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Abstract

We make several advances broadly related to the maintenance of electrical flows in weighted
graphs undergoing dynamic resistance updates, including:

1. More efficient dynamic spectral vertex sparsification, achieved by faster length estimation
of random walks in weighted graphs using Morris counters [Morris 1978, Nelson-Yu 2020].

2. A direct reduction from detecting edges with large energy in dynamic electric flows to
dynamic spectral vertex sparsifiers.

3. A procedure for turning algorithms for estimating a sequence of vectors under updates
from an oblivious adversary to one that tolerates adaptive adversaries via the Gaussian-
mechanism from differential privacy.

Combining these pieces with modifications to prior robust interior point frameworks gives an
algorithm that on graphs with m edges computes a mincost flow with edge costs and capac-
ities in [1,U] in time O(m?3/?~/%%1og? ). In prior and independent work, [Axiotis-Madry-
Vladu FOCS 2021] also obtained an improved algorithm for sparse mincost flows on capacitated
graphs. Our algorithm implies a 5(m3/ 2-1/58 100 U ) time maxflow algorithm, improving over
the O(m?3/271/328 1og /) time maxflow algorithm of [Gao-Liu-Peng FOCS 2021].
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1 Introduction

The maximum flow (maxflow) problem asks to route the maximum amount of flow between two
vertices s and ¢ in a directed graph G such that the amount of flow on every edge is at most its
capacity. The more general minimum cost flow (mincost flow) problem asks to route a fixed demands
in a directed graph G without sending more flow on any edge than its capacity, while minimizing a
linear cost. Together these well-studied problems cover a wide range of combinatorial and numerical
problems, including maximum cardinality bipartite matching, minimum s-¢ cut, shortest paths in
graphs with negative edge length, and optimal transport (see e.g. [BLN120, BLL*21]).

While classical algorithms for these problems revolved around using augmenting paths or cycle
primitives (such as blocking flows) [Kar73,ET75, GT90, GR98], the last decade has seen significant
runtime improvements for maxflow and mincost flow in various settings based on electrical flows.
For a graph G with vertex set V and edge set F, with edge resistances r € Rgo, and a demand
vector d € RE, the electric flow on G is the flow that routes a fixed demand while minimizing the
energy > .cpTe fg. Better maxflow algorithms have been given in several regimes using eletrical
flows and stronger primitives [AKPS19, KPSW19], including unit capacity graphs [Mad13, Mad16,
CMSV17,LS20, KLS20, AMV20], approximate maxflow on undirected graphs [CKM*11, LRS13,
Shel3,KLOS14, Pen16,Shel7,ST18], and dense graphs [L.S19, BLN*20, BLL*21].

However, it has been particularly challenging to obtain running time improvements for solving
mincost flow and maxflow to high precision in sparse capacitated graphs. Recently, [GLP21] gave
an 6(m1'5_1/ 328 1og U) time algorithm for sparse graphs with capacitaties bounded by U, the first
improvement over 5(m1'5 log U) for maxflow on sparse graphs with arbitrary, polynomially bounded
capacities. Their improvement involved an intricate interaction of dynamic data structures for
electrical flows, a modification of the standard interior point method (IPM) outer loop which
builds an maxflow via y/m approximate electric flows [Kar84, Vai89], and sketching techniques.
Additionally, issues relating to randomness in data structures and combinatorial reasoning about
errors resulting from random walks required careful analysis that signficantly increase the runtime
and resulted in the small improvement over m!®.

Our main result is an algorithm that while has a similar high-level picture as [GLP21], signifi-
cantly simplifies the major pieces described previously and their interactions. Specifically, we give
a general purpose sketching tool for electrical flows, a graph theoretic (instead of algebraic) way of
constructing the random walks at the core of the data structure, and handle randomness dependen-
cies using ideas from differnetial privacy. Further, we provide modifications to prior robust interior
point frameworks to do ¢o-based recentering (Definition 7.6) within a robust IPM via additional
spectral vertex sparsification techniques. As a result, we achieve a faster runtime than in [GLP21].
Also, as a result of our simplified electric flow data structure, our algorithm and IPM seamlessly
extend to mincost flow. In constrast, the data structure complications in [GLP21] restricted their
algorithm to be applied to maxflow. !

Theorem 1.1. There is an algorithm which given any m-edge directed graph G with integral capac-
ities in [1,U], feasible demand vector d € ZF, and an integral cost vector ¢ € [~U,U¥, computes a
flow f that routes demand d, satisfies the capacity constraints, and minimizes ¢ f. The algorithm
succeeds whp. and runs in time O(m3/2=1/58 1og? U).

! [AMV21], in FOCS 2021, claims an improvement to sparse capacitated mincost flow in the title. A preprint was
recently made available at https://arxiv.org/abs/2111.10368v1. The results in this paper were derived indepen-
dently: we defer detailed comparisons to a future version.


https://arxiv.org/abs/2111.10368v1

Overall, this paper simplifies the key pieces of [GLP21] and, as a result, clarifies the important
components used to achieve faster maxflow algorithms via dynamic electric flows. Further, we
consider each of these pieces to be interesting in their own right: dynamic maintenance of Schur
complements, sketching and maintenance of high energy edges in dynamic electric flows, and un-
derstanding reductions between adaptive and oblivious adversaries. Ultimately, this paper be read
independently of [GLP21] and the proofs are simpler and more natural in many cases.

1.1 Key Algorithmic Pieces

Here we cover the key algorithmic pieces underlying our algorithm. The first major piece is a
faster algorithm for generating random walks of a fixed length from a vertex, a core primitive
in all random-walk based approaches to dynamic electric flows [DGGP19, GLP21]. Our second
key contribution is an algorithm for detecting large energy edges in electric flows for graphs with
dynamically changing resistances and demands based on a direct reduction to dynamic spectral
vertex sparsifiers (Schur complements). As our data structures for maintaining dynamic electric
flows naturally work only against oblivious adversaries, we develop an approach that black-box
reduces dynamic electric flows against adaptive adversaries to the same problem against oblivious
adversaries, at the cost of a small runtime increase.

Faster generation of random walks and Schur complements. All previous algorithms for
dynamic electric flows [DGGP19,GLP21] require dynamic maintenance of spectral vertex sparsifiers
or Schur complements, which approximate the electric flow and potentials onto a smaller set of
terminal vertices. The Schur complement is generated by sampling several random walks from
vertices v with exit probabilities proportional to inverse resistances until the walk visited a fixed
number L of distinct vertices, and by estimating the sum of resistances of edges along the walk.
Because there may be edges with very large or small resistances, a naive simulation may get
stuck for polynomially many steps. Consequently, [DGGP19] gave an algorithm for this based on
taking high powers of the random walk matrix (which [GLP21] applied in a black-box fashion). This
generated large factors in the runtime of the data structures. We give an approach to signficantly
speed up the sampling of vertices and length estimation by applying a Morris counter from the
streaming /sketching literature [NY20], and reducing the problem to solving a sequence of electric
flow computations (Laplacian systems) as opposed to the more expensive matrix multiplication op-
erations of [DGGP19]. This signficant runtime improvement immediately translates to our dynamic
electric flow data structure described above, which directly uses dynamic Schur complements.

Simplified electric flow heavy hitter. To design our dynamic algorithm for detecting edges
with large energy in dynamic electric flows, we maintain an ¢o heavy hitter sketch of the electric
flow vector. The algorithm of [GLP21] maintained this sketch by using a dynamic spectral vertex
sparsifier or Schur complement, which approximates the electric flow and potentials on a smaller
set of terminal vertices, and several random walks for “moving” the heavy-hitter sketch vector to
the terminal set. This latter piece (maintaining random walks for moving the heavy hitter vector)
introduced several complications into the analysis and generated a large overall running time for the
data structure. On the other hand, our algorithm is more directly based on spectral approximations.
In particular, we show how to dynamically maintain the result of moving the heavy hitter vector
onto the terminal set by simply calling another dynamic Schur complement data structure, and
carefully reasoning about spectral approximations to bound how that affects the resulting error.



Simplified IPM outer loop. As a result of our more linear algebraic approach to maintaining
electric flows, our data structure for detecting large energy edges in electric flows works for both
dynamic resistance changes and dynamic demands, while the algorithm of [GLP21] required re-
stricting to only s-t flows. Our generalization also allows us to use a more standard and efficient
robust IPM (from [DLY21]) to implement the outer loop utilizing the data structure, while [GLP21]
had to redesign the IPM to carefully only use s-t electric flows to interact with their data structure.
Our robust IPM implements an additional batching, or fs-based recentering step, by computing
the changes on a small subset of edges to higher accuracy by using spectral vertex sparsifiers.

Black-box reduction from adaptive to oblivious adversaries. As we are applying random-
ized data structure inside an algorithmic outer loop, their previous responses may affect future
updates. This is referred to an adaptive adversary in the literature. On the other hand, our data
structures which are based on random walks naturally only work against oblivious adversaries,
where the input sequence does not depend on the outputs and randomness of the data structure.
The algorithm of [GLP21] handled this issue in their data structures by carefully controlling the
total number of adaptive phases of their algorithm before snapping back to a deterministic state.

Our approach on the other hand is more black-box, and gives a more general approach for
converting data structures against oblivious adversaries to handle adaptive queries. We build a
LOCATOR which returns a superset of edges with large energies, and several EVALUATORs with
differing accuracy parameters which separately estimate the energies of the edges. By leveraging
ideas from the Gaussian-mechanism from differential privacy [DR*14] we show how to apply the
EVALUATOR data structures to simulate estimating adding Gaussian noise to the true energy vector
that we wish to output. We simulate this by making several queries to the EVALUATORs, where
we query the least accurate EVALUATORS most often, and only query more accurate EVALUATORS
when the estimate of the energy vector is close to certain thresholds and we require finer estimates
to decide how to round. Because we are simulating adding noise to the true output, the algorithm
succeeds against an adaptive adversary.

