Interlibrary Loan Article Request

Thank you for using Interlibrary Loan. If the article supplied here does not match what you
requested, or has a problem such as missing pages, please contact us at borrdesk@iastate.edu
or 515-294-8073. We also welcome any questions or comments you may have.

Notice: Warning Concerning Copyright Restrictions

The copyright law of the United States (Title 17, U.S. Code) governs the making of copies or
other reproductions of copyrighted material. Under certain conditions specified in the law,
libraries and archives are authorized to furnish a photocopy or other reproduction. One of
these specified conditions is that the photocopy or reproduction is not to be “used for any
purpose other than private study, scholarship, or research.” If a user makes a request for, or
later uses, a photocopy or reproduction for purpose in excess of “fair use,” that user may be
liable for copyright infringement.

This institution reserves the right or refuse to accept a copying order if, in its judgment,
fulfillment of the order would involve violation of copyright law.

Rapid #: -18838136

CROSS REF ID:
LENDER:
BORROWER:

TYPE:
JOURNAL TITLE:

USER JOURNAL TITLE:

ARTICLE TITLE:
ARTICLE AUTHOR:
VOLUME:

ISSUE:

MONTH:

YEAR:

PAGES:

ISSN:

OCLC #:

Processed by RapidX:

531096

GZM :: Memorial Library
IWA :: Main Library

Article CC:CCG
Natural computing

Natural Computing

Population-induced phase transitions and the verification of chemical reaction networks

J. Lathrop, J. Lutz, R. Lutz, H. Potter, M. Riley

NA

Nov

2021

NA
1572-9796

3/24/2022 8:07:04 AM

This material may be protected by copyright law (Title 17 U.S. Code)

Natural Computing
https://doi.org/10.1007/s11047-021-09877-9

=

Check for
updates

Population-induced phase transitions and the verification of chemical

reaction networks

James |. Lathrop’ ® - Jack H. Lutz' ® - Robyn R. Lutz'

Accepted: 16 October 2021
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract

- Hugh D. Potter’

- Matthew R. Riley’

We show that very simple molecular systems, modeled as chemical reaction networks, can have behaviors that exhibit
dramatic phase transitions at certain population thresholds. Moreover, the magnitudes of these thresholds can thwart
attempts to use simulation, model checking, or approximation by differential equations to formally verify the behaviors of
such systems at realistic populations. We show how formal theorem provers can successfully verify some such systems at

populations where other verification methods fail.

Keywords Chemical reaction networks - Molecular programming - Phase transitions - Population protocols -

Verification

1 Introduction

Chemical reaction networks, mathematical abstractions
similar to Petri nets, are used as a programming language
to specify the dynamic behaviors of engineered molecular
systems. Existing software can compile chemical reaction
networks into DNA strand displacement systems that
simulate them with growing generality and precision
(Soloveichik et al. 2009; Chen et al. 2013; Badelt et al.
2017; Thubagere et al. 2017). Programming is a chal-
lenging discipline in any case, but this is especially true of
molecular programming, because chemical reaction net-
works—in addition to being Turing universal (Soloveichik
et al. 2008; Cook et al. 2009; Fages et al. 2017) and hence
subject to all the uncomputable aspects of sequential,

< Jack H. Lutz
lutz @iastate.edu

James I. Lathrop
jil@iastate.edu

Robyn R. Lutz
rlutz@iastate.edu

Hugh D. Potter
hdpotter @iastate.edu

Matthew R. Riley
mrriley @iastate.edu

Towa State University, Ames, [A, USA

Published online: 17 November 2021

imperative programs—are, like the systems that they spec-
ify, distributed, asynchronous, and probabilistic. Since
many envisioned applications of molecular programming
will be safety critical (Wooley John and Lin Herbert 2005;
Zhang and Seelig 2011; Douglas et al. 2012; Liu et al.
2013; Li et al. 2018; Apoorva et al. 2020, 20), program-
mers thus seek to create chemical reaction networks that
can be verified to correctly carry out their design intent.
One principle that is sometimes used in chemical reac-
tion network design is the small population heuristic
(Lakin et al. 2012; Cardelli et al. 2016; Ellis et al. 2019).
The idea here is to verify various stages of a design by
model checking or software simulation to ferret out bugs in
the design prior to laboratory experimentation or deploy-
ment. Since the number of states of a molecular system is
typically much larger than its population (the number of
molecules present), and since molecular systems typically
have very large populations, this model checking or sim-
ulation can usually only be carried out on populations that
are far smaller than those of the intended molecular sys-
tems. It is nevertheless reasonable to hope that, if a system
is going to consist of a very large number of “devices” of
various sorts, then any unforeseen errors in these devices’
interactions will manifest themselves even with very small
populations of each device. It is this reasonable hope that is
the underlying premise of the small population heuristic.
(Note that the small population heuristic can be regarded as

@ Springer

http://orcid.org/0000-0002-5467-5818
http://orcid.org/0000-0003-1004-3891
http://orcid.org/0000-0001-5390-7982
http://orcid.org/0000-0003-4437-674X
http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-021-09877-9&domain=pdf
https://doi.org/10.1007/s11047-021-09877-9

J. I. Lathrop et al.

a molecular version of the small scope hypothesis (Jackson
2019).

The question that we address here is whether real
molecular systems can thwart the small population
heuristic. That is, can a real molecular system behave very
differently at large populations than at small populations?
If so, how sensitive can its behavior be to its population,
and how simple a mechanism can achieve such sensitivity?

In order to ensure that we are only investigating popu-
lation effects, we focus our attention on chemical reaction
networks that are population protocols in the sense that
their populations remain constant throughout their opera-
tions. If we have such a chemical reaction network, and if
we vary its initial population and nothing else, then we are
assured that any resulting variations of behavior are due
solely to the differing populations.

In this paper we show that very simple chemical reac-
tion networks can be very sensitive to their own popula-
tions. In fact, they can exhibit population-induced phase
transitions, behaving one way below a threshold popula-
tion and behaving very differently above that threshold.
After reviewing chemical reaction networks in Sect. 2, we
present in Sect. 3 a chemical reaction network Ny, and we
prove that N; exhibits a population-induced phase transi-
tion in the following sense. There are two parameters, m
and n, in the construction. For this discussion, we may take
m = 34 and n = 67, but the construction is general. There
are n + 2 reactions among n + 3 species (molecule types)
in N;. A species Zj is given an initial population of p, and
all other species counts are initially 0. Each reaction of N,
has two reactants and two products, so the total population
of N is p at all times. There are in N; two distinguished
species, B and R. These “blue” and “red” species are
abstract stand-ins for two different behaviors of N;. Our
construction exploits the inherent nonlinearity of chemical
kinetics to ensure that, if p <2”, then N; terminates with
essentially all its population blue, while if p > 2™, then N,
terminates with essentially all its population red. Thus N
exhibits a sharp phase transition at the population threshold
p=2"

Our construction is very simple. The chemical reaction
network N; changes its behavior at the threshold p = 2" by
merely computing successive bits of p, starting at the least
significant bit. This mechanism is so simple that it could be
hidden, by accident or by malice, in a larger chemical
reaction network. Moreover, for suitable values of m (e.g.,
m =34, so that the threshold p=2" 1is roughly
1.7 x 10'9),

1. any attempt to model-check or simulate N; will
perforce use a population much less than the threshold
and conclude that N; will always turn blue; while

@ Springer

2. any realistic wet-lab molecular implementation of N
will have a population greater than the threshold and
thus turn red.

If the behaviors represented by blue and red here are a
desired, “good” behavior of N; (or of a network containing
N;) and an undesired, “bad” behavior of this network,
respectively, then the possibility of such a phase transition
is a serious challenge to verifying the correct behavior of
the chemical reaction network. Simply put, this is a context
in which the small population heuristic can lead us astray.

There is a dual large population heuristic that is used
even more often than the small population heuristic. A
theorem of Kurtz (Kurtz 1972; Anderson and Kurtz
2011, 2015) draws a connection between the behavior of a
stochastic chemical reaction network (the type of chemical
reaction network used in our work here and in much of
molecular programming) at large populations and the
behavior of a deterministic chemical reaction network,
which is governed by a system of ordinary differential
equations. Kurtz’s theorem involves several preconditions
and caveats, and it does not always transparently equate
stochastic and deterministic behavior. When it does apply,
however, we can use a mathematical software package to
numerically solve the deterministic system and thereby
understand the behavior of the stochastic chemical reaction
network at sufficiently large populations.

