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Using Collocated Vision and Tactile Sensors for

Visual Servoing and Localization
Arkadeep Narayan Chaudhury , Timothy Man, Wenzhen Yuan , Member, IEEE, and Christopher G. Atkeson

Abstract—Coordinating proximity and tactile imaging by collo-
cating cameras with tactile sensors can 1) provide useful informa-
tion before contact such as object pose estimates and visually servo a
robot to a target with reduced occlusion and higher resolution com-
pared to head-mounted or external depth cameras, 2) simplify the
contact point and pose estimation problems and help tactile sensing
avoid erroneous matches when a surface does not have significant
texture or has repetitive texture with many possible matches, and
3) use tactile imaging to further refine contact point and object
pose estimation. We demonstrate our results with objects that have
more surface texture than most objects in standard manipulation
datasets. We learn that optic flow needs to be integrated over a
substantial amount of camera travel to be useful in predicting
movement direction. Most importantly, we also learn that state
of the art vision algorithms do not do a good job localizing tactile
images on object models, unless a reasonable prior can be provided
from collocated cameras.

Index Terms—Force and tactile sensing, localization, sensor
fusion.

I. INTRODUCTION

T
HIS work is motivated by FingerVision [1] where the same
camera was used for tactile sensing and to view nearby

objects through a transparent elastomer. Although FingerVision
convinced us of the importance of proximity imaging, it did not
provide high resolution images of contact surface texture, and
the transparent elastomer blurred proximity imaging, attracted
dust, and got scratched and worn so the view of nearby objects
was often not as good as we would like. Separating tactile
and proximity imaging enables us to get the high resolution of
GelSight [2] tactile sensors that produce images of the surface
texture (tactile imaging), and better proximity imaging with rigid
lenses that don’t attract dust as much, are easier to clean and don’t
scratch or get worn as easily. This paper explores an alternative to
using the same camera for tactile and proximity imaging, where
a tactile sensor is collocated with a camera for proximity sensing
(Fig. 1). Since the tactile sensor we use, a GelSight variant, is
also based on a camera, we are actually collocating multiple
cameras to provide tactile and proximity imaging.

Cameras that move with a robot hand can have less occlusion
and more resolution since they are closer to manipulated objects.
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Fig. 1. We demonstrate an approach to integrate sensors with different fields
of view to visually servo the robot arm to a predetermined contact point and
estimate the pose of a fixed object relative to the sensors at contact. Fig. 1(a) and
(b) show our sensor platform. We use 2 cameras with70◦ and 100◦ fields of view,
which we collocate with a modified GelSight sensor in the middle (Fig. 1(b)).
The cameras are used to visually servo the robot (Fig. 1(c)) and generate a
preliminary pose estimate (Fig. 1(d)) while the robot is moving towards the
target. At contact, the GelSight data is observed (Fig. 1(e)) and the preliminary
pose is then refined to generate the object pose at contact. Fig. 1(f) shows the
camera pose superimposed on the mesh model of the object.

Direct measurement of the direction or bearing to an object and
its pose relative to the hand can be used to guide the hand to
a particular contact location and center the hand with respect
to an object. External and head-mounted cameras are often
occluded by the robot itself as well as manipulated objects,
and need to use stereo, multi-view, or other forms of depth
measurement to locate the hand relative to the approach axis and
object, which involves subtracting two noisy estimates (typically
large numbers) to estimate a smaller quantity, which is usually
less accurate than directly measuring the smaller quantity. We
have found depth measurements from stereo or time of flight
(TOF) cameras usually have low spatial resolution, so getting the
camera close to the hand is useful to improve depth resolution.

We divide the problem of contact pose estimation into two
parts — The initial phase before contact, when cameras can be
used for vision-based servoing to a contact point target as well as
estimating a prior for the tactile sensor contact point and object
pose estimation, and the contact phase which refines the prior
pose estimates. In this paper we assume that 1) the object is fixed,
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even during contact, 2) the object is a single rigid body with no
articulations, and 3) we have a prior (potentially imperfect) 3-D
model of the object (potentially provided by our vision of the
current object) so we can express the pose of the object with
respect to this model. For this paper we put aside the gross object
localization and recognition problems in order to focus on fine
localization, so we assume a vision system has already located
the object, created a bounding box, and recognized the object by
creating or selecting an appropriate 3-D model that we want to
register the actual object to (e.g. [3]). Our experimental pipeline
involves selecting a position goal and then visually servoing to
that goal, recording color and depth data from the vision sensors,
generating and maintaining pose estimates of the object, and
using the estimates along with tactile information received at
contact to localize the contact point on the object. Through this
work we show that:
� The optic flow, as observed by the hand mounted cameras,

can be used to predict the heading direction of the hand
using image-based techniques rather than 3-D geometry.
In our setup frame-to-frame optic flow was dominated
by small changes in orientation of the hand and thus the
cameras. Optic flow had to be integrated across about 10 cm
of hand travel to be useful.