1.2 Related Work

We briefly survey the lines of work most relevant to our results, and refer the reader to [GLP21]
for more comprehensive discussion. Recently, [DGG™22] gave a mincost flow algorithm on planar
graphs running in nearly linear time. Similar to our paper, it is based on the robust IPM framework
of [DLY21] and dynamic Schur complements. However, [DGG122] relies on the fact that the
terminal set C is small due to the existence of planar separators, while our paper relies on the fact
that C' is slowly changing.

Data structures for IPMs. IPMs are a powerful framework which reduces linear programming
with m variables to a sequence of O(y/m) linear system solutions [Ren88]. For maxflow and mincost
flow, these linear systems correspond to computing electrical flows, and Daitch-Spielman [DS08]
leveraged this observation to give a 6(m1'5 log U) mincost flow algorithm. Recently, several works
have leveraged the key fact dating back to early works of Karmarkar [Kar84] and Vaidya [Vai89]
that the linear systems change slowly and only need to be solved approximately, both in the context
of linear programs [L.S15,CLS19,1.SZ19,Bra20,BLSS20,JSWZ20,BLL " 21,Bra21] and mincost flows
[BLN*20, BLL*21, GLP21].



Dynamic electrical flows. Recent works applying dynamic data structures to IPMs for maxflow
require maintaining various properties of electrical flows on dynamically changing graphs. The
improvements on dense graphs [BLN'20, BLL*21] required dynamically maintaining spectral spar-
sifiers of the Laplacian in 6(1) time per edge update and 6(71) per query, as well as detecting edges
with large electrical energies in 5(71) time per query. Both of these pieces were done using dynamic
expander decompositions [NS17, Wul17, NSW17,SW19, CGL*20, BBG™20]. The work of [GLP21]
desired sublinear time per query and hence required dynamically maintaining Schur complements,
whose study was initiated in [DGGP19] to dynamically maintain approximate effective resistances.

Adaptivity and differential privacy. There has been significant work towards building tech-
niques to apply oblivious data structures in the context of an algorithmic outer loop, which requires
adaptivity. To date, most approaches to this problem involve either making the algorithm deter-
ministic [BC16, BC17, CK19, GWN20, Chu21, BGS21], or resparsifying [BBGT20], both of which
heavily leverage properties provided by dynamic expander decompositions [NS17, Wull7, NSW17,
SW19, CGL"20,BBGT20]. Our work takes a different perspective and instead more carefully ana-
lyzes whether the adversary can learn any randomness leaked from the distribution of our output
vector. This perspective is motivated by ideas from differential privacy, and in fact our key result
is an adaptation of the Gaussian mechanism [DR*14] which simulates adding unbiased Gaussian
noise to the true output vector by using a sequence of oblivious estimates. Our recursive scheme
is also broadly related to the idea of multilevel Monte Carlo [Gill5, BG15] and its recent appli-
cations in leveraging approximate optimization procedures to obtain nearly unbiased estimates of
minimizers [ACJ*21].

1.3 General Notation

We use plaintext to denote scalars, bold lowercase for vectors, and bold uppercase for matrices. For
resistances r and conductances w & r~1, the corresponding capital matrices are diagonal matrices
with the vector entries on the diagonal, i.e. R & diag(r) and W ¥ diag(w). As our algorithm
heavily use approximations, we will use - to denote the approximate versions of true variables.
We use 5() to suppress logarithmic factors in m and SNI() to suppress inverse logarithmic factors

in m. For vectors x,y we sometimes let y denote the entry-wise product of x,y, so (xy); o T;Y,;.
Similarly, we let (z/y); & a;/y;. We say that an event holds with high probability (whp.) if for
any constant C' > 0, the event succeeds with probability at least 1 —n~¢ by adjusting parameters.
We let [n] = {1,2,...,n}. We denote the (unweighted) degree of a vertex v as deg(v).

We say that a symmetric matrix M € R™*" is positive semidefinite (PSD) if 2 T Az > 0 for all
x € R". For PSD matrices A, B we write A < B if B — A is PSD. For positive real numbers a, b
we write a =~ b to denote exp(—v)b < a < exp(y)b. For PSD matrices A, B we write A ~, B if

exp(—y)B < A < exp(v)B.

1.4 Organization

In Section 2, we give a technical overview of each of our improvements to each of the key components
of [GLP21]: faster sampling of Schur complements, operator-based electric flow heavy hitters, and
black-box reduction of adaptive to oblivious adversaries. We also overview the robust IPM we use.
In Section 3 we give preliminaries for maxflow, mincost flow, and electric flows that we require for
the remainder of our paper. In Section 4 we give our algorithm for faster sampling of random walks



and Schur complements, and we combine this with an operator-based heavy hitter in Section 5 to
give a faster algorithm for detecting edges with large energy. In Section 6 we show how to black-box
reduce adaptive to oblivious adversaries for the problem of estimating dynamic vectors. We give
our robust IPM in Section 7, which is an adaptation of that in [DLY21], and additional tools to
apply it. Finally, we combine all pieces and compute the final runtime in Section 8.

2 Overview

Here w,e provide a technical overview of our contributions.

2.1 Overview of Faster Schur Complements via the Morris walk

Our data structures, as in [GLP21], heavily rely on dynamically maintaining spectral vertex spar-
sifiers (Schur complements) of GG, which approximate the inverse spectral form of G onto a subset
of the vertices. This was achieved using the algorithm of [DGGP19], which showed how to dy-
namically maintain an approximate Schur complement under edge resistance updates. The main
primitive behind the dynamic Schur complement data structure was a procedure to sample random
walks from a vertex with exit probability proportional to inverse resistances, i.e. the probability of
going from a vertex v to a neighbor w is given by

-1

rvu

2 o
w neighbor of v Tvw

For this walk and a parameter L, we must run the walk until the total degree of visited vertices
is L, and to estimate the total resistive length of the walk up to a (1 + €)-factor, where resistive
length refers to the sum of resistances of edges on the walk. Directly simulating the random walk
is not efficient enough, because there may be polynomially large and small resistances, which cause
the walks to “get stuck” on a small set of edges, without visiting new vertices. Thus it can take
a long time to visit L distinct vertices. Despite this, [DGGP19] showed how to sample the walk
and resistive length in 6(L4e_2) time per vertex, and this large runtime directly led to the fact
that [GLP21] only achieved a small 1/328 improvement in the exponent.

Interestingly, if one is only interested in obtaining distinct vertices on the walk (and not the
resistive length) until the total degree is L, this can be done in O(L?) time by solving a Laplacian
system (corresponding to computing an electric flow) for each of at most L steps to compute the
next exit vertex. However, the approach of [DGGP19] which also computed the resistive length, i.e.
the sum of resistances of edges on the walk, was based on matrix-powering/matrix multiplication,
and instead had a larger 5(L4e_2) runtime. Our main idea is to resolve this runtime discrepancy
between sampling the distinct vertices and computing a (1 4 €)-resistive length estimate by giving
an algorithm that computes both quantities by solving a sequence of Laplacian systems. In total,
we solve 6(L + €72) systems, for a runtime of 5(L2 + Le2). In our settings, L will generally be
Q(e7?), so our runtime is 5(L2), matching the time to generate the first L vertices using a sequence
of Laplacian systems, and significantly improving over the O(L*¢~?) runtime of [DGGP19,GLP21].

Our algorithm for this task is derived from the Morris counter [MS78, NY20], a probabilistic
algorithm for maintaining low-space approximations to a counter N undergoing increments. For
simplicity of exposition, we assume our input graph has integer, polynomially-bounded edge weights.
Our algorithm intuitively begins by running a random walk in G. However, we replace the naive



procedure for computing the resistive length with a Morris counter. More precisely, assume we
have run a random walk starting from a vertex u for k steps and have estimated the resistive length
of the walk via the Morris counter. To estimate the resistive length of this walk after a further
step, we simply sample one new step of the walk: if we sampled an edge of resistance length w,
we increment the Morris counter w times. In this way, the Morris counter enables us to maintain
estimates of the resistive length of a random walk.

We use the following properties of Morris counters as shown in [NY20]. First, they take discrete
values Ofé ((1 + a)" — 1) for some real number a > 0 and integers i > 0, and if a = €2 /polylogn, the
value of the Morris counter is always a (1+¢)-approximation of the true value with high probability.
In particular, for graphs with polynomially bounded weights, the Morris counters takes at most
O(a1) = O(e?2) distinct values.

Our key insight we can simulate incrementing of the Morris counter and the sequence of vertices
visited as a random walk on a “lifted” graph with 6(6_1) layers. Each time we explore a “new”
neighbor in this lifted space, we either find a new unexplored vertex along the random walk or
increment the Morris counter. However, there are only 6(6_2) distinct values of the counter:
thus we must explore only an additional 6(6_2) distinct vertices in this lifted space to obtain the
desired guarantee on the number of new vertices seen. We obtain our final algorithm by replacing
the explicit random walks with a subroutine based on Laplacian linear system solvers: in this way
our final complexity of (’j(L2 + Le~2) follows. Overall, this provides a graph-theoretic approach for
estimating lengths of random walks on graphs, as opposed to the previous algorithm in [DGGP19]
which was based on matrix mutiplication.

