FC_S Problem

12 hr 24 hr 36 hr 48 hr 60 hr 72 hr

Recall RF 0.699 (0.149) 0.686 (0.148) 0.657 (0.169) 0.701 (0.165) 0.689 (0.087) 0.817 (0.080)
MLP 0.655 (0.164) 0.690 (0.132) 0.688 (0.149) 0.692 (0.149) 0.679 (0.101) 0.798 (0.091)
SVM 0.666 (0.170) 0.693 (0.147) 0.681 (0.159) 0.701 (0.153) 0.716 (0.088) 0.810 (0.091)
LSTM 0.786 (0.080) 0.804 (0.071) 0.840 (0.059) 0.860 (0.047) 0.870 (0.054) 0.884 (0.061)
biLSTM 0.911 (0.056) 0.844 (0.067) 0.860 (0.057) 0.882 (0.047) 0.875 (0.052) 0.906 (0.054)

Precision RF 0.680 (0.184) 0.670 (0.113) 0.654 (0.069) 0.636 (0.088) 0.675 (0.036) 0.719 (0.046)
MLP 0.650 (0.214) 0.630 (0.079) 0.659 (0.069) 0.627 (0.073) 0.659 (0.040) 0.715 (0.045)
SVM 0.733 (0.163) 0.649 (0.090) 0.707 (0.083) 0.684 (0.093) 0.692 (0.042) 0.725 (0.046)
LSTM 0.682 (0.135) 0.692 (0.130) 0.706 (0.103) 0.683 (0.120) 0.710 (0.106) 0.727 (0.071)
biLSTM 0.788 (0.149) 0.721 (0.132) 0.722 (0.103) 0.705 (0.118) 0.752 (0.107) 0.749 (0.067)

BACC RF 0.781 (0.073) 0.776 (0.068) 0.761 (0.078) 0.768 (0.083) 0.770 (0.042) 0.831 (0.042)
MLP 0.750 (0.085) 0.768 (0.057) 0.774 (0.069) 0.759 (0.067) 0.761 (0.049) 0.822 (0.046)
SVM 0.787 (0.093) 0.775 (0.065) 0.787 (0.080) 0.784 (0.080) 0.787 (0.046) 0.831 (0.047)
LSTM 0.822 (0.051) 0.828 (0.051) 0.847 (0.044) 0.840 (0.054) 0.848 (0.042) 0.860 (0.046)
biLSTM 0.906 (0.041) 0.854 (0.048) 0.861 (0.042) 0.858 (0.051) 0.867 (0.045) 0.878 (0.040)

HSS RF 0.548 (0.152) 0.541 (0.124) 0.516 (0.130) 0.516 (0.150) 0.536 (0.072) 0.639 (0.076)
MLP 0.492 (0.183) 0.517 (0.096) 0.537 (0.118) 0.500 (0.119) 0.516 (0.083) 0.624 (0.081)
SVM 0.585 (0.178) 0.534 (0.110) 0.575 (0.141) 0.561 (0.148) 0.568 (0.080) 0.640 (0.082)
LSTM 0.612 (0.128) 0.624 (0.125) 0.656 (0.105) 0.633 (0.131) 0.656 (0.108) 0.682 (0.093)
biLSTM 0.769 (0.124) 0.670 (0.123) 0.682 (0.103) 0.667 (0.126) 0.702 (0.112) 0.717 (0.083)

TSS RF 0.562 (0.146) 0.551 (0.136) 0.523 (0.155) 0.536 (0.165) 0.541 (0.084) 0.662 (0.084)
MLP 0.501 (0.171) 0.536 (0.114) 0.549 (0.139) 0.519 (0.134) 0.522 (0.097) 0.644 (0.093)
SVM 0.574 (0.186) 0.551 (0.131) 0.573 (0.161) 0.568 (0.161) 0.574 (0.091) 0.661 (0.093)
LSTM 0.645 (0.103) 0.657 (0.102) 0.695 (0.088) 0.680 (0.109) 0.697 (0.085) 0.720 (0.091)
biLSTM 0.812 (0.081) 0.708 (0.096) 0.722 (0.073) 0.715 (0.103) 0.733 (0.091) 0.756 (0.079)