In Sect. 4 we add a single reaction to the chemical
reaction network Ny, creating a chemical reaction network
N, that we prove (in Theorem 4.6) to exhibit two coupled
population-induced phase transitions in the following
sense. If p<2™ or p >2", then N, terminates with essen-
tially all its population blue, while if 2" <p <2 then N,
terminates with essentially all its population red. Thus N,
exhibits sharp phase transitions at the two population
thresholds, p = 2™ and p = 2". These phase transitions are
coupled in that exceeding the second threshold returns the
behavior of N, to its behavior below the first threshold. For
suitable values of m and n (e.g. m =34 and n = 67 as
above, so that the thresholds p =2" and p =2" are
roughly 1.7 x 10! and 1.5 x 10%°), this implies (see
Fig. 1) that

1. any attempt to model-check or simulate N, will
perforce use a population much less than the smaller
threshold and conclude that N, will always turn blue,
and

2. any realistic wet-lab molecular implementation of N,
will have a population between the two thresholds and
thus turn red.

As we discuss later, when we analyze N, with a numerical
approach based on differential equations, we also do not
observe a red outcome. The chemical reaction network N,

Population-induced phase transitions

0 population 00

model checking works

simulation works

Fig. 1 Scales at which different verification methods (simulation,
model checking, and ODEs) work. The gap in the middle shows the
scale at which none of these methods will catch the “produce red”
behavior of the system design. This gap is problematic because it is

thus exemplifies a class of contexts in which the small
population heuristic and the large population heuristic can
both lead us astray.

The chemical reaction network N, is a very simple
model of coupled phase transitions with a simple correct-
ness proof. However, as we explain in Sect. 5, N, typically
takes a very long time to terminate with initial populations
p above the 2" threshold. If one tries to simulate N, with
such initializations, even for small values of m and n, the
simulations fail to terminate in a feasible amount of time.
This raises the question whether coupled transitions require
such a long time to termination.

In Sect. 5 we present a chemical reaction network Nj
that, like N,, has coupled phase transitions at initial pop-
ulations p = 2™ and p = 2". However, N3 reaches termi-
nation more quickly than N, for initial populations p > 2".
The correctness proof for N3 is not as elegant as the one for
N, but we have verified it in Isabelle. Hence coupled phase
transitions with faster termination can occur.

We emphasize that the phase transitions in the chemical
reaction networks N, N,, and N3 occur at thresholds in
their absolute populations. In contrast, phase transitions in
chemical reaction networks for approximate majority
(Angluin et al. 2008; Cardelli and Csikasz-Nagy 2012;
Condon et al. 2017) occur at threshold ratios between sub-
populations, and phase transitions in bacterial quorum
sensing (Miller and Bassler 2001) occur at threshold pop-
ulation densities.

Section 6 discusses the consequences of our results for
the verification of programmed molecular systems in some
detail. Here we summarize these consequences briefly.
Phase transitions are ubiquitous in natural and engineered
systems (Dana 2010; Randall 2017; Cannon et al. 2018).
Our results are thus cautionary, but they should not be
daunting. Fifteen years after Turing proved the undecid-
ability of the halting problem, Rice (1951, 1953) proved his
famous generalization stating that every nontrivial input/
output property of programs is undecidable. Rice’s theorem
saves valuable time, but it has never prevented computer
scientists from developing specific programs in disciplined
ways that enable them to be verified. Similarly, Sects. 3
and 4 give mathematical proofs that the chemical reaction

\H/—/

realistic nano-experiments
and applications

ODEs work

the scale of realistic programmed molecular systems. We show in
Sect. 6.4 how such systems can be verified using automated theorem
proving

networks N; and N, have the properties described above,
and Sect. 6 describes how we have implemented such
proofs in the Isabelle proof assistant (Nipkow et al. 2002;
Paulson et al. 2019). As molecular programming develops,
simulators, model checkers, theorem provers, and other
tools will evolve with it, as will disciplined scientific
judgment about how and when to use such tools.

A preliminary version of a portion of this work was
presented at the 26th International Conference on DNA
Computing and Molecular Programming (September,
2020) and published (Lathrop et al. 2020) in the proceed-
ings of that conference. Material that is new to the present
paper includes proofs of the lemmas and corollaries in
Sects. 3 and 4; the completely new Sect. 5 presenting a
chemical reaction network with coupled phase transitions
and faster termination than the chemical reaction network
in Sect. 4; and, in Sect. 6, verification issues for this faster
chemical reaction network and an expanded discussion of
verification using differential equations.

2 Chemical reaction networks

Chemical reaction networks (CRNs) are abstract models of
molecular processes in well-mixed solutions. They are
roughly equivalent to three models used in distributed
computing, namely, Petri nets, population protocols, and
vector addition systems (Cook et al. 2009). This paper uses
stochastic chemical reaction networks.

For our purposes, a (stochastic) chemical reaction net-
work N consists of finitely many reactions, each of which
has the form

A+B— C+D, (2.1)

where A, B, C, and D (not necessarily distinct) are species,
i.e., abstract types of molecules. Intuitively, if this reaction
occurs in a solution at some time, then one A and one B
disappear from the solution and are replaced by one C and
one D, these things happening instantaneously. A state of
the chemical reaction network N with species Ay, ..., A at
a particular moment of time is the vector (ay,...,as),
where each ag; is the nonnegative integer count of the

@ Springer

J. I. Lathrop et al.

molecules of species A; in solution at that moment. Note
that we are using the so called “lower-case convention” for
denoting species counts.

In the full stochastic chemical reaction network model,
each reaction also has a positive real rate constant, and the
random behavior of N obeys a continuous-time Markov
chain derived from these rate constants. However, our
results here are so robust that they hold for any assignment
of rate constants, so we need not concern ourselves with
rate constants or continuous-time Markov chains. In fact,
for this paper, we can consider the reaction (2.1) to be the
if-statement

if a>0and b > 0 then a,b,c,d :=

(2.2)
a—1,b—1,c+1,d+1,

173 2

where “:=” is parallel assignment. The reaction (2.1) is
enabled in a state g of Nif a > 0 and b > 0 in g; otherwise,
this reaction is disabled in q. A state g of N is terminal if no
reaction is enabled in q.

A trajectory of a chemical reaction network N is a
sequence T = (g; | 0<i</{) of states of N, where /€
Z* U{oc} is the length of T and, for each i € N with
i+ 1</, there is a reaction of N that is enabled in ¢; and
whose effect, as defined by (2.2), is to change the state of N
from g; to g;41. A trajectory T = (g; | 0 <i</?) is terminal
if /<00 and g is a terminal state of N.

Assume for this paragraph that the context specifies an
initial state go of N, as it does in this paper. A state g of N is
accessible if there is a finite trajectory 7 = (¢; | 0 <i</)
of N with gy_; = g. A full trajectory of N is a trajectory
7= (g; | 0<i</) that is either terminal or infinite.

The fact that each reaction (2.1) has two reactants (A
and B) and two products (C and D) means that N is a
population protocol (Angluin et al. 2007). This condition
implies that the total population of all species never
changes in the course of a trajectory. If such a chemical
reaction network has s species and initial population p, its
state space is thus the (s — 1)-dimensional integer simplex

A7 p) = {(al,...,as) eN’ | ia; —p}.
i=1

Note that |4*~!(p)| = ip s le>. Of course, fewer than
this many states may b réachable’from a particular initial
state of N.

A full trajectory 7= (g; | 0<i<¥) of a CRN N is
(strongly) fair (Kwiatkowska 1989; Baier and Katoen
2008) if it has the property that, for every state g and
reaction p that is enabled in g,

(2.3)

(3%i)q; = g=(3j)|q; = q and p occurs at j in 1],
(2.4)

@ Springer

where (3°°i) means “there exist infinitely many i such
that.” Note that every terminal trajectory of N is vacuously
fair, because it does not satisfy the hypothesis of (2.4).

The stochastic kinetics of chemical reaction networks
implies that, regardless of the rate constants of the reac-
tions, for every population protocol N and every initial
population p of N, there is a real number ¢ > 0 such that,
for every state ¢ of N and reaction p that is enabled in g, the
probability that p occurs in ¢ depends only on ¢ and is at
least ¢. This in turn implies that, with probability 1, N
follows a fair trajectory. Hence, if N has a given behavior
on all fair trajectories, then N has that behavior with
probability 1.

We use the following two facts in Sect. 4. The first is an
obvious consequence of the definition of fairness.