2.2 Overview of Operator-based Electric Flow Heavy Hitters

Our next major improvement over [GLP21] is a data structure that detects large energy edges in
electric flows on graphs with dynamic resistances and demands by direct reduction to maintaining
dynamic Schur complements. To be precise, we give a data structure that on a graph G with
dynamically changing resistances and demands, solves a electric flow heavy hitter problem, by
returning a set S of O(e~2) edges containing all edges e with at least €? fraction of the electric
energy, i.e. rof> > € Y oecE rof? where f is the electric flow vector. [GLP21] gave a data structure
that solved this problem in sublinear time per resistance update and query as a core piece of their
algorithm. We give improved runtimes for solving this problem and shed light on its complexity
by directly reducing to dynamically maintaining Schur complements.

Note that the dynamic electric flow heavy hitter problem is equivalent to detecting large coordi-
nates of the vector R2f compared to its /o norm. Hence, it is natural to apply an 5 heavy-hitter
sketch [KNPW11], which at a high-level consists of O(e~2) Johnson-Lindenstrauss £y sketches.
In total, this consists of maintaining the value of ¢ RY2f for 6(6_2) random sketch vectors
g € {—1,0,1}*. The flow f can be represented as f = R™'B¢ for electric potentials ¢ and
edge-vertex incidence matrix B, so

¢ R'2f = (B'R %q,¢).

Let y = BTR~1/2¢, so that we focus on maintaining y'¢. However, ¢ is still a |V|-dimensional
vector, so in order to achieve sublinear time [GLP21] used a smaller terminal set C' to estimate y ' ¢.
In particular, they write ¢ = Hcodo where ¢ is the restriction of ¢ to C, and H¢o € RV(G)xC
is the harmonic extension (Definition 5.1) operator which extends ¢ to ¢ using that for any



vertex v, @, is the average of its neighbors, weighted proportional to inverse resistances. This way,
y' ¢ = <Hgy, ¢c). Assuming that we can approximate maintain ¢ (which we discuss towards of
the end of this section’s overview), it suffices to maintain Hly.

Our major difference from [GLP21] is in how we maintain Hly. While [GLP21] used the
combinatorial interpretation of the operator Hg as using random walks to “move” the mass from
vector y onto C, we use the spectral fact (Lemma 5.2) that

He =L [o SC(L,C)] ,

where L is the graph Laplacian and SC(L, C) is the Schur complement of L onto C. Thus, we get

Liy.

0
T, —
Hey = [SC(L,C’)

Thus, we could optimistically precompute Liy and then compute Hgy as long as we can dynam-
ically maintain the Schur complement SC(L, C'), which is a size C' object. The remaining issue is
that the Laplacian L may change because the resistances change. However, the operator 7-[8 does
not depend on the resistances of edges completely inside C' (by definition), so we may actually let
L be the Laplacian of the original graph as long as all endpoints of edges with resistance changes
are added to C'. Finally we are able to show that using an approximate Schur complement in place
of SC(L, C) still suffices for our data structures (Lemma 5.7).

Finally we discuss the (approximate) maintenance of the potential ¢-. For an electric flow f
routing demand d, i.e. B' f = d, the potentials ¢ are given by

o = SC(L,C) 1/ d.

In other words, we first “move” the demands to the terminal set using ”Hg just as above, and
then invert the Schur complement on it. Therefore we can maintain ¢, as follows: maintain Hd
approximately as above, and then also approximate maintain SC(L, C') using an approximate Schur
complement data structure. In all, this reduces the maintenance of the heavy hitter vector to three
calls to an approximate Schur complement oracle.

2.3 Overview of Reduction from Adaptive to Oblivious Adversaries

The dynamic electric flow data structures built in Section 2.2 naively only work against oblivious
adversaries, i.e. the inputs must be independent of the outputs and randomness of the data struc-
ture. In [GLP21] this was handled by carefully designing the data structures to utilize the fact
that the IPM central path is a deterministic object. However, we take a more general approach, by
applying ideas from the Gaussian-mechanism from differential privacy [DR*14] to build versions of
these data structures that work directly against adaptive adversaries, allowing them to be applied
within the interior point outer loop. In fact, we give a generic reduction for estimating vectors
against adaptive adversaries to oblivious adversaries.

Consider an oblivious data structure that outputs vectors T € R™ that are supposed to approx-
imate a true underlying vector v € R™. In our dynamic electric flow setting, this corresponds to a
data structure which detects edges with large electric energy, and approximates their flow values.
Consider what would happen if instead of @, our algorithm uses z ~ N (v,0?) for small enough o
(i.e. the vector v with some Gaussian noise added to it). If ¢ is small enough, then z would be
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Figure 1: Density function d of N'(v,0?), and density function d of N'(,0?) scaled by some
exp(—a), a > 0 so that d(x) exp(—a) < d(x).

an accurate approximation for our algorithm to work. Additionally, the vector z obviously does
not depend on the internal randomness of the data structure, since it is defined with respect to v,
not the approximation . Unfortunately, computing z by computing v and adding noise is rather
inefficient since v is the exact solution, not an approximation. We now explain how to obtain
vector z more efficiently from oblivious estimate vectors T by using the Gaussian-mechanism from
differential privacy [DR'14].

Specifically, it is known that for any o > 0 there is small enough a > 0 such that if d is the
density function of M(v,0?) and d is the density function of NV'(®,0?), then d(x) < exp(a)d(x)
for all .2 For example, Figure 1 shows density function d(x) and the scaled density function
exp(—a) - d(x) for the 1-dimensional case. Note that we can pick a random z ~ N(v,0?) by
picking uniformly at random a point below the curve of d(Z) and returning the xz-coordinate. We
can also split this sampling scheme into two phases: (i) With probability 1 —exp(—a), sample from
the area between the two curves. (ii) Alternatively, with probability exp(—«) sample from the area
below the bottom curve exp(—a)d(x) in Figure 1.

When case (i) happens, we handle it directly by computing v exactly (which is expensive), which
gives us the distributions d and d explicitly. However, note that if « is close to 0, then this case only
occurs infrequently: with probability 1 — exp(—a) = O(«), which balances out the expensive cost
of computing v. On the other hand, case (ii), which occurs with probability exp(—a), corresponds
to flipping an unbalanced coin and with probability exp(—a) we sample a 2’ ~ N (@, c?). So with
probability exp(—a) we do not need to know/compute the exact vector v in order to obtain a
sample with distribution NV (v,0?) and just knowing the approximate result T already suffices.

Now, this scheme can be extended recursively to handle case (ii), i.e. sampling from z ~
N(T,0%). We can use the same scheme again via some @', i.e. sampling from N (%', 0?) with
probability exp(—a) instead of N(®,0?). This leads to another speed-up because of the following
reason: the probability exp(—a) depends on the approximation quality of ©' compared to v. We
want to use a large a in order to reduce the probability of computing v, but this requires ¥’ to be a
better approximation. Thus, we are able to compute higher accuracy approximations (which take

2This is actually only true for & € D for some event D that holds whp. We ignore this here for simplicity.



more runtime) less frequently, and this leads to a speedup. Overall, by using this scheme, our data
structures will work against an adaptive adversary because the output has distribution N (v, 0?),
i.e. a distribution that is independent of the internal randomness of the data structures.

2.4 Overview of IPM Outer Loop

Here we overview how we apply the above primitives in a robust IPM to give an algorithm for
algorithm, which reduces solving maxflow to computing a sequence of 6(\/ﬁ) approximate electric
flows. The IPM of [GLP21] required several nonstandard modifications, including restricting to
using s-t flows, which resulted in using more than 5(\/5) steps, and overall higher runtime. On
the other hand, our algorithm is based on the more standard robust IPM of [DLY21], with an
additional procedure that allows for recentering in the context of a robust IPM that allows us to
control errors that accumulate over longer periods of time.

We start by briefly introducing a standard robust IPM setup for the mincost flow problem based
on [DLY21] (in Section 7 we change notation slightly to work with general linear programs)

min c'f, (1)
fER™:BT f=d and £<f<u

where ¢ € R¥ is the cost vector, and £,u € RF are lower /upper capacities on edges. For e € E and
real number f € R, define the logarithmic barrier function ¢.(f) < —log(f —£.) —log(u. — f), and
for flow f € RE define ¢(f) & > ecr ®e(fe)- For a path parameter p that decreases towards 0 over
the course of 6(\/ﬁ) steps, the robust IPM maintains an approximate minimizer to the expression

def

= m
FER™:BT f=

. T

c f+ . 2
" o e f+uo(f) (2)
Since ¢ is convex, the KKT conditions for (2) give that there is a vector y such that ¢+ uVo(f u) =
uBy. Thus there is a vector s, € R such that By + sy = ¢/p and s, + Vo(f,) = 0. In this
way, we define a p-centered point as a pair (f,s) such that By 4+ s = ¢/u for some y € RV and
IV20(£)" (s + Vé(F))|loo < 1/64. The robust IPM maintains u-centered points throughout by

tracking the potential function

Z cosh (A¢Z(fe)_1/2(3e + (b,e(.fe)))

ecE

for A = 128log(16m). Now IPM steps are taken to simulate gradient descent steps on the potential
to keep it small, and hence maintain p-centered points at all times.

