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ADMM-Net for Communication Interference
Removal in Stepped-Frequency Radar

Jeremy Johnston*”, Yinchuan Li", Marco Lops

Abstract—Complex ADMM-Net, a complex-valued neural net-
work architecture inspired by the alternating direction method
of multipliers (ADMM), is designed for interference removal
in stepped-frequency radar super-resolution angle-range-doppler
imaging. We consider an uncooperative spectrum sharing scenario
where the radar is tasked with imaging a sparse scene amidst com-
munication interference that is frequency-sparse due to spectrum
underutilization, motivating an ¢;-minimization problem to re-
cover the radar image and suppress the interference. The problem’s
ADMM iteration undergirds the neural network design, yielding a
set of generalized ADMM updates with learnable hyperparameters
and operations. The network is trained with random data gener-
ated according to the radar and communication signal models. In
numerical experiments ADMM-Net exhibits markedly lower error
and computational cost than ADMM and CVX.

Index Terms—Deep unfolding, deep learning, alternating
direction method of multipliers (ADMM), MIMO radar, stepped-
frequency, interference, coexistence.

I. INTRODUCTION

HE use of radar in civilian life has expanded—e.g. automo-
T tive radar, remote sensing, and healthcare applications—
meanwhile next-generation communications systems have be-
gun to encroach upon spectrum once designated solely for radar
use [1]. In response, the U.S. Department of Defense declared an
initiative [2] to spur research on algorithm and system designs
that allow radars to cope with the changing spectral landscape.
Subsequently, several system design motifs have materialized in
the area of radar-communication coexistence [3].
Coordinated coexistence methods enable coexistence through
system co-design and information sharing. Co-design of the
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radar waveform and communication system codebook may be
cast as an optimization problem, e.g. to maximize the commu-
nication rate subject to constraints on the radar SNR [4]. In
a radar-centric co-design, the radar waveform might be forced
to lie in the null space of the channel between the radar and
communication devices, enabled by channel state information
provided either externally or by the radar’s own means of chan-
nel estimation [5]. In some proposals the coexisting systems
communicate with a data fusion center which uses the shared
information to configure each system in a way that optimizes
the performance of the system ensemble [6]. Uncoordinated
coexistence methods, on the other hand, seek to minimize in-
terference absent cooperation or external information. Instead,
spectrum occupancy measurements may inform real-time ad-
justments to the transmit waveform, e.g. center frequency [7],
and beamforming may mitigate directional interference [8].

In uncoordinated interference removal, thresholding or filter-
ing can be effective if the interference is much stronger than the
desired signal, though runs the risk of inadvertently distorting
the desired signal. Parametric methods estimate the parameters
of a statistical signal model via either subspace methods or opti-
mization. Greedy methods, e.g. CLEAN and matching pursuit,
iteratively remove the most dominant interference component,
found by projecting the recording onto an interference dictio-
nary, until a stopping criterion is met. If the received interference
is concentrated in narrow regions along some dimension, e.g.
time, frequency, or space, and hence is sparse in a known
dictionary, convex relaxation methods such as ¢;-minimization
can be effective [9], [10]. In this vein, the present paper considers
an uncoordinated scenario where the interference is sparse in a
known basis. In particular, we show that the stepped-frequency
radar waveform’s “frequency-hopping” property imposes on the
interference structure that can be exploited.

Neural networks are attractive for interference suppression
as they can learn an inverse mapping to recover a signal from
corrupted measurements [11], [12]. So-called “black box” neu-
ral networks generalize well but provide only empirical rather
than theoretical guarantees. Moreover, they neglect the corpus
of model-based signal recovery theory and algorithms which
exploit prior knowledge to devise computational procedures
tailored to the problem [13]. Iterative algorithms grounded in
either optimization or statistics are among the most computation-
ally efficient for signal recovery, but their performance hinges
on the careful selection of hyperparameters whose favorable
values are generally problem-dependent. From one point of
view, deep unfolding, the methodology applied in this paper,
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Frequency occupation versus time for two representative spectrum sharing scenarios. The black strips indicate the spectrum occupied by the radar system;

the colored strips indicate the spectrum occupied by the communication system. Only the overlapping regions cause interference to the radar.

casts hyperparameter selection as an instance of deep learning
and thus automates cross-validation.

In the deep unfolding [14] framework a given iterative algo-
rithm inspires a neural network design. Typically the network’s
forward pass has the computational complexity of a handful of
algorithm iterations, a fraction of that required for the original
algorithm to converge, yet the trained network may outperform
the original algorithm. The algorithm’s update rules are cast as
a block of network layers whose forward pass emulates one
complete algorithm iteration, and whose learnable parameters
correspond to a chosen parameterization of the update rules,
often comprising algorithm hyperparameters as well as matri-
ces. A number of such blocks, possibly augmented in order
to increase learning capacity [15], are sequenced to form the
network. Network training, typically done via gradient-based
optimization, employs data either gathered from the field or
randomly generated according to signal models, and thus adapts
the algorithm to the problem at hand. The layer parameters
can be initialized either as prescribed by the algorithm, or
even randomly; in one study, an unfolded vector-approximate
message passing (VAMP) network randomly initialized learned
a denoiser identical to the statistically matched denoiser [16].
Algorithms previously considered for deep unfolding include the
iterative shrinkage thresholding algorithm (ISTA) [17], robust
principal components analysis (RPCA) [18], and ADMM [19],
[20]. Applications span those of iterative optimization itself,
e.g. wireless communication [15], medical imaging [18], and
radar [21].

In this paper, we design an ADMM-Net which simultaneously
recovers a super-resolution angle-range-doppler image and re-
moves communication interference. We target an uncooperative
spectrum sharing scenario in which the radar is considered the
primary function and the communications utilize portions of the
shared spectrum. In the proposed multi-frame radar process-
ing architecture, the stepped-frequency radar transmits a series
of simple pulse trains to obtain a set of low-resolution radar
measurements which the ADMM-Net synthesizes to form an
image. Although the total radar bandwidth is large (~ 1 GHz), by
virtue of the pulse-by-pulse processing only the communication
signals that spectrally overlap with a given pulse interfere with
the pulse’s return. Moreover, communication signals tend to be
sparse in the frequency domain, owing to periods of low activity

or otherwise underutilized spectrum [22], [23]. Consequently,
the interference manifests as sparse noise in the radar measure-
ments.

