
Interlibrary Loan Article Request

Thank you for using Interlibrary Loan. If the article supplied here does not match what you
requested, or has a problem such as missing pages, please contact us at borrdesk@iastate.edu
or 515-294-8073. We also welcome any questions or comments you may have.

Notice: Warning Concerning Copyright Restrictions

The copyright law of the United States (Title 17, U.S. Code) governs the making of copies or
other reproductions of copyrighted material. Under certain conditions specified in the law,
libraries and archives are authorized to furnish a photocopy or other reproduction. One of
these specified conditions is that the photocopy or reproduction is not to be “used for any
purpose other than private study, scholarship, or research.” If a user makes a request for, or
later uses, a photocopy or reproduction for purpose in excess of “fair use,” that user may be
liable for copyright infringement.

This institution reserves the right or refuse to accept a copying order if, in its judgment,
fulfillment of the order would involve violation of copyright law.

Rapid #: -18838136
CROSS REF ID: 531096

LENDER: GZM :: Memorial Library

BORROWER: IWA :: Main Library
TYPE: Article CC:CCG

JOURNAL TITLE: Natural computing

USER JOURNAL TITLE: Natural Computing

ARTICLE TITLE: Population-induced phase transitions and the verification of chemical reaction networks

ARTICLE AUTHOR: J. Lathrop, J. Lutz, R. Lutz, H. Potter, M. Riley

VOLUME: NA

ISSUE:

MONTH: Nov

YEAR: 2021

PAGES: NA

ISSN: 1572-9796

OCLC #:

Processed by RapidX: 3/24/2022 8:07:04 AM

This material may be protected by copyright law (Title 17 U.S. Code)

Population-induced phase transitions and the verification of chemical
reaction networks

James I. Lathrop1 • Jack H. Lutz1 • Robyn R. Lutz1 • Hugh D. Potter1 • Matthew R. Riley1

Accepted: 16 October 2021
� The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract
We show that very simple molecular systems, modeled as chemical reaction networks, can have behaviors that exhibit

dramatic phase transitions at certain population thresholds. Moreover, the magnitudes of these thresholds can thwart

attempts to use simulation, model checking, or approximation by differential equations to formally verify the behaviors of

such systems at realistic populations. We show how formal theorem provers can successfully verify some such systems at

populations where other verification methods fail.

Keywords Chemical reaction networks � Molecular programming � Phase transitions � Population protocols �
Verification

1 Introduction

Chemical reaction networks, mathematical abstractions

similar to Petri nets, are used as a programming language

to specify the dynamic behaviors of engineered molecular

systems. Existing software can compile chemical reaction

networks into DNA strand displacement systems that

simulate them with growing generality and precision

(Soloveichik et al. 2009; Chen et al. 2013; Badelt et al.

2017; Thubagere et al. 2017). Programming is a chal-

lenging discipline in any case, but this is especially true of

molecular programming, because chemical reaction net-

works—in addition to being Turing universal (Soloveichik

et al. 2008; Cook et al. 2009; Fages et al. 2017) and hence

subject to all the uncomputable aspects of sequential,

imperative programs–are, like the systems that they spec-

ify, distributed, asynchronous, and probabilistic. Since

many envisioned applications of molecular programming

will be safety critical (Wooley John and Lin Herbert 2005;

Zhang and Seelig 2011; Douglas et al. 2012; Liu et al.

2013; Li et al. 2018; Apoorva et al. 2020, 20), program-

mers thus seek to create chemical reaction networks that

can be verified to correctly carry out their design intent.

One principle that is sometimes used in chemical reac-

tion network design is the small population heuristic

(Lakin et al. 2012; Cardelli et al. 2016; Ellis et al. 2019).

The idea here is to verify various stages of a design by

model checking or software simulation to ferret out bugs in

the design prior to laboratory experimentation or deploy-

ment. Since the number of states of a molecular system is

typically much larger than its population (the number of

molecules present), and since molecular systems typically

have very large populations, this model checking or sim-

ulation can usually only be carried out on populations that

are far smaller than those of the intended molecular sys-

tems. It is nevertheless reasonable to hope that, if a system

is going to consist of a very large number of ‘‘devices’’ of

various sorts, then any unforeseen errors in these devices’

interactions will manifest themselves even with very small

populations of each device. It is this reasonable hope that is

the underlying premise of the small population heuristic.

(Note that the small population heuristic can be regarded as

& Jack H. Lutz

lutz@iastate.edu

James I. Lathrop

jil@iastate.edu

Robyn R. Lutz

rlutz@iastate.edu

Hugh D. Potter

hdpotter@iastate.edu

Matthew R. Riley

mrriley@iastate.edu

1 Iowa State University, Ames, IA, USA

123

Natural Computing
https://doi.org/10.1007/s11047-021-09877-9(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-5467-5818
http://orcid.org/0000-0003-1004-3891
http://orcid.org/0000-0001-5390-7982
http://orcid.org/0000-0003-4437-674X
http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-021-09877-9&domain=pdf
https://doi.org/10.1007/s11047-021-09877-9

a molecular version of the small scope hypothesis (Jackson

2019).

The question that we address here is whether real

molecular systems can thwart the small population

heuristic. That is, can a real molecular system behave very

differently at large populations than at small populations?

If so, how sensitive can its behavior be to its population,

and how simple a mechanism can achieve such sensitivity?

In order to ensure that we are only investigating popu-

lation effects, we focus our attention on chemical reaction

networks that are population protocols in the sense that

their populations remain constant throughout their opera-

tions. If we have such a chemical reaction network, and if

we vary its initial population and nothing else, then we are

assured that any resulting variations of behavior are due

solely to the differing populations.

In this paper we show that very simple chemical reac-

tion networks can be very sensitive to their own popula-

tions. In fact, they can exhibit population-induced phase

transitions, behaving one way below a threshold popula-

tion and behaving very differently above that threshold.

After reviewing chemical reaction networks in Sect. 2, we

present in Sect. 3 a chemical reaction network N1, and we

prove that N1 exhibits a population-induced phase transi-

tion in the following sense. There are two parameters, m

and n, in the construction. For this discussion, we may take

m ¼ 34 and n ¼ 67, but the construction is general. There

are nþ 2 reactions among nþ 3 species (molecule types)

in N1. A species Z0 is given an initial population of p, and

all other species counts are initially 0. Each reaction of N1

has two reactants and two products, so the total population

of N1 is p at all times. There are in N1 two distinguished

species, B and R. These ‘‘blue’’ and ‘‘red’’ species are

abstract stand-ins for two different behaviors of N1. Our

construction exploits the inherent nonlinearity of chemical

kinetics to ensure that, if p\2m, then N1 terminates with

essentially all its population blue, while if p� 2m, then N1

terminates with essentially all its population red. Thus N1

exhibits a sharp phase transition at the population threshold

p ¼ 2m.

Our construction is very simple. The chemical reaction

network N1 changes its behavior at the threshold p ¼ 2m by

merely computing successive bits of p, starting at the least

significant bit. This mechanism is so simple that it could be

hidden, by accident or by malice, in a larger chemical

reaction network. Moreover, for suitable values of m (e.g.,

m ¼ 34, so that the threshold p ¼ 2m is roughly

1:7� 1010),

1. any attempt to model-check or simulate N1 will

perforce use a population much less than the threshold

and conclude that N1 will always turn blue; while

2. any realistic wet-lab molecular implementation of N1

will have a population greater than the threshold and

thus turn red.

If the behaviors represented by blue and red here are a

desired, ‘‘good’’ behavior of N1 (or of a network containing

N1) and an undesired, ‘‘bad’’ behavior of this network,

respectively, then the possibility of such a phase transition

is a serious challenge to verifying the correct behavior of

the chemical reaction network. Simply put, this is a context

in which the small population heuristic can lead us astray.

There is a dual large population heuristic that is used

even more often than the small population heuristic. A

theorem of Kurtz (Kurtz 1972; Anderson and Kurtz

2011, 2015) draws a connection between the behavior of a

stochastic chemical reaction network (the type of chemical

reaction network used in our work here and in much of

molecular programming) at large populations and the

behavior of a deterministic chemical reaction network,

which is governed by a system of ordinary differential

equations. Kurtz’s theorem involves several preconditions

and caveats, and it does not always transparently equate

stochastic and deterministic behavior. When it does apply,

however, we can use a mathematical software package to

numerically solve the deterministic system and thereby

understand the behavior of the stochastic chemical reaction

network at sufficiently large populations.