Observation 2.1 If T = (g; | 0<i</) is a fair trajectory
of a population protocol N, then, for every reaction p of N,

(3%i)[p is enabled in g;]=(3j)[p occurs at j in 1].
(2.5)

A famous theorem of Harel (1986; Kozen 2006) implies
that the general problem of deciding whether a chemical
reaction network terminates on all fair trajectories is
undecidable. Nevertheless, the following lemma gives a
useful sufficient condition for termination on all fair tra-
jectories. This lemma undoubtedly follows from a very old
result on fairness, but we do not know a proper reference at
the time of this writing. A proof appears in the Appendix.

Lemma 2.2 (fair termination lemma) If a population
protocol with a specified initial state has a terminal tra-
jectory from every accessible state, then all its fair tra-
jectories are terminal.

3 Single phase transition

This section presents the chemical reaction network N; and
proves that it exhibits a population-induced phase transi-
tion as described in the introduction.

Fix m,n,p € Z" with n > m + 1. Let N; be a chemical
reaction network consisting of the n + 1 {-reactions

Ziy1+ B (0§l<m>
CiEZi+Zi—> Zi+1+R (m§i<n)
Z+R (i=n)

and the y-reaction

1=B+R—R+R.

Population-induced phase transitions

All results here hold regardless of the rate constants of
these n + 2 reactions.
We initialize Ny with zo = p and all other counts O.
Intuitively, B is blue, R is red, and the species Z; are all
colorless.

Lemma 3.1 N, terminates on all possible trajectories.
Proof Every reaction in N; reduces the rank

n
3y z+2b+r

i=0

L

Notation For 1 <k<n+1, let

k1
S = Z 2'z,
i—0

noting that this quantity depends on the state of Nj.
Lemma 3.2 Let0<j<nand 1 <k<n+ 1.

1. If j # k — 1, then the reaction {; preserves the value of
Sy

2. If j =k — 1, then the reaction Cj reduces the value of
Sy

Proof Let0<j<nand 1<k<n+1.

1. This holds trivially if k<j<mn, so assume that
0<j<k—1. Let zp,...,z+—1 be the counts of
Zy, ..., Z;—1 just before an occurrence of ij, let
Zy,-- %, be the counts just after, and let
S, = Zf;(} 2’2;. Since Cj occurs, we must have z; > 2.
If weletI ={0,....,k— 1} \ {j,j + 1}, then each

Z ifiel
z; =< z—2 ifi=j
zi+1 ifi=j+1,
so we have
icl
2. Assume that j=k—1, and wuse the notations

20y -3 Zk=1s 20 ---12_1» and S as in part 3 of this
proof. If 1 <k <n, then each

, { Zi if0<i<k—1
Zi:
zi—2

ifi=k—1.
If k =n+ 1, then each
; Zi if 0<i<k—1
i = a—1

ifi=k-—1.
Either way, S}, <Sk.

O

Corollary 3.3 For every 1<k<n+1, the inequality
Si <p is an invariant of Nj.

Proof Let 1 <k<n+ 1. We have Sy =p in the initial
state that we have specified. The y-reaction trivially pre-
serves the value of S; and Lemma 3.2 tells us that the
reactions (, . .., {, all preserve the condition Sy <p. [

Corollary 3.4 If 1 <k<n and z; > 0 in some accessible
state of Ny, then p > 2.

Proof Assume the hypothesis. Then Corollary 3.3 tells us
that, in the given accessible state,

P> Sps > 2k > 2,
O

In the following, for d € 7", we use both the mod-d
congruence (equivalence relation)

a=bmodd,

which asserts of integers a,b € Z that b — a is divisible by
d, and the mod-d operation

b mod d

whose value, for b € Z, is the unique r € Z such that
0<r<dand r = bmodd.

Corollary 3.5 The congruence

Sy = pmod 2" (3.1)

is an invariant of Nj.

Proof The initialization of N; ensures that (3.1) holds in
the initial state. It is clear that the reactions {, and y pre-
serve the value of §,, and Lemma 3.2 tells us that the
reactions (y,...,{,_, preserve the value of S,. Hence it
suffices to show that the reaction {,,_; preserves the truth of
(3.1).

Assume that (3.1) holds just prior to the occurrence of
(1. Let z9,...,20—1 be the counts of Zy,...,Z,_; just
before this occurrence, let z,...,z,_; be the counts just
after this occurrence, and let) = Y7~ 2'7/. Since {,_,
occurs, we must have z,_; > 2. For each 0 <i<n we have

;L Zi if 0<i<n-—1
" ly—2 ifi=n—1,
SO
n—2]
S; = ZZ’zi + 2”71(2,,_1 — 2)
i=0
=5,-2"
= S, mod 2".

@ Springer

J. I. Lathrop et al.

Since S, = p mod 2", it follows that S; = pmod 2", ie.,
that (3.1) holds just after this occurrence of {,_;. O

Corollary 3.6 For every 1 <k <n, the condition
Or=p=-=z=0=85%=p
is an invariant of Nj.

Proof Let 1 <k<n. The condition ®; holds trivially in
the initial state that we have specified. The reactions {,, and
y trivially preserve the value of Si, so let 0 <j<n. It suf-
fices to show that (j preserves the condition @;. For this,
assume that @ holds just prior to an occurrence of {;. Let
20,...,2, be the counts of Z,...,Z, just prior to this
occurrence of {;, and let z;, . . ., z;, be the counts just after this
occurrence. Since {; occurs, we must have z; > 2 and zj =L
To see that @ holds just after this occurrence of {;, assume

that zp=---=z,=0. Then z=---=2z,=0 and
Jj+ 1<k, soLemma 3.2 tells us that C j preserves the value of
Si. Hence O, holds just after this occurrence of Cj. |

Corollary 3.7 Let (qo, - . -, q:) be a trajectory of Ny, where
q; is a terminal state, and let 1 <k <n. Ifp> 2k then there
exists 1 <s <t such that z; > 0 in g,.

Proof Let (qo,...,q:) be a trajectory of Nj, and let
1 <k <n. Assume that p > 2k and that there does not exist
s € {1,...,t} such that z; > 0. It suffices to show that ¢, is
not terminal.

Since there does not exist s € {1,...,¢} such that zz > 0
in ¢y, it must be the case that zy = --- =z, =0 in ¢;. It
follows by Corollary 3.6 that Sy = p holds in ¢,. Since
Zf:_ol 2! = 2% — 1 and we have p >2* by assumption, this
implies that there exists 0 <i<k such that z; > 1 in g;.

Hence the reaction ; is enabled in g;, so g; is not terminal.
O

Notation For each r € {0,...,2" — 1}, let A(r) be the
number of 1s in the n-bit binary representation of r (leading
Os allowed), and let

9_{ A(p)
" L1+ A(p mod 27)

Note that ¢ is an integer depending on n and p, and that ¢ is
negligible in the sense that ¢ = o(p) as p — oo.

if p<2n
if p>2n.

The Boolean value of a
[@] = if ¢ then 1 else 0.

condition ¢ is

Theorem 3.8 N, terminates on all trajectories in the state
(20y - - -y 2n, b, 1) specified as follows.

(i) zu—1---20 is the n-bit binary expansion of

p mod 2".

@ Springer

(i) z=[p=>2"]
(i) b= (p—¢) - [p<2"]
@iv) r=(p—c¢)-[p>2"].

Proof Lemma 3.1 tells us that N; terminates on all tra-
jectories. Let ¢ = (zo, - - ., 21, b,) be a terminal state of Ny,
and note the following.

(a) Forall 0<i<n,{;isnotenabled in g, so z; € {0, 1}.

(b) y is not enabled in ¢, so b =0 or r =0.

(c) By(a),S, < Z?;Ol 20 = 2" — 1, so Corollary 3.5 tells
us that S, = p mod 27, i.e., that (i) holds.

(d) If p<?2", then Corollary 3.4 tells us that z, = 0. If
p >2", then Corollary 3.7 tells us that z, > 1 some-
where along every trajectory leading to g. Since z,
can never become 0 after becoming positive, this
implies that z, = 1 in g. Hence (ii) holds.

(e) By (c) and (d) we have > 7,z =&

(f) Since b+ r+ Y.,z is an invariant of Ny, (b) and
(e) tell us that one of b and r is p — ¢ and the other is
0.

