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Abstract

This paper introduces Perséphone, a kernel-bypass OS sched-
uler designed to minimize tail latency for applications ex-
ecuting at microsecond-scale and exhibiting wide service
time distributions. Perséphone integrates a new scheduling
policy, Dynamic Application-aware Reserved Cores (DARC),
that reserves cores for requests with short processing times.
Unlike existing kernel-bypass schedulers, DARC is not work
conserving. DARC profiles application requests and leaves
a small number of cores idle when no short requests are in
the queue, so when short requests do arrive, they are not
blocked by longer-running ones. Counter-intuitively, leaving
cores idle lets DARC maintain lower tail latencies at higher
utilization, reducing the overall number of cores needed to
serve the same workloads and consequently better utilizing
the datacenter resources.
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1 Introduction

Datacenter networks and in-memory systems increasingly
have (single) microsecond [10] latencies. These latencies
are critical for today’s complex cloud applications to meet
SLOs while fanning out to hundreds of datacenter backend
servers [21, 72]. At microsecond-scale, the distribution of
request processing times can be especially extreme; for ex-
ample, Redis can process GET/PUT requests in 2us [74] but
more complex SCAN and EVAL requests can take hundreds
of microseconds or milliseconds to complete. As a result,
a single long-running request can block hundreds or thou-
sands of shorter requests.

To bound tail latency, especially for short requests, mod-
ern datacenter servers run at low utilization to keep queues
short and reduce the likelihood that a short request will
block behind long requests. For instance, Google reports that
machines spend most of their time in the 10-50% utilization
range [11]. Unfortunately, this approach wastes precious
CPU cycles and does not guarantee that microsecond data-
center systems will always meet SLOs for short requests.

Recent kernel-bypass schedulers have improved utiliza-
tion with shared queues [62] and work-stealing [73, 75] but
these techniques only work for uniform and lightly-tailed
workloads. For workloads with a wide distribution of re-
sponse times, Shinjuku [48] leverages interrupts for pro-
cessor sharing; however, Shinjuku’s interrupts impose non-
negligible delays for single digit microsecond requests and
are too expensive to run frequently (our experiments saw
~2us per interrupt and preempting as often as every 5us had
a high penalty on sustainable load). Furthermore, Shinjuku’s
non-standard use of hardware virtualization features makes
it difficult to use in the datacenter [62] and public clouds,
e.g., Google Cloud, Microsoft Azure, AWS, etc.

Recent congestion control schemes [3, 68], similarly, opti-
mize network utilization and reduce flow completion times
by approximating Shortest-Remaining-Processing-Time (SRPT),
which is optimal for minimizing the average waiting time [79].
Unlike CPU scheduling, though, switch packet schedulers
have a physical ‘preemption’ unit, which is the MTU in the
worst case; they process packet headers that include the
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actual message size; and leverage traffic classes that can pri-
oritize packets based on the size of the flow they belong to,
which makes scheduling decisions and policy enforcement
easier. A CPU scheduler cannot know in advance for how
long each request will occupy the CPU and there is no upper
limit on execution time, which makes the implementation of
SRPT-like policies, or generally policies that prioritize short
requests, hard to implement at the microsecond scale.

The unifying factor between congestion control schemes,
such as Homa [68] and CPU schedulers, such as Shinjuku,
that deal with heavy-tail flow and request distributions, re-
spectively, is that they both temporarily multiplex the shared
resource. This paper takes a different approach to CPU sched-
uling for heavy-tailed service time distributions by taking
advantage of parallelism and the abundance of cores on a
modern multicore server through application-aware [52]
spatial isolation of CPU resources.

First, we observe that a kernel-bypass scheduler can, with
a little help from programmers, identify the type of incoming
requests. For many cloud applications, the messaging pro-
tocol exposes the required mechanisms to declare request
types: Memcached request types are part of the protocol’s
header [63]; Redis uses a serialization protocol specifying
commands [86]; Protobuf defines Message Types [35]; Next,
we observe that requests of the same type often have similar
processing types, so, given the ability to identify types, we
can track past per-type process times to predict future pro-
cessing times. Finally, we carefully leave cores idle to prevent
short requests from queuing behind arbitrarily longer ones.

Inspired by prior research in networking [2], our approach
goes against the grain for OS schedulers, which commonly
prioritize work conservation. We show that by making a
minor sacrifice in the maximum achievable throughput, we
can increase the achievable throughput under an aggres-
sive latency SLO and as a result, increase the overall CPU
utilization of the datacenter.

To implement this approach, we need to tackle two chal-
lenges: (1) predict how long each request type will occupy
a CPU and (2) efficiently partition CPU resources among
types while retaining the ability to handle bursts of arrivals
and minimizing CPU waste. To this end, we introduce Persé-
phone, an application-aware kernel-bypass scheduler. Per-
séphone lets applications define request classifiers and uses
these classifiers to dynamically profile the workload. Using
these profiles, Perséphone implements a new scheduling
policy, Dynamic, Application-aware Reserved Cores (DARC)
that leverages work conservation for short requests only
and is not work conserving for long requests. DARC prior-
itizes short requests at a small cost in throughput - 5% in
our experiments — and is best suited for applications that
value microsecond responses. For other applications, exist-
ing kernel-bypass scheduler work well, though we believe
there is a large set of datacenter workloads that can benefit
from DARC.
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We prototype Perséphone using DPDK and compare it to
two state-of-the-art kernel-bypass schedulers: Shinjuku [48]
and Shenango [73]. Using a diverse set of workloads, we
show that Perséphone with DARC can drastically improve
requests tail latency and sustain up to 2.3x and 1.3x more load
than Shenango and Shinjuku, respectively, at a target SLO.
In addition, these improvements come at a lower cost to long
requests than Shinjuku’s preemption technique, highlighting
the challenges of traditional OS scheduling techniques at
microsecond scale.

2 The Case for Idling

For workloads with wide service time distribution, long re-
quests can block short requests even when queues are short
because long requests can easily occupy all workers for a
long time. We refer to this effect as dispersion-based head-
of-line blocking. To better understand how dispersion-based
blocking affects short requests, we look beyond request la-
tency and study slowdown: the ratio of total time spent at
the server over the time spent doing pure application pro-
cessing [40].

Slowdown better reflects the impact of long requests on
short requests. For heavy-tailed workloads, short requests
experience a slowdown proportional to the length of the tail.
More concretely, consider the following workload, similar
to Zygos’ “bimodal-2” [75], a mix of 99.5% short requests
running for 0.5us and 0.5% long requests executing in 500us.
A short request blocked behind a long one can experience a
slowdown of up to 1001, while a long request blocked behind
a short request will see a slowdown of 1.001. As a result, a
few short requests blocked by long requests will drive the
slowdown distribution and increase tail latency.