In Sect. 4 we add a single reaction to the chemical

reaction network N1, creating a chemical reaction network

N2 that we prove (in Theorem 4.6) to exhibit two coupled

population-induced phase transitions in the following

sense. If p\2m or p� 2n, then N2 terminates with essen-

tially all its population blue, while if 2m � p\2n, then N2

terminates with essentially all its population red. Thus N2

exhibits sharp phase transitions at the two population

thresholds, p ¼ 2m and p ¼ 2n. These phase transitions are

coupled in that exceeding the second threshold returns the

behavior of N2 to its behavior below the first threshold. For

suitable values of m and n (e.g. m ¼ 34 and n ¼ 67 as

above, so that the thresholds p ¼ 2m and p ¼ 2n are

roughly 1:7� 1010 and 1:5� 1020), this implies (see

Fig. 1) that

1. any attempt to model-check or simulate N2 will

perforce use a population much less than the smaller

threshold and conclude that N2 will always turn blue,

and

2. any realistic wet-lab molecular implementation of N2

will have a population between the two thresholds and

thus turn red.

As we discuss later, when we analyze N2 with a numerical

approach based on differential equations, we also do not

observe a red outcome. The chemical reaction network N2

J. I. Lathrop et al.

123

thus exemplifies a class of contexts in which the small

population heuristic and the large population heuristic can

both lead us astray.

The chemical reaction network N2 is a very simple

model of coupled phase transitions with a simple correct-

ness proof. However, as we explain in Sect. 5, N2 typically

takes a very long time to terminate with initial populations

p above the 2n threshold. If one tries to simulate N2 with

such initializations, even for small values of m and n, the

simulations fail to terminate in a feasible amount of time.

This raises the question whether coupled transitions require

such a long time to termination.

In Sect. 5 we present a chemical reaction network N3

that, like N2, has coupled phase transitions at initial pop-

ulations p ¼ 2m and p ¼ 2n. However, N3 reaches termi-

nation more quickly than N2 for initial populations p� 2n.

The correctness proof for N3 is not as elegant as the one for

N2, but we have verified it in Isabelle. Hence coupled phase

transitions with faster termination can occur.

We emphasize that the phase transitions in the chemical

reaction networks N1, N2, and N3 occur at thresholds in

their absolute populations. In contrast, phase transitions in

chemical reaction networks for approximate majority

(Angluin et al. 2008; Cardelli and Csikász-Nagy 2012;

Condon et al. 2017) occur at threshold ratios between sub-

populations, and phase transitions in bacterial quorum

sensing (Miller and Bassler 2001) occur at threshold pop-

ulation densities.

Section 6 discusses the consequences of our results for

the verification of programmed molecular systems in some

detail. Here we summarize these consequences briefly.

Phase transitions are ubiquitous in natural and engineered

systems (Dana 2010; Randall 2017; Cannon et al. 2018).

Our results are thus cautionary, but they should not be

daunting. Fifteen years after Turing proved the undecid-

ability of the halting problem, Rice (1951, 1953) proved his

famous generalization stating that every nontrivial input/

output property of programs is undecidable. Rice’s theorem

saves valuable time, but it has never prevented computer

scientists from developing specific programs in disciplined

ways that enable them to be verified. Similarly, Sects. 3

and 4 give mathematical proofs that the chemical reaction

networks N1 and N2 have the properties described above,

and Sect. 6 describes how we have implemented such

proofs in the Isabelle proof assistant (Nipkow et al. 2002;

Paulson et al. 2019). As molecular programming develops,

simulators, model checkers, theorem provers, and other

tools will evolve with it, as will disciplined scientific

judgment about how and when to use such tools.

A preliminary version of a portion of this work was

presented at the 26th International Conference on DNA

Computing and Molecular Programming (September,

2020) and published (Lathrop et al. 2020) in the proceed-

ings of that conference. Material that is new to the present

paper includes proofs of the lemmas and corollaries in

Sects. 3 and 4; the completely new Sect. 5 presenting a

chemical reaction network with coupled phase transitions

and faster termination than the chemical reaction network

in Sect. 4; and, in Sect. 6, verification issues for this faster

chemical reaction network and an expanded discussion of

verification using differential equations.

2 Chemical reaction networks

Chemical reaction networks (CRNs) are abstract models of

molecular processes in well-mixed solutions. They are

roughly equivalent to three models used in distributed

computing, namely, Petri nets, population protocols, and

vector addition systems (Cook et al. 2009). This paper uses

stochastic chemical reaction networks.

For our purposes, a (stochastic) chemical reaction net-

work N consists of finitely many reactions, each of which

has the form

Aþ B ! C þ D; ð2:1Þ

where A, B, C, and D (not necessarily distinct) are species,

i.e., abstract types of molecules. Intuitively, if this reaction

occurs in a solution at some time, then one A and one B

disappear from the solution and are replaced by one C and

one D, these things happening instantaneously. A state of

the chemical reaction network N with species A1; . . .;As at

a particular moment of time is the vector ða1; . . .; asÞ,
where each ai is the nonnegative integer count of the

Fig. 1 Scales at which different verification methods (simulation,

model checking, and ODEs) work. The gap in the middle shows the

scale at which none of these methods will catch the ‘‘produce red’’

behavior of the system design. This gap is problematic because it is

the scale of realistic programmed molecular systems. We show in

Sect. 6.4 how such systems can be verified using automated theorem

proving

Population-induced phase transitions

123

molecules of species Ai in solution at that moment. Note

that we are using the so called ‘‘lower-case convention’’ for

denoting species counts.

In the full stochastic chemical reaction network model,

each reaction also has a positive real rate constant, and the

random behavior of N obeys a continuous-time Markov

chain derived from these rate constants. However, our

results here are so robust that they hold for any assignment

of rate constants, so we need not concern ourselves with

rate constants or continuous-time Markov chains. In fact,

for this paper, we can consider the reaction (2.1) to be the

if-statement

if a[0 and b[0 then a; b; c; d :¼
a� 1; b� 1; cþ 1; d þ 1;

ð2:2Þ

where ‘‘:=’’ is parallel assignment. The reaction (2.1) is

enabled in a state q of N if a[0 and b[0 in q; otherwise,

this reaction is disabled in q. A state q of N is terminal if no

reaction is enabled in q.

A trajectory of a chemical reaction network N is a

sequence s ¼ ðqi j 0� i\‘Þ of states of N, where ‘ 2
Zþ [f1g is the length of s and, for each i 2 N with

iþ 1\‘, there is a reaction of N that is enabled in qi and

whose effect, as defined by (2.2), is to change the state of N

from qi to qiþ1. A trajectory s ¼ ðqi j 0� i\‘Þ is terminal
if ‘\1 and q‘�1 is a terminal state of N.

Assume for this paragraph that the context specifies an

initial state q0 of N, as it does in this paper. A state q of N is

accessible if there is a finite trajectory s ¼ ðqi j 0� i\‘Þ
of N with q‘�1 ¼ q. A full trajectory of N is a trajectory

s ¼ ðqi j 0� i\‘Þ that is either terminal or infinite.

The fact that each reaction (2.1) has two reactants (A

and B) and two products (C and D) means that N is a

population protocol (Angluin et al. 2007). This condition

implies that the total population of all species never

changes in the course of a trajectory. If such a chemical

reaction network has s species and initial population p, its

state space is thus the ðs� 1Þ-dimensional integer simplex

Ds�1ðpÞ ¼ ða1; . . .; asÞ 2 Ns
�
�
Xs

i¼1

ai ¼ p

()

: ð2:3Þ

Note that jDs�1ðpÞj ¼ pþ s� 1

s� 1

� �

. Of course, fewer than

this many states may be reachable from a particular initial

state of N.

A full trajectory s ¼ ðqi j 0� i\‘Þ of a CRN N is

(strongly) fair (Kwiatkowska 1989; Baier and Katoen

2008) if it has the property that, for every state q and

reaction q that is enabled in q,

ð91iÞqi ¼ q)ð91jÞ½qj ¼ q and q occurs at j in s�;
ð2:4Þ

where ð91iÞ means ‘‘there exist infinitely many i such

that.’’ Note that every terminal trajectory of N is vacuously

fair, because it does not satisfy the hypothesis of (2.4).