� A few “mid-course” corrections can correct almost all the
error in trajectories.

� Pose errors, when measured only with the cameras are
about ±1.5 cm and ±2◦ in translation and rotation respec-
tively about a vertical axis.

� Given these priors, tactile estimation based on a GelSight
sensor further improved the pose estimates to an uncer-
tainty of ±1.5mm and ±0.5◦ in translation and rotation
respectively in cases distinct tactile signals were available.

� Collocated vision is particularly useful when an object does
not have distinctive tactile surface texture, or has repetitive
surface texture. We show that using tactile sensing col-
located with vision can help disambiguate tactile signals
when used for localization.

We provide additional details of our work, tables of re-
sults and reference implementations of our algorithms de-
scribed in the paper here: https://arkadeepnc.github.io/projects/
collocated_vision_touch/index.html

II. RELATED WORK

In this section we provide a survey of related work on visual
servoing and pose estimation using hand-mounted cameras and
tactile sensing. Recent work on addressing these issues has used
hand-mounted cameras to demonstrate superior performance in
classical manipulation tasks such as grasping and bin picking [4].
With the availability of a visual perspective complementary to
external (or head mounted) cameras, researchers have diversified
the moving cameras to serve as tactile devices ([1], [2]) and
have implemented delicate manipulation behaviors (see e.g. [5],
[6]). Recent research has also developed tactile sensors and
algorithms for estimating contact pose and inferring object from
contacts [7], [8], tracking object motion by fusing externally
mounted cameras and tactile sensors [9], and transferring infor-
mation between external cameras and hand-mounted cameras
(see e.g. [10]). A closely related work by [11] discusses inte-
gration of a visual and tactile measurement through a Bayesian
filter.

Vision-based localization and contact prediction: Camera-
on-hand or more generally camera-on-mobile-agent arrange-
ments have been investigated by several researchers to pursue
diverse goals such as visual servoing to a workspace goal
(e.g. [12]), collision avoidance systems on miniature aerial
vehicles (e.g. [13]), and how flying insects, birds, and rapidly
moving animals perceive motion [14]. Literature on quantitative
analysis of looming1 (e.g. [15], [16]) is of particular interest to
us as we try to identify an area in the image space corresponding
to the direction of heading of the robot at any particular moment.
Recent research on optical expansion (e.g. [17]) is focussed on
supervised learning, instead of hand crafted functions (e.g. [15],
[16]) to compute dense scene flow from optic flow to identify
relative motion of objects and the agents, and has been demon-
strated to exhibit state of the art performance in identifying
objects heading towards the agent. In the current work we build
upon research on optic flow for scene understanding to identify
an area in the robot’s visual field corresponding to the physical
point in the workspace where the robot is currently headed.
Tactile localization and contact estimation: Vision sensors
can have a wide “field of view” and are good for making large
scale models. A tactile sensor has a much smaller measurement
area (or field of view) and can potentially capture minute details
of the surface it interacts with. Early research on tactile sensing
leveraged this capability, even with a seemingly low resolution
tactile sensor (Weiss Robotics DSA9205), to demonstrate object
recognition using image feature descriptors [18] and, recognize
and localize an articulated object through a sequence of touches
(see e.g. [19]). With the introduction of camera-based higher
resolution tactile sensors, most notably the GelSight (see [2])
and its derivative GelSlim [20], investigations on tactile object
recognition and localization have made significant progress in
tactile sensing driven perception. [21] described tactile localiza-
tion using the GelSight sensor using conventional feature based
image alignment. [22] integrated the GelSlim with a gripper
and interfaced it with a model based controller to successfully
perform re-grasps of a cable. More recently, [23] demonstrated
tactile localization and shape reconstruction using a GelSlim
sensor, where the authors trained neural networks to generate
height maps with ground truth data obtained from robot experi-
ments with the sensor and known objects. The trained network
was then used to generate height maps of the surface of an object
and the height maps were registered to reconstruct the object
surface. This work was extended by [24] where the authors used a
renderer to generate and cache a large number of possible tactile
signals of objects from a data set touching a tactile sensor (Gel-
Slim in this case) in different orientations. An actual tactile signal
corresponding to a particular object at a particular pose was then
compared with the cache to retrieve candidate object and pose
pairs and the network demonstrated in [23] was then used to
generate a height map which was registered with the candidate
object at the candidate pose to localize contact. [25] introduced
a new time of flight based tactile sensor, the soft-bubble, and
demonstrate object identification using learned embeddings and
object localization by registering the tactile signal (obtained
as a point cloud by their sensor) with the retrieved geometric
model of the recognized object. In the current work we build
upon literature on contact localization using high resolution