Applicable scenarios lie between two extremes. At one
(Fig. 1(a)), the total radar bandwidth overlaps with multiple com-
munication carriers and the radar frequency step is on the order
of the communication carrier bandwidth. For example, stepped
frequency radars may have a step size of 20 MHz [24], while
the maximum LTE bandwidth is 20 MHz [25] and in sub-6 GHz
5 G the maximum channel bandwidth is 100 MHz [26]. At the
other (Fig. 1(b)), the radar overlaps with a single communication
carrier. The carrier comprises sub-channels sized on the order of
the radar frequency step-size that are assigned to opportunistic
communication users. For example, 5 G employs channels with
bandwidths in the hundreds of megahertz to a few gigahertz [27],
and stepped frequency radars often have a sweep bandwidth on
that order. In any case, the key property that enables the radar
to coexist is that significant portions of spectrum tend to be
underutilized [22] [26]. In light of this, the interference induced
by the active portions can be mitigated.

Radar images may exhibit considerable sparsity, in that the
number of dominant scatterers in the illuminated area may be rel-
atively small [28, Sec. 3]. Sparsity-inducing image reconstruc-
tion algorithms exploit the relatively low information content
to enable “super-resolution” finer than conventional processing
methods. Compressed sensing theory has provided theoretical
underpinnings for ¢;-minimization techniques, in particular.
Such methods have been successfully applied to MIMO radar
for angle-range-doppler imaging [29]-[31].

These circumstances motivate an optimization problem to
jointly recover the image and remove the interference. We
then use the problem’s corresponding ADMM equations as a
schematic for a neural network architecture. Important for radar
processing, the network processes complex-valued measure-
ments, doing so in a manner consistent with ADMM. Thus, train-
ing the network is tantamount to optimizing over the ADMM
parameters and matrices a handful of ADMM iterations. In
practice, training data could comprise measurements recorded
by the intended radar system, i.e., the system’s response to
various objects with known parameters (amplitude, angle, range,
speed) in various interference environments; thus the underly-
ing model inspires the structure of the network, but the final
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network is determined by the real-world measurement data. In
our experiments, training data sets were randomly generated via
the signal model. We find that the trained ADMM-Net recovers
more accurate images than ADMM and CVX at a fraction of the
computational cost.

The remainder of the paper proceeds as follows. First, we
develop a model of the radar and communication signals and
formulate an optimization problem to jointly recover the radar
image and interference (Section II). We then derive the prob-
lem’s ADMM recursion (Section III) and design an ADMM-
Net by unfolding the complex-valued ADMM equations into a
real-valued neural network (Section I'V). Finally, numerical sim-
ulations (Section V) compare the performance of ADMM-net to
that of ADMM and CVX.

II. SIGNAL MODEL & PROBLEM FORMULATION

A stepped-frequency MIMO radar illuminates a sparse scene
in the presence of interfering communication signals, which are
sparse in the frequency domain. The radar undertakes pulse-
by-pulse processing over multiple measurement frames. The
joint image recovery-interference removal task is cast as an
optimization problem.

A. Signal Model

1) MIMO Radar Signal: Consider a frequency-stepped
pulsed MIMO radar with Np transmitters and N receivers.
Each of the transmitted waveforms u”, p=1,..., Np, has
duration 7" seconds and the waveforms are assumed to be approx-
imately mutually incoherent (see (15)). The scene is illuminated
by N4 trains of N pulses: within the mth train, the nth pulse
emitted by the pth transmit antenna is given by

sP(myn,t) = uP(t —nT. — mNT,)exp (j2m fut), (1)

where ¢ is continuous time, 0 < m < Ny —1,0<n < N —1,
1 <p < Np; fr =nAf+ fo where fp is the lowest carrier
frequency, and N'A f is the overall bandwidth. Each pulse echo
recording lengthis 7;. > T seconds, the pulse repetition interval
(PRI). A complete observation consists of Ny/N PRIs.

We consider a scene of L scatterers with scattering coefficients
x; and radial velocities v;. The signal received by the qth
receiver,q = 1,..., Ny, is

Ng—1 Ny L

Tq(T"’t) = Z szi‘sp(m7n7t—7—zpq(t))v 2

m=0 p=1 i=1
where
QUZ'

2 = 2

t+7i+ 00 +¢f (3)

is the ith scatterer’s delay; 4% and e are the marginal delays due
to array geometry associated with antenna pair (p, ¢); and 7; is
the absolute round-trip delay observed by a reference antenna
pair during the first PRI. We assume the velocities are constant
throughout the series of sweeps.We further make the following
assumptions:
® The range variation throughout the series of sweeps is
negligible with respect to the range resolution of each
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pulse:

20; NyNT.
L < T.
C

e The array element spacing is much smaller than the range
resolution granted by the overall transmitted bandwidth:

o tel < NLAf' 4)

Since the pulse is unsophisticated, TA f ~ 1; hence (4) im-
plies 67 4+ ¢ < T, whereby

uP(t —7P(t)) = uP(t — 7). (3)

In (2) the term exp (—j2mnAf(67 +¢?)) can be neglected

since, by (4), nAf(0F + ) < 1,n=0,1,..., N — 1. Under
these assumptions, (2) becomes

Ng—1 Nr L

ri(n,t) = Z ZZZ‘Z exp (—j2m fo(0F + &)

m=0 p=11i=1
x uP(t — nT, — mNT, —1;)

Q’Ui

t)). (6)

2) Communication Signal: Suppose there are N, carriers
that spectrally overlap with the radar band, with center fre-
quencies ff and bandwidths B;, : =0,1,..., N, — 1. Here
the term “carrier” refers to any communication transmission
within the radar band, e.g. a particular block of subcarriers
within a communication band, the aggregate transmission over
a communication band, etc. Thus the received communication
signal has the form

x exp (j2m fr(t — 1; —

N1
PTe
se(t) =Y gilt)exp (j2n (D), @)
i=0
where g; represents the information signal transmitted over car-
rier ¢ and is a zero-mean random process whose power spectral
density G; satisfies

B;
Gi(f):Oif|f‘>7~ ®)

B. Signal Processing At Radar Receiver Side

Receiver ¢’s recording of the nth pulse takes the form
X4(n,t) = rin,t) + s.(t) + e(t),

where e(t) is additive white gaussian noise (AWGN). The
recording is processed as follows. Each pulse return is di-
vided into |7,./T'| range gates of size T seconds, a range
interval of % meters, centered at times ¢, = kKT + %, k=
0,...,|T./T| — 1. The gth receiver’s recordings are projected
onto the pth transmit waveform shifted to range cell k, i.e.
onto the functions {s?(m,n,t—t;):0<m < Ny;—1,0<
n<N-1,1<p<Np, 0<k<|T./T| — 1}, to obtain the
output sequence y?(m, n, p, k), given by

yq(m7 n,p, k) = <Xq(na t)7 sp(m,n,t - tk)>

0<t< NgNT,, (9

(10)

£ yh(m,n,p, k) + y&(m,n,p, k)
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+e(m,n,p, k), (1)

where (y1 (t) f y1(t)y3(t)dt and the terms yF, yl.,
and e are the prOJ ectlons of the radar echoes the communication
signal, and AWGN, respectively. This operation is equivalent to
matched filtering each of the NV echo recordings and sampling
the output at times ¢ [32]. Next we derive each of the terms in
(11D).