The stochastic kinetics of chemical reaction networks

implies that, regardless of the rate constants of the reac-

tions, for every population protocol N and every initial

population p of N, there is a real number e[0 such that,

for every state q of N and reaction q that is enabled in q, the

probability that q occurs in q depends only on q and is at

least e. This in turn implies that, with probability 1, N

follows a fair trajectory. Hence, if N has a given behavior

on all fair trajectories, then N has that behavior with

probability 1.

We use the following two facts in Sect. 4. The first is an

obvious consequence of the definition of fairness.

Observation 2.1 If s ¼ ðqi j 0� i\‘Þ is a fair trajectory

of a population protocol N, then, for every reaction q of N,

ð91iÞ½q is enabled in qi�)ð91jÞ½q occurs at j in s�:
ð2:5Þ

A famous theorem of Harel (1986; Kozen 2006) implies

that the general problem of deciding whether a chemical

reaction network terminates on all fair trajectories is

undecidable. Nevertheless, the following lemma gives a

useful sufficient condition for termination on all fair tra-

jectories. This lemma undoubtedly follows from a very old

result on fairness, but we do not know a proper reference at

the time of this writing. A proof appears in the Appendix.

Lemma 2.2 (fair termination lemma) If a population

protocol with a specified initial state has a terminal tra-

jectory from every accessible state, then all its fair tra-

jectories are terminal.

3 Single phase transition

This section presents the chemical reaction network N1 and

proves that it exhibits a population-induced phase transi-

tion as described in the introduction.

Fix m; n; p 2 Zþ with n[mþ 1. Let N1 be a chemical

reaction network consisting of the nþ 1 f-reactions

fi � Zi þ Zi !
Ziþ1 þ B ð0� i\mÞ
Ziþ1 þ R ðm� i\nÞ
Zi þ R ði ¼ nÞ

8

><

>:

and the v-reaction

v � Bþ R ! Rþ R:

J. I. Lathrop et al.

123

All results here hold regardless of the rate constants of

these nþ 2 reactions.

We initialize N1 with z0 ¼ p and all other counts 0.

Intuitively, B is blue, R is red, and the species Zi are all

colorless.

Lemma 3.1 N1 terminates on all possible trajectories.

Proof Every reaction in N1 reduces the rank

3
Xn

i¼0

zi þ 2bþ r:

h

Notation For 1� k� nþ 1, let

Sk ¼
Xk�1

i¼0

2izi;

noting that this quantity depends on the state of N1.

Lemma 3.2 Let 0� j� n and 1� k� nþ 1.

1. If j 6¼ k � 1, then the reaction fj preserves the value of
Sk.

2. If j ¼ k � 1, then the reaction fj reduces the value of

Sk.

Proof Let 0� j� n and 1� k� nþ 1.

1. This holds trivially if k� j� n, so assume that

0� j\k � 1. Let z0; . . .; zk�1 be the counts of

Z0; . . .; Zk�1 just before an occurrence of fj, let

z00; . . .; z
0
k�1 be the counts just after, and let

S0k ¼
Pk�1

i¼0 2
iz0i. Since fj occurs, we must have zj � 2.

If we let I ¼ f0; . . .; k � 1g n fj; jþ 1g, then each

z0i ¼
zi if i 2 I

zi � 2 if i ¼ j

zi þ 1 if i ¼ jþ 1;

8

><

>:

so we have

S0k ¼
X

i2I
2izi þ 2jðzj � 2Þ þ 2jþ1ðzjþ1 þ 1Þ ¼ Sk:

2. Assume that j ¼ k � 1, and use the notations

z0; . . .; zk�1, z00; . . .; z
0
k�1, and S0k as in part 3 of this

proof. If 1� k� n, then each

z0i ¼
zi if 0� i\k � 1

zi � 2 if i ¼ k � 1:

�

If k ¼ nþ 1, then each

z0i ¼
zi if 0� i\k � 1

zi � 1 if i ¼ k � 1:

�

Either way, S0k\Sk.

h

Corollary 3.3 For every 1� k� nþ 1, the inequality

Sk � p is an invariant of N1.

Proof Let 1� k� nþ 1. We have Sk ¼ p in the initial

state that we have specified. The v-reaction trivially pre-

serves the value of Sk and Lemma 3.2 tells us that the

reactions f0; . . .; fn all preserve the condition Sk � p. h

Corollary 3.4 If 1� k� n and zk [0 in some accessible

state of N1, then p� 2k.

Proof Assume the hypothesis. Then Corollary 3.3 tells us

that, in the given accessible state,

p� Skþ1 � 2kzk � 2k:

h

In the following, for d 2 Zþ, we use both the mod-d

congruence (equivalence relation)

a � bmod d;

which asserts of integers a; b 2 Z that b� a is divisible by

d, and the mod-d operation

b mod d

whose value, for b 2 Z, is the unique r 2 Z such that

0� r\d and r � bmod d.

Corollary 3.5 The congruence

Sn � pmod 2n ð3:1Þ

is an invariant of N1.

Proof The initialization of N1 ensures that (3.1) holds in

the initial state. It is clear that the reactions fn and v pre-

serve the value of Sn, and Lemma 3.2 tells us that the

reactions f1; . . .; fn�2 preserve the value of Sn. Hence it

suffices to show that the reaction fn�1 preserves the truth of

(3.1).

Assume that (3.1) holds just prior to the occurrence of

fn�1. Let z0; . . .; zn�1 be the counts of Z0; . . .; Zn�1 just

before this occurrence, let z00; . . .; z
0
n�1 be the counts just

after this occurrence, and let S0n ¼
Pn�1

i¼0 2iz0i. Since fn�1

occurs, we must have zn�1 � 2. For each 0� i\n we have

z0n ¼
zi if 0� i\n� 1

zi � 2 if i ¼ n� 1;

�

so

S0n ¼
Xn�2

i¼0

2izi þ 2n�1ðzn�1 � 2Þ

¼ Sn � 2n

� Sn mod 2n:

Population-induced phase transitions

123

Since Sn � pmod 2n, it follows that S0n � pmod 2n, i.e.,

that (3.1) holds just after this occurrence of fn�1. h

Corollary 3.6 For every 1� k� n, the condition

Hk � zk ¼ � � � ¼ zn ¼ 0)Sk ¼ p

is an invariant of N1.

Proof Let 1� k� n. The condition Hk holds trivially in

the initial state that we have specified. The reactions fn and
v trivially preserve the value of Sk, so let 0� j\n. It suf-

fices to show that fj preserves the condition Hk. For this,

assume that Hk holds just prior to an occurrence of fj. Let
z0; . . .; zn be the counts of Z0; . . .; Zn just prior to this

occurrence of fj, and let z00; . . .; z
0
n be the counts just after this

occurrence. Since fj occurs,wemust have zj � 2 and z0jþ1 � 1.

To see that Hk holds just after this occurrence of fj, assume

that z0k ¼ � � � ¼ z0n ¼ 0. Then zk ¼ � � � ¼ zn ¼ 0 and

jþ 1\k, so Lemma 3.2 tells us that fj preserves the value of
Sk. Hence Hk holds just after this occurrence of fj. h

Corollary 3.7 Let ðq0; . . .; qtÞ be a trajectory of N1, where

qt is a terminal state, and let 1� k� n. If p� 2k, then there

exists 1� s� t such that zk [0 in qs.

Proof Let ðq0; . . .; qtÞ be a trajectory of N1, and let

1� k� n. Assume that p� 2k and that there does not exist

s 2 f1; . . .; tg such that zk [0. It suffices to show that qt is

not terminal.

Since there does not exist s 2 f1; . . .; tg such that zk [0

in qs, it must be the case that zk ¼ � � � ¼ zn ¼ 0 in qt. It

follows by Corollary 3.6 that Sk ¼ p holds in qt. Since
Pk�1

i¼0 2
i ¼ 2k � 1 and we have p� 2k by assumption, this

implies that there exists 0� i\k such that zi [1 in qt.

Hence the reaction fi is enabled in qt, so qt is not terminal.

h

Notation For each r 2 f0; . . .; 2n � 1g, let kðrÞ be the

number of 1s in the n-bit binary representation of r (leading

0s allowed), and let

e ¼
kðpÞ if p\2n

1þ kðp mod 2nÞ if p� 2n:

�

Note that e is an integer depending on n and p, and that e is
negligible in the sense that e ¼ oðpÞ as p ! 1.

The Boolean value of a condition u is

sut ¼ if u then 1 else 0.

Theorem 3.8 N1 terminates on all trajectories in the state

ðz0; . . .; zn; b; rÞ specified as follows.