1Looming or visual looming is defined as the phenomena of an object getting
bigger in the visual field as the relative distance between the observer and the
object decreases.
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Fig. 2. Fig. 2(a) shows our sensor platform which is attached to the robot manipulator. The sensors, from left to right, are the Intel RealSense L515 LiDAR
camera, our modified version of the GelSight and an RGB camera. The RGB camera and the RealSense are at a distance of 6 cm each from the camera to the left
and right respectively. Fig. 2(b) shows the schematic of our modified version of the GelSight, Fig. 2(c) is an instance of the raw data collected by our GelSight
when pressed against an 18 mm long 6 mm diameter bolt with 1 mm pitch. Through the image, we note the physical scope of the sensor is almost entirely covered
by the 18 mm long bolt. We process the raw GelSight data to yield metric depth and normal maps. The depth of the reconstructed surface is rendered as a shaded
point cloud in 2 views in Fig. 2(d).

tactile sensors, visual localization and hand mounted cameras to
demonstrate a suite of collocated vision based sensors that can
be used to visually servo a robot to touch and localize objects in
the workspace.

III. METHODS

In this section we describe our sensor platform (A) and algo-
rithms to estimate where the robot hand will go (B1), visually
servo the robot to a target contact point (B2), estimate the pose of
the target object (C), and combine vision and tactile information
to estimate both the contact point and refine the object pose
estimate (D).

A. Sensor Platform

In this work we collocate cameras with a camera-based tactile
sensor by putting the cameras and the tactile sensor in close
physical proximity while operating them independently. The
sensor platform consists of a GelSight tactile sensor in the middle
(co-incident with the robot wrist’s axis) (Figs. 1 and 2), with a
camera on either side. We modify the GelSight as described
by [26] in the physical sensor form factor introduced by [2]. We
use a LIDAR-based RGBD sensor (Intel RealSense L515) with
a 70◦ field of view to provide depth (Fig. 1(a) and 2(a) left) and
color images of the workspace, and a USB camera (a Sony IMX
291 sensor) with a wider 100◦ field of view lens (Figs. 1(a) and
2(a) right). We chose these cameras partly because they were
of comparable size to our GelSight sensor, thus ruling out most
other popular RGBD cameras. Also, the USB camera yielded
high resolution images which were better than the color channel
of our 3-D sensor and helped us localize small objects. Further
details on the sensors can be found in Fig. 2.

B. Visual Servoing With Hand Mounted Cameras

In this section we describe a method to estimate the robot
hand’s heading direction in the workspace and then we describe
how to servo to a goal using that estimate.

1) Optical Point of Expansion From in Hand Cameras: We
process the scene to identify the location of a 3-D point cor-
responding to the heading direction of the robot in the image
space. To achieve this, we calculate the optical flow between the
consecutive frames obtained by the hand mounted cameras and
identify the region in the image from which the optic flow seems
to be emerging (i.e., we look for a portion of the scene which
has zero translation) as the camera moves towards the scene.
Assuming that the world scene is relatively flat (object depth

Fig. 3. Fig. 3(a) shows the surface of the squared magnitude of the optical
flow between a consecutive frame pair in 2 views. We note that this surface
assumes a parabolic shape. The red dot is the minima of the optical flow surface
as identified by our algorithm. Fig. 3(b) demonstrates the usage of our algorithm
to correct trajectory errors using both cameras as shown in Fig. 2(a). The X, Y
and Z axes are marked in red, green and blue in Fig. 3(b) on the bottom right of
the figure.

� projection depth), the square of the magnitude of the optic
flow at each pixel is roughly distributed as a parabolic surface
(see Fig. 3(a)). We calculate the motion field (per pixel optic
flow magnitude and direction) between 2 consecutive frames
using the OpenCV implementation [27] of the Lucas-Kanade
dense optical flow, which solves for per pixel motions (along
horizontal and vertical directions) over the full image. We also
tested the Farenbäck optical flow [28] and the Brox optical
flow [29], and found that the dense Lucas-Kanade optical flow
performs slightly better in computation speed and produces
smoother optic flow fields. The optical point of expansion (POE)
is obtained as the minima of the surface representing the square
of the magnitude of the optic flow. We use a robust algorithm to
detect the POE2.