1) Radar Signal Component: We have

Yi(m,n,p, k) = (r?(n,t), s (m,n,t — ty)) (12)

=~ szzexp .727Tf0(6p +5 )) upup( k *Ti)

p'=11i=1

X exp (=527 fn(Ts (13)

+ %(HTI + mNT’!') - tk))v
where R, (7) £ (u(t),v(t — 7)), and we have used the fact that
{uP(t — nT, — mNT, — t;)} ' is orthogonal along t. The
approximation in (13) assumes the target velocities are small
such that each target’s position is constant within a single PRI.
Since each u? has duration 7', the autocorrelation R,»,» has a

duration of approximately 27'; therefore we assume

1 T/2
Ru:nup(7'> ~ |T‘ < / . (14)
0 |r|>1T/2
We also assume the waveforms are incoherent, i.e.,
Rypyp ifp=7yp T T
Ryt (7) M itp=v LTI s
0 ifp#p 2°2

This could be achieved, for example, through time-domain
multiplexing (which would require increasing the illumination
period in order to maintain a given maximum unambiguous
range). Define 7 £ {i : |1, — t;,| < T/2}, the indices of the
scatterers that belong to range cell k. Applying (14) and (15),
(13) becomes

S s exp (=2 fo(0F + &)

€Ly

yh(m,n,p, k) =

X exp [j27r(nAf(n — 1)

)
)

(16)

X exp [—j27r(f 2vi 2T, +nAf

where we have absorbed exp (—j27 fo(7; — tx)) into ;.

In general the Tx/Rx array elements are distributed on a
plane and the delays 67 = 67 (0) and ] = £7(8) are functions
of the scatterer’s angular coordinates @ € R?, e.g. azimuth and
elevation, relative to the array plane. We consider a generic array
response matrix H € CN7*Nr where

[H(6)]pq = exp (—j27fo (67 (0) +£{(8))

and let h £ vec(H) € CNtVNr,
We define steering vectors for the intra- and inter-frame time
scales: for intra-frame, the range steering vector r(7,v) € C

7)

2821

where

[r(7,v)]n £ exp |:—j27'l'(TLAfT + fn2:nTr)} ; (18)

for inter-frame, the velocity steering vector v(v) € C™¢ where

[V(V)]m = exp {—jZTrfoivaTr] ) (19)

Additionally, define the vector of “distortion terms” c(v) €
CNNa where

(V)] nimn = exp [janA fZ:mNTT]. (20)

Now let

(r/)(077—7'0) = h(0) & [(V(’U) X I'(’T”U)) ® C(U)} c CNTNRNNd’

1)

where © is the Hadamard product. Hence the radar signal
component can be expressed in vector form as

ya(k) =Y 2:p(0;,7i(k), v:). (22)
€Ly,
where the coordinate
_ A T T
) L _- = 2
Ti(k) =7 tke[ 2,2] (23)

is the ¢th scatterer’s offset from the center of the kth range cell.
2) Communication Signal Component: The interference
component in the projection of receiver ¢’s recording is

yg<m7napa k) = <SC(t)?3p(m7nat_tk')>~ (24)
The power spectral density of y¢, for any ¢ is
=Gl =W =l @9
1€Cp
where
. A B;
Co 2 {il|fa— 1< - f o) (26)

is the set of carriers that overlap w1th radar pulse n. Any
communication carrier spectrally overlaps with at least one radar
pulse; but in general a radar pulse may or may not overlap with
any carriers, in which case C,, would be empty. We have

E(ly&(m, n, p, k)[’]

/ SO G — [ UP(f — f) df.

e,

27)

implying that only the carriers C,, may interfere with the radar.
Moreover, only a subset of the carriers C,, actually interfere
because G; implicitly depends on whether carrier 7 is in use.
Therefore, E[|yd (m, n, p, k)|*] = 0 whenever 1) C,, = 0, or 2)
none of the carriers C,, are in use.

Define B(k) € CNt*NrxNaxN guch that [B(k)]pgmn =
y&(m,n, p, k) and let b(k) £ vec(B(k)) € CNtNrNaN guch
that element 7 of b(k) is consistent with element i of y (k).
Then the number of nonzero entries in b(k) is equal to No N Ny
times the number of occurences of spectral overlap. Intuitively,

Authorized licensed use limited to: Columbia University Libraries. Downloaded on December 29,2021 at 18:21:24 UTC from IEEE Xplore. Restrictions apply.



2822

if the probability of spectrum overlap with an active carrier is
small, then b(k) will be sparse—a plausible instance of this is
explored in Section V. For now, we assume that b(k) contains
mostly zeros.

Finally, the projection onto range cell k can be written as

y(k) = Z 2;$(0;,7i(k), vi) + b(k) + e(k),
i€l

where e(k) ~ CN (0, 0°T).

(28)

C. Optimization Problem Formulation

Our task is to recover the angle-range-doppler image from the
radar measurements (28). To this end, we construct an on-grid
radar model and formulate an optimization problem to jointly
recover the image and the interference signal. Our approach is
to image the contents of a single coarse range cell k; in practice,
the following would be applied separately to each desired cell.

The radar data consists of a coherent batch of echo returns
from N, sweeps, given by (9). The projection operation in (10)
isolates the returns of all scatterers located in range cell &, yield-
ing a measurement vector of length N Nrp Ny N, given by (28).
We assume the scatterers’ coordinates in angle-range-velocity
space lie on the grid G C R*, where |G| £ M > NyNpN,N.
Define ® € CN7NeNaNxM whose columns form the dictionary
D 2 {¢(0,7,v) | (8,7,v) € G}, where ¢ is given by (21). By
the on-grid assumption, we have {¢(0;,7;(k),v;) | i € I} C
D. Thus, the radar signal component (22) can be expressed as

vr(k) = ®dw(k), (29)

where w(k) € CM is the vectorized angle-range-doppler im-
age. The nonzero entries of w(k) form {x; | i € Z;,} and are
positioned such that x; weights ¢(0;,7;(k),v;). Substituting
(29) in (28), we obtain

y=®w + b + e, 30)

with dependence on k hereafter implied.

Sparsity manifests in two forms: b is sparse because of the
frequency-domain sparsity of the communication signals; w is
sparse if the radar scene is sparse. Exploiting these properties, we
formulate the following optimization problem to jointly recover
w and b:

min ||y — ®w — b2 + A1 ||w]1 + A2|b]|1. 31)
w,b

Given the measurement y, (31) seeks sparse w and b that fit (30),
where the hyperparameters A1, Ao > 0 control the sparsities. The
optimal w is the recovered image.

