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We summarize integrating cybersecurity and artificial intelligence (AI) research in cybersecurity 
education and implementing a module in an existing noncybersecurity undergraduate engineering 
course. This initiative will drive the broader community to focus on the convergence of cybersecurity 
and AI education. 

T he Joint Task Force on Cyber-
security Education1 defines 

cybersecurity as a “computing-based 
discipline involving technology, peo-
ple, information, and processes to 
enable assured operations. It involves 
the creation, operation, analysis, and 
testing of secure computer systems. 
It is an interdisciplinary course of 
study, including aspects of law, policy, 
human factors, ethics, and risk man-
agement in the context of adversaries.” 
Our society is undergoing a tremen-
dous exploration and adoption of 
artificial intelligence (AI) to drive 
the growth of the economy, enhance 
economic and national security, and 
improve quality of life. It is thus vital 
to expose engineering and computer 
science students to AI and how it 
works along with how AI can enable 
assured operations and how it might 
be exploited by adversaries to under-
mine public trust and confidence.

Currently, university research offer-
ings in AI and cybersecurity are limited 
to occasional offerings of special-topic 
courses. An exploration of AI within 
engineering and computer science edu-
cation requires a comprehensive inte-
gration of cybersecurity research across 
the curriculum. This article describes 
the initial results of our research on 
fostering new, previously unexplored, 
collaborations among the fields of 
cybersecurity, AI, and education, sup-
ported by the Secure and Trustwor-
thy Cyberspace Program (SaTC) 
of the National Science Foundation. 
Our approach teaches engineering 
and computer science students that 
cybersecurity and AI are by and for 
everyone, while also developing their 
security mindset. This is our first step 
to convene a broad community con-
versation focused on the convergence 
of cybersecurity and AI education.

Purpose and Scope
This article describes the initial results 
of a recent and ongoing research 

effort to create and implement cur-
riculum modules that are focused on 
AI in cybersecurity and infused with 
real-world scenarios. We describe the 
first module, which was developed 
for use in a course that covers intro-
ductory probability and fundamen-
tal concepts in discrete mathematics 
and their efficient realization via al
gorithms, data structures, computer 
programs, and hardware. We describe 
our experience using the module in 
an advanced undergraduate course 
comprising university students with-
out a cybersecurity background. 

We have obtained an institutional 
review board approval to allow data 
gathering from volunteer students 
who completed extra-credit home-
work after the first module was com-
pleted. The data gathered were used 
to investigate if the students are able 
to apply computational applica-
tions of AI to develop realistic com-
putational decision making after 
exploring causal (versus correlative) 
models in cybersecurity and privacy 
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situations. Based on the students’ 
performance observed in this effort, 
the integration of cybersecurity and 
AI research in education can be suc-
cessful by using hands-on examples 
and explaining cybersecurity issues 
in a computational form—a language 
familiar to the engineering and com-
puter science students.

Module Development 
and Implementation
The first module was integrated in a 
40-min lecture titled Probabilistic and 
Causal Reasoning: A Cybersecurity 
Application. The materials included 
in this module were based on cyber-
security research, human-level AI  
research, and an adaptation of the 
work of Judea Pearl on tools of 
causal inference with reflections on 
machine learning and causal repre-
sentation learning.2,3 Examples of 
the computational tools of AI and 
causal interference that were used 
in the first module were 1) graphi-
cal causal models, in which causal 
stories behind the data can be rigor-
ously conveyed, and 2)  do-calculus, 
a calculus of causation, composed of 
simple logical operations for iden-
tifying causal effects. These were 
infused with real-world scenarios, for 
instance, assessing the probability of 
cyberattacks, probability of cause of 
the breach, and probability of neces-
sity in cyberattribution and liability 
quantification, as well as investment 
decisions on cyberinsurance.

The first module was implemented 
in an existing undergraduate engineer-
ing course toward the end of the semes-
ter. This course had already covered 
introductory probability and some fun-
damental concepts in discrete math-
ematics and their efficient realization 
via algorithms, graphs, data structures, 
and computer programs—all back-
ground materials that students needed 
to understand causal reasoning.

