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We summarize integrating cybersecurity and artificial intelligence (Al) research in cybersecurity
education and implementing a module in an existing noncybersecurity undergraduate engineering
course. This initiative will drive the broader community to focus on the convergence of cybersecurity

and Al education.

I he Joint Task Force on Cyber-

security Education! defines
cybersecurity as a “computing-based
discipline involving technology, peo-
ple, information, and processes to
enable assured operations. It involves
the creation, operation, analysis, and
testing of secure computer systems.
It is an interdisciplinary course of
study, including aspects of law, policy,
human factors, ethics, and risk man-
agement in the context of adversaries.”
Our society is undergoing a tremen-
dous exploration and adoption of
artificial intelligence (AI) to drive
the growth of the economy, enhance
economic and national security, and
improve quality of life. It is thus vital
to expose engineering and computer
science students to Al and how it
works along with how Al can enable
assured operations and how it might
be exploited by adversaries to under-
mine public trust and confidence.
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Currently, university research offer-
ings in Al and cybersecurity are limited
to occasional offerings of special-topic
courses. An exploration of Al within
engineering and computer science edu-
cation requires a comprehensive inte-
gration of cybersecurity research across
the curriculum. This article describes
the initial results of our research on
fostering new, previously unexplored,
collaborations among the fields of
cybersecurity, Al, and education, sup-
ported by the Secure and Trustwor-
thy Cyberspace Program (SaTC)
of the National Science Foundation.
Our approach teaches engineering
and computer science students that
cybersecurity and Al are by and for
everyone, while also developing their
security mindset. This is our first step
to convene a broad community con-
versation focused on the convergence
of cybersecurity and Al education.

Purpose and Scope
This article describes the initial results
of a recent and ongoing research
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effort to create and implement cur-
riculum modules that are focused on
Al in cybersecurity and infused with
real-world scenarios. We describe the
first module, which was developed
for use in a course that covers intro-
ductory probability and fundamen-
tal concepts in discrete mathematics
and their efficient realization via al-
gorithms, data structures, computer
programs, and hardware. We describe
our experience using the module in
an advanced undergraduate course
comprising university students with-
out a cybersecurity background.

‘We have obtained an institutional
review board approval to allow data
gathering from volunteer students
who completed extra-credit home-
work after the first module was com-
pleted. The data gathered were used
to investigate if the students are able
to apply computational applica-
tions of Al to develop realistic com-
putational decision making after
exploring causal (versus correlative)
models in cybersecurity and privacy
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situations. Based on the students’
performance observed in this effort,
the integration of cybersecurity and
Al research in education can be suc-
cessful by using hands-on examples
and explaining cybersecurity issues
in a computational form—a language
familiar to the engineering and com-
puter science students.

Module Development

and Implementation

The first module was integrated in a
40-minlecture titled Probabilisticand
Causal Reasoning: A Cybersecurity
Application. The materials included
in this module were based on cyber-
security research, human-level Al
research, and an adaptation of the
work of Judea Pearl on tools of
causal inference with reflections on
machine learning and causal repre-
sentation learning.”3 Examples of
the computational tools of Al and
causal interference that were used
in the first module were 1) graphi-
cal causal models, in which causal
stories behind the data can be rigor-
ously conveyed, and 2) do-calculus,
a calculus of causation, composed of
simple logical operations for iden-
tifying causal effects. These were
infused with real-world scenarios, for
instance, assessing the probability of
cyberattacks, probability of cause of
the breach, and probability of neces-
sity in cyberattribution and liability
quantification, as well as investment
decisions on cyberinsurance.

The first module was implemented
in an existing undergraduate engineer-
ing course toward the end of the semes-
ter. This course had already covered
introductory probability and some fun-
damental concepts in discrete math-
ematics and their efficient realization
via algorithms, graphs, data structures,
and computer programs—all back-
ground materials that students needed
to understand causal reasoning,

The focus on causal reasoning
stems from this value statement by
Scholkopf et al.: “Despite its success,
statistical learning provides a rather
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superficial description of reality that
only holds when the experimental
conditions are fixed. Instead, the field
of causal learning seeks to model the
effect of interventions and distribu-
tion changes with a combination of
data-driven learning and assumptions
not already included in the statistical
description of a system”

The module consisted of three
parts. Part 1 included a quick review
of the basic statistical and probabi-
listic concepts that students needed
to understand the rest of the mod-
ule. It also included examples on
how standard Bayesian inference
can be used in the assessment of sus-
pects in a cybercrime investigation.