WAUC RF 0.619 (0.022) 0.601 (0.046) 0.577 (0.022) 0.579 (0.050) 0.599 (0.065) 0.729 (0.072)
MLP 0.551 (0.015) 0.581 (0.013) 0.605 (0.042) 0.573 (0.051) 0.565 (0.024) 0.709 (0.035)
SVM 0.633 (0.015) 0.597 (0.079) 0.630 (0.048) 0.618 (0.057) 0.625 (0.056) 0.730 (0.046)
LSTM 0.708 (0.039) 0.725 (0.020) 0.757 (0.084) 0.744 (0.081) 0.761 (0.029) 0.782 (0.070)
biLSTM 0.895 (0.013) 0.775 (0.041) 0.799 (0.051) 0.780 (0.069) 0.796 (0.058) 0.821 (0.063)
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Table 7
Performance Comparison of RF, MLP, SVM, LSTM, and biLSTM Based on the Random Division Scheme for the F_S Problem

12 hr 24 hr 36 hr 48 hr 60 hr 72 hr

Recall RF 0.734 (0.105) 0.797 (0.117) 0.749 (0.147) 0.710 (0.116) 0.717 (0.089) 0.756 (0.104)
MLP 0.683 (0.087) 0.769 (0.123) 0.752 (0.109) 0.689 (0.121) 0.702 (0.103) 0.728 (0.083)
SVM 0.767 (0.107) 0.791 (0.101) 0.786 (0.104) 0.730 (0.120) 0.740 (0.103) 0.743 (0.086)
LSTM 0.774 (0.098) 0.770 (0.125) 0.817 (0.108) 0.782 (0.120) 0.768 (0.106) 0.772 (0.103)
biLSTM 0.834 (0.096) 0.837 (0.120) 0.856 (0.107) 0.837 (0.122) 0.818 (0.101) 0.815 (0.102)

Precision RF 0.243 (0.117) 0.244 (0.103) 0.261 (0.096) 0.308 (0.089) 0.396 (0.190) 0.434 (0.162)
MLP 0.225 (0.107) 0.243 (0.100) 0.269 (0.082) 0.291 (0.069) 0.363 (0.156) 0.366 (0.097)
SVM 0.235 (0.104) 0.231 (0.086) 0.242 (0.067) 0.326 (0.099) 0.383 (0.166) 0.393 (0.113)
LSTM 0.250 (0.114) 0.252 (0.097) 0.291 (0.092) 0.349 (0.108) 0.413 (0.189) 0.443 (0.165)
biLSTM 0.279 (0.131) 0.275 (0.107) 0.306 (0.099) 0.377 (0.119) 0.483 (0.174) 0.476 (0.173)

BACC RF 0.770 (0.073) 0.774 (0.058) 0.758 (0.087) 0.760 (0.054) 0.760 (0.083) 0.795 (0.049)
MLP 0.742 (0.065) 0.764 (0.058) 0.766 (0.054) 0.746 (0.056) 0.748 (0.069) 0.770 (0.045)
SVM 0.783 (0.069) 0.770 (0.057) 0.764 (0.071) 0.772 (0.056) 0.770 (0.069) 0.783 (0.046)
LSTM 0.791 (0.068) 0.772 (0.062) 0.799 (0.053) 0.801 (0.056) 0.787 (0.069) 0.804 (0.049)
biLSTM 0.825 (0.068) 0.809 (0.059) 0.821 (0.053) 0.832 (0.057) 0.841 (0.059) 0.830 (0.049)

HSS RF 0.284 (0.151) 0.274 (0.129) 0.284 (0.128) 0.327 (0.102) 0.390 (0.196) 0.442 (0.153)
MLP 0.255 (0.138) 0.269 (0.125) 0.295 (0.098) 0.306 (0.089) 0.358 (0.166) 0.379 (0.110)
SVM 0.280 (0.138) 0.260 (0.111) 0.267 (0.101) 0.350 (0.110) 0.387 (0.174) 0.409 (0.122)
LSTM 0.298 (0.149) 0.284 (0.122) 0.330 (0.110) 0.385 (0.115) 0.418 (0.189) 0.455 (0.155)
biLSTM 0.340 (0.165) 0.321 (0.131) 0.354 (0.116) 0.426 (0.124) 0.515 (0.158) 0.500 (0.162)