The focus on causal reasoning 
stems from this value statement by 
Schölkopf et al.: “Despite its success, 
statistical learning provides a rather 

superficial description of reality that 
only holds when the experimental 
conditions are fixed. Instead, the field 
of causal learning seeks to model the 
effect of interventions and distribu-
tion changes with a combination of 
data-driven learning and assumptions 
not already included in the statistical 
description of a system.”4 

The module consisted of three 
parts. Part 1 included a quick review 
of the basic statistical and probabi-
listic concepts that students needed 
to understand the rest of the mod-
ule. It also included examples on 
how standard Bayesian inference 
can be used in the assessment of sus-
pects in a cybercrime investigation.

Part 2 of the module introduced 
intervening (versus conditioning) and 
causal reasoning, that is, reasoning 
for situations where one intervenes 
in the world, thereby interfering in the 
natural course of events. Key to this 
part was the fundamental distinction 
between regression coefficients and 
structural parameters and how stu-
dents can use both to predict causal 
effects in linear models and work 
with Pearl’s do-calculus, a general cal-
culus for identifying causal effects. 
For example, one uses ( )do X x=  to 
force the variable X  to take the value 
,x  having no other immediate effect. 

Part 2 explained that a causal model 
can be interpreted as a Bayesian net-
work, which, in addition to answering 
probability queries, can also answer 
intervention queries, and that the 
answer to an intervention quer y 

 ,| ( )P Y do X xz =^ h  is not generally 

the same as its corresponding prob-
ability query ,( | ).P Y Z z X x= =

Part 3 of the module introduced 
the concept of counterfactuals; that 
is, what would have happened had 
we chosen differently at a point in the 
past. Discussions followed on how 
to compute counterfactuals, estimate 
their probabilities (such as the prob-
ability of necessity that captures the 
legal criterion of “but for”), and how 
to use counterfactuals to answer prac-
tical questions in cybersecurity (for 
example, cyberattribution).

All three parts of the first mod-
ule included computational exam-
ples of the applications of causal 
inference in either tangible, real-life 
situations or real-world cybersecu-
rity situations. Two examples from 
Part  2 of the module are summa-
rized in the following sections.

Example 1: Understanding 
Causal Hierarchy and 
Conditioning Versus 
Intervening (Level 2 in the 
Hierarchy) With a “Fun 
Example”
This example summarizes Pearl’s 
causal hierarchy (see Table 1) to 
explain the difference among the com-
monly used levels of association, inter-
vention, and counterfactuals. To show 
the difference between the causal 
hierarchy levels, it was explained that 
an increase in ice cream sales is cor-
related with an increase in crime, not 
because ice cream causes crime, but 
because an increase in both ice cream 
sales and crime is more common in 

Table 1. Pearl’s causal hierarchy.

Level Typical Activity Typical Questions

1. �Association:
P(y|x)

Seeing (observing a certain 
phenomenon unfold)

What is? How would seeing X 
change my belief in Y?

2. �Intervention: 
P(y|do(x), z)

Doing (acting in the world to bring 
about some state of affairs)

What if? What if I do X?

3. �Counterfactuals: 
P(yx|x́, ź)

Imagining (thinking about alternative 
ways the world could be)

Why? Was it X that caused Y? 
What if I had acted differently?
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hot weather—a confounding variable. 
Students called this a “fun example.”

Randomized controlled experi-
ments are considered the gold stan-
dard of statistics. But, in cases where 
randomized controlled experiments 
are not practical, engineers and com-
puter scientists tend to perform obser-
vational studies, in which they purely 
record data rather than controlling it. 
The problem of such studies is that it 
is difficult to untangle the causal from 
the purely correlative relationships.

We introduced intervening and 
causal surgery in the example depicted 
in Figure 1(a), using endogenous vari-
ables X  as ice cream sales, Y  as crime 
rates, and Z  as temperature; see Fig-
ure 1(b) and (c). In these graphs, the 
exogenous (versus endogenous) vari-
ables ,UX  ,UY  and UZ  stand in for 
any unknown or random effects that 
may alter the relationship between the 
endogenous variables. That is, endog-
enous variables are those that we 
choose to include in the model, and 
the exogenous variables are unmod-
eled, latent variables. Following this 
example, where students learned the 
concept of intervention, we introduced 
do-calculus and its mathematical tools.