Because our data structures work in time sublinear in the number of vertices, the flows we
maintain during the robust IPM are stored implicitly, even without the ability to query in O(1)
time the “true flow” on an edge e. Further, the error of our flow estimate from the true value
accumulates over the steps of our method. Hence we require a procedure to recompute a feasible
p-centered flow in a robust IPM every k steps in O(m) time for some k = m®1) (Theorem 7.7).
To see why this could be possible, note that the true step per iteration is an electric flow with
some resistances and demands. Additionally, over the course of k steps, these resistances and
demands will only change at most poly(k) total times. Thus, we can put all edges whose resistance
or demand changed into a terminal set C' and compute an e-approximate Schur complement onto
C'. [LS18] shows that such a Schur complement (onto a slightly larger set) can be computed in time



O(m +|C|/e?) = O(m + poly(k)/€2) = O(m) for some k = m*(1), Leveraging this, we show that
we can recover a centered point in the context of a robust IPM in é(m) time every k steps.
Overall, our algorithm splits the O(y/m) robust IPM steps in O(y/m/k) batches of k steps.
Within each batch, we ensure that at most poly(k) edges have their resistances change in the
graph G (but there may be more resistance updates in between batches). Each step in the batch
is maintained using the dynamic electric flow heavy hitter data structure we built, as described
in Sections 2.1 to 2.3. At the end of each batch, we use the approximate recentering procedure
described in the previous paragraph. Combining these pieces along with the standard bound that
over T' IPM steps, at most 6(T 2) resistances change by a constant factor, gives our final runtimes.

3 Preliminaries

We give preliminaries on maxflow, mincost flow, electric flows, and Schur complements.

Maxflow and mincost flow. Throughout, we let G = (V, E) be our graph with n = |V| vertices
and m = |E| edges. We let B € RE*V denote the edge-vertex incidence matrix of G. Additionally,
we let £,u € Z¥ denote the lower /upper capacities on edges in G. We assume that ||£||so, ||tt|lec < U.
A flow f € RF is any assignment of real numbers of edges of G. We say that a flow f is feasible if
L. < f. < wu, for all e € E. We say that f routes the demand d € RV if BT f = d.

The maximum flow problem asks to find a feasible flow routing the maximum multiple of a
demand d (generally assumed to be s-t). Written linear algebraically, this asks to find the largest
F* such that there is a flow f satisfying B f = F*d and £, < f, < u, for all e € E. The minimum
cost flow problem asks to minimize a linear cost ¢ over flows routing a fixed demand d. Linear
algebraically, this can be written as

min c' f.
BT f=d
Le<f.<ue for all eeE
We work with mincost flow throughout, as it is known to generalize maxflow. We also focus on
finding high-accuracy solutions in runtime depending logarithmically on U and ||¢||~, as it is known
that this suffices to get an exact solution with linear time overhead [DS08, BLL"21].

Electric flows and Schur complements. Electric flows are £o-minimization analogues of maxflow
on undirected graphs, and are used in all current state-of-the-art high accuracy maxflow algo-
rithms [KLS20, AMV20, BLN*20, BLL*21, GLP21] based on IPMs. On a graph G with resistances
r, the electric flow routing demand d is given by

arg min Z rof?. (3)
BTf=d ccp
The minimizer in (3) is given by the solution to a linear system: f = R™'B(B'R™'B)’d. The
matrix BTR™'B is known as the Laplacian of G, which can be solved in nearly-linear time [ST04,
KMP10, KMP11, KOSA13,LS13, CKM* 14, KLP*16, KS16, JS21]. Precisely, solving a Laplacian
system gives high accuracy verter potentials, defined as ¢ = (BTR™1B)'d.

Theorem 3.1. Let G be a graph with n vertices and m edges. Let r € REO denote edge resistances.
For any demand vector d and € > 0 there is an algorithm which computes in O(mloge 1) time
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potentials ¢ such that ||¢ — ¢*||L < €||¢p*||L, where L = BTR™'B is the Laplacian of G, and

¢* = Lid are the true potentials determined by the resistances r.

For notational convenience, we define the conductances w = v, and let L(w) & BT WB.

Several of our algorithms want to solve Laplacian systems in sublinear time. This can be done
in the following natural sense: instead of returning the full potential vector ¢, we only wish to
determine ¢ restricted to a subset of vertices C' C V. This is captured by a Schur complement,
which is defined as SC(L, C) d:Cf LCC - LCFLE};Lcc, where F' = V\C and LFF,LCFa LFCyLCC
are blocks of the Laplacian L corresponding to rows/columns in F,C. Schur complements satisfy
two key properties which are essential for our algorithm: they are also graph Laplacians, and they
are directly related to LT via the Cholesky factorization.

Lemma 3.2 (Cholesky factorization). For a connected graph G with Laplacian L € RV*V | subset
CCV,and FEV\C,

i | ~LprLrc| |Lak 0 I 0
L I 0 SCL,O)f||-LepLpp I|°
~LypLrc

The matrix appearing in the Cholesky factorization corresponds to mapping the

I
potentials on C back to the whole graph via a harmonic extension. In other words, a random walk
on (G, with exit probabilities proportional to conductances is a martingale on potentials. We give
a more formal definition and properties later in Section 5.

Finally, it is very useful intuition that electric flows are inherently connected with the following
random walk on G: a vertex v goes to a neighbor uw with probability proportinal to conductance

(inverse resistances), i.e. T Wue , where N (v) are the neighbors of v in G. This random walk

weN (v) Ww
is the one used to define the harmonic extension, and also is used more directly in our algorithm for

sampling Schur complements (see Lemma 4.11). Throughout, any mention of random walks refers
to this random walk.

4 Improved Dynamic Schur Complements

In this section, we give our main algorithm for maintaining a Schur complement in a dynamic
graph. Our main result is the following (see Theorem 4.10 for a more precise statement):

Theorem 4.1 (Dynamic Schur complement (informal)). There is a data structure that supports
the following operations against oblivious adversaries given a graph G = (V, E) with dynamic edge
conductances w € RE(G) and parameters B < €2 < 1.

o INITIALIZE(G,w, €, B). Initializes the data structure with accuracy parameter €, and chooses
a set of O(Bm) terminals C. W is initialized as w. Runtime: O(mB2e72).

« ADDTERMINAL(v). Makes v a terminal, i.e. C < C U {v}. Runtime: amortized O(82¢72).

o UPDATE(e,w™V). Under the guarantee that both endpoints of e are terminals in C', updates
W, < w"V. Runtime: amortized O(1).

11



« SC(). Returns a Laplacian SC with O(Bme=2) edges which (1 + €)-spectrally approximates
the Schur complement of L with terminal set C in time O(Bme™2).

All outputs and runtimes are correct with high probability if |C| = O(Sm) at all times and there
are at most O(pm) total calls to UPDATE.

Our proof is organized in two parts. In Section 4.1 we give an algorithm to efficiently generate
useful attributes of a random walk in graphs with polynomially bounded edge weights. Next, in
Section 4.2 we describe how to use these walk attributes to maintain a Schur complement under
modifications to the terminal set and edge weights.

4.1 Approximate Random Walks with Morris Counters

Our main contribution in this section is an improved algorithm to sample random walks in weighted
graphs, based on the Morris counter of [MS78 NY20]. The main technical result of this section is
the following:

Theorem 4.2 (Morris Walk). Let G = (V, E,w,{) be a graph with edge weights w and edge lengths
¢ bounded between 1 and n®Y) . For any vertex u, and parameters L,e > 0, Algorithm 3 with high
probability runs in 6(L2 + Le™2) time and generates the following attributes of a random walk W,
in G which starts from u, samples the edges it traverses with probabilities proportional to we, and
stops when Y, ¢y, deg(v) > L3:

o Uy, U2,..., the O(L) distinct vertices of W, in order of their encounter.
o For each u;, 0y, is a (1 + €)-approzimation of

fi—1
Z E(ukvukJrl)’
k=1

where f; is the index of the first visit of u; in W,.

Our algorithm is based on simulating random walks in a graph by repeatedly solving linear
systems, a technique that has been used in prior work on sampling random spanning trees and
dynamically maintaining Schur complements [KM09, MST14, DKP*17,Sch18, DGGP19, GLP21].
However, a difficulty in applying this approach to our setting is the need to estimate the length of
the resulting random walk. We address this issue by appealing to an approximate counter algorithm
to estimate the length of prefixes of the walk by simulating random walks on a larger graph.

To aid our exposition, we begin by recalling a variant of the Morris counter algorithm and an
improved analysis of such from [NY20], which we present in Algorithm 1.

Theorem 4.3 (Modification of Theorem 1.2 from [NY20]). Consider an instantiation of Algo-
rithm 1 for parameters €,d, where INCREMENT() haf been called N times after one call to INIT-
COUNTER() . Then APPROXVAL() returns a value N satisfying E[N] = N and

(1—e)N<N<(1+eN

with probability 1 — §.

3Here, deg denotes the unweighted degree of a vertex in G.
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Algorithm 1: Morris Counter MORRIS

global variables
X: current counter value
‘ a > 0: accuracy parameter
procedure INITCOUNTER() (¢, 0)
‘ X =0.a+ m.
procedure INCREMENT()
// Probabilistically updates the Morris counter X
with probability (1 +a)~X do
| X=X+1
end
10 procedure APPROXVAL()
// Returns unbiased estimator for number of times INCREMENT() was
called.

11 return 1 ((1 +a)X — 1)

(=2 B N VI

®

The above theorem may be recovered directly from the analysis of Section 2.2 in [NY20]. We
will employ this algorithm in a white-box fashion to estimate the length of a random walk in a
graph. To do this, we condense the behavior of the counter over a collection of w increments into
an explicit probability distribution:

Definition 4.4 (Morris Increment Probabilities). Given a parameter a > 0, for integers Y, Z we
define the Morris increment probabilities

pf,y(f) = Pr (MORRIS.X = Z after processing ¢ INCREMENT() calls [IMORRIS.X = Yoriginally)

We remark that these probabilities may be nontrivial to compute. However, in our algorithms
we only require the ability to sample a Z with probability proportional to pi y (0): we will later
show how this may be done efficiently.