(g) If p<?2™, then Corollary 3.4 tells us that z,, = - - -
Z, = 0 holds throughout every trajectory leading to

g. This implies that none of the reactions (,,, ..., {,
occurs along any trajectory leading to ¢, whence
r=0.

(h) If p>2", then Corollary 3.7 tells us that z,, >0
holds somewhere along every trajectory leading to g.
This implies that the reaction {,,_; occurs, whence r
becomes positive, somewhere along every trajectory
leading to g. Since r can never become 0 after
becoming positive, this implies that r > 0.

(i) By (), (g), and (h), (iii) and (iv) hold.]

Since ¢ is negligible with respect to p, Theorem 3.8 says
that N; terminates in an overwhelmingly blue state if
p <2" and in an overwhelmingly red state if p > 2". This is
a very sharp phase transition at the population threshold 2.

4 Coupled phase transitions

Let m, n, p, and Ny be as in Sect. 3, and let N, be a CRN
consisting of the n + 2 reactions of Ny and the w-reaction

w=R+Z,— B+7Z,.

This section proves that N, exhibits two coupled popula-
tion-induced phase transitions as described in the intro-
duction. That is, exceeding the second threshold returns the
behavior of N, to its behavior below the first threshold.

We use the same initialization for N, as for Nj. Again,
all our results hold regardless of the rate constants of the
n + 3 reactions of Nj.

Population-induced phase transitions

Routine inspection verifies the following.

Observation 4.1 Lemma 3.2 and Corollaries 3.3-3.7 hold
for N, as well as for Nj.

If p<?2", then Corollary 3.4 tells us that z, never
becomes positive in Nj, so the w-reaction never occurs in
N,. Thus, for p <2", N, behaves exactly like Nj.

On the other hand, if p > 2", then the behavior of N, is
very different from that of N;. For example, in contrast
with Lemma 3.1, we have the following.

Lemma 4.2 If p>2", then not all trajectories of Ny
terminate.

Proof Assume that p >2". Let
n—1 n—2 0
(=0 g 48

denote a sequence consisting of 2"~ consecutive occur-
rences of the reaction {,, followed by 212 occurrences of
{y, etc. Since p>2" each of these 2" — 1 reactions is
enabled when its turn comes. After the sequence { has
occurred, we have

0=p—2",

21 = ... =Zp-1 :0,

in = 17
m—1)

b= 2n7<l+l) — 2}1(1 _ zfm)7
i=0
n—1

r= 2117([4*1) — 2n7m —1.

=m

Recalling that n > m+ 1, we have r>3 here, so the
reaction w is enabled after { has occurred. In fact { can (in
principle) be followed by the infinite sequence

w? X7 w? X? R
of reactions, so N, has a nonterminating trajectory. O

It is easy to see that the infinite trajectory of N,
exhibited in the proof of Lemma 4.2 is not fair. In fact, we
prove below that all fair paths of N, terminate. First,
however, we note that Nj, like Ny, has a unique terminal
state.

Let ¢ be as defined before Theorem 3.8.

Lemma 4.3 If p > 2" and N, terminates, then it does so in
the state (2o, . . .,zn, b,) specified as follows.

(i) zp—1---20 is the n—bit binary expansion of
pmod 2",
(i) z,=1.
(i) b=p-—e.
@Giv) r=0.

Proof Let g be an accessible state of N, that is terminal.
The proofs of (i) and (ii) are the same as in Theorem 3.8,
together with the fact that the w—reaction does not alter the
value of z,. Since z, = 1 and the w—reaction is disabled in
state g, (iv) holds in g. Finally, since

n
p=2zi+b+r=8+b+r,
i=0

(iii) follows from (i), (ii), and (iv). O

Lemma 4.4 On any fair trajectory of N,, after finitely
many steps, all {-reactions are permanently disabled.

Proof For each 0 <j<n, let @; be the assertion that, on
any fair trajectory of N, after finitely many steps the
reaction {; is permanently disabled. It suffices to prove that
®; holds for all 0 <j<n. We do this by induction on j.

Let 0 <j <n and assume that @; holds for all 0 <i<j. It
suffices to show that &; holds. For this, let 1=
(gil0<i<oo) be a trajectory in which {; is enabled
infinitely often. It suffices to show that 7 is not fair. We
have two cases.

Case 1: Some {; for 0 <i<j is enabled infinitely often.
Then 7 is not fair by the induction hypothesis.

Case 2: There exists k* € N such that, for all k> k* the
reactions {;, for 0 < i<, are all disabled in g,. Then z; does
not increase at any step of 7 from k* onward. Since every
occurrence of (; decreases z;, this implies that {; only
occurs finitely many times after k*, hence only finitely
many times in . Since {; is enabled infinitely often along <
it follows by Observation 2.1 that 7 is not fair. U

Lemma 4.5 With any initialization, all fair trajectories of
the chemical reaction network Nyw, consisting of just the
reactions y and w, are terminal.

Proof 1If Nyw is initialized with z, = 0, then there is only
one full trajectory, which is terminal, so it suffices to prove
the lemma for initializations with z, > 0. Let go be any
such initial state, and let p be the value of b 4 r + z, in gy.
Since z, and p are invariants of Nyw, a state of Nyw is
completely determined by the value of r. We thus refer to
“the state r” of Nyw, for 0 <r<p — z,. Note that in this
terminology the unique terminal state is 0.

For each state r of Nyw with initial state ¢ the
trajectory 7, = (r,r — 1,...,1,0) given by r consecutive
occurrences of is a terminal trajectory from r, so the fair
termination lemma (Lemma 2.2) tells us that all fair
trajectories of Nyw are terminal. U]

Recall the notation defined just before Theorem 3.8. The
following result is our main theorem.

Theorem 4.6 Let
specified as follows.

(20y---y2n,b, 1) be the state of N,

@ Springer

J. I. Lathrop et al.

(i) zy—1---20 is the n-bit binary expansion of
pmod 2"

i)z =[p>2"].

(i) b= (p—¢)x[[p<2™or p>2"].

(v) r=(p—e)*[2"<p<2].
If p<2", then N, terminates in this state on all trajectories.
If p>2", then N, terminates in this state on all fair
trajectories.

Proof 1If p<?2", then Corollary 3.3 tells us that z, never
becomes positive in N,, so w is never enabled. Hence, in
this case N, behaves exactly like Ny. Theorem 3.8 tells us
that N, terminates on all trajectories to the state satisfying
(i) and (ii) above and, since [p<2"] = [p<2" or p >2"]
and [p>2"] = [2" <p<?2"], also satisfying (iii) and (iv)
above.

If p > 2", then Lemmas 4.4 and 4.5 together tell us that
N, terminates on all fair trajectories. Since [p>2"] =
1,[p<2morp>2"] =1, and [2"<p<2"] =0,
Lemma 4.3 tells us that termination must occur in the
state satisfying (i)-(iv) above. |

Since ¢ is again negligible with respect to p, Theo-
rem 4.6 says that N, terminates in an overwhelmingly blue
state if p <2™ or p > 2" but in an overwhelmingly red state
if 2" <p <2". Hence N, exhibits very sharp phase transi-
tions at the population thresholds 2" and 2". As noted in
the Introduction and elaborated in Sect. 6 below, this has
significant implications for the verification of chemical
reaction networks.

5 Coupled phase transitions with faster
termination

As we have demonstrated with both human and machine-
verified proofs, the chemical reaction network N, terminates
on all trajectories and in the intended state (color) in the lower
(blue) and middle (red) ranges of initial population. Moreover,
in these two ranges, N, is efficient in the sense that every
occurrence of a reaction makes progress toward the terminal
state. In fact, Lemma 3.1 assures us that N, halts after at most
3p reactions, where p is the initial population. We have also
shown that, in the upper (blue) range of initial populations, N
terminates on all fair trajectories, always in the same, blue
state. However, an easy modification of the proof of
Lemma 4.2 shows that there is no upper bound whatsoever on
the lengths of these fair trajectories. The last epoch of any such
trajectory consists entirely of y-reactions and w-reactions. We
have not specified rate constants of the reactions in N, or
defined a probability model of the behavior of N, in any other
way, but in any reasonable such model, the y-reactions and w-
reactions would impose a random walk on the relative

@ Springer

populations r and b of red and blue molecules, respectively,
with the sum b+r fixed. If the initial population of Nj is
significantly above the threshold of the upper blue region, then
r will be far greater than b at the beginning of this random
walk, and the y-reaction will intuitively be trying to exter-
minate the blue molecules. In fact, the y-reaction will succeed
in doing this many times (with the w-reaction subsequently
producing a new blue molecule) before the random walk
eventually enables the w-reaction to finally and permanently
exterminate the red molecules. Indeed, simulations of N, with
simple probability assumptions (e.g., all rate constants 1) and
even very modest values of m and n fail to terminate in
practical amounts of time with initial populations in the upper
blue region.