III. DIRECT SOLVER BASED ON ADMM ALGORITHM

Next we derive the ADMM equations for (31). ADMM is
well-suited to handle high-dimensional problems where the
objective can be expressed as the sum of convex functions [33],
as typically is the case in signal processing and machine learning,
where dimensionality and regularization terms abound. The
problem is split into smaller subproblems which often admit
closed-form solutions, so an iteration typically requires only a
few matrix-vector multiplies [33].

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

ADMM is often viewed as an approximation of the augmented
Lagrange multiplier (ALM) algorithm. ALM solves via gradi-
ent ascent the dual of an /-regularized version of the primal
problem. Evaluating the dual function entails jointly minimizing
the augmented Lagrangian, which may be intractable. ADMM
instead “approximates” the dual function by its namesake ap-
proach, minimizing over the variables in an alternating fashion.
But the resemblance to ALM is superficial, as each method can
be equated to the repeated application of a unique monotone
operator, revealing that each method’s convergence mechanism
differs from the other’s [34]. Indeed, both methods belong to
the broader class of proximal algorithms [35]. Nonetheless, we
derive ADMM via the augmented Lagrangian.

Let A=[® IyjeCVMEN) D, =[I 0¢

RM*(M+N) D, = [0 Iy] € RVXMHN) y — {WT bT}T c

CM+N where I,, denotes the n x n identity matrix. Then (31)
is equivalent to

min [y — Ax[3 + A1 [Dax][1 + 22| Dax]fs. (32)
We reformulate (32) as the constrained problem
min ||y — Ax|)3 + A1[D1z1 + A2|| Dozl
X,z (33)

st. x—z=0,
whose augmented Lagrangian is

Ly(x,z,u) = |y — Ax||3 + 21 D1zl + 12 D2z

+ Ll — 2+ ull3 - Sllul3, (34)

where u is the scaled dual variable [33] and p € Ris a parameter.
ALM entails computing the dual function min{L,} exactly
X,z

by jointly minimizing L, over x and z, which may be costly
because of the nonlinear term involving x and z. ADMM instead
minimizes along the x and z directions in an alternating fashion.

“Vanilla? ADMM comprises three steps: minimization of
L, over x; minimization of L, over z; and finally a gradient
ascent iteration, incrementing u using the gradient of L, w.r.t.
u. Namely, ADMM sequentially computes

x"*1 = argmin (Hy — Ax|f5 + ng —z" + ukug) (35)

ZFtl = argmin (A1]| D121 + A2|| D2zl (36)
z
+ ngk“ —z+ ung)
u = uf + v, L, (xFT 2R ). 37)

Equation (35) is an /5-regularized least-squares problem. Equa-
tion (36) can be separated into

251 = argmin (A1||z1H1 n g||x’f+1 o+ u’f||§) (38)

zy

21 = argmin (a2 + S5 — 20+ ub3) . (39)
where z; £ D, z, xf £ D;x"* and uf £ DZ-u’“7 1 =1,2. Solu-
tions to (38) and (39) are given by the proximal operator of the
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£1-norm, the soft-thresholding operator S, : C* — C™.Here S,
operates elementwise, so that element ¢ of the output for input

a=[a; - ay|lis
[Sw(a)]; = |Zf‘ s« max(|ai| — #,0). (40)
Thus the vanilla ADMM equations for (31) are
<M= (AHA + pI) YAy + p(z" —uP)) 41)
2y =S5, 4 u) (42)
25" = S/ (x5 ! + ) (43)
ZFt1
bt =uh T T (44)
Z3

Our proposed ADMM algorithm augments vanilla ADMM in
two ways. It is known that inserting a relaxation step between
the x and z updates,

ghl = axFt 4 (1 — a)z”, (45)

where « € [0,2] is a parameter, may improve convergence
speed [33]. This step also arises naturally in an alternative
ADMM derivation [34]. Additionally, we introduce a parameter
7 € R to control the gradient step-size in the u-update. Finally,
the proposed ADMM iteration for (31) is

X" = (ATA 4+ )N (ATy +p(z" —uh)  46)
et = axF 4 (1 - a)z* 47)
2y =85, (61" + ul) (48)
25" = S),/,(€5"" + uj) (49)
X k Zk-’—1
ut = uf 4o € — ziH . (50)
2

where Sf =D;¢ki=1,2.

This ADMM bears resemblance to that proposed in [19], [20],
and may be seen as a special case thereof. The authors in [19],
[20] consider the objective

L
min [[Ax — y[3 + 3 hig(Drx).

=1
for some L with arbitrary matrices D; and regularizer g. For
this generalized objective, multiple ADMM algorithms exist
depending on how the auxiliary variable z is defined. Some
instances of ADMM may involve challenging subproblems that
may have to be approximated; in one instance of ADMM con-
sidered in [19], [20], a subproblem solution is approximated via
a number of gradient descent iterations. However, in our setting
(L=2,g(-) 2| - |1, and D; defined above) all instances of
ADMM are equal the one we have derived.

The main pitfall of ADMM we aim to address is task of
setting the parameters {p, o, 7, A1, A2} which in general must
be tuned for each application. Vanilla ADMM is guaranteed to
converge at a linear rate for all p > 0 [36], but in practice the
convergence speed as well as accuracy may significantly vary
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with p. Selection of p may be based on the eigenvalues of A
[37], and p can be updated based on the values of the primal
and dual residuals at each iteration [38]. From our experience,
the ADMM parameters p, v, n primarily influence convergence
speed, while the regularization parameters A, Ao affect con-
vergence accuracy. The ¢, parameters can also be updated at
each iteration, e.g. LARS determines a parameter schedule by
calculating the solution path for every positive value of the
regularization parameter [39]. Otherwise, cross-validation can
be effective. The deep unfolding method we present next can be
seen as a way of automating hyperparameter cross-validation,
wherein algorithm hyperparameters become decision variables
for optimizing a metric of algorithm performance.

IV. CoMPLEX ADMM-NET

Here we outline the unfolded network design process and
then detail the proposed ADMM-Net design. One important
consideration is how to handle complex valued data and pa-
rameters. Mainstream deep learning software supports only
real-valued inputs and parameters, while radar measurements
are typically complex-valued, so we must somehow translate
ADMM’s complex-valued operations into an equivalent se-
quence of real-valued operations. The network’s forward pass,
upon initialization, is identical to executing a number of ADMM
iterations.

A. Towards ADMM-Net

A neural network is a composition of parameterized linear and
nonlinear functions called layers. Deep learning is the process of
adjusting the function parameters such that the network emulates
some desired mapping. This amounts to optimizing over the
parameters a chosen loss metric that quantifies the accuracy
of the network output relative to training data, a putative sam-
ple of the desired mapping’s input/output behavior. Typically
gradient-based algorithms are used for the optimization, so by
leveraging standard deep learning software packages, such as
Tensorflow and PyTorch, which employ automatic differentia-
tion to compute gradients, many iterative algorithms can readily
be parameterized, cast as a series of network layers, and then
optimized as such, a technique known as deep unfolding.