Definition 4.5 (Layer Graph). For weighted graph G = (V, E,w, ) and parameter a > 0, the
a-layer graph is an (infinite) weighted directed graph G with vertex set V =V ® {0,1,...,}* and
edge set E constructed in the following fashion: For each edge (u,v) € E of weight w and length
¢, each 0 < i, and each i < j, add a directed edge (u,i) — (v,j) of weight w pf“ Q%ED to E.

We remark that although the layer graph as defined is infinite, we only access finite subgraphs of
it in our algorithms. Our proof strategy in this section is in two parts. First, we describe an idealized
algorithm (Algorithm 2) that directly runs a random walk in a graph and generates an output
matching the requirements of Theorem 4.2. We then provide an efficient variant (Algorithm 3)
which with high probability returns an output matching that of Algorithm 2 in distribution: the
result follows.

*We use the notation A ® B to denote the Cartesian product of A and B: it consists of all tuples (i,4) for i € A
and j € B.
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Algorithm 2: Conceptual Morris Walk

1 procedure CONCEPTUALMORRISWALK(G, L, €, u, ¢)
2

2 a= mw)

3 G = a—layer graph of G, Uy = (u,0)

4 Svisited = [u]

5 while - ¢ . degg(v) <L do

6 (Vpw, irw) < random neighbor of uy.,, in G
7 if Vrw ¢ Svisited then

8 Svisitod = [Svisited; 'Urw]

9 S = 2 (1 +a)irv — 1)
10 end
11 Upyw = (vrwairw)
12 end
13 return Syisited, {0}

Theorem 4.6. Let G = (V,E,w,¥) be a graph with edge weights w and edge lengths ¢ bounded
between 1 and n°Y . For parameters L,e,c > 0 and starting vertex w, Algorithm 2 with high
probability returns the following attributes of W, a random walk in G which starts from u, samples
the edges it traverses with probabilities proportional to we, and stops once Y, ¢y, degg(v) > L:

o A set S of the first O(L) distinct vertices in Wy, in order of encounter

o With probability 1 — n=¢, values {6} such that for each v € S, 0, (1 + €)-approzimates the
length in W,, (measured with respect to £) from w to the first encounter of v.

Proof. Let a = WZHC)’ and let W be the ordred collection of vertices (Vrwy trw) € G encountered

on Line 6: note that these vertices form a random walk on G by construction. We define an
auxillary random walk W in G as follows: if the k& in W is (v,i), the k** node in W is v. We will
show the following two facts:

e W isarandom walk in G which starts from u, samples its edges with probabilities proportional
to we, and stops once Y,y degg(v) > L.

o For any k, let the k" node in W be (vk,ix), and let Ry be inductively defined by Ry =
0, Rix1 = R; + Bg(vuviﬂ)J' Then iy is distributed as MORRIS(a).X after processing Ry
increments.

The first of these claims follows immediately: if we sample a random neighbor of (v,%) in @, the
probability that it is of the form (v, j) for some j is simply

SRowwahi ([How])  wr

dzev Z]Oio w(x,v)pi,i ( {%E(x,v)J ) 2wev W(z,) ‘

Thus the k™ element of W is a neighbor of the (k — 1)** sampled proportional to w: since W starts
from u the claim follows.
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For the second claim, we proceed by induction on k. The claim is trivially true for k = 1 (as
the first node in W is (u,0)). It remains to show the induction step. Let the k™ node of W be
(vg,ix): by the induction hypothesis i, is distributed as MORRIS(a).X after Ry increments. Now
conditioned on the value of v;y1, we have

X
Pr(ijpi1 =) = > Pr(igs1 = alir = y) Pr(ix = )

y=0
W (v, vp11) pay ({%E(Umka)J) o B T N <{§ J) .
= yzo 2220 W(og, oy 1) Py (Bg(vkvvkﬂ)b Pr(iy =y) = y;opa,y aé(vkml) Pr (i, = y).

But by the induction hypothesis, each term of the expression is the probability that MORRIS(a). X

equals y after Ry increments and also equals y after a further EE( increments. Since

vkﬂ}kﬁ»l)
Ryi1 = R + BK(%%H)J conditioned on the value of vy, the claim follows by the law of total
probability.

We finally show how these claims imply the theorem. First, note that S consists of the vertices
in W in the order of their encounter: since W is a random walk in G the correctness of .S follows.
Next, for each v € S let u,, = (v, 4,) be the value of u,,, set on Line 6 where v was first encountered.
Observe that each edge in G has weight at least 1: thus

a a a8
(1 - é) Convnrn) < Lorvnsn) — 8~ = ] { g(vk’le)J = Lo
Thus for any k,

a\ 8 & 8¢
- 8)a Ze(vmviﬂ) SR < a Zg(vivvz#l)'
i=0 =0

By the second claim, we see that i, is distributed as MORRIS(a).X after processing N,, increments,
where N,, = Ry if k is the smallest index where v appears in WW. This number of increments is
larger than %: by Theorem 4.3 we thus have

p ((1 +a)v — ) - §Nuv

1
Pr (
But now, g Ny, is within a 1 + 7 <1+ € factor of Ly, the length of W from u to the first visit of
v. Thus,

> §NM> <1-n3.
a

Pr (|6, — Luy| > 26Lyy) <1 —n" 7L,

As there are at most n vertices in S, the claim follows by scaling down € and union bounding over
these failure probabilities. O

With Theorem 4.6 in hand, we prove the main result of this section by giving an efficient
implementation of Algorithm 2. Our algorithm works by simulating a random walk over the a-
layer graph G using a Laplacian linear system solver. We will employ the following (standard)
lemma on the hitting probabilities of a random walk in undirected graphs:
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Lemma 4.7 (Corollary of Lemma 5.6 from [GLP21]). Let G = (V, E,w) be a weighted undirected
graph, and let x be any verter in V. For any C C V., the probability that a random walk starting
from x first enters C' at a vertex y is given by

- [LC,V\CL(;}CXx} .

Thus, in 5(\E!) time we may sample a vertexy € C with probability equal to a random walk starting
from x first entering C' at y.

We will use this fact within the framework of CONCEPTUALMORRISWALK to replace the ex-
plicit sampling of random walk (which may take poly(n, W) time) with a computationally efficient
subroutine. We now describe the graphs on which we apply Lemma 4.7: In the below, Ng(S)
denotes the vertices which are neighbors of .S but do not themselves belong to S.

Definition 4.8 ((a,t, S)-shortcut graph). Let G = (V, E,w,¢) be an undirected graph with edge
weights w and edge lengths ¢. Let a > 0 be a parameter, and let ¢+ > 0 be an integer. For S C V,
we define the (a, t,S)-shortcut graph H = (Vy, Eg,wy) as follows:

o For each v € SU Ng(S), add v to V.

o For each edge ¢ = (u,v) € F of weight w and length ¢ with u,v € S, add vertices v, u;

u v

to Vi, an edge (u,v) of weight w - pj, Q%ED to Ey, and edges (u,v]), (ul,v) of weight

w- (1=, (|2€])) to B

o For each edge (u,v) € E of weight w and length ¢ with u € S, v € N(S), add a vertex
vy to Vi, an edge (u,v) of weight w - p,, (PED to Epg, and an edge (u,v}) of weight

w- (1 g, (|36])) to En a

Let V5 denote the set of vertices of the form v;} € H for v € S, Ng denote vertices of the form
v € H for v € Ng(5), and N& denote vertices of the form v;7 € H for v € Ng(S).

Note that computing the shortcut graph defined above only requires computing Morris incre-
ment probabilities of the form py, ,(s). We will show that this admits a simple closed form, and that
we may sample a variable proportional to the increment probabilities efficiently.

Lemma 4.9. Given a parameter a > 0 and integers Y, £, the Morris increment probabilities (Defi-
nition 4.4) satisfy

Py =(1- (1))

In addition, we may sample an integer Z >'Y + 1 such that

Pg,y(g)

Pr(Z:r):Tw

in time O(Z = Y).
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Proof. For the first claim, note that each call to INCREMENT() increments MORRIS. X with prob-
ability (1 +a)~Y. The probability that ¢ such increments fails to increase MORRIS.X is therefore

l
(1 —(1+ a)_Y) as claimed.
For the second claim, we describe an algorithm to sample from the claimed distribution. We
first observe that the desired distribution is precisely the value of MORRIS. X after processing /¢
increments, conditioned on

e The initial value of MORRIS. X was Y.
e The final value of MORRIS. X is strictly larger than Y.

We will sample from this distribution by implicitly simulating the Morris counter algorithm itself:
we repeatedly sample from the distribution over the number of INCREMENT() calls required to
increase MORRIS.X, and return the final value of MORRIS. X after ¢ simulated increments were
processed. For the below, we let Geom(p) denote the geometric random variable over {1,2,...}
with failure probability p and let Geom”(p) denote Geom(p) conditioned on the output being at
most k: note that both distributions may be sampled from in 5(1) time.

Assume that Y/ = MORRIS.X at some point. Let pys be a random variable representing the
number of INCREMENT() calls required to increase MORRIS.X: note that

Pr(pyr > s) = pyy(s)

by definition. By the closed-form representation of these probabilities, we may therefore conclude
that py is distributed as Geom((1 4 a)™").