The heading direction estimated by the optical flow between
consecutive frames was too noisy to yield meaningful heading
estimates. To address this, we looked at the trajectory correction
estimates for each of the on hand cameras and found their
prediction to be very closely correlated (almost equally incorrect
or equally correct), which led us to rule out camera noise and
incorrect robot kinematics including the camera mounts as the
cause of the noise. We concluded that the errors were being
caused by small unmeasured rotations of the robot wrists (play
or backlash). Numerical modeling showed that the expected
amount of play in orientation led to optic flow values comparable

2Please see the paper webpage for more details.
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to the “noisy” shifts in the POE. We also noted that the noise
in the predicted trajectory errors was centered about zero. We
averaged POE shifts over a robot travel of at least about 10 cm to
get usable POE estimates. For our robot setup. where a maximum
of 1 m downward travel was possible, we observed empirically
that about 10 cm intervals provided useful trajectory corrections
and provided the opportunity for several corrections as the robot
moved to the target

2) Correcting Trajectory Errors Using Pixel Space Errors:
In the previous section we described a method to identify the
image coordinates of the point in the workspace to which the
robot is headed. In this section we address the problem of
correcting trajectory errors using those predictions. This can be
useful when the robot’s trajectory needs correction and the only
information about the updated goal is available in pixel space
– possibly from a hand mounted RGB camera which detected
a movement of the target. To reach a pre-planned goal in the
robot’s workspace, the robot, almost always, needs to move
towards that goal, hence the image of the goal point and the
observed POE should be very close. Errors in the pixel space
between these two, indicates an error in the trajectory being
followed by the robot, which we aim to correct. To do this,
we note that as the cameras are registered to the robot, we can
compute the Jacobian which correlates the pixel space error to
the task space error and we can invert the Jacobian (up to an
arbitrary scale in the projection direction) to obtain trajectory
space corrections from pixel space errors. In Fig. 3(b), on the two
sides of the robot, we show 2 trajectories where the robot travels
about 1 m (vertically) from the start to the final contact position,
and each of the trajectories need a correction of 10 cm errors
in the X and Y directions in the robot workspace. We show the
initial portions of the trajectories in yellow, the planned portions
in red, and the corrected portions in green. The final accuracy
achieved was within 5 mm of the target.

C. Pose Estimation Through Vision

In this section we discuss visual localization of an object with
known 3-D geometry. At least in the early stages of approach,
the hand-mounted cameras can see all or large portions of the
target object, and standard image based registration methods
([30], [31]) can be used to estimate the object’s pose relative
to the robot hand. This is quite different from the situation with
tactile sensing where only a small part of the object is visualized.
As is common in the whole-object-visible camera-based pose
estimation literature (see e.g. [30], [31] and [32]), we decompose
pose estimation into two parts – coarse pose estimation by
aligning the centroids and edge moments, and finer alignment
using a distance-based cost applied densely.

As a prerequisite for this part we need the edge pixels of the
object in the image and for this we use either the depth edges
on the object if available or else use the image gradient edges
of the object – we use a Canny edge finder for this purpose. Let
us denote this binary edge image as IS . Next, we formulate an
optimization problem to identify an object pose that produces
the most similar edge distribution to IS .

To do this, we generate an initial guess for θ (the angle of
rotation about the camera projection axis) for the object from
the principal components of the camera image and if an aligned
depth map is available, we use its mean to initialize the z compo-
nent (distance between the camera and object along the camera
projection axis), or else we initialize the z depth arbitrarily.

The x and y directions along the image plane are initialized
by back-projecting the centroid of the edge pixels using the
camera intrinsics and the initial value of z . With the initial guess
ω = [x, y, z, 0, 0, θ], we use a differentiable renderer (we use a
modified version of the DIRT renderer from [33]) to render the
mesh model of the object, extract the corresponding edge image
IR(ω) and solve the following minimization to obtain a rough
pose estimate from the camera image. For each IR, we identify
the image edge pixels pi

R and pS for IR and IS respectively and
minimize the following sparse edge matching cost Ecs in (1)

Ecs(ω) = γ [||p̄R(ω)− p̄S ||2] + (1− γ)

〈V (pR(ω)− p̄R) · V (pS − p̄S)〉 (1)

where, V(p) is the direction of largest variance of the mean cen-
tered point set p ∈ R

2, given by the eigenvector corresponding
to the maximum eigenvalue, 〈·, ·〉 is the dot product between
vectors and γ is a weighting factor. Minimizing (1) aligns the
centroid and approximately recovers the angle of rotation along
the camera projection axis.