Part 2 of the module introduced
intervening (versus conditioning) and
causal reasoning, that is, reasoning
for situations where one intervenes
in the world, thereby interfering in the
natural course of events. Key to this
part was the fundamental distinction
between regression coefficients and
structural parameters and how stu-
dents can use both to predict causal
effects in linear models and work
with Pearl’s do-calculus, a general cal-
culus for identifying causal effects.
For example, one uses do(X =x) to
force the variable X to take the value
x, having no other immediate effect.
Part 2 explained that a causal model
can be interpreted as a Bayesian net-
work, which, in addition to answering
probability queries, can also answer
intervention queries, and that the
answer to an intervention query
P(Y |do(z), X= «x) is not generally

the same as its corresponding prob-
ability query P(Y|Z =z, X = x).

Part 3 of the module introduced
the concept of counterfactuals; that
is, what would have happened had
we chosen differently at a point in the
past. Discussions followed on how
to compute counterfactuals, estimate
their probabilities (such as the prob-
ability of necessity that captures the
legal criterion of “but for”), and how
to use counterfactuals to answer prac-
tical questions in cybersecurity (for
example, cyberattribution).

All three parts of the first mod-
ule included computational exam-
ples of the applications of causal
inference in either tangible, real-life
situations or real-world cybersecu-
rity situations. Two examples from
Part 2 of the module are summa-
rized in the following sections.

Example 1: Understanding
Causal Hierarchy and
Conditioning Versus
Intervening (Level 2 in the
Hierarchy) With a “Fun
Example”

This example summarizes Pearl’s
causal hierarchy (see Table 1) to
explain the difference among the com-
monly used levels of association, inter-
vention, and counterfactuals. To show
the difference between the causal
hierarchy levels, it was explained that
an increase in ice cream sales is cor-
related with an increase in crime, not
because ice cream causes crime, but
because an increase in both ice cream
sales and crime is more common in

Table 1. Pearl’s causal hie
Typical Activity Typical Questions

1. Association:

2. Intervention:
P(y|do(x), 2)

3. Counterfactuals:
P(yx|)?, 7)

Seeing (observing a certain
P(y|x) phenomenon unfold)

Doing (acting in the world to bring
about some state of affairs)

Imagining (thinking about alternative
ways the world could be)

What if? What if | do X?

What is? How would seeing X
change my belief in Y?

Why? Was it X that caused Y?
What if | had acted differently?
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hot weather—a confounding variable.
Students called this a “fun example.”
Randomized controlled experi-
ments are considered the gold stan-
dard of statistics. But, in cases where
randomized controlled experiments
are not practical, engineers and com-
puter scientists tend to perform obser-
vational studies, in which they purely
record data rather than controlling it.
The problem of such studies is that it
is difficult to untangle the causal from
the purely correlative relationships.
We introduced intervening and
causal surgery in the example depicted
in Figure 1(a), using endogenous vari-
ables X asice creamsales, Y ascrime
rates, and Z as temperature; see Fig-
ure 1(b) and (c). In these graphs, the
exogenous (versus endogenous) vari-
ables Ux, Uy, and U, stand in for
any unknown or random effects that
may alter the relationship between the
endogenous variables. That is, endog-
enous variables are those that we
choose to include in the model, and
the exogenous variables are unmod-
eled, latent variables. Following this
example, where students learned the
concept of intervention, we introduced
do-calculus and its mathematical tools.

Example 2: Applying do-
Calculus in a Cybersecurity
Investment Decision

This example introduces students
to the “machinery of causal calcu-
lus.”3 It shows how to apply the rules
of do-calculus and do-operators to

untangle causation in a cybersecu-
rity investment decision to answer
a “what if” question (level 2 of the
causal hierarchy; see Table 1).

In this example, X, Y, Z,and
W arearbitrary disjoint sets of nodes
in a causal directed acyclic graph G,
as depicted in Figure 2(a). Here, an
arrow from one variable to another
indicates that the first variable causes
the second—that is, the value of the
first variable is part of the function
that determines the value of the sec-
ond. Therefore, the second variable
depends on the first for its value.
Gx denotes the graph obtained by
deleting from G all arrows point-
ing tonodesin X, and Gx denotes
the graph obtained by deleting from
G all arrows emerging from nodes in
X. Grx, represents the deletion of
both incoming and outgoing arrows.
Figure 2(b) explains the three rules
of do-calculus to help with eliminat-
ing the do-operators from the query
expression, working with the obser-
vational data. For example, Rule 3
provides conditions for introducing
(or deleting) an external interven-
tion do(Z=2z) without affecting
the probability of Y = y.