We have chosen the chemical reaction network N, as
our primary exemplar of coupled phase transitions because
its behavior admits a reasonably elegant correctness proof
that is very much in the spirit of distributed computing
theory. However, a discerning reader might well be con-
cerned that coupled phase transitions can only occur in
simple chemical reaction networks that do not terminate in
feasible amounts of time.

In this section we dispel this concern by presenting a
chemical reaction network N3 that has coupled phase
transitions like those of N, but terminates more quickly
under reasonable assumptions.

The chemical reaction network N3 uses the same ladder
mechanism as Nj as an entry point for the phase transition.
As with Ny, we fix m,n,p € Z", with n>m+ 1, and
define n (-reactions
f—z7 - {Zi+1 +B (OSi‘<m).

Zin+R (m<i<n)
To perform the transition to red at p = 2", however, N3
uses the species Z,,...,Z,—1 (which can only be created
when p >2™) as catalysts to convert blue to red via the
following additional n — m reactions

Zi+B—>Zi—|—R, m§l<i’l

Since N3 creates only a finite amount of blue molecules in
the lower stages of the ladder, these catalytic reactions are
sufficient to convert all blue into red.

To perform the transition back to blue at p = 2", N3 uses
the O species, which is created at the end of the ladder,
reachable only when p >2". We include the following n +
3 additional reactions:

anl +Zn71 - Q+B
O+R—Q+B
0+0—0+R

0+7Z —-0+0, i<n

Population-induced phase transitions

The Q species catalytically converts Z; into Q and R into B.
It also catalytically converts itself into blue molecules.
Therefore if N3 produces a single Q species, the population
must eventually convert into blue molecules, leaving
behind a single Q molecule.

Note that we still require a fairness condition to prove
that N3 terminates if p > 2", because we can identify a class
of infinite-length state-space trajectories wherein B is cat-
alytically exchanged for R and vice-versa. For example, if
both a Z, molecule and a Q molecule are present, the
reactions

Zw+B— Zy +R
O+R—Q+B

can alternate indefinitely.

As described in Sect. 6, we have performed the same
verification techniques for N3 as for N, with very similar
results. Model checking and stochastic simulation cannot
address population counts outside the lower blue region
due to computational limitations, and therefore always
predict a blue result. ODE simulation also predicts a blue
result. As with N, we cannot conclusively say whether this
is due to numerical issues, and without a more extensive
analysis, we cannot guarantee that the preconditions of
Kurtz’s theorem apply. It is clear, however, that ODE
simulation fails for N3. We have again used Isabelle/HOL
to verify N3, producing a machine-verified mathematical
proof that applies at any population scale, and correctly
predicts the two population-induced phase transitions.

Erik Winfree (2020) recently designed another coupled
phase transition chemical reaction network that terminates
more quickly than N,. This reaction network, unlike N3,
retains the “random walk” final epoch of N, but uses a
rapidly produced catalyst to shorten this epoch.

6 Implications for verification

The coupled phase transitions in the chemical reaction
network N, make it difficult to verify its behavior. In this
section we describe the use and limitations of verifying the
chemical reaction network using simulation, model
checking and differential equations. None of these methods
detected that the system turned red when the population
reached 2”'. We then describe how the use of an interactive
theorem prover enabled us to verify the chemical reaction
network’s behavior at both phase transitions, i.e., that it
turned from blue to red at 2" and from red to blue at 2".
The fact that theorem proving could verify behavior that
was otherwise not verified for the chemical reaction net-
work suggests that interactive theorem proving may have a
useful role to play in future verification of a class of

chemical reaction networks. Recall that the chemical
reaction networks N; and N, have fixed populations
throughout any given execution, and that their initial states
have zj as the entire population.

6.1 Simulation

The MATLAB SimBiology package is widely used to
explore the behavior of a number of devices (molecules)
executing concurrently (MATLAB 2019). Using SimBiol-
ogy, simulations of the N, chemical reaction network were
performed on an Intel processor computer with a processor
clock of 5.0 GHz and 64GB of RAM. Several simulations
were performed with increasing populations zo. With a
population of 107, the simulation performed as expected.
However, with a population of 108, the simulation failed
and terminated with no output or error message. Thus, the
stochastic simulation was unable to detect that the behavior
of the N, chemical reaction network could experience a
phase transition.

Since it is currently not possible to simulate Ny, N, and
N3 to completion with n = 65, it is not possible to visualize
the phase transitions of these CRNs using simulation.
Hence, we investigate the running time of smaller versions
of these two CRNSs, which confirms our intuition and the-
orems. For simulating smaller versions of of these CRNs,
we reduce the set of reactions so that m =5 and n = 10.

Figure 2 shows the behavior of the smaller version of N,
at populations near the phase transitions. Population 127 is
just below the first phase transition and the top graph shows
that the population quickly turns to blue and remains blue.
Population 128 is the lowest population above the first
phase transition, and it turns red in approximately 3.3
seconds. The largest population where the CRN can remain
in the red state indefinitely is 1023. Finally, the smallest
population above the second phase transition is 1024. This
is shown in the bottom graph of the figure and does not
exhibit the eventual blue behavior, because the expected
time of the random walk for n = 10 is still very large.

This random walk can be seen in Fig. 3 where part of
the simulation is magnified to show the individual counts
of the red species. It is clear from the graph that even
converting 10 red species to blue is unlikely in feasible
time.

Finally, Fig. 4 shows the red and blue population counts
for the smaller version of N3. Here we see that a population
of size 1024 turns nearly all red before turning essentially
all blue in approximately 5 seconds.

@ Springer

J. I. Lathrop et al.

120

100

80

60 |-

40 -

20 |-

| | L L

140

3 4 5 6
Simulation time (seconds)
population 127

10

120

100

80

60 -

40 -

L L | I

3 4 5 6
Simulation time (seconds)
population 128

1200

1000 -

800

600

400

200

| | | |

3 4 5 6
Simulation time (seconds)
population 1023

1200
1000 -
800 [
600 [~
400 [~

200

| | = =

3 4 5 6
Simulation time (seconds)
population 1024

Fig. 2 Simulation of N, with m =5 and n = 10 at different population sizes

@ Springer

10

Population-induced phase transitions

Fig. 3 Example of random walk T T
with initial population 1024 in

N, with m =5 and n = 10, 1040 -
failing to turn blue in feasible
time

1030 -

1020 - H W'HW‘ W* M H“ q J W u F' ' ¥ V ‘ n

T

1010

T

1000

990 -

980 -

970 I

1 1 1 1 1 1

4.8 4.9

5.1 5.2 5.3 5.4 5.5 5.6
Simulation time (seconds)

Fig. 4 Simulation of N3 with 1200
m =75 and n = 10 and
population 1024 with fast

change to blue 1000 -

800

600 -

400

200

6.2 Model checking

The chemical reaction networks N and N3 simulated in
SimBiology and described above were also verified using
the PRISM 4.6 probabilistic model checker (Kwiatkowska
et al. 2011). Kwiatkowska and Thachuk, among others,
have described the use of PRISM for the probabilistic
verification of chemical reaction networks for biological
systems (Kwiatkowska and Thachuk 2014).

To verify the chemical reaction network behavior we
first converted the N, and N3 models to SBML using the
export function in SimBiology, and then converted the
SBML models to PRISM using the sbml2prism conversion
tool supplied with the PRISM software. PRISM was used
to verify six key properties of the N and N3 chemical

4 5 6 7 8 9 10
Simulation time (seconds)

reaction networks at multiple populations. For example,
one of the properties stated that “P > = 1[F G r =0]”,
i.e., that with probability 1, the eventual state of the
R species has 0 molecules, and never changes from that.
With a population of 100, PRISM generated the CTMC
state model in 1.65 seconds using the same processor and
memory as for the SimBiology simulations, and the veri-
fication of the six properties required less than 2 seconds of
CPU time.

For a population of 100 molecules, 97 correctly turn
blue and 0 correctly turn red, since the latter only happens
when the initial population is larger than 23*. PRISM also
verified that in the final state the species count was zo = 0,
71 =0,z = 1 and zs = 1, based on the binary expansion of
one hundred.