The expression for Ecs does not admit automatic gradient cal-
culation due to the non-differentiable selection of pixel indices
to obtain pR from IR, therefore, we obtain a finite difference
gradient using central differences. We minimize Ecs∀θi and
obtain the candidate pose parameters ω̂ = {Xcs, Ycs, Zcs, θcs}
in the camera coordinate frame, corresponding to the minimum
Ecs. From Fig. 4(b) we note that minimization of Ecs is not
expected to solve for the projection depth, as it only recovers the
orientation of the camera and not the projection depth. In the next
part, we solve the projection depth by minimizing a modified
version of the dense differentiable cost using the directional
chamfer matching energy as discussed in [30] and [31]

Ecm(IS , I
ζ
R) =

∑

ξpi
s∈

ξIS

[

min
ξp

j

R
∈ξIR(ζ)

||ξpi
S −ξ p

j
R(ζ)||

]

. (2)

In (2), the outer sum
∑

ξpi
s∈

ξIS
(·) implements the edge

awareness by binning the edges according to their orientation
(as quantized by ξ ∈ [−π, π]), and implicitly assigning edge
pixel correspondences. We observe that the inner minimization

problemminξp
j

R
∈ξIR(ζ) ||

ξpi
S −ξ p

j
R(ζ)|| for each ξ

Ecm can be

solved by the Euclidean distance transform. As the ξ
Ecm cost

is cumulative over the ξIS image, the cost boils down to the
pixel-wise sum of absolute differences between the Euclidean
distance transforms (EDT) of images ξIS and ξIR(ζ). So using
the definition of Euclidean distance transform from [34] in (2),
we simplify our dense edge matching energy as

Ecm(ζ) =
∑

ξ

[

∑

G

[

|EDT(ξIS)− EDT(ξIR(ζ))|
]

]

. (3)

We minimize this function with gradient descent to obtain

a coarse pose estimate ζ̂ from the camera image and transfer

the pose estimate to the GelSight camera frame as ζ̂GS . In con-
trast to [30], [31], we implemented modified and differentiable
versions of the matching costs and thus, our gradient steps are
about 80% faster than the reference implementations of [30],
[31] for the same size of the image. In practice, to keep the
computational cost low, we maintain a coarse pose estimate
using (1) throughout the major part of the trajectory and switch
to (3) at a point beyond which the objects are de-focussed. For

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 16,2022 at 18:20:28 UTC from IEEE Xplore.  Restrictions apply. 



CHAUDHURY et al.: USING COLLOCATED VISION AND TACTILE SENSORS 3431

Fig. 4. Our pipeline to estimate pose through vision and touch. Fig. 4(a) is the color channel of the RGB-D sensor stream captured at a particular point in the

trajectory. Fig. 4(b) is the pose estimate obtained after solving (1), which is refined by solving (3) and we obtain a camera pose estimate ζ̂ (shown in Fig. 4(c))

which is mostly correct in the camera projection depth and camera yaw. We transfer ζ̂ to the reference frame of the GelSight and obtain Fig. 4(d) showing the

relative pose of the object and the GelSight. This corresponds to the pose ζ̂GS . This estimate is further refined by minimizing (4) using the GelSight data (Fig. 4(e))
obtained at contact, and we obtain the final pose shown in Fig. 4(f).

Fig. 5. Fig. 5(a) is the pose estimated using the color channel image. This
pose estimate was initialized with coarse pose estimates obtained using depth
images. Fig. 5(b) is the GelSight data obtained at contact and Fig. 5(c) is the
camera pose at contact. Figs. 1 and 4 contain similar results.

Fig. 6. Fig. 6(a) to (c) are the steps in localizing a slender metallic object,
Fig. 6(d) to (f) are the steps in localizing a miniature circuit board. L-R we
generate a coarse pose estimate with just the color image, receive the GelSight
image on contact and finally obtain the camera pose on contact. The object in
Fig. 6(a) is 10 cm long and 8.5 mm in diameter at the thickest part. The circuit
board in Fig. 6(d) is 38 mm × 38 mm square.

objects in Figs. 1, 4 and 5 this distance was around 15 cm and
for objects in Fig. 6 it was 10 cm.