We used a cybersecurity exam-
ple in which the following three
board members in a high-tech com-
pany are discussing purchasing/not
purchasing cyberinsurance:

1. Member 1 presents data indicat-
ing that companies that have

bought cyberinsurance have
actually experienced more
data breaches.

2. Member 2 argues that Member
1 has ignored the company type
and size in the assessment of the
data. However, Member 2 does
not present any data to support
his argument.

3. Member 3 presents data indicating
that purchasing cyberinsurance
by the company has contributed
to the anomalous behavior of the
company staff in the past. For
example, the staff of those com-
panies that had purchased cyber-
insurance felt that they were being
protected by cyberinsurance, and,
as such, they engaged more in
risky behaviors.

The module concludes by demon-
strating the application of do-calculus
to work with the available observa-
tional data and assess the probabil-
ity of experiencing a cyberbreach
(C) if the company buys cyber-
insurance (B), using the query
P(C|do(B)). Figure 3 summarizes
applying the do-calculus rules, step
by step, until all of the do-operators
are eliminated (shown in red).

Homework

Following completion of the mod-
ule, volunteer students were tasked
with extra-credit homework, which
included six conceptual and compu-
tational questions related to all three
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Figure 1. (a) Correlation between ice cream sales and crime rates. (b) Relationship among temperature (Z), ice cream sales
(X), and crime rates (Y). (c) An intervention on the model in (b) that lowers ice cream sales.
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Figure 2. (a) Subgraphs of G used in the derivation of causal effects. (b) The rules of do-calculus.

parts of the module. For instance, stu-
dents were presented a recommenda-
tion by a chief security officer (CSO)
and a counterargument from a chief
financial officer, who noted that the
CSO’srecommendation is unnecessary
and too costly. Students were asked to
assess if the CSO’s recommendation is
necessary to protect the company from
certain malicious attacks, using the
observational and experimental data
and mathematical tools to identify a
probability of necessity, PN, as follows:

P(ylx)—P(ylx")

In this equation, the first term on the
right-hand side is the familiar excess
risk ratio that experts have been using
as a surrogate for PN in court cases.
The second term (the confounding
factor) representsa correction needed
to account for confounding bias; that
is, P(yldo(x'))#P(y|x’). Here,
events are assumed binary, with
X=x and Y=y representing
recommendation and outcome, res-
pectively, and X=x" and Y=/
their negations.
Students were provided infor-
mation on writing the PN formula,

Findings and Implications
A total of 51 students, out of the
total of 73 students enrolled in
the class, voluntarily completed the
homework. The volunteer students
included 43 males (out of the total
61 males) and eight females (out of
the total 12 females). The module
was viewed a total of 3,524 min by
the students, according to Canvas
Analytics.

In the learning assessment, the
six levels of the cognitive domain in
the canonical taxonomy of Bloom
and Anderson® were applied, pro-

PN =
P(y|x) as explained in cyberattribution  gressing from the lowest-order pro-
N P(y|x')—P(y|do (x")) and liability quantification; see cesses to the highest: 1-Remember,
P(x,y) " Farahmand 2020. 2-Understand, 3-Apply, 4-Analyze,
P(Cldo(B)) = £, P(Cldo(B)), A)P(Aldo(B)) Probability Axioms
Company Type and Size =X, P(Cldo(B)), do(A)) P(Aldo(B))  Rule2 7\
(Unobserved) =, P(Cldo(B)), do(A)) P(AIB) Ruez /.
=2, P(Cldo(A)) P(AIB) Rued |\
=Yg X, P(Cldo(A), B')P(B’|do(A)) P(A|B) Probability Axioms
=g 24 P(CIA, B')P(B'|do(A)) P(AIB)  Rule 2 £>
C ber?nus{Jrance Agngae\l/Iic:)L:S —*{ Cyberbreach
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Figure 3. (a) A graphical model representing the relationships among buying cyberinsurance, the anomalous behavior of company staff,
a cyberbreach, and an unobserved confounder (company type and size). (b) Applying the rules of do-calculus until all do-operators are

eliminated from the query expression.
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S-Evaluate, and 6-Create. All 51
students who participated in this
study reached level 4; that is, they
were able to remember, understand,
apply, and analyze the lecture mate-
rials in answering the homework
questions. Fifty-three percent of the
students who participated in this
study reached levels S and 6. That
is, in answering their homework
questions, they were able to work
with the do-operator to evaluate and
justify a decision and put elements
together in a creative new way.