By the definition of MORRIS, it is therefore clear that we may sample Z pi y () by repeating
the following operations:

o Initialize a running increment counter ¢ = 0 and a counter value Z =Y.
o Generate a sample kz ~ Geom((1 +a)~?) and set ¢/ =0/ + k.
o If // >/, return Z. Else, increment Z by 1 and go back to the previous line.

To sample Z conditioned on Z # Y, it is thus sufficient to sample the first ky ~ Geom*((1+a)~%)
to ensure Z is not incremented 0 times. To bound the running time, we additionally observe that
the number of geometric and truncated geometric random variables sampled is proportional to

Z —Y: as the total work performed is O(1) times this the claim follows. O

Proof of Theorem 4.2. Our proof proceeds in two steps. We will first show that the vertices added
to S and the values {d} have the same distribution as the output of Algorithm 2. We will then
bound the runtime of the algorithm.

Let G be the a-layer graph of GG, and fix a parameter ¢« and visited set S during a single iteration
of Algorithm 3. We consider the subgraph (A}hg consisting of all directed edges with tail of the form
(v,¢) for v € S. Consider the process of running a random walk from (v,t) € CA}'L7S until a vertex
not of the form (u,:) with u € S is reached. It is self-evident that the only such vertices in CAJL,S
belong to three classes:

e (v,t) where v € Ng(S)
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Algorithm 3: Morris Walk

1 procedure MORRISWALK(G, L, €, u)

2

N o ook W

© @

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

2

@ = Slogr)
S=lul,t=0,uy,=u
while ) s degg(v) < L do

G < (a,t,S)-shortcut graph for G (Definition 4.8)

C= Vg_ UNgUN ;

x < vertex sampled with probability a random walk starting from wu,.,, in GY first
enters C' at x (Lemma 4.7)

if r € Ng > Added new vertex to S then
S =1[S;7] > Interpret x as a vertex in G
b= (1 +a) —1)
Upyy = T
end
if x € VS+ > Incremented . then
4 def

¢ ¥ length of edge (s,v) € G

¢ < ¢/ sampled with probability o pflib( EEJ), conditioned on ¢/ > ¢ (Lemma 4.9)
Upy =V

end

if ve Ngf > Incremented ¢ and added vertex to S then
vf Lo

¢ < length of edge (s,v) € G

S =[S,v]

¢ <+ ¢/ sampled with probability o pflib( EEJ), conditioned on ¢/ > ¢ (Lemma 4.9)
S =32(1+a)—1)

Upyw =V

end

end
return S, {0}

e (v,//) where v € S and ' >
o (v,!/) where v € Ng(S) and «/ > «.

Let C denote the collection of vertices of this type. Note that the subgraph of éb,s induced
on vertices of the form (v,:) for v € S is essentially undirected (since each directed edge (x,y) is
matched by a directed edge (y, z) of the same weight). Let G, g be the graph obtained by replacing
these parallel directed edges with an undirected edge of the same weight, and by removing edge
directions from all other edges. It is clear that the probability distribution over vertices that a
random walk starting from (u,¢) for u € S enters C at is induced by a Laplacian linear system
solve via Lemma 4.7. By direct calculation, it may be verified that these sampling probabilities are
equivalent to the sampling performed on Line 7: when sampling the number of increments to the
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counter, Algorithm 3 simply samples the event that the counter is incremented at least once and
then samples from the appropriate conditional distribution for the true number of increments to
apply.

We now bound the running time of our algorithm. We observe that the termination condition
of the while loop ensures that G never contains more than O(L) edges: thus the call to Lemma 4.7
on on Line 7 can be implemented in 6(L) time. We additionally see via the remaining operations in
the loop that each linear system we solve ensures that we either add a new vertex to S or increase
the value of «. Next, we note that since G’s weights and lengths are polynomially-bounded, the
total length of a random walk which covers the entirety of G is bounded by poly(n). Thus for any v
in the returned set S, 0, is a (1 + €)-approximation to a quantity which is also bounded by poly(n).
But this implies that the variable ¢ satisfies

(1+a)" <poly(n) = 1 <0 (6_2)

with high probability. Thus at most 5(6_2) calls to Lemma 4.7 can increase the value of ¢: as the
while loop must terminate after adding L vertices to S it follows that Algorithm 3 solves at most
5(L+e_2) linear systems with high probability. Finally, the only remaining nontrivial computation
of the algorithm is performed on Line 16 and Line 23. But as ¢ < O(¢~2) by Lemma 4.9 these lines
cost 5(6_2) amortized over the whole algorithm. The claimed runtime follows. O

4.2 Improved Dynamic Schur Complement

Here we provide our main result regarding the dynamic maintenance of Schur complements under
edge resistance changes in G. We achieve this by plugging in our improved algorithm Theorem 4.2
for estimating lengths of random walks visiting a fixed number of vertices into previous frame-
works [DGGP19, GLP21]. Below, the additional operation INITIALSC maintains the approximate
Schur complement ignoring edge updates, but still tracking terminal additions. It is useful for our
dynamic EVALUATOR and LOCATOR data structures in Section 5. We use the notation SCy for
the approximation as it eventually gets used to approximately compute a harmonic extension H.

Theorem 4.10 (Dynamic Schur complement). There is a data structure DyNAMICSC that supports
the following operations against oblivious adversaries given a graph G = (V, E) with dynamic edge
conductances w € REG) and parameters B < ¢ < 1.

o INITIALIZE(G, w, €, B). Initializes the data structure with accuracy parameter €, and chooses
a set of O(Bm) terminals C. W is initialized as w. Runtime: O(mB2¢~2).

« ADDTERMINAL(v). Makes v a terminal, i.e. C < C U {v}. Runtime: amortized O(f2e?).

o UPDATE(e,w"Y). Under the guarantee that both endpoints of e are terminals in C, updates
W, < W™, Runtime: amortized O(1).

e« SC(). Returns a Laplacian SC ~, SC(L(w), C) with O(Bme~2) edges in time O(Bme2).

o INITIALSC(). Returns a Laplacian §6H with 6(67716‘2) edges in time 6(ﬁm6_2). Let Z be
the set of edges which were input to UPDATE after initialization. Define w as (w). = 0
for e € Z and (w). = w, otherwise. Then SCy satisfies

SC(L(w), C) — eSC(L(w), C) < SCy < SC(L(w),C) + eSC(L(wy),C).  (4)
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All outputs and runtimes are correct whp. if |C| = O(Sm) at all times and there are at most O(Bm)
total calls to UPDATE.

We note that we could achieve the tighter approximation guarantee in (4) for the operation
SC(). However, we do not need use it in this paper (eg. Section 5) and therefore, do not state it.
We require the following process which samples Schur complements using random walks.

Lemma 4.11 (Schur complement approximation, [DGGP19] Theorem 3.1). Let G = (V,E,r)
be an undirected, weighted multigraph with a subset of vertices C. Furthermore, let ¢ € (0,1)
and let p = 1000e~2logn. Let H be an initially empty graph with vertices C, and for each edge
e = (u,v) € E(Q) repeat the following procedure p times.

1. Simulate a random walk from uw until it hits C' at c;.
2. Simulate a random walk from v until it hits C' at co.
3. Combine these random walks (along with edge e = (u,v)) to form a walk W.
4. Add edge (c1,c2) to H with resistance p_ cyy Te-
The resulting graph H satisfies L(H) ~. SC(L(w),C) with probability at least 1 —n~10.
Finally, we require a dynamic spectral sparsification procedure.

Lemma 4.12 ([GLP21, Lemma 4.10]). There is a data structure that supports insertions and dele-
tions of edges on a graph G which have underlying conductances/resistances in amortized O(logU)
time per operation. Additionally, it can output a (1 + €)-spectral sparsifier of G in O(ne?logU)
time.

Now, we can show Theorem 4.10 exactly as done in [DGGP19, GLP21] by sampling random
walks using Lemma 4.11 and shortcutting them as terminals get added.

Proof of Theorem 4.10. We explain how to implement each operation in Theorem 4.10.

INITIALIZE: Randomly sample an initial terminal set C' of size O(Sm). From each edge e =
(u,v) € G, sample p = O(e~2) random walks from u,v to C' as in Lemma 4.11, and record (1 + €)
approximations of the sums of resistances of all prefixes. Note that these walks visit 6(ﬁ —1) distinct
vertices whp. Initialize the data structure D®) in Lemma 4.12. Based on these random walks, add
edges to C using the data structure D®). Additionally, maintain a set Z of updated edges, whose
original and final conductances we track explicitly.

The runtime of INITIALIZE is dominated by the time to sample the random walks, which is
O(me 2(872 4 71 2)) = O(me 2372) by Theorem 4.2 (the length L = O(371)) and 3 < €.

ADDTERMINAL(v): Update C < C U {v} and shortcut all walks passing through v. The total
length of all walks is O(me 2871), so over the course of O(fm) terminal insertions, the amortized
runtime is O(me 2671/(fm)) = O(872¢72). Finally, pass all edge insertions/deletions in C' to
D).

UPDATE(e, w"V): Delete the edge e (do not insert an edge with conductance w""), and pass
the deletion to D®). Update Z < ZU{e}. From now on, the algorithm explicitly stores in memory
the original and current conductances of edge e. Clearly, the update time is 5(1)

SC(): Call D® to output a (1 + €)-approximation of SC(L(w), C) with high probability. The
approximation guarantee follows from Lemma 4.11 and the guarantee of Theorem 4.2 that the total

20



resistive length of each random walk is correct up to (1 + ¢/10) with high probability. Finally, add
the edges e € Z back in with the current conductances. The runtime is O(3me~2) by Lemma 4.12
as |C] = O(Bm).