TSS RF 0.540 (0.145) 0.548 (0.116) 0.516 (0.174) 0.519 (0.109) 0.521 (0.166) 0.589 (0.098)
MLP 0.484 (0.130) 0.527 (0.116) 0.533 (0.108) 0.493 (0.111) 0.497 (0.138) 0.540 (0.090)
SVM 0.566 (0.138) 0.540 (0.113) 0.528 (0.142) 0.545 (0.111) 0.539 (0.138) 0.567 (0.093)
LSTM 0.581 (0.137) 0.544 (0.125) 0.598 (0.106) 0.601 (0.112) 0.574 (0.138) 0.607 (0.097)
biLSTM 0.651 (0.136) 0.617 (0.119) 0.641 (0.106) 0.664 (0.114) 0.682 (0.118) 0.660 (0.097)

WAUC RF 0.591 (0.057) 0.600 (0.021) 0.561 (0.016) 0.565 (0.038) 0.577 (0.043) 0.655 (0.057)
MLP 0.528 (0.068) 0.577 (0.043) 0.578 (0.069) 0.543 (0.065) 0.547 (0.054) 0.597 (0.085)
SVM 0.624 (0.025) 0.586 (0.027) 0.580 (0.032) 0.602 (0.039) 0.590 (0.069) 0.617 (0.065)
LSTM 0.634 (0.052) 0.595 (0.048) 0.665 (0.026) 0.666 (0.027) 0.625 (0.028) 0.673 (0.062)
biLSTM 0.712 (0.068) 0.680 (0.082) 0.710 (0.057) 0.730 (0.053) 0.753 (0.031) 0.732 (0.060)
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Problems Respectively

12 hr 24 hr 36 hr 48 hr 60 hr 72 hr

FC_S BS RF 0.268 (0.068) 0.279 (0.076) 0.305 (0.102) 0.300 (0.119) 0.232 (0.043) 0.305 (0.040)
RF+C 0.226 (0.057) 0.246 (0.066) 0.260 (0.087) 0.256 (0.102) 0.272 (0.038) 0.269 (0.036)
MLP 0.311 (0.101) 0.303 (0.084) 0.339 (0.118) 0.312 (0.119) 0.303 (0.046) 0.311 (0.066)

MLP+C 0.265 (0.087) 0.259 (0.071) 0.288 (0.101) 0.266 (0.102) 0.283 (0.040) 0.293 (0.058)
SVM 0.261 (0.073) 0.264 (0.089) 0.271 (0.121) 0.261 (0.127) 0.285 (0.065) 0.282 (0.043)

SVM+C 0.219 (0.061) 0.241 (0.076) 0.252 (0.103) 0.253 (0.109) 0.249 (0.058) 0.231 (0.040)
LSTM 0.258 (0.041) 0.263 (0.041) 0.278 (0.035) 0.272 (0.044) 0.257 (0.034) 0.268 (0.036)

LSTM+C 0.220 (0.037) 0.224 (0.037) 0.236 (0.031) 0.232 (0.040) 0.238 (0.031) 0.235 (0.033)
biLSTM 0.214 (0.021) 0.230 (0.034) 0.203 (0.037) 0.214 (0.040) 0.193 (0.024) 0.185 (0.012)

biLSTM+C 0.183 (0.019) 0.195 (0.027) 0.153 (0.028) 0.182 (0.035) 0.164 (0.020) 0.157 (0.011)

BSS RF 0.464 (0.138) 0.429 (0.154) 0.402 (0.207) 0.408 (0.235) 0.354 (0.099) 0.368 (0.092)
RF+C 0.549 (0.118) 0.516 (0.132) 0.490 (0.176) 0.495 (0.201) 0.453 (0.088) 0.460 (0.084)
MLP 0.381 (0.205) 0.399 (0.169) 0.320 (0.243) 0.378 (0.241) 0.338 (0.096) 0.221 (0.139)

MLP+C 0.474 (0.175) 0.488 (0.143) 0.422 (0.209) 0.469 (0.207) 0.439 (0.084) 0.335 (0.122)
SVM 0.476 (0.154) 0.431 (0.176) 0.433 (0.248) 0.386 (0.258) 0.415 (0.133) 0.409 (0.096)