This echoes De Millo et al’s seminal
argument that we can be successful
by seeing mathematics as a “social,
informal, intuitive, organic, human
process, a community project,” ver-
sus outsiders who see mathematics
as a “cold, formal, logical, mechani-
cal, process of sheer intellection.””
Second, explaining crosscutting
cybersecurity concepts in a compu-
tational form, that is, a language that
is understandable to engineering
and computer science students, can
significantly help them to under-

Explaining crosscutting cybersecurity
concepts in a computational form, that
is, a language that is understandable
to engineering and computer science
students, can significantly help them
to understand the knowledge area,
regardless of the disciplinary lens.

Out of the total possible 100
points, the average and the highest
scores for the male students were
85 and 100, and for the female stu-
dents were 81 and 97, respectively.
A Mann-Whitney U test was per-
formed to assess if there were any
gender differences in the students’
performance. The p-value was found
as 0.25, and the result was not sig-
nificantat p <0.05. That s, gender
did not make a significant differ-
ence in the students’ performance
according to the homework scores.

Considering the novelty of the
module and the homework ques-
tions, the performance of both
male and female students was quite
encouraging. This has two impor-
tant implications for cybersecurity
and Al researchers and educators.

First, understanding and address-
ing cybersecurity issues when they
are taught through computational
and tangible real-world examples is
a realistic expectation from computer
science and engineering students.

IEEE Security & Privacy

stand the knowledge area, regard-
less of the disciplinary lens. This is
a key to the successful implementa-
tion of the Cybersecurity Curricular
Framework! in the engineering and
computer science curriculum. Spe-
cifically, it helps students to develop

1. adversarial thinking: a think-
ing process that considers the
potential actions of the oppos-
ing force working against the
desired result

2. systems thinking: a thinking
process that considers the inter-
play between social and tech-
nical constraints to enable
assured operations.

“Cybersecurity must be under-
stood as a multifaceted domain”® As
such, all cybersecurity issues can-
not and should not be left only to
cybersecurity experts who studied
computer science or electrical and
computer engineering. As argued
by De Millo et al., “mathematicians’

errors are corrected, not by formal
symbolic logic, but by other math-
ematicians.”” Using the do-calculus
that was used in the first module
was just one example of the com-
mon languages that can be taught to
our students to help them collabo-
rate with the “other” experts. This
enables our future workforce to col-
laborate in eliminating the flaws in
the implementation, design, specifi-
cation, or requirements of Al-based
cybersecurity systems.

T his article described a recent
and ongoing effort toward
advancing cybersecurity education
through the integration of Al con-
cepts. We have introduced causal
analysis versus traditional correla-
tion analysis.

The reality of teaching behav-
ioral learning in cybersecurity and Al
education is that computer scientists
and engineers follow traditional eco-
nomic approaches, and humans are
considered to be rational agents who
always choose the actions that maxi-
mize the expected utility.” This can
safely be equated with the von Neu-
mann—-Morgenstern perspective on
expected utility theory.'® However,
most cybersecurity and privacy inci-
dents are indeed caused by humans,
by either the user or the developer,
and could have been prevented. In
fact, brain-mapping tools have pro-
vided neurobiological evidence,
based on the human brain’s reaction
to privacy risks, that cyberprivacy
behaviors cannot be well described
by the expected utility theory.!!

Upcoming modules will be
focused on addressing the preced-
ing issues and will contribute to the
goal of achieving human-level Al
For example, as an alternative to
traditional expected utility theory,
the upcoming modules will inte-
grate Kahneman’s System 1 and Sys-
tem 2 thinking in the computational
learning of cybersecurity and pri-

vacy behaviors:!!
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Figure 4. Conscious processing and (a) System 1 versus (b) System 2 thinking. (Source: Y. Bengio'% used with permission.)

» System I (affective): It operates auto-
matically and quickly, with little or
no effort and no sense of voluntary
control.

System 2 (cognitive): Itallocates atten-
tion to the effortful mental activities
that demand it, including computa-
tions. The operation of System 2 is
often associated with the subjective
experience and concentration.

Thanks to Bengio!? for intro-
ducing Kahneman’s System 1 and 2
thinking and conscious processing
as missing parts of human-level Al
and encouraging the Al community
to move from current deep learning
(DL) to DL 2.0 (see Figure 4). It is
notable that expected utility theory
does not recognize the difference
between System 1 and 2 thinking and
conscious processing. It disregards
that humans minimize their cogni-
tive cost and considers them as ratio-
nal agents with stable, well-defined
preferences who always choose the
option with the maximum utility in
a unitary cognitive process.

Some future modules under
consideration will integrate formal
methods and model checking. Con-
sidering the probabilistic nature of

www.computer.org/security

Al and machine learning, they may
include probabilistic computation
tree logic, which is appropriate for
expressing a large class of properties
in a rather elegant manner.!3*m
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