D. Precise Contact Pose Estimation Through Touch

We found that our vision-based localization had errors on the
order of a centimeter, due to our algorithms, imperfect camera
calibration, local minimums in matching, and sometimes a lack
of visual features to match or track. In addition, as the hand
comes near the object, the depth and image sensor measurements
become unusable – the LiDAR based sensor provides reliable
depth estimates at distances greater than 25 cm, and the camera
image measurements were usable at distances greater than 12-
15 cm to the object, after which the items of interest often go
out of view and the image becomes too blurry to extract high

quality edges needed by our 3-D pose estimation algorithms.
We find that using the tactile image on contact can improve
contact point and pose estimation. In Fig. 2 we noted that we
could generate metrically correct depth and normal maps of the
deformed GelSight surface at contact. In this section we use that
information, along with the pose estimated from the previous
section to localize contact, given that we know the geometry of
the object. To achieve this, we use multi-scale dense depth and
normal map alignment to obtain the pose of object with respect
to the tactile sensor.

We capture the tactile image in our GelSight’s native camera
resolution of (640× 480) pixels and obtain depth and normal
maps. We then decompose each of the normal and depth maps
into 4 lower pyramid levels. We denote these 5 normal and
depth maps of the source image as NS and DS respectively.
Next, we render the object (using [33]) through the GelSight’s
viewport using the pose estimated in the previous section and
obtain normal and depth maps corresponding to the frame sizes
of NS and DS respectively.

We note here that this is not an exact simulation of the GelSight
sensor through our renderer – the ideal GelSight should only
measure objects touching it i.e. ∼25 mm from the camera.
Anything beyond or closer than that is either not touching the
sensor or interfering with it. We relax this requirement, and also
neglect the effects of the soft body contact between the gel and
the object to get a better basin of convergence in the optimization

problem. We denote these sets of rendered depth maps byNR(ζ̂)
andDR(ζ). Our alignment cost function Egs(ζ) for the GelSight
data is

Egs(ζ) =

5
∑

i=1

[∣

∣Di
S −Di

R(ζ)
∣

∣+
[

1− 〈N i
S ·N i

R(ζ)〉
]]

(4)

where 〈N i
S ·N i

R〉 denotes the pixel-wise dot products of the

normal maps. We solve this with ζ̂GS as the starting guess using
gradient descent. Fig. 4 describes the steps discussed above.

IV. RESULTS

In this section we present the results of localizing contacts
using the sensor setup and the algorithms discussed in this work
through 6 scenarios. For the experiments presented below, we
use a black background to simplify the object segmentation and
edge detection. Except for the glue gun, all the other objects
had reflective parts and were painted matte white to remove
specularities.

1) Localization With Color and Depth Edges: Our RGBD
sensor captures the depth of the scene reliably from 30 cm
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Fig. 7. Collocated vision can help us disambiguate between repeated tactile
features. In this experiment we touch the middle of the set of teeth and could
localize the contact using our pipeline.

away and can produce aligned depth and color images. As
the depth images are unchanged by changes in lighting and
texture, extracting edges from depth images and maintaining
coarse pose estimates as the robot moves closer to the object is
a viable strategy to generate initial pose estimates which are
later refined to estimate the pose at contact. For the objects
described in Figs. 1, 4 and 5, when the depth sensor output
degraded (at 20 cm) we transferred the pose estimates obtained
(and maintained) using the depth image, to the color image.
refined the pose estimates from the final color image using the
tactile image to obtain the pose at contact.

2) Localizing Small, Flat and Thin Objects: Depth cameras
don’t capture much in situations where an object has little depth
variation. The limited field of view of most depth cameras means
they lose sight of where the GelSight sensor will land as the hand
approaches an object. For these reasons we collocated a high
resolution large field of view RGB camera with the GelSight
sensor, so the system would also work well with small thinner
objects with less depth variation. In Fig. 6 we demonstrate the
localization of a slender metallic pin and a 4 cm square circuit
board.

3) Disambiguating Tactile Measurements With Vision: With
collocated vision, we can disambiguate between repetitive sur-
face features, which would not have been possible with just tac-
tile sensing. To show this, we set up an experiment (Fig. 7) where
the robot approaches the box cutter from above and touches
around the middle of the slider. The tactile image recorded is
shown in Fig. 7(b). The pose estimates obtained from the camera
when transferred to the GelSight yield useful initial guesses
which can then be refined with the tactile data to localize the
contact.