(i) zn�1 � � � z0 is the n-bit binary expansion of

p mod 2n.

(ii) zn ¼ sp� 2nt.

(iii) b ¼ ðp� eÞ � sp\2mt.

(iv) r ¼ ðp� eÞ � sp� 2mt.

Proof Lemma 3.1 tells us that N1 terminates on all tra-

jectories. Let q ¼ ðz0; . . .; zn; b; rÞ be a terminal state of N1,

and note the following.

(a) For all 0� i� n, fi is not enabled in q, so zi 2 f0; 1g.
(b) v is not enabled in q, so b ¼ 0 or r ¼ 0.

(c) By (a), Sn �
Pn�1

i¼0 2i ¼ 2n � 1, so Corollary 3.5 tells

us that Sn ¼ p mod 2n, i.e., that (i) holds.

(d) If p\2n, then Corollary 3.4 tells us that zn ¼ 0. If

p� 2n, then Corollary 3.7 tells us that zn � 1 some-

where along every trajectory leading to q. Since zn
can never become 0 after becoming positive, this

implies that zn ¼ 1 in q. Hence (ii) holds.

(e) By (c) and (d) we have
Pn

i¼0 zi ¼ e.
(f) Since bþ r þ

Pn
i¼0 zi is an invariant of N1, (b) and

(e) tell us that one of b and r is p� e and the other is

0.

(g) If p\2m, then Corollary 3.4 tells us that zm ¼ � � � ¼
zn ¼ 0 holds throughout every trajectory leading to

q. This implies that none of the reactions fm; . . .; fn
occurs along any trajectory leading to q, whence

r ¼ 0.

(h) If p� 2m, then Corollary 3.7 tells us that zm [0

holds somewhere along every trajectory leading to q.

This implies that the reaction fm�1 occurs, whence r

becomes positive, somewhere along every trajectory

leading to q. Since r can never become 0 after

becoming positive, this implies that r[0.

(i) By (f), (g), and (h), (iii) and (iv) hold. h

Since e is negligible with respect to p, Theorem 3.8 says

that N1 terminates in an overwhelmingly blue state if

p\2m and in an overwhelmingly red state if p� 2m. This is

a very sharp phase transition at the population threshold 2m.

4 Coupled phase transitions

Let m, n, p, and N1 be as in Sect. 3, and let N2 be a CRN

consisting of the nþ 2 reactions of N1 and the x-reaction

x � Rþ Zn ! Bþ Zn:

This section proves that N2 exhibits two coupled popula-

tion-induced phase transitions as described in the intro-

duction. That is, exceeding the second threshold returns the

behavior of N2 to its behavior below the first threshold.

We use the same initialization for N2 as for N1. Again,

all our results hold regardless of the rate constants of the

nþ 3 reactions of N2.

J. I. Lathrop et al.

123

Routine inspection verifies the following.

Observation 4.1 Lemma 3.2 and Corollaries 3.3-3.7 hold

for N2 as well as for N1.

If p\2n, then Corollary 3.4 tells us that zn never

becomes positive in N2, so the x-reaction never occurs in

N2. Thus, for p\2n, N2 behaves exactly like N1.

On the other hand, if p� 2n, then the behavior of N2 is

very different from that of N1. For example, in contrast

with Lemma 3.1, we have the following.

Lemma 4.2 If p� 2n, then not all trajectories of N2

terminate.

Proof Assume that p� 2n. Let

f ¼ f2
n�1

0 f2
n�2

1 . . .f2
0

n�1

denote a sequence consisting of 2n�1 consecutive occur-

rences of the reaction f0, followed by 2n�2 occurrences of

f1, etc. Since p� 2n each of these 2n � 1 reactions is

enabled when its turn comes. After the sequence f has

occurred, we have

z0 ¼ p� 2n;

z1 ¼ . . . ¼ zn�1 ¼ 0;

zn ¼ 1;

b ¼
Xm�1

i¼0

2n�ðiþ1Þ ¼ 2nð1� 2�mÞ;

r ¼
Xn�1

i¼m

2n�ðiþ1Þ ¼ 2n�m � 1:

Recalling that n[mþ 1, we have r� 3 here, so the

reaction x is enabled after f has occurred. In fact f can (in

principle) be followed by the infinite sequence

x; v;x; v; . . .

of reactions, so N2 has a nonterminating trajectory. h

It is easy to see that the infinite trajectory of N2

exhibited in the proof of Lemma 4.2 is not fair. In fact, we

prove below that all fair paths of N2 terminate. First,

however, we note that N2, like N1, has a unique terminal

state.

Let e be as defined before Theorem 3.8.

Lemma 4.3 If p� 2n and N2 terminates, then it does so in

the state ðz0; . . .; zn; b; rÞ specified as follows.

(i) zn�1 � � � z0 is the n�bit binary expansion of

pmod 2n.

(ii) zn ¼ 1.

(iii) b ¼ p� e.
(iv) r ¼ 0.

Proof Let q be an accessible state of N2 that is terminal.

The proofs of (i) and (ii) are the same as in Theorem 3.8,

together with the fact that the x�reaction does not alter the

value of zn. Since zn ¼ 1 and the x�reaction is disabled in

state q, (iv) holds in q. Finally, since

p ¼
Xn

i¼0

zi þ bþ r ¼ eþ bþ r;

(iii) follows from (i), (ii), and (iv). h

Lemma 4.4 On any fair trajectory of N2, after finitely

many steps, all f-reactions are permanently disabled.

Proof For each 0� j� n, let Uj be the assertion that, on

any fair trajectory of N2, after finitely many steps the

reaction fj is permanently disabled. It suffices to prove that

Uj holds for all 0� j� n. We do this by induction on j.

Let 0� j� n and assume that Ui holds for all 0� i\j. It

suffices to show that Uj holds. For this, let s ¼
ðqij0� i\1Þ be a trajectory in which fj is enabled

infinitely often. It suffices to show that s is not fair. We

have two cases.

Case 1: Some fi for 0� i\j is enabled infinitely often.

Then s is not fair by the induction hypothesis.

Case 2: There exists k	 2 N such that, for all k� k	 the
reactions fi, for 0� i\j, are all disabled in qk. Then zj does

not increase at any step of s from k	 onward. Since every

occurrence of fj decreases zj, this implies that fj only

occurs finitely many times after k	, hence only finitely

many times in s. Since fj is enabled infinitely often along s
it follows by Observation 2.1 that s is not fair. h

Lemma 4.5 With any initialization, all fair trajectories of

the chemical reaction network Nvx, consisting of just the

reactions v and x, are terminal.

Proof If Nvx is initialized with zn ¼ 0, then there is only

one full trajectory, which is terminal, so it suffices to prove

the lemma for initializations with zn [0. Let q0 be any

such initial state, and let p̂ be the value of bþ r þ zn in q0.

Since zn and p̂ are invariants of Nvx, a state of Nvx is

completely determined by the value of r. We thus refer to

‘‘the state r’’ of Nvx, for 0� r� p̂� zn. Note that in this

terminology the unique terminal state is 0.

For each state r of Nvx with initial state q0 the

trajectory sr ¼ ðr; r � 1; . . .; 1; 0Þ given by r consecutive

occurrences of x is a terminal trajectory from r, so the fair

termination lemma (Lemma 2.2) tells us that all fair

trajectories of Nvx are terminal. h

Recall the notation defined just before Theorem 3.8. The

following result is our main theorem.

Theorem 4.6 Let ðz0; . . .; zn; b; rÞ be the state of N2

specified as follows.

Population-induced phase transitions

123

(i) zn�1 � � � z0 is the n-bit binary expansion of

pmod 2n.

(ii) zn ¼ sp� 2nt.

(iii) b ¼ ðp� eÞ 	 sp\2m or p� 2nt.

(iv) r ¼ ðp� eÞ 	 s2m � p\2nt.

If p\2n, then N2 terminates in this state on all trajectories.

If p� 2n, then N2 terminates in this state on all fair

trajectories.

Proof If p\2n, then Corollary 3.3 tells us that zn never

becomes positive in N2, so x is never enabled. Hence, in

this case N2 behaves exactly like N1. Theorem 3.8 tells us

that N2 terminates on all trajectories to the state satisfying

(i) and (ii) above and, since sp\2mt ¼ sp\2m or p� 2nt

and sp� 2mt ¼ s2m � p\2nt, also satisfying (iii) and (iv)

above.