Using this workload, we simulate four scheduling policies,
including DARC, listed in Table 1. Decentralized first come,
first served (d-FCFS) models Receive Side Scaling, widely
used in the datacenter today [27, 60] and by IX [14] and Ar-
rakis [74]. With d-FCFS, each worker has a local queue and
receives an even share of all incoming traffic. Centralized
first come, first served (c-FCES) uses a single queue to receive
all requests and send them to idle workers. c-FCFS is usually
used at the application level — for example, web servers (e.g.,
NGINX) often use a single dispatch thread — and captures
recent research on kernel-bypass systems [73, 75], which
simulate c-FCFS with per-worker queues and work stealing.
Time Sharing (TS) is used in the Shinjuku system [48], with
multiple queues for different request types and interrupts at
the microsecond scale using Dune [13]. We simulate TS with
a 5us preemption frequency and 1us overhead per preemp-
tion, matching Shinjuku’s reported ~ 2000 cycles overhead
on a 2GHz machine.

Figure 1 shows our simulation results assuming, an ideal
system with no network overheads. We use 16 workers, sim-
ulate 1 second of requests distributed under Poisson, and
report the observed slowdown for the 99.9th percentile of
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Figure 1. Simulated achievable throughput as a function of 99.9th percentile slowdown for the policies listed in Table 1 on a 16 cores
system and a workload composed of 99.5% short requests (0.5us) and 0.5% long requests (500us). For a target SLO of 10 times the average

service time for each request type, c-FCFS and TS can only handle 2.1 and 3.7 Millions requests per second (Mrps), respectively. DARC can

sustain 5.1 Mrps for the same objective. The Y axis represents the total achievable throughput for the entire workload.

Table 1. Unlike most existing kernel-bypass OS schedulers, DARC
is not work conserving. It extracts request types from incoming
requests, estimates how long a request will occupy a CPU before
scheduling it and reserves workers for short requests to minimize
dispersion-based head-of-line blocking.

olicy ype Work conserving  preemptive xample System
queues
IX [14]
d-FCES X v v Arrakis [74]
ZygOS [75]
c-FCFS X X v Shenango [73]
TS v/ X X Shinjuku [48]
DARC v/ v v Perséphone

each type of requests — to capture the impact of the 0.5%
long requests on the tail — at varying utilizations, up to a
maximum of 5.3 million requests per second (Mrps).
d-FCFS performs poorly; it offers an uncontrolled form of
non work conservation where workers sit idle while requests
wait in other queues. Additionally, d-FCFS has no sense of
request types: workers might process a long request ahead of
a short one if it arrived first. c-FCFS performs better because
it is work conserving but short requests will block when all
workers are busy processing long requests. To meet a target
SLO of 10x slowdown for each type of requests, c-FCFS must
run the server at 2.1 Mrps, 40% of the peak load. Shinjuku’s
TS policy fares better than c-FCFS and d-FCFS, being both
work conserving and able to preempt long requests: it main-
tains slowdown below 10 up to 3.7 Mrps, 70% of the peak
load. However, this simulation accounts for an optimistic

1us preemption overhead and overlooks the practicality of
supporting preemption at the microsecond scale (c.f, Sec. 6).
The DARC way: Our key insight is that prioritizing short
requests is critical to protect their service time, an obser-
vation the networking community has already made when
designing datacenter congestion control schemes [2, 3, 68].
However, using traffic classes and bounded buffers do not
work for CPU scheduling since schedulers do not know how
long a request may occupy a CPU and preemption is unaf-
fordable at single-digit microsecond scales. We observe that
leaving certain cores idle for readily handling potential future
(bursts of) short requests is highly beneficial at microsecond
scale. For a request that takes 1 us or less, even preempt-
ing as frequently as every 5us introduces a 6x slowdown.
Instead, given an understanding of each request’s potential
processing time, an application aware, not work conserving
policy can reduce slowdown for short requests by estimating
their CPU demand and dedicating workers to them. These
workers will be idle in the absence of short requests, but
when they do, they are guaranteed to not be blocked behind
long requests.

As seen in Figure 1, DARC can meet the 10x slowdown
SLO target for both type of requests at 5.1 Mrps. This repre-
sents 2.5x and 1.4x more sustainable throughput than c-FCFS
and an optimistically cheap time sharing policy. At this load,
short requests experience 9.87us p99.9th tail latency, 3 and 1
orders of magnitude smaller than c-FCFS and TS with 7738us
and 161us, respectively. To achieve this, DARC asks program-
mers for a request classifier to identify types and uses this
classifier to dynamically estimate requests’ CPU demand. In
this example, DARC reserves 1 worker for short requests at
a small penalty of 5% achievable throughput.
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Counter-intuitively, although DARC wastes cycles idling,
it reduces the overall number of machines needed to serve this
workload because servers can run at much higher utiliza-
tion while retaining good tail latencies for short and long
requests.

3 DARC Scheduling

The objective of DARC is to improve tail latency for single-
digit microsecond requests in cloud workloads without pre-
emption. Like recent networking techniques that co-design

the network protocol and the management of network switches’

priority queue [2, 3, 68] to favor small messages, we protect
short requests at backend servers by extracting their type,
understanding their CPU demand, and dedicating enough
resources to satisfy their demand.

In this section, we describe the challenges associated with
implementing these techniques as a CPU scheduling policy,
then present the DARC scheduling model, how to compute
reservations and when to update them. Table 2 describes the
notation used throughout this section.

Challenges. Protecting short requests in a dynamic way
through priority queues and non work conservation is diffi-
cult because we need to (1) predict how long each request
type will occupy a CPU and (2) partition CPU resources
among types while retaining the ability to handle bursts of
arrivals and minimizing CPU waste.

The first challenge stems from the granularity of operation
DARC is targeting, microsecond scales, and from the need to
react to changes in workload. We tackle this challenge with
a combination of low-overhead workload profiling and queu-
ing delay monitoring, using the former to build a fingerprint
of requests’ CPU demand and the latter as a signal that this
fingerprint might have significantly changed. This section
describes the technique and Sec. 4 its implementation.

The second challenge can be detailed in two parts: burst-
tolerance and CPU waste. First, though reducing the number
of cores available to a given request type forbids it from
negatively impacting other types, it also reduces its ability
to absorb bursts of arrivals [57]. We solve this tension by
enabling cycles stealing from shorter types to longer ones,
a mechanism in which short requests can execute on cores
otherwise reserved for longer types — but not the opposite.
The rationale for stealing is that shorter requests compara-
tively cause less slowdown to long requests. Note that cycle
stealing is a similar concept to work stealing [73, 75] but
is different in practice, as it is performed from the DARC
dispatcher rather than from application workers (thus does
not require expensive cross-worker coordination).

Second, and similarly to message types and priority queues
in network devices, the number of request types can be dif-
ferent than the number of CPU cores on the machine, so
very likely the demand for each request type will be frac-
tional — i.e, a request type could require 2.5 workers on
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Table 2. Notation used to define DARC

Symbol Description

N Number of request types

S Average service time

T A request type

7.5 Type’s average service time

7.R Type’s occurrence

é Service time similarity factor for two types

average. As a result, we need to determine a strategy for
sharing — or not — CPU cores between certain request types.
Sharing cores leads to a tension: regrouping types onto the
same cores risks dispersion-based blocking, but always giv-
ing entire cores to types with fractional demand can lead to
over-provisioning and starving other types. We handle this
tension with two mechanisms: grouping types together and
providing spillway cores. Grouping lets all request types fit
onto a limited number of cores and reduces the number of
fractional ties while retaining the ability to separate types
based on processing time. Spillway cores allows DARC to
always provide service to types with little average CPU de-
mand (typically much less than an entire core) as well as
undeclared, unknown requests.