4) Estimating Object Pose With Vision And Touch: In this
section we present our results on localizing objects with vision
and touch, and evaluate the performance of our localization
pipeline. We focus on the case where the contact point has a
unique arrangement of useful tactile features. This is the best
case for a combined approach. In practice, if the tactile sensor
contacts a featureless area, we can detect this situation and
ignore the output of the tactile sensor. Most work in this area
specializes for a set of objects used in a training set for a learning
approach. We did not find work that combined a camera with
a high resolution tactile imaging sensor for localizing objects
upon contact, so there isn’t an obvious method to compare to.
This along with our choice of smaller and highly textured objects
preempts easy comparison with recent conventional and learned
localization approaches (e.g. [23], [24], [35]–[37] etc.). Instead,
we present overall results of accuracy experiments below.

For each of the 6 objects used in this work (Figs. 1(f), 4, 5,
6(c), 6(f), 7), we fix the object to the robot table. Assuming that

there is zero error in position control of our robot (we use a
Universal Robots UR5E manipulator fixed to a vention.io table
of recommended design for the same robot), we register the
object with respect to the robot base and treat this pose as our
ground truth. Next, we move the robot vertically 1 m above the
object and move the robot down to touch the object at a chosen
point that will yield good tactile information, and localize the
object with respect to the robot. We repeat this 3 times for the
same object positions and repeat this experiment for 2 more
positions of the object with respect to the robot – i.e. localizing
each object 9 times with respect to the robot. Fixing the objects
is a restrictive assumption in the context of localizing objects
especially with touch, however, to ensure repeatability of the
experiments reported in the section, we had to fix the objects to
a rigid base. Following [30], [31] we report the repeatibility of
our pose estimation pipeline as the measure of its performance.

Using tactile sensing the localization errors were brought
down to±1.5mm in translation and±0.5◦ in rotation from about
1.5 cm in translation and 2◦ in rotation using only vision3. How-
ever, for cases where the tactile features were not unique, e.g. the
box cutter teeth (Fig. 7) and the metallic object (Fig. 6(c)), the
tactile sensing actually increased the localization errors in the
horizontal directions. The order of these errors were equivalent
to the scale of the repeated features – 5 mm for the experiment
described in Fig. 7(c) (the box-cutter teeth are about 3 mm wide
placed in intervals of 5 mm) and about 2 mm for the experiment
described in Fig. 6(c) (the embossed features are very similar at
intervals of 3.5 mm). This observation is consistent with the fact
that the final gradient descent step (4) to refine the camera based
pose estimates will converge to the wrong local minima if the
tactile measurements are not distinctive enough. However, for
objects with rich tactile features, using tactile sensing assisted
with vision provides better localization than exclusively using
either as we show in Section IV. We repeated a subset of the
experiments reported above where we first corrected the robot
trajectory using the procedure described in Section III-B2 – and
observed similar localization performance.

5) Effect of Points of Contact on Localization Accuracy: In
this section we present the effect of randomly selected contacts
for localization. For this set of experiments, we fix each of the
objects and the black background plate used in Section IV to a
graduated compound slide capable of in plane translation and
rotation. We then moved the robot vertically down to make
contact at the same location on the object used for the exper-
iments reported in Section IV to generate a starting pose. Next,
we generated 5 random configurations per object in translation
and orientation on the plane of the table and moved the robot
vertically down to touch the object and attempted to recover
the randomly generated pose perturbations we introduced. For
each of the objects, as expected, we observed similar errors in
localization using only vision as reported in Section IV. For
the box cutter (Fig. 4) most of the contacts yielded useful tactile
signals so the errors in recovering the perturbations in pose were
in the range reported in Section IV – i.e. ∼ 8mm in translation
and ∼ 1.5◦ in rotation. This observation was also consistent for
the smaller textured objects3 (Fig. 6). However, tactile sensing
was not always helpful in localizing the objects – for the glue
gun (Fig. 1) and the folding knife (Fig. 5, significant parts of
the object were featureless and the tactile signals obtained when
touched at these parts were unusable in localizing the objects as

3Please visit the project website to view the metrics, CAD models, etc.
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the final gradient descent step ((4) in Section III-D) re-introduced
localization errors of about 3-4 cm and 15◦ by converging to
incorrect poses.

6) Localizing Contact Using Only Vision: We explored two
approaches for predicting contact with only vision – an image-
based approach that tracks the POE similar to visual servoing
and a 3-D geometric approach that can estimate contact based
on a single image captured before the object gets out of focus or
gets mostly out of the frame.