Example 2: Applying do-
Calculus in a Cybersecurity 
Investment Decision
This example introduces students 
to the “machinery of causal calcu-
lus.”3 It shows how to apply the rules 
of do-calculus and do-operators to 

untangle causation in a cybersecu-
rity investment decision to answer 
a “what if ” question (level 2 of the 
causal hierarchy; see Table 1).

In this example, ,X  ,Y  ,Z and 
W  are arbitrary disjoint sets of nodes 
in a causal directed acyclic graph ,G  
as depicted in Figure 2(a). Here, an 
arrow from one variable to another 
indicates that the first variable causes 
the second—that is, the value of the 
first variable is part of the function 
that determines the value of the sec-
ond. Therefore, the second variable 
depends on the first for its value. 
G  X denotes the graph obtained by 
deleting from G  all arrows point-
ing to nodes in ,X  and G X  denotes 
the graph obtained by deleting from 
G all arrows emerging from nodes in 
.X G ZX  represents the deletion of

both incoming and outgoing arrows.
Figure 2(b) explains the three rules
of do-calculus to help with eliminat-
ing the do-operators from the query
expression, working with the obser-
vational data. For example, Rule 3
provides conditions for introducing
(or deleting) an external interven-
tion  ( )do Z z=  without affecting
the probability of .Y y=

We used a cybersecurity exam-
ple in which the following three 
board members in a high-tech com-
pany are discussing purchasing/not 
purchasing cyberinsurance:

1.	 Member 1 presents data indicat-
ing that companies that have

bought cyberinsurance have 
actually experienced m o re 
data breaches.

2. Member 2 argues that Member
1 has ignored the company type 
and size in the assessment of the 
data. However, Member 2 does
not present any data to support
his argument.

3.	 Member 3 presents data indicating 
that purchasing cyberinsurance
by the company has contributed
to the anomalous behavior of the
company staff in the past. For
example, the staff of those com-
panies that had purchased cyber-
insurance felt that they were being 
protected by cyberinsurance, and,
as such, they engaged more in
risky behaviors.

The module concludes by demon-
strating the application of do-calculus 
to work with the available observa-
tional data and assess the probabil-
ity of experiencing a cyberbreach 
(C) if the company buys cyber-
insurance (B), using the query

| ( )( )P C do B . Figure 3 summarizes
applying the do-calculus rules, step
by step, until all of the do-operators
are eliminated (shown in red).

Homework
Following completion of the mod-
ule, volunteer students were tasked 
with extra-credit homework, which 
included six conceptual and compu-
tational questions related to all three 

Correlation

UX UY UY

UZ UZ

X XY Y

ZZ

(a) (b) (c)

Figure 1. (a) Correlation between ice cream sales and crime rates. (b) Relationship among temperature (Z), ice cream sales 
(X), and crime rates (Y). (c) An intervention on the model in (b) that lowers ice cream sales.
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parts of the module. For instance, stu-
dents were presented a recommenda-
tion by a chief security officer (CSO) 
and a counterargument from a chief 
financial officer, who noted that the 
CSO’s recommendation is unnecessary 
and too costly. Students were asked to 
assess if the CSO’s recommendation is 
necessary to protect the company from 
certain malicious attacks, using the 
observational and experimental data 
and mathematical tools to identify a 
probability of necessity, PN, as follows:

+

( | )
( | ) ( | )

( | ) ( | ( ))
.

( , )
x

PN P y x
P y x P y x

P x y
P y x P y do

=
-

- l

l

l

In this equation, the first term on the 
right-hand side is the familiar excess 
risk ratio that experts have been using 
as a surrogate for PN  in court cases. 
The second term (the confounding 
factor) represents a correction needed 
to account for confounding bias; that 
is,  ( | ( )) ( | ).xP y do P y x!l l  Here, 
events are assumed binary, with

X x=  and Y y=  representing 
recommendation and outcome, res
pectively, and X x= l  and Y y= l  
their negations.