If p� 2n, then Lemmas 4.4 and 4.5 together tell us that

N2 terminates on all fair trajectories. Since sp� 2nt ¼
1; sp\2m or p� 2nt ¼ 1, and s2m � p\2nt ¼ 0,

Lemma 4.3 tells us that termination must occur in the

state satisfying (i)-(iv) above. h

Since e is again negligible with respect to p, Theo-

rem 4.6 says that N2 terminates in an overwhelmingly blue

state if p\2m or p� 2n but in an overwhelmingly red state

if 2m � p\2n. Hence N2 exhibits very sharp phase transi-

tions at the population thresholds 2m and 2n. As noted in

the Introduction and elaborated in Sect. 6 below, this has

significant implications for the verification of chemical

reaction networks.

5 Coupled phase transitions with faster
termination

As we have demonstrated with both human and machine-

verified proofs, the chemical reaction network N2 terminates

on all trajectories and in the intended state (color) in the lower

(blue) andmiddle (red) ranges of initial population.Moreover,

in these two ranges, N2 is efficient in the sense that every

occurrence of a reaction makes progress toward the terminal

state. In fact, Lemma 3.1 assures us thatN2 halts after at most

3p reactions, where p is the initial population. We have also

shown that, in the upper (blue) range of initial populations,N2

terminates on all fair trajectories, always in the same, blue

state. However, an easy modification of the proof of

Lemma 4.2 shows that there is no upper boundwhatsoever on

the lengths of these fair trajectories. The last epoch of any such

trajectory consists entirely of v-reactions andx-reactions.We

have not specified rate constants of the reactions in N2, or

defined a probability model of the behavior ofN2 in any other

way, but in any reasonable suchmodel, the v-reactions andx-
reactions would impose a random walk on the relative

populations r and b of red and blue molecules, respectively,

with the sum b?r fixed. If the initial population of N2 is

significantly above the threshold of the upper blue region, then

r will be far greater than b at the beginning of this random

walk, and the v-reaction will intuitively be trying to exter-

minate the bluemolecules. In fact, the v-reactionwill succeed
in doing this many times (with the x-reaction subsequently

producing a new blue molecule) before the random walk

eventually enables the x-reaction to finally and permanently

exterminate the redmolecules. Indeed, simulations ofN2 with

simple probability assumptions (e.g., all rate constants 1) and

even very modest values of m and n fail to terminate in

practical amounts of time with initial populations in the upper

blue region.

We have chosen the chemical reaction network N2 as

our primary exemplar of coupled phase transitions because

its behavior admits a reasonably elegant correctness proof

that is very much in the spirit of distributed computing

theory. However, a discerning reader might well be con-

cerned that coupled phase transitions can only occur in

simple chemical reaction networks that do not terminate in

feasible amounts of time.

In this section we dispel this concern by presenting a

chemical reaction network N3 that has coupled phase

transitions like those of N2, but terminates more quickly

under reasonable assumptions.

The chemical reaction network N3 uses the same ladder

mechanism as N2 as an entry point for the phase transition.

As with N1, we fix m; n; p 2 Zþ, with n[mþ 1, and

define n f-reactions

fi � Zi þ Zi !
Ziþ1 þ B ð0� i\mÞ
Ziþ1 þ R ðm� i\nÞ

�

:

To perform the transition to red at p ¼ 2m, however, N3

uses the species Zm; . . .; Zn�1 (which can only be created

when p� 2m) as catalysts to convert blue to red via the

following additional n� m reactions

Zi þ B ! Zi þ R; m� i\n:

Since N3 creates only a finite amount of blue molecules in

the lower stages of the ladder, these catalytic reactions are

sufficient to convert all blue into red.

To perform the transition back to blue at p ¼ 2n, N3 uses

the Q species, which is created at the end of the ladder,

reachable only when p� 2n. We include the following nþ
3 additional reactions:

Zn�1 þ Zn�1 ! Qþ B

Qþ R ! Qþ B

Qþ Q ! Qþ R

Qþ Zi ! Qþ Q; i� n:

J. I. Lathrop et al.

123

The Q species catalytically converts Zi into Q and R into B.

It also catalytically converts itself into blue molecules.

Therefore if N3 produces a single Q species, the population

must eventually convert into blue molecules, leaving

behind a single Q molecule.

Note that we still require a fairness condition to prove

that N3 terminates if p� 2n, because we can identify a class

of infinite-length state-space trajectories wherein B is cat-

alytically exchanged for R and vice-versa. For example, if

both a Zm molecule and a Q molecule are present, the

reactions

Zm þ B ! Zm þ R

Qþ R ! Qþ B

can alternate indefinitely.

As described in Sect. 6, we have performed the same

verification techniques for N3 as for N2 with very similar

results. Model checking and stochastic simulation cannot

address population counts outside the lower blue region

due to computational limitations, and therefore always

predict a blue result. ODE simulation also predicts a blue

result. As with N2, we cannot conclusively say whether this

is due to numerical issues, and without a more extensive

analysis, we cannot guarantee that the preconditions of

Kurtz’s theorem apply. It is clear, however, that ODE

simulation fails for N3. We have again used Isabelle/HOL

to verify N3, producing a machine-verified mathematical

proof that applies at any population scale, and correctly

predicts the two population-induced phase transitions.

Erik Winfree (2020) recently designed another coupled

phase transition chemical reaction network that terminates

more quickly than N2. This reaction network, unlike N3,

retains the ‘‘random walk’’ final epoch of N2 but uses a

rapidly produced catalyst to shorten this epoch.

6 Implications for verification

The coupled phase transitions in the chemical reaction

network N2 make it difficult to verify its behavior. In this

section we describe the use and limitations of verifying the

chemical reaction network using simulation, model

checking and differential equations. None of these methods

detected that the system turned red when the population

reached 2m. We then describe how the use of an interactive

theorem prover enabled us to verify the chemical reaction

network’s behavior at both phase transitions, i.e., that it

turned from blue to red at 2m and from red to blue at 2n.

The fact that theorem proving could verify behavior that

was otherwise not verified for the chemical reaction net-

work suggests that interactive theorem proving may have a

useful role to play in future verification of a class of

chemical reaction networks. Recall that the chemical

reaction networks N1 and N2 have fixed populations

throughout any given execution, and that their initial states

have z0 as the entire population.

6.1 Simulation

The MATLAB SimBiology package is widely used to

explore the behavior of a number of devices (molecules)

executing concurrently (MATLAB 2019). Using SimBiol-

ogy, simulations of the N2 chemical reaction network were

performed on an Intel processor computer with a processor

clock of 5.0 GHz and 64GB of RAM. Several simulations

were performed with increasing populations z0. With a

population of 107, the simulation performed as expected.

However, with a population of 108, the simulation failed

and terminated with no output or error message. Thus, the

stochastic simulation was unable to detect that the behavior

of the N2 chemical reaction network could experience a

phase transition.

Since it is currently not possible to simulate N1, N2 and

N3 to completion with n ¼ 65, it is not possible to visualize

the phase transitions of these CRNs using simulation.

Hence, we investigate the running time of smaller versions

of these two CRNs, which confirms our intuition and the-

orems. For simulating smaller versions of of these CRNs,

we reduce the set of reactions so that m ¼ 5 and n ¼ 10.

Figure 2 shows the behavior of the smaller version of N2

at populations near the phase transitions. Population 127 is

just below the first phase transition and the top graph shows

that the population quickly turns to blue and remains blue.

Population 128 is the lowest population above the first

phase transition, and it turns red in approximately 3.3

seconds. The largest population where the CRN can remain

in the red state indefinitely is 1023. Finally, the smallest

population above the second phase transition is 1024. This

is shown in the bottom graph of the figure and does not

exhibit the eventual blue behavior, because the expected

time of the random walk for n ¼ 10 is still very large.

This random walk can be seen in Fig. 3 where part of

the simulation is magnified to show the individual counts

of the red species. It is clear from the graph that even

converting 10 red species to blue is unlikely in feasible

time.

Finally, Fig. 4 shows the red and blue population counts

for the smaller version of N3. Here we see that a population

of size 1024 turns nearly all red before turning essentially

all blue in approximately 5 seconds.

Population-induced phase transitions

123

Fig. 2 Simulation of N2 with m ¼ 5 and n ¼ 10 at different population sizes

J. I. Lathrop et al.

123

6.2 Model checking

The chemical reaction networks N2 and N3 simulated in

SimBiology and described above were also verified using

the PRISM 4.6 probabilistic model checker (Kwiatkowska

et al. 2011). Kwiatkowska and Thachuk, among others,

have described the use of PRISM for the probabilistic

verification of chemical reaction networks for biological

systems (Kwiatkowska and Thachuk 2014).