@ Springer

J. I. Lathrop et al.

However, we were unable to model check N, or N3 with
a population of 400 due to the rapid increase in states and
limited memory. Thus, model checking confirmed the
expected behavior of the N, and N3 chemical reaction
networks for a population of 100 but could not detect the
behavioral change to red when the population increased.

Advanced methods to prune a model so that meaningful
model checking can occur include symmetry reduction
(Heath et al. 2006), statistical model checking (Cardelli
et al. 2018), and automated partial exploration of the model
(Pavese et al. 2016). Recent work by Cauchi, et al. using
formal synthesis allowed verification of systems with 10
continuous variables (Cauchi et al. 2019). However, even
these methods would not be likely to help with the
exceedingly large number of states when the number of
molecules is scaled to a realistic value for experiments.

6.3 Differential equations

We have seen how model checking and simulation fail to
detect the “red” behavior in our chemical reaction net-
works N and N3 due to the processing time and memory
required for a large population. The red behavior also is not
detected when these CRNs are approximated by deter-
ministic semantics. In this model, a chemical reaction
network is represented by a system of polynomial auton-
omous differential equations. Our purpose here is to
investigate the usefulness of the large population heuristic
in this context; we do not make any claims that our results
respect the preconditions and caveats of Kurtz’s theorem
(Kurtz 1972), which provides a mathematical link between
deterministic and high-population stochastic systems.

In general, the system of differential equations induced
by a chemical reaction network is difficult or impossible to
solve exactly, and numerical methods are often used to
approximate solutions. Here, we utilized MATLAB and the
SimBiology package (MATLAB 2019) to numerically
integrate the system of differential equations for N, and
N3. We found that both CRNs reached and remained in a
predominantly blue state for the duration of the simulation,
again missing the red behavior.

We identify three potential causes for these failures. One
potential cause is numerical failure; it may be that
MATLAB’s numerical integration was not robust enough
to capture the relevant deterministic behavior, or that we
did not let the simulation run long enough to converge.
(We note that, although we expect N3 to have a reasonable
convergence time, we expect N, to take an extreme amount
of time to converge, at least in the stochastic case.) Another
potential cause is that, as suggested by Kurtz’s theorem, the
deterministic system might correctly approximate high-
population stochastic behavior, which falls above the sec-
ond phase-transition threshold (and well above the range of

@ Springer

a realistic wet-lab implementation of these CRNs.) Finally,
it may be that the stochastic and deterministic behaviors of
one or both of these CRNs are not actually closely related,
and the deterministic results do not imply anything con-
clusive about the underlying stochastic system. Regardless
of the cause, however, we see that differential equation
methods are not sufficient to capture the red behavior of N,
and Ns.

6.4 Theorem proving

The simulation, model checking, and differential equations
approaches to chemical reaction network verification out-
lined above all make some simplifying assumptions:
reduced state space or generalization to the continuum. In
the case of our chemical reaction network, these assump-
tions lead to an incorrect verification result.

Interactive theorem proving, however, offers an exact
approach that is guaranteed to apply at every scale. In the
interactive theorem proving paradigm, users create a
machine-checkable mathematical proof of verification
properties in collaboration with a software system. Model
checking also constructs a mathematical proof of correct-
ness, but it relies more on a complete or semi-complete
search of the state space in question. By contrast, the goal
of interactive theorem proving is to construct a more tra-
ditional mathematical proof that is also machine-check-
able. The result then applies to any population scale; a
mathematical proof parameterized by population p is valid
at every possible value of p.

In a typical interactive theorem proving session, a user
starts with a base of trusted facts generated from axioms
and assumptions, and uses well-understood rules like
modus ponens and double negation removal to construct
new trusted facts and lemmas. As with a conventional
mathematical proof, the user’s goal is to add new trusted
facts in a strategic way until reaching the goal of the proof.

We have verified our chemical reaction networks with
Isabelle/HOL (Nipkow and Klein 2014; Nipkow et al.
2002), a popular interactive theorem prover with several
useful proof automation features. Instead of working at the
level of rules like modus ponens, users can instruct Isabelle
to execute more general proof methods that can apply
sequences of basic rules without user direct input. For
example, Isabelle can often prove the equivalence of
predicate logic formulas with only one user-generated
method invocation. Once invoked, such a method attempts
to automatically construct a series of low-level logical rules
whose application proves the equivalence. An Isabelle
proof, then, consists of a directed acyclic graph of facts,
connected by applications of these methods. The user’s
task is to choose a chain of intermediate goal facts in a way

Population-induced phase transitions

theory results
imports

zeta_termination
blue_zeta correctness
red_zeta_correctness
omega_termination
omega_correctness

begin

context blue_zeta begin

proof -
ged
end

context red zeta begin

proof -

ged

end

context final omega begin

lemma omega result:
proof -

qed

end
end

lemma blue zeta result: "dJt. terminal (p t)

show ?thesis using blue zeta terminal correct zeta term path_term_def by auto

lemma red_zeta result: "dt. terminal (p t) A r (p t) + 68 = N"

show ?thesis using red zeta terminal _correct zeta_term path_term def by auto

“Jt. terminal (p t) A b (p t) + 68 > N"

show ?thesis using omega_term_state omega_terminal correct by auto

Ab (pt)+ 68 > N

Fig. 5 The end of the Isabelle proof for N,, which summarizes its
results in three lemmas. The context statements bring our
assumptions about the population size into context. The using
statements bring in trusted facts from the rest of our proof and supply

that allows Isabelle to connect them easily on the way to
the overall goal.

Isabelle also provides the powerful Sledgehammer
automation tool, which makes calls to external proof sys-
tems to automate aspects of proof creation. Sledgehammer
takes a goal fact as input and attempts to generate a method
invocation that proves it, operating at one level of
abstraction above the proof methods invocations discussed
above. Since it is often unclear which method to invoke (or
which arguments to supply to it), this functionality can
increase proof construction speed substantially.

We have used Isabelle to verify that our chemical
reaction networks have the desired behavior for all possible
initializations. That is, if we initialize them with p <23 or
p> 267 the chemical reaction networks terminate with

them as arguments to Isabelle’s auto proof method. The identifier p
refers to an arbitrary trajectory that is part of each context. Isabelle
displays all statements with a white or light gray background to
indicate that it has checked them completely, and they are valid

majority blue, but if we initialize them with 23* < p <267,
they terminate with majority red. As expected, theorem
proving is able to verify behavior correctly in all regions,
including the middle region that is inaccessible to model
checking, simulation, and ODE methods. Figure 5 shows
an image taken from the end of our Isabelle proof for N,; it
contains the three goal facts that we successfully verified,
which summarize the behavior of the chemical reaction
network.

Our Isabelle proof for N, is loosely based on the proofs
presented in Sects. 3 and 4. Whereas those proofs define
two chemical reaction networks N; and N,, we associate
assumptions about the population p with various parts of
our proof. Within the scope of the assumption that p <234,
for example, we are able to prove that N, terminates with

@ Springer

J. I. Lathrop et al.

Fig. 6 This Isabelle code from
our proof for N, defines a
terminal state as a state with no
outgoing reactions; K is a
relation that encodes which state
transitions our reaction

set allows. We also show a
sample lemma that helps prove
termination: if we identify a
countdown expression f and a
constant C such that all states
with f < C are terminal, then our
system is guaranteed to
terminate

theory termin
imports piptcrn
begin

definition terminal :: state = bool where terminal s1 = (=(3s2. K sl s2))
definition nonterm :: state = bool where nonterm s = (—(terminal s))

definition path-term :: (nat = state) = bool where
(path-term p) = (3 t. (terminal (p t)))

definition state-term :: (state = bool) where
(state-term s) = (¥ (p == (nat = state)).
(3t ((p 1) = 5))

— (path-term p)))

lemma dec-imp-term:
fixes f :: state = nat
fixes p :: nat = state
fixes ¢ :: nat
assumes evterm: ((f s ¢) — (terminal s)
assumes dec: V 1. ((—(terminal (p 1))) — (
(f (p G+ 1)) <(f (p i)
shows path-term p
proof —
{
fix n::nat
have ((3¢. ((f (p t)) < n)) — (path-term p))
proof (induction n)
case (
then show Zcase
using dec gr-implies-not0 path-term-def by blast
next
case (Suc n)
then show “case
by (metis dec le-SucE less-Suc-eq-le path-term-def)
qed
}
then show ?Zthesis by blast
qed

) <
(te

end

Asin Lemma 3.1, we show termination in the lower two

majority blue. Our Isabelle proof for N3 functions in a
similar way.