INITIALSC(): Same as SC(), except we add back edges in Z with their original conductances.
The tighter approximation holds because the algorithm is returning a (1 4 €)-approximation of
SC(L(w),C) and the edges e € Z that are added in contribute no error. O

5 Data Structures for Dynamic Electrical Flows

The goal of this section is to apply the dynamic Schur complement data structure of Theorem 4.10 to
give algorithms that dynamically maintain electric potentials and edges with large electric energies
in dynamic electrical flows. In Section 5.1, we will introduce the harmonic extension and use it
to decompose the energy vector we need to maintain for the outer IPM. In Section 5.2, we show
how to maintain a potential vector which is a key component for the following subsections. In
Section 5.3, we build the EVALUATOR that estimates the energy of any edge. In Section 5.4, we
build the LOCATOR that returns a superset of edges with large energies.

5.1 Harmonic Extension

A key notion we use throughout is the harmonic extension, which is a linear operator that maps
the potentials restricted to a terminal set to the full electric potentials ¢. We use T to denote the
projection orthogonal to the all-ones vector.

Definition 5.1 (Harmonic extension). For a graph G = (V, E) with edge conductances w € RZ
and C' C V(G), define the harmonic extension operator Ho € RV(GXC a5

He —L(w)ﬁ%(w)FcT ‘

Note that the harmonic extension does not depend on edges with both endpoints in C'. Leverag-
ing this yields the following alternative characterization of the harmonic extension. These properties
are crucial for our data structures as they maintain a growing terminal set where are resistance
changes are on edges completely inside the terminal set. In this section, we use w to denote modified
conductances and w to denote initial conductances.

Lemma 5.2 (Alternate definition of harmonic extension). For a graph G = (V,E) with edge
conductances w € Rgo and C CV, let G be a graph with the same edge set as G whose conductances
w agree with w except potentially on edges with both endpoints inside C. Then

Ho = L(@)' lSC(LE)ﬂ;), 0)] : (5)

Proof. By Definition 5.1, the harmonic extension does not depend on the edges inside C'. Hence,
we can simply show the lemma for the Laplacian L = L(w). By the Cholesky factorization
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(Lemma 3.2), we have

Lt 0 1 —LiiLpe] [Lpk 0 I 0 0
SC(L,C)| — |0 I 0 SC(L,C)'| |-LerLpp I| |SC(L,0)
1 —LpiLpe] [LEk 0 0
~ |0 I 0 SC(L,C)t| |SCL,0)
[ —Lzhrec] [0]
10 T r| = Mo

O

This is why we use the notation H¢ without reference to G — when we use H¢ in our dy-
namic data structures all changed edges will lie inside C. Consequently, the actual graph (beyond
initialization) does not affect H¢!

The inverse of the Laplacian can be represented by a contribution from the Schur complement,
plus L}}; This is essentially just a restatement of the Cholesky factorization (Lemma 3.2).

Lemma 5.3. Let G = (V, E,w) be a graph. Then

-1
L(w)! = HeSC(L(w), C)HE + L(u:))F,F 8]
Proof. The Cholesky factorization (Lemma 3.2) says that
I —LyLpc| |Lyj 0 I 0
L(w) [0 I ] l 0 SC(L,C)T] l—LCFL;}p I] :

As TSC(L,C)'T = SC(L,C)T, the equation above is equal to

o] %[5 semen] [

I L(w)7} [T 0]

0
L(w)zp 0
0 0

= HcSC(L(w), O) 1L +

= HcSC(L(w), O) 1L +

O

Let v € RF be a (dynamic) vector. To implement the outer IPM, we must be able to maintain
a heavy-hitter sketch on the following vector

def

ITv = II(w)v = Wl/zBL(ﬁ)TBTW1/2v.
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For this, we decompose ITv into three terms. Let ¥ be any vector that agrees with v in F' =V '\ C.
Then We first decompose IT (v) by Lemma 5.3.

I (v) =W /’BL (@) BTW" v

-wW'/*B <”HCSC(L(E), VUL +

——1
L(UE))F’F 8 ]) B'W'"/ %y (by Lemma 5.3)

1
r 0

W'’ BHSC(L@), O) ' H,B W20 + W/B l L(WO)E .

] BTW.%%.

Since w¢ does not affect the value of the second term, we have
W'’ BHSC(L®),C) HIB W v + W/°B l L(

~W'*BHSC(L(w), C) ' HIBTW %0 + W'/?B [ Lw)pp 0 ] B W%,

Then we use Lemma 5.3 in the other direction to get
W' BHSC(L@),C) HIBTW" v + W/2B l L("E))E}F 8 ] B W25
W'’ BHcSC(L(®), C) HEBW 20 + WY2B (L(w)! - HeSC(L(w), O) 1) BT W25
(by Lemma 5.3)
W'’ BHcSC(L(®@), O) HIBTW %0 — W2BH-SC(L(w), O) HIBT W25
+W!2BL(w) BTW/?%.
We will use
v = W/ BHcSC(L(®@), )M HIBTW v — W/2BHSC(L(w), C) HLBT W2
+W!2BL(w)BTW?%
in two cases
e where ¥ = v, and
e where v being the current vector and ¥ being the initial v.

At a high level, our approach will use several spectral approximations of the RHS of (6). We will
replace SC(L(w), C') with an approximate Schur complement using Theorem 4.10. Additionally,
we will replace H¢e and ’HE by replacing the Schur complements in (5) with approximate Schur
complements given by Theorem 4.10.

We now focus on approximating the “right” of the first two terms of the RHS (6), i.e. the
induced potentials on C

¢ = SC(L(w), C)'HLB Wy (7)
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and
¥ = SC(L(w),C)'H/BTW!/23. (8)

Lemma 5.5 below defines the approximation of ¢ that our data structures maintain. To analyze
the quality of the approximation, we will need a standard spectral approximation inequality, proven
for completeness.

Lemma 5.4 (Spectral approximation of differences). For PSD matrices X ~. Y, we have that
(X - Y)XI (X -Y) <X,

Proof. The desired inequality follows from HI — X/2yXt/ 2H2 < € and multiplying the LHS and
RHS by X!/2 on the left and right. Now, this follows because X ~, Y implies that (1 — ¢)I <
X2y X2 < (1 + €)I as desired. O

Lemma 5.5 (Approximate potential). Let G be a graph with weights W € R¥ which differ from
weights w € R except on an edge subset Z C E(G). Let C C V(G) contain all endpoints of
edges in Z. Let wy € R be defined as (wz). = 0 for e € Z and (w). = w, otherwise. Let

SC ~, SC(L(w),C) and let H = L(w)' l 0

SA(/ZH] for some SCy satisfying

SC(L{w), C) — SC(L{ws), C) < 8Ty < SC(L(w), C) + SC(L(w), C). )
Then the vectors ¢ = SC(L(E),C)THEBTWI/zv (7)) and ¢ = SA(/ETBT(WI/2 — W12y +
SO TBTWY 24y i RC <nti 3
SC H'B'WY2v in R satisfy H(b (bHSC(L@LC) < 3el|v||2-

Proof. We first calculate that

b = (sc(L(m), ot - §(VZT> HIB W0 + SC'HIBTW 2

(SC(L(E), o) - é‘é*) HLBTW 2w + SC'HIBT (W2 - W) v 1+ SC'HIBTW! 2y

i

9 (sc(L(w), o)t - é‘é*) HIBTW' 0 + SC'B. (W'* — W'/2) v + SC'HIBTW'/ %

—
=

(i) is because H,BT (Wl/2 — W1/2) = BTC (W1/2 - Wl/z) as w = w except on C. We extract
(E by swapping the H by He in the last term:

& = <SC(L(E), oyt - SA(/jT) H.BTW 2w + SA(/jTBIC (W1/2 - W1/2) v+ %THEBTWU%
— b+ (SC(L(E), o) — é(VZT) HIBTW'%y 1+ ST (H(‘g - ;LIT) B W2y,
b— = (SC(L(W), oy - sT?:*) HIBTW' o+ SC' (ML~ HT)BTW 2. (10)
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We bound both terms separately. For the first term,

_ (i _
H <SC(L(m), ot - sc*) H.BTW 2y <e H%}BTW” v

SC(L(w),C) HSC(L(E),C)T

1/2

< e|B'W < ef|v]l2.

[

where (i) follows from SC ~, SC(L(w), C) and Lemma 5.4 for X = SC(L(w), C)! and Y = SA(/ZT,
and (i7) follows from Lemma 5.3 and the fact that L}}F is positive definite. For the second term,

ST (HZ - A7) BTW

<2||(HE - AT)BTW/ |

SC(L(w),C) SC(L(w),C)T
< 2| (- AT ETW e[ BT
Y 2¢ |[L(w) BT W20 }CHSC(L(M’C) Z 2¢]|v |2,

where (i) follows from Lemma 5.2 and (9), (ii) follows from SC(L(w),C) — SC(L(w),C) =
L(G[C]) being positive semidefinite, and (ii¢) follows from the fact that the Schur complement is
spectrally smaller than the Laplacian: SC(L(w),C) = L(w). O

By Lemma 5.5 with @ = w, we can approximate the other potential vector in the RHS of (6).

Corollary 5.6. Let 1 = SC(L(w), O)fHIBW 20 ((8)) and 4 = SC(L(w), C)'H BW/2y

RC where SC(L(w), C) satisfies SC(L(w),C) ~. SC(L(w),C). We have H'l,b 1,bHSC(L( & <
36”’0“2.
Proof. Apply Lemma 5.5 with w = w, ¥ = ¢ and '1,~b = (}5 The first term of ¥
SC'BW? - W'/2)y
equals 0 because W = W. O

We can use our approximate potential g), fp in Lemma 5.5 and Corollary 5.6 to define a full

approximate projection of ITv. Our starting point is that Ilv = W1/2B’Hc¢ + W1/2BH o for ¢,
1) as in Lemma 5.5 and Corollary 5.6.