Students were provided infor-
mation on writing the PN formula, 
as explained in cyberattribution 
and liability quantification; see 
Farahmand 2020.5

Findings and Implications
A total of 51 students, out of the 
total of 73 students enrolled in 
the class, voluntarily completed the 
homework. The volunteer students 
included 43 males (out of the total 
61 males) and eight females (out of 
the total 12 females). The module 
was viewed a total of 3,524 min by 
the students, according to Canvas 
Analytics.

In the learning assessment, the 
six levels of the cognitive domain in 
the canonical taxonomy of Bloom 
and Anderson6 were applied, pro-
gressing from the lowest-order pro-
cesses to the highest: 1-Remember, 
2-Understand, 3-Apply, 4-Analyze,

Figure 2. (a) Subgraphs of G used in the derivation of causal effects. (b) The rules of do-calculus.

• Rule 2 (Action/Observation Exchange):

• Rule 3 (Insertion/Deletion of Actions):

U (Unobserved)

X

X XX

XZ Z

Z Z Z

G

Y Y

Y YY

GZ = GX

GXZ GZ
GXGZ

• Rule 1 (Insertion/Deletion of Observations):

P (y |do (x), z, w) = P (y |do (x), w)

if (Y    Z |X, W )GX

P (y |do (x), do (z), w) = P (y |do (x), z, w)

if (Y    Z |X, W )GXGZ

P (y |do (x), do (z), w) = P (y |do (x), w)

if (Y    Z |X, W )GXZ (W )

Where, Z (W ) is the set of Z-nodes that are
not ancestors of any W-node in GX.

(a) (b)

,

Figure 3. (a) A graphical model representing the relationships among buying cyberinsurance, the anomalous behavior of company staff, 
a cyberbreach, and an unobserved confounder (company type and size). (b) Applying the rules of do-calculus until all do-operators are 
eliminated from the query expression.

Probability Axioms

Rule 2

Rule 2

Rule 2

Rule 3

Rule 3

Probability Axioms

Buy 
Cyberinsurance

Anomalous
Behavior

Cyberbreach

Company Type and Size
(Unobserved)

P (C |do (B )) = ΣA P (C |do (B )), A)P (A |do (B ))

= ΣA P (C |do (B )),  do (A )) P (A |do (B ))

=ΣB′ ΣA P (C |do (A ), B ′)P (B ′|do (A )) P (A |B)

=ΣB′ ΣA P (C |A, B ′)P (B ′|do (A )) P (A |B)

=ΣB′ ΣA P (C |A, B ′)P (B ′) P (A |B)

= ΣA P (C |do (B )),  do (A )) P (A |B)

= ΣA P (C |do (A )) P (A |B)

(a) (b)
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5-Evaluate, and 6-Create. All 51 
students who participated in this 
study reached level 4; that is, they 
were able to remember, understand, 
apply, and analyze the lecture mate-
rials in answering the homework 
questions. Fifty-three percent of the 
students who participated in this 
study reached levels 5 and 6. That 
is, in answering their homework 
questions, they were able to work 
with the do-operator to evaluate and 
justify a decision and put elements 
together in a creative new way.

Out of the total possible 100 
points, the average and the highest 
scores for the male students were 
85 and 100, and for the female stu-
dents were 81 and 97, respectively. 
A Mann–Whitney U test was per-
formed to assess if there were any 
gender differences in the students’ 
performance. The p-value was found 
as 0.25, and the result was not sig-
nificant at . .p 0 051  That is, gender 
did not make a significant differ-
ence in the students’ performance 
according to the homework scores.

Considering the novelty of the 
module and the homework ques-
tions,  the performance of both 
male and female students was quite 
encouraging. This has two impor-
tant implications for cybersecurity 
and AI researchers and educators.

First, understanding and address-
ing cybersecurity issues when they 
are taught through computational 
and tangible real-world examples is 
a realistic expectation from computer 
science and engineering students. 