To verify the chemical reaction network behavior we

first converted the N2 and N3 models to SBML using the

export function in SimBiology, and then converted the

SBML models to PRISM using the sbml2prism conversion

tool supplied with the PRISM software. PRISM was used

to verify six key properties of the N2 and N3 chemical

reaction networks at multiple populations. For example,

one of the properties stated that ‘‘P[¼ 1½F G r ¼ 0�’’,
i.e., that with probability 1, the eventual state of the

R species has 0 molecules, and never changes from that.

With a population of 100, PRISM generated the CTMC

state model in 1.65 seconds using the same processor and

memory as for the SimBiology simulations, and the veri-

fication of the six properties required less than 2 seconds of

CPU time.

For a population of 100 molecules, 97 correctly turn

blue and 0 correctly turn red, since the latter only happens

when the initial population is larger than 234. PRISM also

verified that in the final state the species count was z0 ¼ 0,

z1 ¼ 0, z2 ¼ 1 and z5 ¼ 1, based on the binary expansion of

one hundred.

Fig. 3 Example of random walk

with initial population 1024 in

N2 with m ¼ 5 and n ¼ 10,

failing to turn blue in feasible

time

Fig. 4 Simulation of N3 with

m ¼ 5 and n ¼ 10 and

population 1024 with fast

change to blue

Population-induced phase transitions

123

However, we were unable to model check N2 or N3 with

a population of 400 due to the rapid increase in states and

limited memory. Thus, model checking confirmed the

expected behavior of the N2 and N3 chemical reaction

networks for a population of 100 but could not detect the

behavioral change to red when the population increased.

Advanced methods to prune a model so that meaningful

model checking can occur include symmetry reduction

(Heath et al. 2006), statistical model checking (Cardelli

et al. 2018), and automated partial exploration of the model

(Pavese et al. 2016). Recent work by Cauchi, et al. using

formal synthesis allowed verification of systems with 10

continuous variables (Cauchi et al. 2019). However, even

these methods would not be likely to help with the

exceedingly large number of states when the number of

molecules is scaled to a realistic value for experiments.

6.3 Differential equations

We have seen how model checking and simulation fail to

detect the ‘‘red’’ behavior in our chemical reaction net-

works N2 and N3 due to the processing time and memory

required for a large population. The red behavior also is not

detected when these CRNs are approximated by deter-

ministic semantics. In this model, a chemical reaction

network is represented by a system of polynomial auton-

omous differential equations. Our purpose here is to

investigate the usefulness of the large population heuristic

in this context; we do not make any claims that our results

respect the preconditions and caveats of Kurtz’s theorem

(Kurtz 1972), which provides a mathematical link between

deterministic and high-population stochastic systems.

In general, the system of differential equations induced

by a chemical reaction network is difficult or impossible to

solve exactly, and numerical methods are often used to

approximate solutions. Here, we utilized MATLAB and the

SimBiology package (MATLAB 2019) to numerically

integrate the system of differential equations for N2 and

N3. We found that both CRNs reached and remained in a

predominantly blue state for the duration of the simulation,

again missing the red behavior.

We identify three potential causes for these failures. One

potential cause is numerical failure; it may be that

MATLAB’s numerical integration was not robust enough

to capture the relevant deterministic behavior, or that we

did not let the simulation run long enough to converge.

(We note that, although we expect N3 to have a reasonable

convergence time, we expect N2 to take an extreme amount

of time to converge, at least in the stochastic case.) Another

potential cause is that, as suggested by Kurtz’s theorem, the

deterministic system might correctly approximate high-

population stochastic behavior, which falls above the sec-

ond phase-transition threshold (and well above the range of

a realistic wet-lab implementation of these CRNs.) Finally,

it may be that the stochastic and deterministic behaviors of

one or both of these CRNs are not actually closely related,

and the deterministic results do not imply anything con-

clusive about the underlying stochastic system. Regardless

of the cause, however, we see that differential equation

methods are not sufficient to capture the red behavior of N2

and N3.

6.4 Theorem proving

The simulation, model checking, and differential equations

approaches to chemical reaction network verification out-

lined above all make some simplifying assumptions:

reduced state space or generalization to the continuum. In

the case of our chemical reaction network, these assump-

tions lead to an incorrect verification result.

Interactive theorem proving, however, offers an exact

approach that is guaranteed to apply at every scale. In the

interactive theorem proving paradigm, users create a

machine-checkable mathematical proof of verification

properties in collaboration with a software system. Model

checking also constructs a mathematical proof of correct-

ness, but it relies more on a complete or semi-complete

search of the state space in question. By contrast, the goal

of interactive theorem proving is to construct a more tra-

ditional mathematical proof that is also machine-check-

able. The result then applies to any population scale; a

mathematical proof parameterized by population p is valid

at every possible value of p.

In a typical interactive theorem proving session, a user

starts with a base of trusted facts generated from axioms

and assumptions, and uses well-understood rules like

modus ponens and double negation removal to construct

new trusted facts and lemmas. As with a conventional

mathematical proof, the user’s goal is to add new trusted

facts in a strategic way until reaching the goal of the proof.

We have verified our chemical reaction networks with

Isabelle/HOL (Nipkow and Klein 2014; Nipkow et al.

2002), a popular interactive theorem prover with several

useful proof automation features. Instead of working at the

level of rules like modus ponens, users can instruct Isabelle

to execute more general proof methods that can apply

sequences of basic rules without user direct input. For

example, Isabelle can often prove the equivalence of

predicate logic formulas with only one user-generated

method invocation. Once invoked, such a method attempts

to automatically construct a series of low-level logical rules

whose application proves the equivalence. An Isabelle

proof, then, consists of a directed acyclic graph of facts,

connected by applications of these methods. The user’s

task is to choose a chain of intermediate goal facts in a way

J. I. Lathrop et al.

123

that allows Isabelle to connect them easily on the way to

the overall goal.

Isabelle also provides the powerful Sledgehammer

automation tool, which makes calls to external proof sys-

tems to automate aspects of proof creation. Sledgehammer

takes a goal fact as input and attempts to generate a method

invocation that proves it, operating at one level of

abstraction above the proof methods invocations discussed

above. Since it is often unclear which method to invoke (or

which arguments to supply to it), this functionality can

increase proof construction speed substantially.

We have used Isabelle to verify that our chemical

reaction networks have the desired behavior for all possible

initializations. That is, if we initialize them with p\234 or

p� 267, the chemical reaction networks terminate with

majority blue, but if we initialize them with 234 � p\267,

they terminate with majority red. As expected, theorem

proving is able to verify behavior correctly in all regions,

including the middle region that is inaccessible to model

checking, simulation, and ODE methods. Figure 5 shows

an image taken from the end of our Isabelle proof for N2; it

contains the three goal facts that we successfully verified,

which summarize the behavior of the chemical reaction

network.

Our Isabelle proof for N2 is loosely based on the proofs

presented in Sects. 3 and 4. Whereas those proofs define

two chemical reaction networks N1 and N2, we associate

assumptions about the population p with various parts of

our proof. Within the scope of the assumption that p\234,

for example, we are able to prove that N2 terminates with

Fig. 5 The end of the Isabelle proof for N2, which summarizes its

results in three lemmas. The context statements bring our

assumptions about the population size into context. The using
statements bring in trusted facts from the rest of our proof and supply

them as arguments to Isabelle’s auto proof method. The identifier p
refers to an arbitrary trajectory that is part of each context. Isabelle

displays all statements with a white or light gray background to

indicate that it has checked them completely, and they are valid

Population-induced phase transitions

123

majority blue. Our Isabelle proof for N3 functions in a

similar way.

We refer to the three population scales as the lower blue

region, the middle red region, and the upper blue region.

Under the assumptions associated with each region, our

proofs must show both termination and correctness; i.e., we

must show that our chemical reaction network reaches a

final state where no reactions are possible, and that any

possible final state has the specified red or blue population.