In the first case, we identify the POE as described in Sec-
tion III-B1. Based on the known offset between the camera and
the Gelsight, we can identify the predicted GelSight contact
point in any camera image. This approach works best when
the hand is moving straight to the contact point (no trajectory
corrections or going around obstacles), there are a lot of visual
features to track, and the hand starts high enough so there is
little offset of the object and the background caused by the
different distances to the object and the background. We tested
performance with the data from the previous section for objects
in Figs. 4, 7 and 1(f). We could predict the location of contact
with 1 cm accuracy.

In the second case, we took the final usable image in these
trajectories and used the procedure described in Section III-C to
obtain the pose of the object with respect to the RGB camera.
Next, we transformed the pose of the object to the frame of
the GelSight camera and simulated moving blindly until the
vertical distance between the object and the GelSight is 3 cm
(the gel surface is 2.5 cm away from the GelGight camera), and
reported the location of contact. We compared these estimates
of the point of contact for all the objects we used. We found
that for experiments with larger objects (as shown in Figs. 4,
7, 5 and 1(f)) the average error between the estimated true
location of contact and the location estimated by blindly moving
downwards in the frame of the GelSight camera was 3.5 cm,
whereas the same metric for experiments with smaller objects
(as shown in Fig. 6) were about 1.5 cm. The experiments with the
smaller objects have lower errors because the distance between
the GelSight and the object at the point the pose of the object was
measured with only vision was much lower (8-10 cm) than the
experiments with the larger object where the distance was about
25-30 cm, so the length of the blind descent was smaller for the
smaller objects and hence the accumulated error in predicting
the point of contact was smaller.

To localize contact with a single tactile image, we attempted
to match the processed tactile image obtained from the modified
GelSight (as an image (Fig. 2(c)) or a point cloud (Fig. 2(d))) to
equivalent representations of the object model. We used standard
image feature matching (ORB, SIFT) and point cloud feature
matching ([35], [36]) techniques but were unable to generate
useful matches. This leads us to conclude that in the absence of
good initial pose estimates from an external sensor or learned
embeddings (e.g. [24]), the portion of the object observed by
the GelSight is often not large enough for conventional feature
matching algorithms to work.

V. DISCUSSION AND FUTURE WORK

We focused on objects with significant surface tactile texture
that our small tactile sensor could image. This led us to not use
existing sets of objects for manipulation research (YCB [38],
McMaster [39]). This different choice is due to the absence
of a data set to benchmark tactile imaging and vision working

together. It is unclear what objects should be in the data set, how
approaches trained on such a data set would generalize to novel
objects and how much effort is needed to introduce new objects
into the data set and pipelines based on them. In our approach, we
used an off the shelf 3-D scanner (EinScan-SE) to generate 3-D
models of objects and reference poses for our initial estimates
(see Section III-C). We do expect that versions of the current
state-of-the-art edge based localization pipelines (what we use)
to be inherently slower than learned pipelines for generating
initial pose estimates (e.g. [24] or [37]), but we believe that our
localization pipeline would perform well for objects we have not
tested here. Also, in the current literature, we did not find explicit
or implicit feature transforms invariant across tactile images (or
processed tactile data) and visual images. Although there exists
works on learning features (see [10], [23], [24]), using them for
explicit correspondences to match tactile data to visual data is
relatively unexplored and we consider promising future work.

While integrating visual sensors of different capabilities, we
noted that having optical sensors with almost co-incident optical
axes would trivially solve some of the issues we faced while
localizing small objects and disambiguating possible localiza-
tions. Collocating an ensemble of cameras of different capa-
bilities (similar to smart phone multi-camera systems) creating
a synthetic vision system is a natural next step of this work.
Such a system could create a virtual fovea focused on where
the tactile sensor could contact the object and bring down the
overall footprint of the sensor setup so that it can be efficiently
collocated with a standard gripper. Using a gripper with the
ensemble of sensors is also future work. The GelSight data can
be inexpensively processed to obtain surface normals of objects
with respect to a fixed frame. This is valuable for pose estimation
and should be emphasized in future object shape representations
and manipulation algorithms. Computing object surface normals
by controlling illumination at the scale of a robot workspace is
also future work.

VI. CONCLUSION

In this work we show that collocating cameras with tactile
sensors on a robot hand in many cases enables tactile localization
to work where vision only or tactile sensing only localization
may perform badly or fail. We demonstrated this with common
objects without substantial pre-computation and without using
a known and fixed set of object models (learning). Vision can
help disambiguate tactile image matching, especially in cases
of limited, repetitive, or otherwise ambiguous tactile features.
Tactile sensing almost always improves visual localization as
well. We also found that using optic flow from hand mounted
cameras had to be integrated across about 10 cm of camera travel
to provide useful heading estimates, and could be used to correct
trajectories.
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