Unfolding an algorithm iteration into a set of feed-forward
neural network layers requires specification of a) the functional
dependencies between the algorithm iterates and b) the param-
eters to be learned. Fig. 2 depicts the data flow graph for the
proposed ADMM iteration. Each node corresponds to an iterate,
and an arrow indicates functional dependence between iterates
such that the iterate associated with an arrow’s head is a function
of that of the arrow’s tail. To generate the unfolded network, we
create one layer per node. The inputs to the layer associated
with a node v are the outputs of the layers associated with the
tails of all arrows directed to v. A layer’s input/output mapping
is based on its corresponding iterate’s update equation in the
original algorithm or a generalized version thereof. Therefore, if
the algorithm comprises n update equations, every n consecutive
layers of the unfolded network together correspond to a single
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algorithm iteration, referred to as a network “stage” [19], [20];
see the nodes enclosed by the dashed-lines in Fig. 2.

B. ADMM-Net Structure

ADMM-Net has layer operations based on (46)-(50). Stage k
of the network consists of a reconstruction layer X* that corre-
sponds to the x-update, a relaxation layer =* that corresponds
to the £&-update, a nonlinear transform layer Z* that corresponds
to the z-update, and a dual update layer U* that corresponds to
the u-update. In addition to the ADMM algorithm parameters
in each layer, we also learn the linear transformations in the
x-update, initializing them as prescribed by ADMM.

Network Input: The network input y € CV enters the net-
work via the reconstruction layers.

Reconstruction Layer: This layer performs the complex x-
update prescribed by ADMM. The inputs to this layer are the
network input y € CV, and z*~!, a*~! € R from stage k —
1. The output of the stage k reconstruction layer is

—k k k(sk—1 _ k-1
X' =Mjg(y) + Mz(z" —u""), (51
and hence %* € R*M. The entries of the matrices MF¥ €
R2M>2N and M§ € R2M*2M gare learnable parameters. The
function g : CV — RV vertically concatenates the input’s real
and imaginary parts into a single real-valued vector: if y € C¥,
then

Re{y}

c R,
Im{y}

g(y) = (52)

The block diagram for g is shown in Fig. 3(a). Thus X* is
produced by stacking the real and imaginary parts of (46) into

(b)

Block diagrams for reconstruction (a) and nonlinear transform (b) layers.

a single vector, i.e. X = [Re{x’“T} Im{x*"} T. The values
7" = 0 and 0® = 0 are used for the first reconstruction layer.

Fig. 3(a) illustrates the kth reconstruction layer: the real
and imaginary parts of the complex-valued observation y are
vertically concatenated via g to form y. Then M¥ premultiplies
y and M5 premultiplies z*~! — @*~1. The two resulting vectors
are summed to obtain the layer output X"

Relaxation Layer (stage k): The output of this layer is

£ = aFgh 4 (1 - aP)Eh L, (53)

. <k
where o > 0 is a learnable parameter. The output £ € R?>M

is the concatenation of the real and imaginary parts of (47), i.e.

- T
€' = [Refet") Im{ng}} .

Nonlinear Transform Layer: This layer applies the soft-
thresholding operation as in the ADMM z-update (48)-(49). The
layer output is given by

¢t = S, (Dig (" + 0 1)) (54)

¢k = S (Dag (€ +a* 1)) (55)
k

)

where A%, A% > 0 are the learnable ¢, -regularization parameters

and Sk(a); = ‘Z—‘ « max(|a;| — k,0) is the soft-thresholding
operator. The operation g~! : R*M — CM forms a complex
vector out of the top and bottom halves of the input vector:

if x € R*M then

g UX):=%[0: M — 1] +jx[M:2M —1] € CM,  (57)
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where the notation a[k : [] refers to a vector containing the kth
through the /th components inclusive, of the vector a. The block
diagram for g~! is shown on the left-hand side of Fig. 3(b).
The matrices Dy = [I); 0] € RM*(M+N) and Dy = [0 Iy] €
RN (M+N) partition z as in (38)-(39).

Fig. 3(b) illustrates this layer’s operations. The layer inputs are
summed and input to g~ !, the output of which is partitioned via
premultiplication by D; and Ds. Soft-thresholding is applied
with the respective thresholding parameters A¥ and A%. The

T
outputs are concatenated into {C'{'T C’;T} , whose real and

imaginary parts are concatenated to form the output z*. The
output of the K'th nonlinear transform layer goes to the network
output layer.

Dual Update Layer: The output of this layer is

@ =@t - ), (58)

where 1" is a learnable parameter corresponding to the gra-
dient step size. The variable G* € R*V corresponds to the
concatenation of the real and imaginary parts of (47), i.e.

ak = [Re{ukT} Im{ukT}}T.

Network Output: The network output is derived from the
output of the final nonlinear transform layer z* via

x =g '(z"),

where ¢! is defined in (57).

We define D and D5 as constants, which differs from the
architecture proposed in [19], [20]: [19], [20] declares them as
unknown “sparsifying” transforms to be learned—appropriate
when the desired signal is not per se sparse, as in the application
considered in [19], [20]. In our setting, however, the desired
signal is by assumption sparse; hence the sparsifying transforms
are trivial and we elect not to learn them.

(59)

C. Training Details

1) Parameter Set: Stage k of the network has learnable
parameters {M¥ MK oF Ak Ak nF}. The scalar parameters
are initialized according to either theoretically or empirically
justified values, as described in Section V. The matrices le S
R2M>2N and MK € R2M>*2M gre initialized such that the re-
construction layer’s operation is initially equivalent to (46). All
stages are identically initialized according to

M’f<— RG{PAT} _Im{PAT} € R2Mx2N

Im{PAT} Re{PAT}
k Re{pP} —Im{pP} 2M x2M
M2 P} RefpP) -

where P £ (ATA + pI)~L.

2) Training Data: The training data set {(x;,y;)} =" of
cardinality Ni;.in comprises the radar system’s response y;
to a known x; = [w? bI]T, a scene with parameters w;
illuminated amidst interference b;. Using real-world data for
training could potentially ameliorate model mismatch due to

hardware imperfections, etc. In our experiments training data
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TABLE I
INDEX OF MIMO RADAR VARIABLES

Symbol Definition
N No. frequency steps
Ny No. sweeps
Np No. transmitters
Ng No. receivers
fo Start frequency
Af Frequency step size
In fo+nAf, 0<n<N-1
uP Transmitter p’s pulse envelope
sP Transmitter p’s waveform
rd Radar return at receiver q

T Pulse duration (all transmitters)
T Pulse-repetition interval

t Continuous fast-time, absolute
m Sweep index

n Pulse index within sweep

i Scatterer index

L No. scatterers

T; Scattering coeff.