As in Lemma 3.1, we show termination in the lower two

regions via a ‘‘countdown’’ expression that is guaranteed to

decrease with every reaction. See Fig. 6 for our Isabelle

definitions of termination in our machine-checked N2 proof

and a general lemma we proved that allows us to use the

countdown technique. In the upper blue region of both N2

and N3, it is impossible to prove termination without

assuming that executions are fair. Our Isabelle proof

includes Equation 2.4 as an unproven assumption; we are

not interested in unfair trajectories, but since they exist we

Fig. 6 This Isabelle code from

our proof for N2 defines a

terminal state as a state with no

outgoing reactions; K is a

relation that encodes which state

transitions our reaction

set allows. We also show a

sample lemma that helps prove

termination: if we identify a

countdown expression f and a

constant C such that all states

with f\C are terminal, then our

system is guaranteed to

terminate

J. I. Lathrop et al.

123

cannot prove that all trajectories are fair. For convenience,

we also include Observation 2.1 as an assumption. These

two fairness assumptions allow us to prove that our

chemical reaction networks terminate in the upper blue

region as well.

Our correctness proofs rely heavily on the sum

S68 ¼
P67

i¼0 2
izi, using the notation of Sect. 3, which is an

invariant in the lower two regions. In the upper blue region,

it is an invariant until at least one Z67 (in N2) or Q (in N3) is

produced. This invariant allows us to reason about the

composition of terminal states. In the lower blue region, for

example, we know that no red can ever be produced; the

chemical reaction network can only produce its first red

molecule alongside Z species that would make the invariant

too large. We can therefore prove that any terminal state in

that region must be majority blue.

7 Conclusion

Taken together, the near-ubiquity of phase transitions in

nature (Dana 2010; Cannon et al. 2018), the sheer size of

molecular populations, and the simplicity of the chemical

reaction networks that we have shown to exhibit popula-

tion-induced phase transitions, indicate that molecular

programming will present us with many exceptions to the

otherwise useful notion that most bugs can be demon-

strated with small counterexamples. As we have seen, this

presents a significant challenge to the verification of

chemical reaction networks. Here we suggest some direc-

tions of current and future research that might help meet

this challenge.

A great deal of creative work has produced a steady

scaling up of model checking to larger and larger state

spaces (Clarke et al. 2009; Chrszon et al. 2018; Abdulla

et al. 2018; Bortolussi et al. 2019; Lomuscio and Pirovano

2019; Ceska et al. 2019). Perhaps the most hopeful

approach for dealing with population-induced phase

changes, or with more general population-sensitive

behaviors, is the model checking of parametrized systems

(Abdulla et al. 2018).

Our results clearly demonstrate the advantage of

including theorem proving (by humans and by software) in

the verification toolbox for chemical reaction networks and

other molecular programming languages. This in turn

suggests that software proof assistants such as Isabelle

(Nipkow et al. 2002; Nipkow and Klein 2014) be aug-

mented with features to deal more directly with chemical

reaction networks and with population-sensitive phenom-

ena. It would also be useful to know how much of such

work could be carried out with automated (as opposed to

interactive) theorem provers such as Vampire (Kovács and

Voronkov 2013).

Some future programmed molecular applications will be

safety-critical, such as in health diagnostics and therapeu-

tics. It is likely that evidence that such systems behave as

intended will be required for certification by regulators

prior to deployment. Toward providing such evidence,

Nemouchi et al. have recently shown how a descriptive

language for safety cases can be incorporated into Isabelle

in order to formalize argument-based safety assurance

cases (Nemouchi et al. 2019).

We conclude with a more focused, theoretical question.

Our chemical reaction network N1 exhibits its phase tran-

sition on all trajectories, while N2 exhibits its coupled

phase transitions only on all fair trajectories. Is there a

chemical reaction network that achieves N2’s coupled

phase transitions on all trajectories?

Appendix: Proof of Fair Termination Lemma

Lemma 2.2 (fair termination lemma) If a population protocol with
a specified initial state has a terminal trajectory from every accessible
state, then all its fair trajectories are terminal.

Proof Let N be a population protocol with initial state q0, and

assume that N has a terminal trajectory from every accessible state.

Let s ¼ ðqi j 0� i\1Þ be an infinite trajectory of N. It suffices to

show that s is not fair. For each state q of N, let

Iq ¼ fi 2 N j qi ¼ qg:

Since N is a population protocol, it has finitely many

accessible states, so there is a state q	 of N such that the set

Iq	 is infinite. This state q
	 is accessible, so our assumption

tells us that there is a finite trajectory s	 ¼ ðq	i j 0� i\‘Þ
of N such that q	0 ¼ q	 and q	‘�1 is terminal. Now Iq	

0
¼ Iq	 is

infinite and Iq	
‘�1

¼ ; (because q	‘�1 is terminal, so it does not appear in

the infinite trajectory s), so there exists 0� k\‘� 1 such that Iq	
k
is

infinite and Iq	
kþ1

is finite. Let q		 ¼ q	k , and let q be the reaction that

takes q	k to q	kþ1. Then q is enabled in q		 and there exist infinitely

many i such that qi ¼ q		 (because Iq		 is infinite), but there are only

finitely many j for which qj ¼ q		 and q occurs at j in s (because Iq	
kþ1

is finite). Hence s is not fair. h

Acknowledgements We thank Neil Lutz for technical assistance. The

second and third authors thank Erik Winfree for his hospitality while

they did part of this work during a 2020 sabbatical visit at the Cali-

fornia Institute of Technology. We thank the anonymous reviewers of

both the conference and journal versions of this paper for multiple

useful suggestions. We thank Erik Winfree for correcting an ‘‘off-by-

one’’ error in our conference paper and for telling us about his fast

chemical reaction network mentioned here at the end of Section 5.

This research was supported in part by National Science Foundation

Grants 1545028, 1900716, and 1909688.

Population-induced phase transitions

123

References

Abdulla PA, Sistla AP, Talupur M (2018) Model checking param-

eterized systems. In: Clarke EM, Henzinger TA, Veith H, Bloem

R (eds) Handbook of Model Checking. Springer, pp 685–725

Anderson DF, Kurtz TG (2011) Continuous time Markov chain

models for chemical reaction networks. In: Heinz K, Gianluca S,

Mario di B, Douglas D, (eds) Design and Analysis of

Biomolecular Circuits. Springer, pp 3–42

Anderson DF, Kurtz TG (eds) (2015) Stochastic analysis of

biochemical systems, volume 1.2. Springer International

Publishing

Angluin D, Aspnes J, Eisenstat D (2008) A simple population

protocol for fast robust approximate majority. Distrib Comput

21(2):87–102

Angluin D, Aspnes J, Eisenstat D, Ruppert E (2007) The computa-

tional power of population protocols. Distrib Comput

20(4):279–304

Badelt S, Shin SW, Johnson RF, Dong Q, Thachuk C, Winfree E

(2017) A general-purpose CRN-to-DSD compiler with formal

verification, optimization, and simulation capabilities. In: Pro-

ceedings of the 23rd International Conference on DNA Com-

puting and Molecular Programming, Lecture Notes in Computer

Science, pp 232–248

Baier C, Katoen J-P (2008) Principles of model checking (Represen-

tation and mind series). The MIT Press, USA

Bortolussi L, Cardelli L, Kwiatkowska M, Laurenti L (2019) Central

limit model checking. ACM Trans Comput Log 20(4):19:1-

19:35

Cannon S, Miracle S, Randall D (2018) Phase transitions in random

dyadic tilings and rectangular dissections. SIAM J Discret Math

32(3):1966–1992

Cardelli L, Csikász-Nagy A (2012) The cell cycle switch computes

approximate majority. Scientific Reports, 2

Cardelli L, Kwiatkowska M, Whitby M (2016) Chemical reaction

network designs for asynchronous logic circuits. In: International

Conference on DNA-Based Computers. Springer, pp 67–81

Cardelli L, Kwiatkowska M, Whitby M (2018) Chemical reaction

network designs for asynchronous logic circuits. Nat Comput

17(1):109–130

Cauchi N, Laurenti L, Lahijanian M, Abate A, Kwiatkowska M,

Cardelli L (2019) Efficiency through uncertainty: scalable

formal synthesis for stochastic hybrid systems. In: Proceedings

of the 22nd ACM International Conference on Hybrid Systems:

Computation and Control, HSCC 2019, Montreal, QC, Canada,

April 16-18, 2019., pp 240–251

Ceska M, Jansen N, Junges S, Katoen JP (2019) Shepherding hordes

of Markov chains. In: Proceedings of the International Confer-

ence on Tools and Algorithms for the Construction and Analysis

of Systems, pages 172–190. Springer

Chen Y-J, Dalchau N, Srinivas N, Phillips A, Cardelli L, Soloveichik

D, Seelig G (2013) Programmable chemical controllers made

from DNA. Nat Nanotechnol 8(10):755–762

Chrszon P, Dubslaff C, Klüppelholz S, Baier C (2018) ProFeat:

feature-oriented engineering for family-based probabilistic

model checking. Formal Asp Comput 30(1):45–75

Clarke EM, Allen Emerson E, Sifakis J (2009) Model checking:

algorithmic verification and debugging. Commun ACM

52(11):74–84

Condon A, Hajiaghayi M, Kirkpatrick DG, Manuch J (2017)

Simplifying analyses of chemical reaction networks for approx-

imate majority. In: Proceedings of the 23rd International

Conference on DNA Computing and Molecular Programming,

volume 10467 of Lecture Notes in Computer Science, pages

188–209. Springer

Cook M, Soloveichik D, Winfree E, Bruck J (2009) Programmability

of chemical reaction networks. In: Condon A, Harel D, Kok JN,

Salomaa A, Winfree E (eds) Algorithmic Bioprocesses. Springer,

Natural Computing Series, pp 543–584

Dietz H. Synthetic DNA machines to fight viruses and other troubles.