Scheduling model. DARC presents a single queue ab-
straction to application workers: it iterates over typed queues
sorted by average service time and dequeues them in a first
come, first served fashion. Requests of a given type can be
scheduled not only on their reserved cores but also steal cy-
cles from cores allocated to longer types — a concept used in
Cycle Stealing with Central Queue (CSCQ), a job dispatching
policy for compute clusters [42]. Algorithm 1 describes the
process of worker selection. For each request type registered
in the system, if there is a pending request in that type’s
queue, DARC greedily searches the list of reserved workers
for an idle worker. If none is found, DARC searches for a
stealable worker. If a free worker is found, the head of the
typed queue is dispatched to this worker. When a worker
completes a request, it signals completion to the DARC dis-
patcher.

DARC reservation mechanism. The number of work-
ers to dedicate to a given request type is based on the average
CPU demand of the type at peak load. We use average de-
mand because it is a provable indicator of stability [40] for
the system. In addition, workloads can have performance
outliers that should not necessarily drive SLOs [22]. We com-
pute average CPU demand using the workload’s composition,
normalizing the contribution of each request type’s average
service time to the entire workload’s average service time.
The contribution of a given request type is its average service
time multiplied by its occurrence ratio as a percentage of the
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Algorithm 1 Request dispatching algorithm

procedure DispaTcH(Types)
w < None
for 7 € Types.sort() do
if 7.queue == @ then
continue
else
workers « r.reserved U 7.stealable
for worker € workers do
if worker.is_free() then
w <« worker
break
if w # None then
r < r.queue.pop()
schedule(r, w)

Algorithm 2 Worker reservation algorithm

procedure ReSerVE(Types, §)
/1 First group together similar request types
groups = group_types(Types, §).sort()
/] Then attribute workers
S 3N, Si*R;
n_reserved = 0
for g € groups do
gS=XrS*tRVreg
d= 93
S
P « round(d)
if P==0thenP « 1
fori < 0; i <P; i++do
g.reserved[i] « next_free_worker()
n_reserved++;
/] Set stealable workers
n_stealable «— num_workers - n_reserved;
for i « 0; i < n_stealable; i++ do
g.stealable[i] < next_free_worker()

entire workload. Specifically, given a set of N request types
{r; ;i =0... N}, the average CPU time demand A; of 7; with
service time S; and occurrence ratio R; is:

S; * R;
< %41 (1)
2 Sj*R;

Given a system with W workers, this means that we should
attribute A; * W workers to ;.

Because CPU demand can be fractional and given the
non-preemptive requirement we set for the system, we need
a strategy to attribute fractions of CPUs to request types.
For each such “fractional tie”, we have to make a choice:
either ceil fractions and always grant entire cores or floor
fractions and consolidate fractional CPU demands on shared
cores. The former risks over-provisioning certain types, at
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the cost of others, while the latter risks creating dispersion-
based blocking by mixing long and short requests onto the
same core(s).

Our approach combines the two: first we decrease the
number of “fractional ties” by grouping request types of
similar processing times and computing a CPU demand for
the entire group; second we round this demand. As a result,
for G groups, if f; is the fractional demand of group i, the
average CPU waste for DARC across all G groups is:

G

D, 1-f 2)

ifi>.5

across all f; that are greater or equal to 0.5 — otherwise it is 0
for group i. In practice, during bursts, because we selectively
enable work conservation through work stealing for shorter
requests, CPU waste is smaller.

Algorithm 2 describes the reservation process. First, we
identify similar types whose average service time falls within
a factor ¢ of each other. Next, we compute the demand for
each group and accordingly attribute workers to meet it,
rounding fractional demands in the process. We always as-
sign at least one worker to a group. DARC grouping strat-
egy can still result in earlier groups — of shorter requests
— consuming all CPU cores. For example, a group of long
requests with a CPU demand smaller than 0.5 will not find
any free CPU core. To provide service to these groups, we
set aside “spillway” cores. If there are no more free work-
ers, next_free_worker() returns a spillway core. In our
experiments (Sec. 5), we use a single spillway core.

Finally, we selectively enable work conservation for shorter
requests and let each group steal from workers not yet re-
served, i.e., workers that are to be dedicated to longer request
types. This lets DARC better tolerate bursts of shorter re-
quests with little impact on the overall tail latency of the
workload.

As we process groups in order of ascending service time,
we favor shorter requests, and it is possible for our algorithm
to under-provision long requests — but never deny them
service thanks to spillway cores. Operators can tune the §
grouping factor to adjust non work conservation to their
desired SLOs. Grouping lets DARC handle workloads where
the number of distinct types is higher than the number of
workers.

Profiling the workload and updating reservations.
At runtime, the DARC dispatcher uses profiling windows
to maintain two pieces of information about each request
type: a moving average of service time and an occurrence
ratio. These are the S; and R; of equation 1. The dispatcher
gathers them when application workers signal work com-
pletions. The dispatcher uses queuing delay and variation
in CPU demand as performance signals. If the former goes
beyond a target slowdown SLO and the latter deviates sig-
nificantly from the current demand, the dispatcher proceeds
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to update reservations and transition to the next windows.
During the first windows, at startup, the system starts us-
ing c-FCFS, gathers samples, then transitions to DARC. This
technique lets DARC cope with changing workloads where a
type’s profile changes (effectively, misclassification). During
a profiling window, unknown or unexpected requests can
use the spillway core(s) to execute. We discuss the sensitivity
of this mechanism in Sec. 4.3.3.

4 Perséphone

We implement DARC within a kernel-bypass scheduler called
Perséphone. Though DARC requires no special hardware
or major application modifications, Perséphone must meet
the following requirements to support microsecond-scale
kernel-bypass applications: (1) the networking stack must
be able to efficiently sort requests by type in the data path,
(2) the scheduler must be able to quickly make per-request
scheduling decisions, and (3) workload profiling for updating
DARC reservation must present low overheads.

Perséphone meets the first requirement with a request
classifiers API for capturing request types. Using request
classifiers, programmers provide a way for the system to
classify requests based on types as they enter the system.
Perséphone meets the remaining two requirements with a
carefully architected networking stack, profiler, and sched-
uler packaged in a user-level library.

4.1 System Model

Perséphone is designed for datacenter services that must
handle large volumes of traffic at microsecond latencies. Ex-
amples include key-value stores, fast inference engines [54],
web search engines and RESTful micro-services. We assume
the application uses kernel-bypass for low latency I/O (e.g.,
with DPDK [26] or RDMA [80]) and performs all application
and network processing through Perséphone. Our current
prototype is designed for UDP networking, but our tech-
nique also works for a stateful dispatcher (c.f, Sec. 6 for a
more elaborate discussion).