TP Absolute delay, (p, q) Tx/Rx pair

oP Marginal delay, pth Tx

57? Marginal delay, gth Rx

Ti Absolute delay, reference Tx/Rx pair
7i(k) Delay offset, kth range cell

v; Radial velocity

0; Direction coordinates

were randomly generated via the signal model, as detailed in
Section V-E1.

3) Loss Function: The loss function of the network is the
mean-squared error

Ntrain

> lxi — %13,
3

=1

1
Ntrain

L(xi3x;) = (61)

where X is the network’s output and x; is the ground truth.

V. SIMULATIONS

We compare the performance of ADMM-Net, ADMM, and
the CVX semi-definite program solver in a simulated interfer-
ence environment in which a MIMO stepped-frequency radar
shares spectrum with a SC-FDMA communication system.

A. Angle-Range-Velocity Imaging

Simulated radar measurements are generated according to
the on-grid model (30). The simulated (toy-sized) stepped-
frequency MIMO radar parameters are listed in Table II.
The scattering coefficients z; are independently sampled from
CN(0,02), where o2 is the variance. The columns of & are
scaled to have unit norm. Without loss of generality, we consider
the radar processing for the range cell k£ = 0.

The Tx and Rx arrays are co-planar uniform linear arrays, with
respective normalized element spacings dr and d (normalized
by the start carrier wavelength f(/c), arranged in a cross-shaped
geometry [40]. The array response to a scatterer at angular
coordinates (6, 602) € R?, where 0 is the direction relative to
the Rx array and 6 is the direction relative to the Tx array, is
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TABLE II
RADAR SIMULATION PARAMETERS

Symbol Value Description

N 4 No. frequency steps

Ny 4 No. sweeps

Nr 2 No. transmitters

Ngr 2 No. receivers

fo 2 GHz Start frequency

Af 1 MHz Frequency step size

T 1 ps Pulse duration

T 66 s Pulse-repetition interval
Rumax 9900 m Max. unambiguous range
VUmax +142 m/s Max. unambiguous velocity

dr 1 Tx array normalized spacing

dr 1 Rx array normalized spacing

o2 various AWGN variance

o2 1 Scattering coefficient variance

z; ~ CN(0,02) Scattering coefficient ¢

given by
h(01,02) = hr(01) @ hr(02), (62)
where
hp(0)) 2 {1 o-i2mdRb, €7j27rd391(NR71)} (63)
hr(f:) 2 [1 ea2mints e mint(Nr-D] L (64)
WeletG =T xV x ©7 x Oy, where
T ={Tm/M, |m=—M,/2,...,M;/2—1} (65
V = {vmaxm/M, | m =—=M,/2,...,M,/2 -1}  (66)
©1={m/My, |m=0,1,...,Mp, 1} (67)
Oy = {m/Mp, |m=0,1,..., Mg, _1} (68)

are the delay, velocity, and angle grids, and M, M,, and Mg1
and Mo, are the respective grid sizes. Recall that 7 € [— 2, T]is
the offset from the center of the coarse range cell. The absolute
delay 7 is recovered by 7 = T + tj, where ¢, is the center of the
coarse range cell.

We choose M, =5, M,, =5, My, = 3,and My, = 2, hence
® c CO13%0. To avoid aliasing, we require |v| < %7 N =
Umax, and assuming dg =dp =1,0<6; <1land 0 < 62 <
1. The maximum unambiguous range is thus Rp,ax = ¢T}./2
meters. Each coarse range cell is of size ¢T'/2 = 150 meters
and the conventional, DFT-based range profile resolution is
W = 37.5 meters. The maximum unambiguous velocity is
FTVmax = i4foNTr'

B. Sc-Fdma

As a concrete example, consider an uplink SC-FDMA system,
as specified in the 5 G New Radio standard released by 3GPP
in December 2017. Suppose the system bandwidth consists of
N, subcarriers with uniform spacing A f¢ and every K € Z+
consecutive subcarriers are grouped into channels with center
frequencies fiC = fOC +iKAfC, 0<i< N.—1, where fOC
is the start frequency, each channel has bandwidth KA f ¢ for
a total of N. = | N;/K | channels. Users are assigned one or
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TABLE III
SC-FDMA PARAMETERS

Parameter Value Description
1o ¢ 2 GHz Start frequency
KA fC 0.5 MHz Channel bandwidth
Ne¢ 8 Number of channels
0% 1 Power assigned to each channel
€ various Proportion of active channels
B various Variance of channel fading coefficient

more channels over which to transmit. The signal transmitted
over channel ¢ has the form

00 K-1

gi(t) = /il Z Z aik(ne)uc(t —n.T,)

Ne=—00 k=0

x exp [j2m(fF + kAFO)], (69)

where:

e ~; is the power level assigned to channel :.

® h; ~CN(0,3) are ii.d. channel fading coefficients. A
block fading channel model is assumed and K is cho-
sen such that KA fC equals the coherence bandwidth
(~ 0.5 MHz) [41]. Therefore each channel i is charac-
terized by a single fading coefficient h; that is statisticaly
independent of all other channels. The variance [ accounts
for additional user-dependent effects (e.g. path loss and
log-normal shadowing) [41]. For simplicity, we assume (3
is the same for all users.

o {ajx(n.)eC:0<k<K-1, 0<i<N.—1, n.€
Z} are random variables representing the transmitted sym-
bol sequence, comprising the data and cyclic prefix, with
aik(n.) transmitted on subcarrier & of channel ¢ during
the n.th data block. In SC-FDMA the transmitted sym-
bols a;i(n.), k =0,..., K — 1 are the isometric discrete
Fourier transform (DFT) coefficients of the original data
symbol sequence. We assume the original data symbols
adhere to a memoryless modulation format.

e T is the block duration (cyclic prefix plus data); for exam-
ple,in5G Af¢ ~ 15kHz, s0 T, ~ 1/(15 kHz) = 66 5.

is the normalized pulse envelope.

Table III lists the simulated SC-FDMA system parameters.
Without loss of generality, in the simulations we make the
following assumptions:

1) fOC = fo. The radar and SC-FDMA system have the same
start frequency, fo.

2) N.KAf¢ = NAf. The SC-FDMA bandwidth equals
the radar sweep bandwidth, and therefore the SC-FDMA
system is the only source of interference. The extension
to multiple interference sources is straightforward since
each source would occupy a distinct frequency band. An
analysis along the lines presented here would be carried
out for each interference source.

0<t<T.
(70)

otherwise
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3) %’;c £ [ € 7. The sweep bandwidth is an integer
multiple of the channel bandwidth. For example, the co-
herence bandwidth is typically ~ 0.5 MHz and typically
Af >1MHz.

4) ~; =~y for all 7, where v > 0 is a constant.