This echoes De Millo et al.’s seminal 
argument that we can be successful 
by seeing mathematics as a “social, 
informal, intuitive, organic, human 
process, a community project,” ver-
sus outsiders who see mathematics 
as a “cold, formal, logical, mechani-
cal, process of sheer intellection.”7

Second, explaining crosscutting 
cybersecurity concepts in a compu-
tational form, that is, a language that 
is understandable to engineering 
and computer science students, can 
significantly help them to under-

stand the knowledge area, regard-
less of the disciplinary lens. This is 
a key to the successful implementa-
tion of the Cybersecurity Curricular 
Framework1 in the engineering and 
computer science curriculum. Spe-
cifically, it helps students to develop

1. adversarial thinking: a think-
ing process that considers the
potential actions of the oppos-
ing force working against the
desired result

2. systems thinking:  a thinking
process that considers the inter-
play between social and tech-
nical  constraints  to enable
assured operations.

“Cybersecurity must be under-
stood as a multifaceted domain”.8 As 
such, all cybersecurity issues can-
not and should not be left only to 
cybersecurity experts who studied 
computer science or electrical and 
computer engineering. As argued 
by De Millo et al., “mathematicians’ 

errors are corrected, not by formal 
symbolic logic, but by other math-
ematicians.”7 Using the do-calculus 
that was used in the first module 
was just one example of the com-
mon languages that can be taught to 
our students to help them collabo-
rate with the “other” experts. This 
enables our future workforce to col-
laborate in eliminating the flaws in 
the implementation, design, specifi-
cation, or requirements of AI-based 
cybersecurity systems.

T his article described a recent
and ongoing effort toward 

advancing cybersecurity education 
through the integration of AI con-
cepts. We have introduced causal 
analysis versus traditional correla-
tion analysis.

The reality of teaching behav-
ioral learning in cybersecurity and AI 
education is that computer scientists 
and engineers follow traditional eco-
nomic approaches, and humans are 
considered to be rational agents who 
always choose the actions that maxi-
mize the expected utility.9 This can 
safely be equated with the von Neu-
mann–Morgenstern perspective on 
expected utility theory.10 However, 
most cybersecurity and privacy inci-
dents are indeed caused by humans, 
by either the user or the developer, 
and could have been prevented. In 
fact, brain-mapping tools have pro-
vided neurobiological evidence, 
based on the human brain’s reaction 
to privacy risks, that cyberprivacy 
behaviors cannot be well described 
by the expected utility theory.11

Upcoming modules w il l  be 
focused on addressing the preced-
ing issues and will contribute to the 
goal of achieving human-level AI. 
For example, as an alternative to 
traditional expected utility theory, 
the upcoming modules will inte-
grate Kahneman’s System 1 and Sys-
tem 2 thinking in the computational 
learning of cybersecurity and pri-
vacy behaviors:11

Explaining crosscutting cybersecurity 
concepts in a computational form, that 

is, a language that is understandable 
to engineering and computer science 
students, can significantly help them 
to understand the knowledge area, 
regardless of the disciplinary lens.
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■■ System 1 (affective): It operates auto-
matically and quickly, with little or
no effort and no sense of voluntary
control.

■■ System 2 (cognitive): It allocates atten-
tion to the effortful mental activities 
that demand it, including computa-
tions. The operation of System 2 is
often associated with the subjective
experience and concentration.

Thanks to Bengio12 for intro-
ducing Kahneman’s System 1 and 2 
thinking and conscious processing 
as missing parts of human-level AI 
and encouraging the AI community 
to move from current deep learning 
(DL) to DL 2.0 (see Figure 4). It is
notable that expected utility theory
does not recognize the difference
between System 1 and 2 thinking and 
conscious processing. It disregards
that humans minimize their cogni-
tive cost and considers them as ratio-
nal agents with stable, well-defined
preferences who always choose the
option with the maximum utility in
a unitary cognitive process.

Some future modules under 
consideration will integrate formal 
methods and model checking. Con-
sidering the probabilistic nature of 

AI and machine learning, they may 
include probabilistic computation 
tree logic, which is appropriate for 
expressing a large class of properties 
in a rather elegant manner.13,14
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