4.2 Request classifiers

Perséphone relies on user-defined functions, ie., “request
classifiers” to group incoming requests. A request classifier
accepts a pointer to an application payload (Layer 4 and
above) and returns a request type. If the classifier cannot
recognize a request, Perséphone categorizes it as UNKNOWN
and places it in a low priority queue. There is at most one
classifier active at a time in our current design. Though most
of our target applications use optimized protocols such as Re-
dis’ RESP [86] that allow a classifier to look-up for a header
field to parse the request type, we opted for generality and al-
lowing users to write arbitrarily complex classifiers. There is,
of course, a performance trade-off: a non-optimized request
classifier will impact the dispatcher’s performance because
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Figure 2. Perséphone architecture. After the net worker processes
incoming packets, the dispatcher classifies requests using a user-
defined classifier. Requests wait in typed queues for DARC to push
them to workers. (c.f,, Sec. 4.3 for pipeline details.)

request classifiers are “bumps-in-the-wire” on the dispatch-
ing critical path. We leave it to users to quantify this trade off
based on the performance they wish to obtain from the dis-
patcher (i.e., how many requests per second it should be able
to sustain). While a complete study of classifier performance
is out of scope for this paper, we found that for standard
protocols where the request type’s position is known in the
header, our dispatcher can process up to 7 millions pack-
ets per second on our testbed, a number competitive with
existing kernel-bypass schedulers.

4.3 Perséphone Architecture

Perséphone consists of three components, shown in Fig-
ure 2: one or many net workers dequeueing packets from the
network card, a dispatcher applying request classifiers and
performing DARC scheduling, and application workers per-
forming application processing (e.g., fetching the value from
the key-value store). These components operate as an event-
driven pipeline and process packets as follows. ° On the
ingress path, the net worker takes packets from the network
card and pushes them to the dispatcher, which 9 classifies
incoming requests using a user-defined request classifier and

stores them in typed queues, i.e., buffers specialized for

a single request type. o The dispatcher, running DARC,
selects a request from a typed queue and pushes it to a free
application worker. e The worker processes the request,

formats a response buffer, and o pushes a pointer to that

buffer to the NIC. In addition, o the application worker
notifies the dispatcher that it has completed the request.

4.3.1 Networking Both the net worker and application
workers receive a network context at initialization. This con-
text gives them unique access to receive and transmit queues
in the NIC. Perséphone registers a statically allocated mem-
ory pool with the NIC for contexts to quickly allocate new
buffers when receiving packets. This memory pool is backed
by a multi-producer, single-consumer ring so workers can
release buffers after transmission. Both the net and appli-
cation workers use a thread-local buffer cache to decrease
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interactions with the main memory pool. For requests con-
tained in a single application-level buffer, we perform zero-
copy and pass along to workers a pointer to the network
buffer. To issue a response on the transmit path — and if
the request holds in a single packet — the worker reuses the
ingress network buffer to host the egress packet, reducing
the number of distinct network buffers in use (with the goal
of allowing all buffers to fit in the Last Level Cache space
used by DDIO [25] — usually 10% of the LLC). Our current
implementation requires copy if the request spans multiple
packets.

4.3.2 Component Communication The dispatcher uses
single-producer, single-consumer circular buffers to share
requests and commands with application workers in a lock-
less interaction pattern. We use a lightweight RPC design
inspired by Barrelfish [12], where both sender and receiver
synchronize their send/read heads using a shared variable.
To reduce cache coherence traffic between cores, the sender
synchronizes with the receiver — to update the read head
and avoid overflows — only when its local state shows the
buffer to be full. In our prototype, operations on that channel
take 88 cycles on average.

4.3.3 Dispatcher The dispatcher maintains three main
data structures: a list of RequestType objects, which con-
tains type information such as the type ID and instrumenta-
tion data; typed request queues; and a list of free workers. In
addition, the dispatcher holds a pointer to a user-defined re-
quest classifier. The list of free workers is updated whenever
arequest is dispatched and each time application workers no-
tify the dispatcher about work completion; this is done using
a specific control message on the memory channel shared
between dispatcher and each worker. Finally, the dispatcher
maintains profiling windows, during which it computes a
moving average of service times by request type and incre-
ment a counter for each type seen so far. DARC uses these
profiling windows to compute resource allocation (Sec. 3)
and adjust to changes in the workload’s composition. In our
prototype, at the median, updating the profile of a request
takes 75 cycles, checking whether an update is required takes
about 300 cycles, and performing a reservation update takes
about 1000 cycles.

To control the sensitivity of the update mechanism in face
of bursty arrivals, we set a lower bound on the number of
samples required to transition — 50000 in our experiments —
and the minimum deviation in CPU demand from the current
allocation — 10% in our experiments. As a measure of flow
control, when the system is under pressure and workers
cannot process requests as fast as they arrive, the dispatcher
drops requests from typed queues that are full. This allows
to shed load only for overloaded types without impacting
the rest of the workload.
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Table 3. Workloads exhibiting 100x and 1000x dispersion.

Workload . Short . . Long .
Runtime (us) Ratio  Runtime (us) Ratio

High Bimodal 1 50% 100 50%

Extreme Bimodal 0.5 99.5% 500 0.5%

4.3.4 Application Workers Upon receiving a pointer to
a request, application workers dereference it to access the
payload. As an optimization, they can access the request
type directly from the RequestType object rather than du-
plicating work to identify needed application logic (e.g., to
differentiate between a SET or GET request). Once they fin-
ish processing the request, they reuse the payload buffer to
format a response and push it to the NIC hardware queue
using their local network context. Finally, they signal work
completion to the dispatcher.

5 Evaluation

We built a prototype of Perséphone, in 3700 lines of C++
code, to evaluate DARC scheduling against policies pro-
vided by Shenango [73] and Shinjuku [48]:

e For a workload with 100x dispersion between short and
long requests, Perséphone can sustain 2.35x and 1.3x more
throughput compared to Shenango and Shinjuku, respec-
tively (Sec. 5.4.1)

e For a workload with 1000x dispersion, Perséphone can
sustain 1.4x more throughput than Shenango and improve
slowdown by up to 1.4x over Shinjuku for short requests.
(Sec. 5.4.2)

e For a workload modeled on the TPC-C benchmark, Per-
séphone reduces slowdown by up to 4.6x over Shenango
and up to 3.1x over Shinjuku. (Sec. 5.4.3)

e For a RocksDB application, DARC can sustain 2.3x and
1.3x higher throughput than Shenango and Shinjuku, re-
spectively (Sec. 5.4.4)

In addition, we demonstrate that Perséphone can handle

adversarial situations where workloads changes swiftly and

where programmers provide an incorrect request classifier.