Matter to Life Lecture Series, Technical University of Munich

Douglas SM, Bachelet I, Church GM (2012) A logic-gated nanorobot

for targeted transport of molecular payloads. Science

335(6070):831–834

Ellis SJ, Klinge TH, Lathrop JI, Lutz JH, Lutz RR, Miner AS, Potter

HD (2019) Runtime fault detection in programmed molecular

systems. ACM Trans Softw Eng Methodol 28(2):6:1-6:20

Fages F, Le Guludec G, Bournez O, Pouly A (2017) Strong Turing

completeness of continuous chemical reaction networks and

compilation of mixed analog-digital programs. In: Proceedings

of the 15th International Conference on Computational Methods

in Systems Biology, pages 108–127. Springer International

Publishing

Harel D (1986) Effective transformations on infinite trees, with

applications to high undecidability, dominoes, and fairness.

J ACM 33(1):224–248

Heath J, Kwiatkowska M, Norman G, Parker D, Tymchyshyn O

(2006) Probabilistic model checking of complex biological

pathways. In: Computational Methods in Systems Biology,

pages 32–47, Berlin, Heidelberg. Springer Berlin Heidelberg

Jackson D (2019) Alloy: a language and tool for exploring software

designs. Commun ACM 62(9):66–76

Kovács L, Voronkov A (2013) First-order theorem proving and

vampire. In Computer Aided Verification - 25th International

Conference, CAV 2013, Saint Petersburg, Russia, July 13-19,

2013. Proceedings, volume 8044 of Lecture Notes in Computer

Science, pages 1–35. Springer

Kozen D (2006) Theory of computation. Texts in Computer Science.

Springer

Kurtz TG (1972) The relationship between stochastic and determin-

istic models for chemical reactions. J Chem Phys

57(7):2976–2978

Kwiatkowska M, Norman G, Parker D (2011) PRISM 4.0: Verifica-

tion of probabilistic real-time systems. In: Proceedings of the

23rd International Conference on Computer Aided Verification,

volume 6806 of Lecture Notes in Computer Science, pages

585–591. Springer

Kwiatkowska M, Thachuk C (2014) Probabilistic model checking for

biology. Softw Syst Safety 36:165–189

Kwiatkowska MZ (1989) Survey of fairness notions. Inf Softw

Technol 31(7):371–386

Lakin MR, Parker D, Cardelli L, Kwiatkowska M, Phillips A (2012)

Design and analysis of DNA strand displacement devices using

probabilistic model checking. J R Soc Interface

9(72):1470–1485

Lathrop JI, Lutz JH, Lutz RR, Potter HD, Riley MR (2020)

Population-induced phase transitions and the verification of

chemical reaction networks. In: 26th International Conference on

DNA Computing and Molecular Programming, LIPIcs, pages

5:1–5:17. Schloss Dagstuhl

Li S, Jiang Q, Liu S, Zhang Y, Tian Y, Song C, Wang J, Zou Y,

Anderson GJ, Han J-Y, Chang Y, Liu Y, Zhang C, Chen L, Zhou

G, Nie G, Yan H, Ding B, Zhao Y (2018) A DNA nanorobot

functions as a cancer therapeutic in response to a molecular

trigger in vivo. Nat Biotechnol 36:258

Liu X, Liu Y, Yan H (2013) Functionalized DNA nanostructures for

nanomedicine. Isr J Chem 53(8):555–566

Lomuscio A, Pirovano E (2019) A counter abstraction technique for

the verification of probabilistic swarm systems. In: Proceedings

of the 18th International Conference on Autonomous Agents and

MultiAgent Systems, AAMAS’19, pages 161–169

J. I. Lathrop et al.

123

MATLAB (2019) version 9.7.0 (R2019b, Update 4). The MathWorks

Inc., Natick, Massachusetts

Miller B, Bassler L (2001) Quorum sensing in bacteria. Annu Rev

Microbiol 55(1):165–199 (PMID: 11544353)
Nemouchi Y, Foster S, Gleirscher M, Kelly T (2019) Isabelle/SACM:

Computer-assisted assurance cases with integrated formal

methods. In: Proceedings of the 15th International Conference

on Integrated Formal MethodsIFM 2019, volume 11918 of

Lecture Notes in Computer Science, pages 379–398. Springer

Nipkow T, Klein G (2014) Concrete semantics-With Isabelle/HOL.

Springer, Berlin

Nipkow T, Paulson LC, Wenzel M (2002) Isabelle/HOL, volume

2283 of Lecture Notes in Computer Science. Springer-Verlag

Berlin Heidelberg, 1 edition

Paulson LC, Nipkow T, Wenzel M (2019) From LCF to Isabelle/

HOL. Formal Asp Comput 31(6):675–698

Pavese E, Braberman V, Uchitel S (2016) Less is more: Estimating

probabilistic rewards over partial system explorations. ACM

Trans Softw Eng Methodol 25(2):16:1-16:47

Dana R (2010) Phase transitions in sampling algorithms and the

underlying random structures. In: Kaplan H (ed) Proceedings

Scandinavian Symposium and Workshops on Algorithm Theory

SWAT, vol 6139. Lecture Notes in Computer Science, page 309.

Springer

Randall D (2017) Phase Transitions and Emergent Phenomena in

Random Structures and Algorithms (Keynote Talk). In: 31st

International Symposium on Distributed Computing (DISC

2017), volume 91 of Leibniz International Proceedings in

Informatics (LIPIcs), pages 3:1–3:2. Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik,

Rice HG (1951) Classes of recursively enumerable sets and their

decision problems. Ph.D thesis, Syracuse University

Rice HG (1953) Classes of recursively enumerable sets and their

decision problems. Trans Am Math Soc 74:358–366

Apoorva S, Akshaya A, Junling G, Samir M (2020) Layered self-

assemblies for controlled drug delivery: A translational over-

view. Biomaterials 242:119929

Soloveichik D, Cook M, Winfree E, Bruck J (2008) Computation with

finite stochastic chemical reaction networks. Nat Comput

7(4):615–633

Soloveichik D, Seelig G, Winfree E (2009) DNA as a universal

substrate for chemical kinetics. In: Proceedings of the 14th

International Meeting on DNA Computing, volume 5347 of

Lecture Notes in Computer Science, pages 57–69. Springer

Thubagere AJ, Thachuk C, Berleant J, Johnson RF, Ardelean DA,

Cherry KM, Qian L (2017) Compiler-aided systematic construc-

tion of large-scale DNA strand displacement circuits using

unpurified components. Nature Communications, 8

Erik Winfree (2020) personal communication

Wooley John C, Lin Herbert S (2005) Catalyzing inquiry at the

interface of computing and biology. National Academies Press,

USA

Zhang DY, Seelig G (2011) Dynamic DNA nanotechnology using

strand-displacement reactions. Nat Chem 3(2):103–113

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Population-induced phase transitions

123

	Population-induced phase transitions and the verification of chemical reaction networks
	Abstract
	Introduction
	Chemical reaction networks
	Single phase transition
	Coupled phase transitions
	Coupled phase transitions with faster termination
	Implications for verification
	Simulation
	Model checking
	Differential equations
	Theorem proving

	Conclusion
	Appendix: Proof of Fair Termination Lemma
	Acknowledgements
	References