5) We suppose the scheduling takes place on a PRI-by-PRI
basis (in LTE, resource blocks are allocated in time inter-
vals on the order of 1 ms, while the radar sweep duration
may be tens of milliseconds). Let {2 denote the sample
space of all possible active channel configurations—i.e.,
the power set of {(n € Z | 0 <n < N, — 1}—and let
A; C Q denote the event channel ¢ is active during any
given radar pulse, where the probability of A; is P(A;).
We assume a random sample from €2 is drawn every PRI.

6) {air(nc): Vi, k,n.} arei.i.d., uncorrelated, and normal-
ized, such that

1 ifk=F

0 ithzr Y

Elair(ne)air (ne)"| Ai] = {

In practice, the cyclic prefix violates the uncorrelatedness
assumption, but the discrepancy will be small to the extent
that the length of the channel impulse response is small
relative to the symbol duration (e.g. in LTE the cyclic
prefix duration is around 7% of the data symbol duration).
Also, if the symbols are normalized, then by the norm-
preserving property of the isometric DFT, the original
data symbols belong to a normalized symbol set.

(7) a;x(n.) and h; are mutually independent for all 7, k, and
Ne.

(8) P(A;) £ € € [0, 1] forall i. This implies b is sparse with
high probability whenever ¢ is small.

C. Signal-to-Noise Ratio

We define the signal-to-noise ratio (SNR) for a given range
cell £ as

E [llyr(k)|3]
E[l|e(%)]13]

where yr is given in (22) and e(k) ~ CN(0, 0°T).

SNR £ (72)

D. Signal-to-Interference Ratio

The signal-to-interference ratio (SIR) for a given range cell k
is defined as

E [llyr(k)3]

SR = Eb® 3

(73)
where b is given by (28).

E. Algorithm Specifications

Ntrain
Ltein were gen-

1) Admm-Net: Training data pairs {(x;,y;)};
erated as follows. The complex-valued ground truth x; =
w!  bI|T € CM was created such that w; and b; satisfy
given sparsity levels. The nonzero entries of w; were generated
i.i.d. CN(0,1). The nonzero entries of b; were generated i.i.d.

CN(0, B3), where 3 was chosen to satisfy a given SIR. The noise
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e; was drawn from CA (0, o2T), where o2 was chosen to satisfy

a given SNR. The complex-valued simulated measurements are
then produced by y; = Ax; + e;.

Training data sets contained Ny i = 4.5 X 106 samples and
the networks were trained for 45 epochs, i.e., full passes over the
training set. The Adam [42] optimizer was used with parameters
51 = 0.9, B = 0.999 and a batch size of 500. The Adam learn-
ing rate was initialized to 10~ and multiplied by 10! every 15
epochs. All networks were implemented! in Tensorflow 2.

The scalar network parameters were initialized identically for
all layers k as

af =15 Ak =0.01 (74)
ntF=1 AR =0.005 (75)
p" =0.01. (76)

The value for A5 was determined by cross-validation; * was
set to accord with the vanilla ADMM equations; o was set
as recommended [33]; p* was set as recommended [43]. The
matrices M} and M5 were initialized according to (60).

2) Admm: An ADMM iteration is given by Egs. (46)-(50).
We use the following parameter values:

a=15 A1 = 0.01 (77)
n=1 Ao = 0.005 (78)
p = 0.01. (79)

The justification for these values is the same as that for the
ADMM-net parameter initialization, see Section V-E1.

3) Cvx: For CVX, we used the semi-definite program (SDP)
solver on the problem

1}(11211 ||z||§ + 21| D1x||1 + A2[|Dax||1

(80)
st. z=y—Ax
with parameter values
Y =0.01 AR =0.005, (81)

where Ao was found through cross-validation.

4) ADMM Single-Penalty: To highlight the benefit of the
proposed two-penalty objective (31), we also consider the prob-
lem

min [y — @w/3 + 1 [[wl:. (82)
We ran the associated ADMM algorithm with parameters

a=15 A1 =05 (83)

n=1 p=0.5. (84)

F. Results

The following experiments probe network performance and
robustness along four dimensions: network depth (number of
stages), SNR, SIR, and sparsity level. We trained several net-
works, each on a data set with with certain properties. Some

"https://github.com/johnston-jeremy/admm_net_interference_removal
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Fig. 4. NMSE versus iteration/stages of ADMM/ADMM-Net. The training

and test sets have SNR = oo, ||w||p = 2, ||b|lo = 16 and SIR = 0 dB.

training sets had properties constant across samples (e.g. each
sample had SNR = 10), others contained samples with prop-
erties drawn uniformly at random (e.g. each sample had SNR
between 0 and 15). The networks were evaluated in two ways.
One, on test data akin to their training sets. Two, on multiple
test sets, each sampled from a particular distribution, in order
to test the network’s robustness to deviation from the training
distribution.

We evaluate the candidate methods via the average normalized
mean squared error (NMSE) of their estimates, defined as

Nies ~
=[x = xall3

NMSE = 10log;, dB, (85

Niest ”Xi”%

i=1
where X; is the algorithm output and x; is the ground truth. All
test sets were of size Niegy = 10°.

1) Network Stages: Fig. 4 shows algorithm NMSE (dB)
versus the number of stages/iterations for ADMM-Net/ ADMM
for the noiseless case, SNR = o< (i.e., 0% = 0), with ||w]|o = 2
and ||bl|p = 16. Evidently an 11-stage network, achieving an
average NMSE of —25.72 dB, surpasses ADMM, which on
average converges to an NMSE of —25.51 dB in 156 iterations
(see (86) for the convergence criterion).

2) Snr: Five networks were trained: four on data sets with
deterministic SNRs in {0, 1, ..., 16} and one on data with
random SNRs drawn from uniform(0, 15). Fig. 5 plots algo-
rithm NMSE (dB) versus SNR, where in all cases |w|o = 2,
[Ibllo = 16 (25% spectral overlap), and SIR = 0 dB. The points
on red curve are the NMSEs of the networks trained on data
with a deterministic SNR equal to the point’s abscissa; the
points on the blue curve are the NMSEs of the single network
trained on the random SNR data. The cyan and green curves
each are the performance of a particular network trained on
deterministic data (cyan was trained with SNR = 14 dB, green
with SNR = 0 dB) evaluated on test data sets of a different SNR.

3) Sir: Four networks were trained: three were trained with
deterministic SIRs in {—5, 0, 5}, and one was trained on data
with random SIRs drawn from uniform(—>5, 5). For evaluation,
we used three test sets with respective SIRs —5, 0, and 5.
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Fig. 5. NMSE versus SNR. 2 scatterers, 25% spectrum overlap, SIR = 0.
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Fig. 6. ADMM-Net NMSE versus SIR. 2 scatterers, 25% spectrum overlap,
SNR = 15.

Results are plotted in Fig. 6. The red, blue, cyan, and green
curves are analagous to those in Fig. 5. Cyan was trained with
SIR = —5dB, green with SIR = 0dB.