5.1 Experimental Setup

Workloads. We model workloads exhibiting different ser-
vice time dispersion after examples found in academic and
industry references. Often such workloads exhibit n-modal
distributions with either an equal amount of short and long
requests (e.g., workload A in the YCSB benchmark [20]) or a
majority of short requests with a small amount of very long
requests (e.g., Facebook’s USR workload [7]). Dispersion be-
tween shorter and longer requests is commonly found to be
two orders of magnitude or more [5, 18, 66]. We evaluate
High Bimodal and Extreme Bimodal (Table 3), two workloads
that exhibit large service time dispersion, and TPC-C (Ta-
ble 4), which models requests in the eponymous benchmark-
ing suite [84], a standardized OLTP model for e-commerce.

Thttps://github.com/maxdml/psp
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Table 4. The TPC-C benchmark models operations of an online
store. Payment and NewOrder transactions are most frequent.

Transaction name Runtime (us) Ratio Dispersion

Payment 5.7 44% 1x
OrderStatus 6 4% 1.05x
NewOrder 20 44% 3.3x
Delivery 88 4% 15.4x
StockLevel 100 4% 17.5x

Finally, we evaluate DARC with an in-memory store built
over RocksDB, a database engine used at Facebook [32].
With High Bimodal, long requests represent 50% of the
workload but “only” exhibit 100x dispersion. With Extreme
Bimodal, long requests are much slower — 1000x slower
— but very infrequent (0.5% of the mix). We profile TPC-C
transactions with an in-memory database [85] and run it as a
synthetic workload. Our goal with TPC-C is to evaluate how
Perséphone performs with an n-modal request distribution.
The workload consists of five request types with moderate
service time dispersion — at most 17.5x between infrequent
StockLevel requests and frequent Payment requests. We
assume that requests are not dependent on each other. Finally,
the RocksDB workload is made of 50% GETs and 50% SCANs
requests, executing for 1.5us and 635pus, respectively, and
exhibiting a 420x dispersion factor. This workload strikes a
balance between High Bimodal and Extreme Bimodal.
Performance metrics. We present two performance views:
(i) the slowdown at the tail taken across all requests in the
experiment, and (ii) the typed tail latency, i.e., a selected
percentile over only the type’s response times’ distribution.
These views help us to understand the various trade-offs
offered by the systems and policies under evaluation. For
both metrics, we use the 99.9th percentile and plot them as
a function of the total load on the system.
Client. The client is a C++ open loop load generator that
models the behavior of bursty production traffic. It generates
requests under a Poisson process centered at the workloads’
average service time. Each experiment runs for 20 seconds
and we discard the first 10% of samples to remove warm-
up effects. We ran our experiments for several minutes and
found the results similar. To interact with the server, we
use a simple protocol where TPC-C transaction ID, RocksDB
query ID, and synthetic workload request types are located
in the requests’ header. We accordingly register a request
classifier on the server to map these IDs to request types.
This request classifier adds a one-time ~ 100 nanoseconds
overhead to each request.
Systems. In addition to Perséphone, we compare two state-
of-the-art systems: Shenango and Shinjuku. Shenango’s IOK-
ernel uses RSS hashes to steer packets to application cores,
which perform work stealing to balance load and avoid
dispersion-based blocking, in a fashion similar to ZygOS [75].
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Figure 3. Evaluating DARC on High Bimodal (50.0:1.0 - 50.0:100.0)
within Perséphone. The first column is p99.9 overall slowdown,
the second and third p99.9 latency for short and long requests,
respectively. For all columns, the X axis is the total load on the
system. DARC improves slowdown over ¢-FCFS by up to 15.7x, at
a cost of up to 4.2x increased latency for long requests.

We also compare to a version of Shenango with work steal-
ing disabled, to evaluate d-FCFS. We choose Shenango over
ZygOS due to its more recent implementation and its support
for UDP. Shinjuku implements microsecond-scale, user-level
preemption by exploiting Dune’s virtualization features [13]
at up to 5us frequency. Leveraging this ability to preempt,
Shinjuku implements a single queue policy, where preempted
requests are enqueued at the tail of the queue, and a multi-
queue policy with a queue per request type and where pre-
empted requests are enqueued at the head of their respective
queue. The multi-queue policy selects the next queue to de-
queue using a variant of Borrowed Virtual Time [29]. Across
experiments, DARC updates reservations whenever a request
experiences queuing delays of ten times its average profiled
service time. Lastly, all systems use UDP networking.
Testbed. We use 7 Cloudlab [30] ¢6420 nodes (6 clients, 1
server), each equipped with a 16-core (32-thread) Intel Xeon
Gold 6142 CPU running at 2.60GHz, 376GB of RAM, and
an Intel X710 10 Gigabit NIC. The average network round
trip time between machines is 10ps. We disabled TurboBoost
and set isolcpu. Shinjuku and Perséphone run on Ubuntu
16.04 with Linux kernel version 4.4.0. Shenango runs on
Ubuntu 18.04 with Linux kernel version 5.0. Shinjuku uses
one hyperthread for the net worker and another for the dis-
patcher, collocated on the same physical core. Shenango runs
its IOKernel on a single core, and Perséphone runs both its
net worker and dispatcher on the same hardware thread. All
systems use 14 worker threads running on dedicated physi-
cal cores. For Shenango, we provision all cores at startup and
disable dynamic core allocation since we want to evaluate
performance for a single application and Shenango other-
wise re-assign cores to multiple applications running on the
same machine.

5.2 DARC versus existing policies

To validate that DARC improves performance of short re-
quests compared to c-FCFS and d-FCFS, we run these policies
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Figure 4. Gradually adjusting the degree of work conservation
(“ DARC-static”) with High Bimodal and Extreme Bimodal at 95%
load. Reserving 1 (a) and 2 (b) cores decreases slowdown by 4.4x
and 1.5%, respectively.

on High Bimodal in Perséphone. Figure 3 presents our re-
sults. c-FCFS improves the tail latency of short requests over
d-FCFS by eliminating local hotspots at workers, a result
consistent with previous work [75]. However, because c-
FCFS does not protect the service time distribution of short
requests, they experience dispersion-based blocking from
long requests. With c-FCFS, short requests experience 309us
p99.9 latency at 260kRPS, driving slowdown for the entire
workload to 283x. In contrast, DARC reserves 1 core for short
requests and schedules them first, reducing slowdown upon
c-FCFS by a factor of 15.7? and can sustain 2.3x higher
throughput for a SLO of 20us for short requests. This comes
at the cost of up to a 4.2x increase in tail latency for long
requests. The average CPU waste occasioned by DARC is
0.86 core. Because slowdown is driven by short requests and
the two graphs are very similar, we omit short requests in
the next sections and focus on overall slowdown and tail
latency for long requests.

5.3 How much non work-conservation is useful?

We empirically validate DARC’s reservation mechanism
(Sec. 3) by manually configuring the number of workers
dedicated to short requests from 0 to 14. We call this version
“DARC-static”. It schedules short requests first and let them
execute on all the cores. When the number of reserved work-
ers is 0, DARC-static is equivalent to a simple Fixed Priority

2The network contributes 10us to response time. At 260kRPS, short requests
experience 309us end-to-end latency with c-FCFS and 18us with DARC.
This means that server-side slowdown is 37x better with DARC.
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policy favoring short requests. Figure 4 presents the overall
slowdown experienced by High Bimodal (a) and Extreme Bi-
modal (b) at 95% load. We observe that for the former, the
best slowdown — a 4.4x improvement — is achieved with 1
core, and for the latter with 2 cores — a 1.5x improvement.
Those settings validate DARC’s selection, as described in
Sec. 5.2 and Sec. 5.4.