We refer to the three population scales as the lower blue
region, the middle red region, and the upper blue region.
Under the assumptions associated with each region, our
proofs must show both termination and correctness; i.e., we
must show that our chemical reaction network reaches a
final state where no reactions are possible, and that any
possible final state has the specified red or blue population.

@ Springer

regions via a “countdown” expression that is guaranteed to
decrease with every reaction. See Fig. 6 for our Isabelle
definitions of termination in our machine-checked N, proof
and a general lemma we proved that allows us to use the
countdown technique. In the upper blue region of both N,
and Nj, it is impossible to prove termination without
assuming that executions are fair. Our Isabelle proof
includes Equation 2.4 as an unproven assumption; we are
not interested in unfair trajectories, but since they exist we

Population-induced phase transitions

cannot prove that all trajectories are fair. For convenience,
we also include Observation 2.1 as an assumption. These
two fairness assumptions allow us to prove that our
chemical reaction networks terminate in the upper blue
region as well.

Our correctness proofs rely heavily on the sum
Ses = Z?lo 2z, using the notation of Sect. 3, which is an
invariant in the lower two regions. In the upper blue region,
it is an invariant until at least one Zg7 (in Ny) or Q (in N3) is
produced. This invariant allows us to reason about the
composition of terminal states. In the lower blue region, for
example, we know that no red can ever be produced; the
chemical reaction network can only produce its first red
molecule alongside Z species that would make the invariant
too large. We can therefore prove that any terminal state in
that region must be majority blue.

7 Conclusion

Taken together, the near-ubiquity of phase transitions in
nature (Dana 2010; Cannon et al. 2018), the sheer size of
molecular populations, and the simplicity of the chemical
reaction networks that we have shown to exhibit popula-
tion-induced phase transitions, indicate that molecular
programming will present us with many exceptions to the
otherwise useful notion that most bugs can be demon-
strated with small counterexamples. As we have seen, this
presents a significant challenge to the verification of
chemical reaction networks. Here we suggest some direc-
tions of current and future research that might help meet
this challenge.

A great deal of creative work has produced a steady
scaling up of model checking to larger and larger state
spaces (Clarke et al. 2009; Chrszon et al. 2018; Abdulla
et al. 2018; Bortolussi et al. 2019; Lomuscio and Pirovano
2019; Ceska et al. 2019). Perhaps the most hopeful
approach for dealing with population-induced phase
changes, or with more general population-sensitive
behaviors, is the model checking of parametrized systems
(Abdulla et al. 2018).

Our results clearly demonstrate the advantage of
including theorem proving (by humans and by software) in
the verification toolbox for chemical reaction networks and
other molecular programming languages. This in turn
suggests that software proof assistants such as Isabelle
(Nipkow et al. 2002; Nipkow and Klein 2014) be aug-
mented with features to deal more directly with chemical
reaction networks and with population-sensitive phenom-
ena. It would also be useful to know how much of such
work could be carried out with automated (as opposed to

interactive) theorem provers such as Vampire (Kovacs and
Voronkov 2013).

Some future programmed molecular applications will be
safety-critical, such as in health diagnostics and therapeu-
tics. It is likely that evidence that such systems behave as
intended will be required for certification by regulators
prior to deployment. Toward providing such evidence,
Nemouchi et al. have recently shown how a descriptive
language for safety cases can be incorporated into Isabelle
in order to formalize argument-based safety assurance
cases (Nemouchi et al. 2019).

We conclude with a more focused, theoretical question.
Our chemical reaction network N; exhibits its phase tran-
sition on all trajectories, while N, exhibits its coupled
phase transitions only on all fair trajectories. Is there a
chemical reaction network that achieves N,’s coupled
phase transitions on all trajectories?

Appendix: Proof of Fair Termination Lemma

Lemma 2.2 (fair termination lemma) If a population protocol with
a specified initial state has a terminal trajectory from every accessible
state, then all its fair trajectories are terminal.

Proof Let N be a population protocol with initial state gy, and
assume that N has a terminal trajectory from every accessible state.
Let 7= (¢; | 0<i<o0) be an infinite trajectory of N. It suffices to
show that 7 is not fair. For each state g of N, let

Iq:{i€N|CIi:q}-

Since N is a population protocol, it has finitely many
accessible states, so there is a state g* of N such that the set
I, is infinite. This state ¢* is accessible, so our assumption
tells us that there is a finite trajectory t* = (¢} | 0 <i</)
of N such that g5 = ¢* and g;_, is terminal. Now Iy = I+ is
infinite and /,, = () (because g;_, is terminal, so it does not appear in
the infinite trajectory), so there exists 0 <k < — 1 such that [is
infinite and /,; is finite. Let ¢** = g, and let p be the reaction that
takes g; to gi,,. Then p is enabled in ¢** and there exist infinitely
many i such that g; = g™ (because I~ is infinite), but there are only
finitely many j for which g; = g™ and p occurs at j in 7 (because Iy,
is finite). Hence 7 is not fair. [J

Acknowledgements We thank Neil Lutz for technical assistance. The
second and third authors thank Erik Winfree for his hospitality while
they did part of this work during a 2020 sabbatical visit at the Cali-
fornia Institute of Technology. We thank the anonymous reviewers of
both the conference and journal versions of this paper for multiple
useful suggestions. We thank Erik Winfree for correcting an “off-by-
one” error in our conference paper and for telling us about his fast
chemical reaction network mentioned here at the end of Section 5.
This research was supported in part by National Science Foundation
Grants 1545028, 1900716, and 1909688.

@ Springer

J. I. Lathrop et al.

References

Abdulla PA, Sistla AP, Talupur M (2018) Model checking param-
eterized systems. In: Clarke EM, Henzinger TA, Veith H, Bloem
R (eds) Handbook of Model Checking. Springer, pp 685-725

Anderson DF, Kurtz TG (2011) Continuous time Markov chain
models for chemical reaction networks. In: Heinz K, Gianluca S,
Mario di B, Douglas D, (eds) Design and Analysis of
Biomolecular Circuits. Springer, pp 3-42

Anderson DF, Kurtz TG (eds) (2015) Stochastic analysis of
biochemical systems, volume 1.2. Springer International
Publishing

Angluin D, Aspnes J, Eisenstat D (2008) A simple population
protocol for fast robust approximate majority. Distrib Comput
21(2):87-102

Angluin D, Aspnes J, Eisenstat D, Ruppert E (2007) The computa-
tional power of population protocols. Distrib Comput
20(4):279-304

Badelt S, Shin SW, Johnson RF, Dong Q, Thachuk C, Winfree E
(2017) A general-purpose CRN-to-DSD compiler with formal
verification, optimization, and simulation capabilities. In: Pro-
ceedings of the 23rd International Conference on DNA Com-
puting and Molecular Programming, Lecture Notes in Computer
Science, pp 232-248

Baier C, Katoen J-P (2008) Principles of model checking (Represen-
tation and mind series). The MIT Press, USA

Bortolussi L, Cardelli L, Kwiatkowska M, Laurenti L (2019) Central
limit model checking. ACM Trans Comput Log 20(4):19:1-
19:35

Cannon S, Miracle S, Randall D (2018) Phase transitions in random
dyadic tilings and rectangular dissections. SIAM J Discret Math
32(3):1966-1992

Cardelli L, Csikasz-Nagy A (2012) The cell cycle switch computes
approximate majority. Scientific Reports, 2

Cardelli L, Kwiatkowska M, Whitby M (2016) Chemical reaction
network designs for asynchronous logic circuits. In: International
Conference on DNA-Based Computers. Springer, pp 67-81

Cardelli L, Kwiatkowska M, Whitby M (2018) Chemical reaction
network designs for asynchronous logic circuits. Nat Comput
17(1):109-130

Cauchi N, Laurenti L, Lahijanian M, Abate A, Kwiatkowska M,
Cardelli L (2019) Efficiency through uncertainty: scalable
formal synthesis for stochastic hybrid systems. In: Proceedings
of the 22nd ACM International Conference on Hybrid Systems:
Computation and Control, HSCC 2019, Montreal, QC, Canada,
April 16-18, 2019., pp 240-251

Ceska M, Jansen N, Junges S, Katoen JP (2019) Shepherding hordes
of Markov chains. In: Proceedings of the International Confer-
ence on Tools and Algorithms for the Construction and Analysis
of Systems, pages 172-190. Springer