SVM+C 0.560 (0.129) 0.517 (0.151) 0.509 (0.210) 0.488 (0.222) 0.505 (0.120) 0.517 (0.087)
LSTM 0.492 (0.085) 0.478 (0.082) 0.445 (0.074) 0.455 (0.092) 0.452 (0.077) 0.430 (0.079)

LSTM+C 0.566 (0.075) 0.556 (0.072) 0.529 (0.067) 0.535 (0.086) 0.533 (0.067) 0.516 (0.070)
biLSTM 0.573 (0.053) 0.545 (0.070) 0.596 (0.078) 0.569 (0.087) 0.610 (0.056) 0.627 (0.036)

biLSTM+C 0.635 (0.047) 0.614 (0.060) 0.696 (0.058) 0.633 (0.077) 0.668 (0.047) 0.683 (0.032)

F_S BS RF 0.284 (0.076) 0.288 (0.061) 0.372 (0.067) 0.320 (0.130) 0.307 (0.094) 0.310 (0.052)
RF+C 0.272 (0.099) 0.276 (0.087) 0.312 (0.056) 0.268 (0.109) 0.274 (0.121) 0.281 (0.101)
MLP 0.332 (0.114) 0.329 (0.072) 0.394 (0.080) 0.352 (0.080) 0.316 (0.145) 0.332 (0.147)

MLP+C 0.283 (0.098) 0.278 (0.063) 0.336 (0.071) 0.279 (0.123) 0.299 (0.124) 0.305 (0.124)
SVM 0.276 (0.067) 0.279 (0.063) 0.298 (0.059) 0.276 (0.054) 0.295 (0.058) 0.290 (0.045)

SVM+C 0.236 (0.059) 0.249 (0.055) 0.264 (0.050) 0.267 (0.045) 0.291 (0.049) 0.248 (0.038)
LSTM 0.277 (0.065) 0.279 (0.059) 0.285 (0.051) 0.282 (0.080) 0.273 (0.066) 0.289 (0.046)

LSTM+C 0.236 (0.056) 0.231 (0.051) 0.242 (0.044) 0.246 (0.068) 0.247 (0.058) 0.247 (0.040)
biLSTM 0.260 (0.054) 0.247 (0.048) 0.260 (0.043) 0.265 (0.046) 0.253 (0.085) 0.237 (0.089)

biLSTM+C 0.221 (0.046) 0.209 (0.041) 0.221 (0.037) 0.223 (0.039) 0.214 (0.073) 0.201 (0.076)

BSS RF 0.390 (0.133) 0.365 (0.077) 0.397 (0.071) 0.342 (0.139) 0.330 (0.164) 0.324 (0.162)
RF+C 0.463 (0.158) 0.470 (0.140) 0.482 (0.089) 0.424 (0.172) 0.440 (0.194) 0.419 (0.167)
MLP 0.289 (0.205) 0.348 (0.146) 0.215 (0.170) 0.260 (0.191) 0.264 (0.208) 0.200 (0.153)

MLP+C 0.388 (0.187) 0.450 (0.127) 0.331 (0.150) 0.366 (0.186) 0.357 (0.204) 0.304 (0.165)
SVM 0.447 (0.145) 0.420 (0.134) 0.403 (0.129) 0.378 (0.109) 0.404 (0.117) 0.391 (0.097)

SVM+C 0.529 (0.126) 0.493 (0.117) 0.492 (0.109) 0.461 (0.091) 0.420 (0.101) 0.507 (0.083)
LSTM 0.450 (0.139) 0.467 (0.128) 0.436 (0.103) 0.422 (0.145) 0.442 (0.139) 0.421 (0.101)

LSTM+C 0.531 (0.118) 0.536 (0.110) 0.511 (0.088) 0.500 (0.146) 0.461 (0.121) 0.506 (0.086)
biLSTM 0.484 (0.112) 0.505 (0.105) 0.489 (0.089) 0.466 (0.097) 0.428 (0.154) 0.432 (0.166)

biLSTM+C 0.592 (0.095) 0.581 (0.090) 0.566 (0.075) 0.550 (0.082) 0.504 (0.165) 0.613 (0.074)
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