For comparison, we draw the slowdown line offered by c-
FCEFS on Perséphone. Reserving too many workers results in
long requests being starved. Simple Fixed Priority scheduling
results in dispersion-based blocking for short requests.

5.4 Comparison with Shinjuku and Shenango

Figures 6a and 6b show the performance experienced by High
Bimodal and Extreme Bimodal in all three systems. Figure 6
presents TPC-C performance, and Figure 8 RocksDB perfor-
mance. Shenango implements d-FCFS and ¢-FCFS. Shinjuku
uses its multi-queue policy for High Bimodal, TPC-C, and
RocksDB; and its single queue policy for Extreme Bimodal
(per the Shinjuku paper [48]). We invested significant efforts
in tuning Shinjuku for short requests performance and pre-
empting as frequently as possible. We could only sustain
75% for High Bimodal (5us interrupts) and RocksDB (15us
interrupts), and 55% load for Extreme Bimodal (5us inter-
rupts), after which the system starts dropping packets and
eventually crashes (despite sustaining close to 4.5 million
1us RPS without preemption on our testbed). We found that
reducing the frequency of preemption helped sustain higher
loads at the expense of shorter requests. TPC-C is most fa-
vorable to Shinjuku because the services times are higher
and dispersion smaller. Shinjuku can handle 85% of this load
when preempting every 10pus.

5.4.1 High Bimodal. Shinjuku improves the tail latency
of short requests over Shenango’s c-FCFS by preempting
long requests. However, Shinjuku aggressively preempts ev-
ery 5us to maintain good latency for short requests and adds
a constant overhead — at least 20% in this experiment — to
preempted requests. As a result, it can sustain only 75% of
the load before dropping requests. In comparison, DARC
reserves 1 core for short requests and can sustain 2.35x and
1.3x more load than Shenango and Shinjuku, respectively,
for a target slowdown of 20x. At 75% load, DARC reduces
slowdown by 10.2x and 1.75x over Shenango and Shin-
juku, respectively. Perhaps more importantly, compared to
Shinjuku’s preemption system, DARC consistently provides
better tail latency for long requests. We also observe that Per-
séphone’s centralized scheduling offers better performance
for long requests than Shenango — compared to the c-FCFS
line in figure 3 — because Perséphone does not have to ap-
proximate centralization with work stealing.

5.4.2 Extreme Bimodal. We observe similar trends for
this workload. For a target 50x slowdown, both Shinjuku
and Perséphone can sustain 1.4x higher throughput than



SOSP 21, October 26-28, 2021, Virtual Event, Germany Henri Maxime Demoulin, Joshua Fried et al.

Figure 5

—e— t-FCFS (Shenango) —s— €-FCFS (Shenango) = €-PRE (Shinjuku) DARC (Perséphone)

Overall LONG

300 300

250 250 1 /
200 - 200 -

150

100 100 4
50 1

0 04 :

T T T T T T T T T
o 50 100 150 200 25 50 100 150 200 250

p99.9 slowdown
p99.9 latency (us)
=
1%
o
.

wu
(=]
L

0 0
Throughput (kRPS)

(a) High Bimodal For a 20x slowdown target, DARC can sustain 2.35x and 1.3x more traffic than Shenango and Shinjuku, respectively.

overall LONG

300 { 3500
_ 250 ] = 3000 |
H 2 2500
S 200 z
H £ 2000 |
< 1504 H
- 5 1500 4
g o
@ 100 - 2 1000 - /

o —
501 et 500 P
: . . . o . . . :
1000 2000 3000 4000 1000 2000 3000 4000

(1]
Throughput (kRPS)
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—e— d-FCFS (Shenango) —— c-FCFS (Shenango) —e— c-PRE (Shinjuku) DARC (Perséphone) |

overall Payment OrderStatus NewOrder Delivery StockLevel

. / .y Fl o7 '/

Figure 6. TPC-C with Shenango, Shinjuku and Perséphone. The first column is the p99.9 slowdown across all transactions. Each subsequent

8 & 2
~—t—
"
3

p99.9 slowdown
5 8
p99.9 latency (us)
a B
g 8

o

column is the p99.9 latency for a given transaction. Transactions are presented in ascending average service time. Note the different Y axis
for slowdown and latency. At 85% load, Perséphone offers 9.2x, 7x, and 3.6x improved p99.9 latency to Payment (b), OrderStatus (c) and
NewOrder (d) transactions, compared to Shenango’s c-FCFS, reducing overall slowdown by up to 4.6x (a). For a slowdown target of 10x,
Perséphone can sustain 1.2x and 1.05x more throughput than Shenango and Shinjuku, respectively.

Shenango. However, past 55% load, the overheads of aggres- and StockLevel transactions (group C). DARC attributes
sively preempting every 5us is too expensive and Shinjuku workers 1 and 2 to group A, 3 — 8 to group B, and 9 — 14 to
starts dropping packets. For long requests, preemption over- group C. Group A can steal from workers 3—14, group B from
heads are always at least 24% (620us for 500us requests). workers 9—14, and group C cannot steal. There is no average
In contrast, Perséphone reserves 2 cores to maintain good CPU waste with this allocation because groups A and B are
tail latency for short requests and can sustain 1.25x more slightly under-provisioned and can steal from C. Figure 6
load while reducing slowdown up to 1.4x over Shinjuku. presents our findings. DARC strongly favors shorter transac-
All the while, Perséphone provides tail latency for long re- tions from groups A and B. Compared to Shenango’s c-FCFS,
quests competitive with Shenango. For this workload the DARC provides up to 9.2x, 7x and 3.6x better tail latency
CPU waste occasioned by DARC is, on average, 0.67 core. to Payment, OrderStatus and NewOrder transactions, re-

spectively. These transactions represent 92% of the workload,

54.3  TPC-C. For this workload, DARC groups Payment resulting in up to 4.6x slowdown reduction at the cost of

and OrderStatus transactions (group A), lets NewOrder trans-
actions run in their own group (B), and groups Delivery
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Figure 8. RocksDB slowdown with 50% GETs (1.5us), 50% SCANs
(635ps). For a 20x slowdown target, DARC can sustain 2.3x and 1.3x
higher throughput than Shenango and Shinjuku, respectively.

5% throughput from the longer StockLevel transactions. Be-
cause DARC excludes the longer Delivery and StockLevel
transactions from 8 out of 14 workers, those transactions
suffer higher tail latency compared to Shenango’s c-FCFS.
Interestingly, however, due to DARC’s priority-based sched-
uling, Delivery transactions experience tail latency com-
petitive with c-FCFS at high load. In addition, though ben-
efiting Payment and OrderStatus requests, Shinjuku’s of-
fers performance similar to c-FCFS for the moderately slow
NewOrder requests, because it preempts them halfway to pro-
tect the shorter requests. Likewise, Delivery and StockLevel
requests suffer from repetitive preemption. In contrast, DARC
is able to maintain good tail latency for NewOrder requests,
offers a better trade-off for Delivery and Stocklevel at
high load (not show in the graph for the latter), and reduces
slowdown up to 3.1x compared to Shinjuku.