Chen Y-J, Dalchau N, Srinivas N, Phillips A, Cardelli L, Soloveichik
D, Seelig G (2013) Programmable chemical controllers made
from DNA. Nat Nanotechnol 8(10):755-762

Chrszon P, Dubslaff C, Kliippelholz S, Baier C (2018) ProFeat:
feature-oriented engineering for family-based probabilistic
model checking. Formal Asp Comput 30(1):45-75

Clarke EM, Allen Emerson E, Sifakis J (2009) Model checking:
algorithmic verification and debugging. Commun ACM
52(11):74-84

Condon A, Hajiaghayi M, Kirkpatrick DG, Manuch J (2017)
Simplifying analyses of chemical reaction networks for approx-
imate majority. In: Proceedings of the 23rd International
Conference on DNA Computing and Molecular Programming,
volume 10467 of Lecture Notes in Computer Science, pages
188-209. Springer

@ Springer

Cook M, Soloveichik D, Winfree E, Bruck J (2009) Programmability
of chemical reaction networks. In: Condon A, Harel D, Kok JN,
Salomaa A, Winfree E (eds) Algorithmic Bioprocesses. Springer,
Natural Computing Series, pp 543-584

Dietz H. Synthetic DNA machines to fight viruses and other troubles.
Matter to Life Lecture Series, Technical University of Munich

Douglas SM, Bachelet I, Church GM (2012) A logic-gated nanorobot
for targeted transport of molecular payloads. Science
335(6070):831-834

Ellis SJ, Klinge TH, Lathrop JI, Lutz JH, Lutz RR, Miner AS, Potter
HD (2019) Runtime fault detection in programmed molecular
systems. ACM Trans Softw Eng Methodol 28(2):6:1-6:20

Fages F, Le Guludec G, Bournez O, Pouly A (2017) Strong Turing
completeness of continuous chemical reaction networks and
compilation of mixed analog-digital programs. In: Proceedings
of the 15th International Conference on Computational Methods
in Systems Biology, pages 108-127. Springer International
Publishing

Harel D (1986) Effective transformations on infinite trees, with
applications to high undecidability, dominoes, and fairness.
J ACM 33(1):224-248

Heath J, Kwiatkowska M, Norman G, Parker D, Tymchyshyn O
(2006) Probabilistic model checking of complex biological
pathways. In: Computational Methods in Systems Biology,
pages 32—47, Berlin, Heidelberg. Springer Berlin Heidelberg

Jackson D (2019) Alloy: a language and tool for exploring software
designs. Commun ACM 62(9):66-76

Kovécs L, Voronkov A (2013) First-order theorem proving and
vampire. In Computer Aided Verification - 25th International
Conference, CAV 2013, Saint Petersburg, Russia, July 13-19,
2013. Proceedings, volume 8044 of Lecture Notes in Computer
Science, pages 1-35. Springer

Kozen D (2006) Theory of computation. Texts in Computer Science.
Springer

Kurtz TG (1972) The relationship between stochastic and determin-
istic models for chemical reactions. J Chem Phys
57(7):2976-2978

Kwiatkowska M, Norman G, Parker D (2011) PRISM 4.0: Verifica-
tion of probabilistic real-time systems. In: Proceedings of the
23rd International Conference on Computer Aided Verification,
volume 6806 of Lecture Notes in Computer Science, pages
585-591. Springer

Kwiatkowska M, Thachuk C (2014) Probabilistic model checking for
biology. Softw Syst Safety 36:165-189

Kwiatkowska MZ (1989) Survey of fairness notions. Inf Softw
Technol 31(7):371-386

Lakin MR, Parker D, Cardelli L, Kwiatkowska M, Phillips A (2012)
Design and analysis of DNA strand displacement devices using
probabilistic model checking. J R Soc Interface
9(72):1470-1485

Lathrop JI, Lutz JH, Lutz RR, Potter HD, Riley MR (2020)
Population-induced phase transitions and the verification of
chemical reaction networks. In: 26th International Conference on
DNA Computing and Molecular Programming, LIPIcs, pages
5:1-5:17. Schloss Dagstuhl

Li S, Jiang Q, Liu S, Zhang Y, Tian Y, Song C, Wang J, Zou Y,
Anderson GJ, Han J-Y, Chang Y, Liu Y, Zhang C, Chen L, Zhou
G, Nie G, Yan H, Ding B, Zhao Y (2018) A DNA nanorobot
functions as a cancer therapeutic in response to a molecular
trigger in vivo. Nat Biotechnol 36:258

Liu X, Liu Y, Yan H (2013) Functionalized DNA nanostructures for
nanomedicine. Isr J Chem 53(8):555-566

Lomuscio A, Pirovano E (2019) A counter abstraction technique for
the verification of probabilistic swarm systems. In: Proceedings
of the 18th International Conference on Autonomous Agents and
MultiAgent Systems, AAMAS’19, pages 161-169

Population-induced phase transitions

MATLAB (2019) version 9.7.0 (R2019b, Update 4). The MathWorks
Inc., Natick, Massachusetts

Miller B, Bassler L (2001) Quorum sensing in bacteria. Annu Rev
Microbiol 55(1):165-199 (PMID: 11544353)

Nemouchi Y, Foster S, Gleirscher M, Kelly T (2019) Isabelle/SACM:
Computer-assisted assurance cases with integrated formal
methods. In: Proceedings of the 15th International Conference
on Integrated Formal MethodsIFM 2019, volume 11918 of
Lecture Notes in Computer Science, pages 379-398. Springer

Nipkow T, Klein G (2014) Concrete semantics-With Isabelle/HOL.
Springer, Berlin

Nipkow T, Paulson LC, Wenzel M (2002) Isabelle/HOL, volume
2283 of Lecture Notes in Computer Science. Springer-Verlag
Berlin Heidelberg, 1 edition

Paulson LC, Nipkow T, Wenzel M (2019) From LCF to Isabelle/
HOL. Formal Asp Comput 31(6):675-698

Pavese E, Braberman V, Uchitel S (2016) Less is more: Estimating
probabilistic rewards over partial system explorations. ACM
Trans Softw Eng Methodol 25(2):16:1-16:47

Dana R (2010) Phase transitions in sampling algorithms and the
underlying random structures. In: Kaplan H (ed) Proceedings
Scandinavian Symposium and Workshops on Algorithm Theory
SWAT, vol 6139. Lecture Notes in Computer Science, page 309.
Springer

Randall D (2017) Phase Transitions and Emergent Phenomena in
Random Structures and Algorithms (Keynote Talk). In: 31st
International Symposium on Distributed Computing (DISC
2017), volume 91 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 3:1-3:2. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik,

Rice HG (1951) Classes of recursively enumerable sets and their
decision problems. Ph.D thesis, Syracuse University

Rice HG (1953) Classes of recursively enumerable sets and their
decision problems. Trans Am Math Soc 74:358-366

Apoorva S, Akshaya A, Junling G, Samir M (2020) Layered self-
assemblies for controlled drug delivery: A translational over-
view. Biomaterials 242:119929

Soloveichik D, Cook M, Winfree E, Bruck J (2008) Computation with
finite stochastic chemical reaction networks. Nat Comput
7(4):615-633

Soloveichik D, Seelig G, Winfree E (2009) DNA as a universal
substrate for chemical kinetics. In: Proceedings of the 14th
International Meeting on DNA Computing, volume 5347 of
Lecture Notes in Computer Science, pages 57-69. Springer

Thubagere AJ, Thachuk C, Berleant J, Johnson RF, Ardelean DA,
Cherry KM, Qian L (2017) Compiler-aided systematic construc-
tion of large-scale DNA strand displacement circuits using
unpurified components. Nature Communications, 8

Erik Winfree (2020) personal communication

Wooley John C, Lin Herbert S (2005) Catalyzing inquiry at the
interface of computing and biology. National Academies Press,
USA

Zhang DY, Seelig G (2011) Dynamic DNA nanotechnology using
strand-displacement reactions. Nat Chem 3(2):103-113

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

@ Springer

	Population-induced phase transitions and the verification of chemical reaction networks
	Abstract
	Introduction
	Chemical reaction networks
	Single phase transition
	Coupled phase transitions
	Coupled phase transitions with faster termination
	Implications for verification
	Simulation
	Model checking
	Differential equations
	Theorem proving

	Conclusion
	Appendix: Proof of Fair Termination Lemma
	Acknowledgements
	References