4) Sparsity: For radar sparsity, a total of six networks were
trained. Five networks were trained on data sets with deter-
ministic sparsity levels in {2, 3, 4, 5, 6}; within each of the
five sets ||w||o was the same for all samples. One network was
trained on data with random sparsity levels, where the sparsity
of each sample was drawn from uniform(2, 6). All six sets had
IIbllo = 16, SNR = 15 dB, and SIR = 0 dB. Note that as the
number of scatterers increases, the coefficients must decrease
in magnitude in order to yield a given SNR. For evaluation, we
fixed ||b||o = 16 and varied ||w||o from 2 to 6. Results are plotted
in Fig. 7. Each point on the red curve corresponds to the test set
NMSE of the particular network trained on the (deterministic)
sparsity level equal to the point’s abscissa. The blue curve plots
the NMSE of the network trained on the data with uniformly
distributed sparsity levels. The cyan and green curves each are
the performance of a particular network trained on deterministic
data (cyan was trained with ||w|o = 6, green with ||w||p = 2)
evaluated on test data sets of a different SNR.
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Fig. 7. NMSE versus sparsity level where ||w||o, the number of scatterers,
varies from 2 to 6. 25% spectrum overlap, SNR = 15, SIR = 0.
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Fig.8. NMSE versus sparsity level where || b||o varies from 8 (12.5% overlap)
to 32 (50% overlap). 2 scatterers, SNR = 15, SIR = 0.

Similarly, for interference sparsity, three networks were
trained on data sets containing samples with a single determin-
istic sparsity level belonging to {12.5%, 25%, 37.5%, 50%}.
The random sparsity level data was generated such that ||b||p ~
uniform(8, 32). The spectral location and number of interferers
were assumed to be the same for each MIMO channel and were
allowed to vary from sweep to sweep, but not within a sweep. All
four sets had ||w||o = 2, SNR = 15 dB, and SIR = 0 dB. Note
that as the number of interferers increases, their magnitudes must
decrease in order to yield the same SIR. For evaluation, we fixed
|[w|lo = 2 and varied ||b||o from 8 to 32. Results are plotted in
Fig. 8. The red, blue, cyan, and green curves are analagous to
those in Fig. 7. Cyan was trained with ||b|lo = 32, green with
Ibllo = 8.

5) Recovered Image: To provide a qualitative account of
the methods’ outputs as well as demonstrate super-resolution
capability, we simulate two scatterers in neighboring range grid
points and the same velocity-angle grid point. Fig. 9 shows a
range-velocity image slice—the slice which corresponds to the
scatterers’ angle location—for three methods: ADMM, ADMM
single-penalty, and ADMM-Net. The respective NMSEs of the
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TABLE IV
RUN TIMES IN MILLISECONDS FOR THE SNR EXPERIMENTS, AVERAGED OVER
1000 SAMPLES

Method \ 5dB 10dB 15dB
ADMM-Net (5 stages) | 0.40 0.40 0.40
ADMM 22 26 29

CVX 510 550 600

(total) recovered images are —12.0dB, —4.7 dB, and —18.4 dB.
In all scenarios, single-penalty ADMM yielded an NMSE of
—5 dB or higher, except the scenario SIR = 5 dB in which the
error was —9 dB.

6) Training Time: The 5-stage network training time (45
epochs, Nipain = 4.5 X 10%) was approximately 120 minutes
on a 2-core server with a single Nvidia Tesla K80.

7) Run Time: Table IV lists the run times in the SNR ex-
periment, averaged over the test set, for each algorithm, run in
Matlab on a MacBook Pro with 8 GB of RAM and a 2.4 GHz
Intel i5 processor. The ADMM run time is defined as the time
until the convergence criterion

NMSE(k + 1) — NMSE(k)
NMSE(k)
is satisfied, where NMSE(k) is the NMSE at iteration k. The

5-stage ADMM-Net has a constant run time, equal to the run
time of 5 ADMM iterations.

<107¢ (86)

G. Discussion

The deterministically trained ADMM-Nets, tested on data
akin to their training sets, outperform ADMM and CVX by at
least 2 dB in every scenario, and the performance gap widens
to around 4 dB as SNR decreases below 15 dB, a region of
significant practical interest. Moreover, the 5-stage ADMM-Net
is between 50 and 80 times faster than ADMM, and between
1275 and 1500 times faster than CVX; see Table IV. Qualita-
tively, among the recovered images in Fig. 9 ADMM-Net’s is
the cleanest and most accurate. Also evident from Fig. 9 is the
benefit of the two-penalty term optimization objective over the
single-penalty objective.

As expected, deterministically trained networks are most ac-
curate when used on test data with the same properties as their
respective training sets, as opposed to data with properties that
differ from their training sets. For example, in the SNR exper-
iment, the network trained on high-SNR data (cyan) performs
poorly onlow-SNR test data, but for high-SNR test data achieves
an error several dB below the low-SNR-trained network (green).
Overall, the networks trained on random data (blue curves) are
more robust to test set variation that the deterministically trained
counterparts. Lower performance in certain regimes may trace to
the fact that, since the training set size is the same as the others,
fewer examples from each scenario are represented. However,
the performance gap shrinks in more challenging environments,
i.e. lower SNR, more spectrum overlap, etc.

While the network improves the original algorithm, it also in-
herits some of the algorithm’s shortcomings. Chief among them
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perhaps is the off-grid assumption. Separate experiments, not
shown, indicated that ADMM and CVX are significantly more
robust in this regard. Unfolding off-grid recovery algorithms
may be the subject of future work.

VI. CONCLUSION

We have shown that deep learning, in particular the deep
unfolding framework, can be leveraged to significantly improve
upon ADMM and CVX for communication interference removal
in stepped-frequency radar imaging. The added cost is network
training, which can be done in a matter of hours. Deep unfolding
apparently makes fuller use of prior knowledge than standard
iterative algorithms, adapting theoretically sound, generally ap-
plicable procedures to problem-specific data. Determining the
extent to which training can compensate for model mismatch is
left for future work.

How can we account for the performance ADMM-Net? Cer-
tain unfolded networks are designed to learn only algorithm
hyperparameters and thus have a clear-cut “parameter-tuning”
interpretation; others, such as our ADMM-Net, learn algorithm
operations, and thus may elude such a straightforward account.
In some cases the learned operations do coincide with those
suggested by theory; a VAMP-inspired network, randomly ini-
tialized, learns a denoiser matched to the true signal priors [16].
ADMM-Net, on the other hand, is initialized as theoretically
prescribed, whence it then deviates through training. Further
insight might be found in identifying redundancies among the
learnable parameters. For example, in LISTA one learnable
matrix converged to a final state determined by another, thus
allowing a reduction in the number of parameters without alter-
ing performance [44].
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