Given a 10x overall slowdown target, Perséphone can
sustain 1.2x and 1.05x higher throughput than Shenango
and Shinjuku, respectively.

5.4.4 RocksDB. We use Perséphone to build a service run-
ning RocksDB and create a Shenango application running
a similar RocksDB service. Shinjuku already implements a
RocksDB service. The database is backed by a file pinned
in memory. We use the same workload as Shinjuku’s: 50%

GET requests and 50% SCAN requests over 5000 keys. On
our testbed, GETs execute in 1.5us and SCANs in 635us. Con-
sistently with previous experiments, we were able to sustain
only about 75% of the theoretical peak load with Shinjuku
using a 15us preemption timer and its multi-queue policy.
We omit d-FCFS because it offers poor performances. DARC
reserves 1 core for GET requests, idling 0.96 core on average.
Figure 8 presents slowdown for this experiment: for a 20x
slowdown QoS objective, DARC can sustain 2.3x and
1.3x higher throughput than Shenango and Shinjuku,
respectively.

5.5 Handling workload changes

In this section, we demonstrate Perséphone capacity to react
to sudden changes in workload composition. For comparison
with a baseline, we include c-FCFS performance. The experi-
ment studies three phase changes: (1) fast requests suddenly
become slow and vice-versa (2) the ratio of each type change
and (3) the workload becomes only fast requests. Across this
experiment, we keep the server at 80% utilization. Each phase
lasts for 5 seconds. Figure 7 presents the results. Green boxes
describe phases. The first row is the 99.9th percentile latency
and the second row the number of cores guaranteed to each
type (not including stealable cores).

At first, B requests can run on all 14 cores — 1 dedicated
core and 13 stealable cores — and A requests are allowed to
run on 13 cores. Latency is slightly higher for B requests and
slightly slower for A requests at the beginning of the experi-
ment because the system starts in c-FCFS before proceeding
to the first reservation. In the second phase, we inverse the
service time of A and B to evaluate how DARC can handle
miss-classification. During the transition, which takes about
500ms, “B-fast” requests observe increased latency — up to
50ps— as “A-slow” requests are allowed to run on all cores
before the reservation update. The graph shows latency in-
crease before the transition because these “B-fast” requests
were already in the system and the X axis is the sending
time.
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Figure 9. High-bimodal performance when DARC is set with a

broken, random request classifier. DARC-random’s behavior con-

verges to c-FCFS.

During the second transition, we change the ratio of each
type: A requests now make up 99.5% of the mix. As a result,
their CPU demand increases and DARC reserves them 2
cores. For this new composition, 80% utilization on the server
results in increased throughput, and latency becomes slightly
higher for both types of requests as all queues grow larger.

Finally, we change the workload to be only made of A
requests. Despite A requests being able to run on all 14 cores,
pending B requests can be serviced on the spillway core.

5.6 Random classifier

Finally, we evaluate DARC’s behavior when users fail to pro-
vide a correct request classifier. We modify the dispatcher to
push incoming requests to a random typed queue. We expect
each typed queue to hold an equal share of each request
type, thus converging to c-FCFS. We run High-bimodal on
a two nodes setup (one server with 8 worker threads and
one client, both running on Silver 4114 Xeon CPUs and us-
ing Mellanox Connectx-5 cards). Figure 9 presents the re-
sults. DARC-random uses the random classifier. As expected,
DARC-random and c-FCFS exhibit similar behaviors.

6 Discussion

Networking model. In the current implementation, the net
worker is a layer 2 forwarder and performs simple checks
on Ethernet and IP headers. Application workers handle
layers 4 and above and directly perform TX. This design
intends to maximize our dispatcher’s performance — the
main bottleneck in Perséphone— and make it competitive
with existing systems. Shenango and Shinjuku separate roles
in a similar way. There is no fundamental reason, though, for
not having the net worker handle more of the network stack
Using a stateful network stack would preclude offloading TX
to the workers since shared state between the net worker
and application workers would hinder performance. For TCP,
this problem is partly addressed by TAS [53] and Snap [62].
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Figure 10. Simulating single queue preemptive systems with var-
ious overheads. At the microsecond scale, implementing and or-
chestrating preemptive systems remains challenging.

Interrupts at ys scale. Though desirable in theory because
it enables a better approximation to SRPT, interrupts at the
microsecond scale are challenging to implement. In addition
to operating overheads, adequate timing is also critical for
protecting short requests. Consider the simulation from sec-
tion 2. We extend this analysis with a set of single queue
preemptive systems with different interrupt overheads and
delay. We assume a preemption event can be triggered as
soon as a short request is blocked in the queue by long re-
quests running on workers. The first system, “TS 4us” takes
2y1s to propagate a preemption event to a worker, and 2 addi-
tional ps to preempt the running request. “TS 2us” and “TS
1us” operate similarly. “TS Ous” represents an ideal system
with instant preemption and no overheads. Figure 10 shows
their impact on requests slowdown, compared to DARC. Un-
surprisingly, the ideal system performs similarly or better
than DARC. As preemption speed increases, short requests
are better protected and long requests suffer less in the pro-
cess. However, at the microsecond scale, even 1us overheads
result in 30% less sustainable load, for a slowdown target
of 10 for the short requests. In response to implementation
and tuning challenges for preemption at the ps scale, DARC
proposes a complementary resource partitioning technique
that alleviates the need for interrupts. Finally, preemption
comes with a second class of challenges related to practi-
cality. One has to carefully re-work existing applications to
ensure preemption cannot happen during critical sections —
memory management, interaction with thread local storage,
etc. — or non re-entrant functions. This represents consider-
able efforts and encourages other designs trade-off such as
semi-cooperative scheduling [17].

DARC in the datacenter ecosystem. Though not a focus
of this paper, DARC can cooperate with an allocator to obtain
and release cores, adapting to load changes and updating
reservations during such events. In the event of a system
overload, DARC will keep prioritizing short requests as far
as possible, triggering flow control for longer requests first.
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7 Related work

Kernel-bypass. Bypassing a general-purpose kernel to
provide application-tailored services has been revisited regu-
larly over the past fifty years. Some notable examples include
the RC 4000 multi-programming system [37], Hydra [88],
Mach [1], Chorus [77], SPIN [16], and Exokernel [31].

More recently, faster networks and stagnating CPU speeds
have led researchers to look more closely at user-level net-
work stacks [47, 53], to provide high-performance storage
systems [19, 55, 58, 71], access to disaggregated memory [4],
user-level network services [53] such as eRPC [49], and fast
I/O processing (e.g., IX [14] and Chronos [50]). Similarly,
user-level scheduling has been explored with ZygOS [75]
and Shinjuku [48], which focus on improving tail latency by
implementing centralized dispatch policies and user-level
preemption, both of which outperform current decentralized
offerings, as is well understood by theory [57, 87, 90]. DARC
builds on this recent line of work with a more application-
customized solution, motivated by recent insights when ob-
serving performance gain from sharing application-level
information with the dataplane [23, 52, 61], and “common
case service acceleration”, which can improve tail latency for
important requests [64]. DARC multi-queue policy could be
integrated with existing kernel-bypass schedulers [48, 73, 75],
with the merit that programmers could decide whether pro-
viding request classifiers is worthwhile for their workload. In
fact, we originally designed Perséphone for the Demikernel
Library OS Architecture [89], with the goal of integrating
user-level insights to a wide range of datapaths.

Scheduling Policies: Recent works on kernel-bypass and
microsecond-scale applications have revived research in-
terest in scheduling policies, specifically for tail-tolerance.
We compare DARC with existing policies proposed for pro-
cess or packet scheduling, and identified the best fit for
each. Table 5 summarizes our findings. DARC shares ideas
with Fixed Priority (FP) scheduling without suffering from
head-of-line blocking and with Cycle Stealing with Central
Queue (CSCQ [42]), but does not impose limits on stealing
for shorter requests. It also shares ideas with Static Partition-
ing (SP) without being as work conservation avoidant, thus
being able to absorb bursts. DARC targets applications with
high service time dispersion similarly to Processor Shar-
ing policies, implemented as the Completely Fair Sched-
uler [67], Borrowed Virtual Time [29], and Multi-Level Feed-
back Queue [6] in commodity operating systems and variants
of these on datacenter operating systems [48]. Processor shar-
ing policies, despite being application agnostic, are expen-
sive or impossible to implement in many environments, e.g.,
the public cloud. DARC is, to our best knowledge, the first
application-aware and non-preemptive policy that classifies
requests to improve RPC tail latency and can be implemented
on a kernel-bypassed system serving microsecond-scale re-
quests. We note that existing work has specifically made use
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of non work conservation to reduce resource contention in
SMT architectures [33, 76, 82], though with a focus on in-
struction throughput rather than tail latency for datacenter
workloads.

In-network end-host scheduling. R2P2 [56] and
Metron [51] propose to integrate core scheduling in the net-
work. Loom [83] proposes a novel NIC design and OS/NIC
abstraction to express rich hierarchies of network schedul-
ing and traffic shaping policies across tenants. Our work
is orthogonal since request classifiers can be offloaded to
the network. eRSS [78] scaling groups offer the possibility
to schedule request groups, which works only on network
headers and requires a specific programming model from
the NIC. RSS++ [9] addresses RSS vulnerability to traffic im-
balance but cannot handle variability in application-request
processing times. Intel recently introduced Application De-
vice Queues (ADQ) [44], a feature for applications to reserve
NIC hardware queues. ADQ requires specific network in-
terfaces (currently Intel’s Ethernet 800 Series) and does not
allow applications to further partition reserved queues by
request type. Finally, recent progress in network hardware
could enable instantiating DARC either in a programmable
switch using a PIFO scheduling transaction [81], or directly
in the end-host hardware using the NanoPU hardware thread
scheduler [43] or a SmartNIC.

Network scheduling for tail latency. Prioritizing pack-
ets to improve tail latency has been extensively studied in the
networking literature [3, 8, 34, 36, 59, 68, 69]. As analyzed
by Mushtaq et al. [70], this line of work uses priority queues
in switches to approximate Shortest Remaining Processing
Time (SRPT) scheduling and avoid head-of-line blocking
caused by FIFO policies. Dedicating more CPU resources to
short requests is similar to prioritizing packets belonging
to short flows, but whereas network devices schedule at the
granularity of packets — bounded by MTU sizes — and pre-
empt long flows by not sending their packets, there is no
affordable way to preempt a long request once dispatched
at a CPU core within microseconds. DARC efficiently parti-
tions CPU resources among requests by profiling their CPU
demand and enabling work conservation only for short re-
quests, capping resources allocated to long requests and
resulting in a similar trade off than Homa [68], pFabric [3],
or HULL [2].

Other efforts to improve tail latency. Haque et al. [39]
exploit DVES and heterogeneous CPUs to speed up long re-
quests in latency sensitive workloads at the expense of short
requests, with the goal of improving overall tail latency. Our
technique is orthogonal to such optimization, since DARC
defines a clear target to configure power and core settings
for given request types. Another line of work adapts the de-
gree of parallelism of long requests and improves overall tail
latency [38, 46], but this comes at the cost of shorter requests
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Table 5. Summary of different scheduling policies as comparison points to DARC

Henri Maxime Demoulin, Joshua Fried et al.

App Non Non

Prevent

Policy Aware preemptive Work Conserving HOL Ideal Workload Comments
. . Easy to implement
d-FCFS X v v Light-tailed Load Imbalance
c-FCFS X v Light-tailed Ideal policy for the workload
Processor Sharing Heavy-tailed without .
(Linux CFS, BVT [28], MLEQ [6]) X priorities Hard to implement
fl ith
(Deficit) (Weighted) Round Robin X v X X Request ows wit No latency guarantees
fairness requirements
. e Different request types Inflexible with
Static Partitioning v v v X with different SLOs rapid workload changes
Fixed Priority v v X X Request p nor.lty {ndendent Can lead to priority inversion
of service time
Earliest Deadline First v v Request p nor'lty 1‘ndendent Requires clock sync
of service time
Shortest Job First v v Custom Can starve long RPCs
. Optimal for average latency
SRPT 4 X Heavy-tailed Hard to implement
Cycle Stealing with v v v X Mix of short and long re.quests Can absorb short RPCs bursts
Central Queue with the same priority
DARC v v v v Heavy-tailed with Favor short RPCs over longs

high priority short requests

from which more resources are taken away. Mirhosseini et al.
modify another of Mor Harchol-Balter’s typed-queue policy,
SITA [41], to prevent dispersion-based blocking in hardware
queues [65]. RobinHood [15] improves tail latency by pro-
visioning more cache to backends that affect such latency.
Minos [24] shards data based on size to reduce GETs vari-
ability across shards. Finally, isolation techniques such as
PerfIso [45] also eschew work conservation to protect la-
tency critical tasks, but are strictly less efficient than work
conserving, preemption-based techniques. In contrast, at mi-
crosecond latencies, the trade-off between preemption and
idling changes, making our non-work-conserving kernel-
bypass scheduler a better optimized solution.

8 Conclusion

This paper proposes Perséphone, a new kernel-bypass OS
scheduler implementing DARC, an application aware, non
work conserving policy. DARC maintains good tail latency
for shorter requests in heavy-tailed workloads that cannot
afford the overheads of existing techniques such as work
stealing and preemption. DARC profiles requests and dedi-
cates cores to shorter requests, guaranteeing they will not
be blocked behind long requests. Our prototype of Persé-
phone maintains good tail latency for shorter requests and
can handle higher loads with the same amount of cores than
state-of-the-art kernel-bypass schedulers, overall better uti-
lizing datacenter resources.
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