Lemma 5.7 (Approximate projection). Let w,w, Z, 'w7,7-l, o, q?b be as in Lemma 5.5, let 1,b,1,~b be
as in Corollary 5.6, and let

v — (W“z - W'/2)Bg + W'/*BH
+ W2BH4
+ W/2BL(w)'BTW'"/2y
where (75 1s padded with zeroes for computing Bc?b. Then

HH'v - fI’vH2 < 2¢ef|vlla + (1 +€) H¢ - ‘75H +{1+e) Hq’b - {bHSC(L( ).0)

SC(L(®),0)
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Proof. We first prove the first two terms of I
T, (v) & (W' — W'/?) Bé + W/2BH¢
approximates IT,(v) = def Jy7 /2 BHco¢. Specifically,
HH‘f’(v) B ﬁ¢(v)H2 < ellvllz + (1 +¢) H¢ B &HSC(L(E),C) '

We start by calculating

M, (v) =W “BHoo = W/’ BHc (¢ — &) + W /*BHod

=W/BHc (0 - ¢) + (W' = W'/2) BHoh + W/2BHc o

CW BHC (¢ - @) + (W'~ W'2) Bg + W 2BHo

— WY BH, (¢ _ &) + W2B(Ho — H)p + T y(v),

where (i) follows from (W1/2 - Wl/z) BHc = (Wl/z — W1/2) B as w = w outside C'. Hence

T, (v) — Ty(v) = W *BHe (¢ — &) + W2B(He — H).

We bound both terms of (11) separately. For the first term, note that

[t (9-9)], 2 10~ Flscrnmer
where (¢) follows from properties of H¢. For the second term of (11),
W20t =08, 2 €8] g0 0 = IPscimer = vl + o=
where (i) follows from (9), and (i¢) is because
[Bllscm.c) < 16— dlscwm.c) + Ilscam.er < |6 = By m 0+ 12IPs < ol

(11)

©)

because Pss is an orthogonal projection matrix. Summing these errors completes the proof for

[ts(0) = ML), < ol + 1+ 9o - &HSC(L(E),C) '

We then define _ N -
T, (v) & (vvl/2 W1/2) Bo + W/2BH ¢

which is the third term of ITv and
I, (v) < W'/ BHcp.

Then, by the proof above with w replaced by w (and W replaced by W), we get

R e R ] L
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Recall that

v =W *BHSC(L(®@), C) ' HLBTW >0 — W/2BH-SC(L(w), O) HIBT WY 2
+W'2BL(w)BTW?y.

Its first two terms are approximated respectively by fI¢(v) and f[w('v), the first two terms in ITv.
Its last term is exactly the last term of ITv. By triangle inequality and (12), (13), we have

o — o], < 2efolla + (1 + ) - 9| N1 L

SC(L(w),C) C)

O

In the following sections, we will use SOLVE(L, b) to denote a high accuracy Laplacian solver
that returns « such that Lz = b and runs in nearly linear time. We will overload notation to
extend any dimension of a matrix from a subset of V' to V, or from a subset of £ to £ by padding
Zeroes.

5.2 Dynamic Potential Maintanence

In this section, we show how to maintain the vector (75 (Lemma 5.5) that approximates the potential
vector ¢. This data structure can also be used for ¢ (Corollary 5.6).

Lemma 5.8 (Dynamic Potential). For a graph G = (V, E) with dynamic edge conductances W €
Rg(()G) and a dynamic vector T € RE©) for some constant C, there is a data structure (Algorithm /)
that supports the following operations against an oblivious adversary for parameters < €2 < 1.

o INITIALIZE(G,w,v™Y (3 ¢). Initializes the data structure in time O(mB~2¢2) with an
empty set Z < O of marked edges. Initialize W as w and T as vt

e UPDATEV(e,"%). Updates T, + T in O(B2e2) time.
« UPDATEW(e, w"®"). Updates W, + w"™ in O(8~22) time.

e QUERYPOTENTIAL(). For C CV with |C| = O(8m) and Z C E(C), returns in O(Bme2)

1/2_

time a vector ¢ satisfying Hq‘) — a’JH ) < ¢€|[T||2 where ¢ = SC(L(w),C)"H.BW /.

SC(L(w),C
Runtimes and output correctness hold w.h.p. if there are at most O(Sm) calls to UPDATEVandUPDATEW
in total.

Proof. The pseudocode for the proof of Lemma 5.8 is in Algorithm 4. At a high-level, it simply
maintains ¢ as in Lemma 5.5. The one difference is that it handles changes to v directly because
both endpoints of all edges changed in v are in the marked set Z. We start by analyzing the
correctness of the algorithm, then move the runtime.
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Correctness. We only need to analyze the QUERYPOTENTIAL() operation. In this proof, we
show the weaker bound H(b - quSC(L(E)’C) < e (||E||2 + ||v(init)\|2). However, this suffices because

we can build O(1) copies of the data structure. For —O(1) < j < O(1), the j-th instance initializes
and answers queries only when |||z € (27,2/F!]. Updates are passed to all instances. When the
number of updates exceeds O(Sm) for an instance but it cannot be initialized because ||7||2 does
not fall in its range, it simply ignore following updates until it can be initialized. This only increases
the runtime by O(1) factors.

Let SCy be the value of DG INITIALSC() returned in line 23 of Algorithm 4. It satis-
fies condition (9) by the guarantees of Theorem 4.10. Also, by inspection of the procedure
QUERYPOTENTIAL() in Algorithm 4, the returned vector @ is defined as

$=SC' [SCy 0] + SC'BW (3, — v™) + SCBW'* - W)z,
—sc' [SCx 0] L(w) BW!2p=it) 1 SC'BW!2(5, — (") 1 SC'BW'? - W'/2)z,
= SC'HBW/2pnt) | SCTBW!2 — W1/2)p(1) 4 SCTBW (5, — [,
Additionally, because vt — 7 is supported on Z, the true ¢ can be written as
¢ = SC(L(w), C) H,BW" 5
— SC(L(w), €)' HIBW"*o("%) 4 SC(L(w), C) BW"*(® — v("),
Hence we get that
¢—9|

< |sC HcBWI/%ﬁmﬁ) + SC'BW? - Wi2)(it) _ sC(L(w), C) HEBW /it

SC(L(w),C

+ s BW (5, — o) _ sc(L®), ) BW (m v<init>)H

(@) . - .
< 3oy + g — 0™V, < 4e (|[B]l2 + [0™V]5)

where (i) follows from Lemma 5.5 for the first term, and SC ~, SC(L(w), C) from the guarantee
of Theorem 4.10 for the second term. This suffices because Algorithm 4 set € < ¢/10 in line 2.

Runtime. The runtimes of UPDATEV, UPDATEW are trivially the same as the runtime of MARK.
The runtimes of MARK and INITIALIZE follows from the ADDTERMINAL and INITIALIZE operations
respectively of Theorem 4.10. The runtime of QUERYPOTENTIAL is O(ﬁme 2) by the runtime guar-
antees of SC and INITIALSC of Theorem 4.10, and the fact that SC and SCy all have O(Bme2)
edges, and hence solving or multiplying by them costs (ﬁme 2) time. O

5.3 Dynamic Evaluator

Theorem 5.9 (Dynamic Evaluator). For a graph G = (V, E) with dynamic edge conductances
w € RESG) and a dynamic vector U € REG) | there is a data structure EVALUATOR that supports

the folﬁ)wz’ng operations against an oblivious adversary for parameters < €2 < 1.
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Algorithm 4: Dynamic Potential

[uny

10
11
12
13
14
15
16
17
18
19
20
21
22

23

24

25
26

// This implementation assumes that ||[T|y ~ ||v(™")|y always. However, this

can be achieved by duplicating the data structure @(1) times, one
handling each range |92 € [2,2T!] for —O(1) <j < O(1).

procedure INITIALIZE(G, w,v™) 3 ¢)

€ <+ €/10.
Let DG be a instance of the dynamic Schur complement data structure of
Theorem 4.10.

D69 INITIALIZE(G, w, €, ().

T + pinit),

// vt ig the initial vector and T to denote the current vector v
throughout the algorithm.

w — w.

// We use w to denote the initial vector and W to denote the current
vector w throughout the algorithm.

dM)  SoLVE(L(w), BW1/2g(it)),

Z + . // Marked edges.

procedure MARK(e)

D) ADDTERMINAL ().

D) ADDTERMINAL(0).

Z « Z U {e}.

D®%) UPDATE(e, w,). // Make sure the D puts edge e in Z.

procedure UPDATEV(e, v™V)

MARK(e).
Ve < vV,

procedure UPDATEW (e, w™V)

MARK(e).
D) UPDATE(e, w™v).
w, +— wheV,

procedure QUERYPOTENTIAL()

SC « D9 SC().

¢ + SOLVE (éf], [D(SC).INITIALSC() O} d(in“)) .
¢ + ¢ + SOLVE(SC, BW/2(5, — v'"iV)y).

é « &+ SovE(SC, B(W'? — W/2)5,).
return (5

e INITIALIZE(G,w, v B ¢). Initializes the data structure in time O(mB~2¢2) with an
empty set Z < 0 of marked edges. Initializes W as w, © as vit),

« UPDATEV(e,T"V). Updates T + 1"V in O(F2e2) time.

« UPDATEW(e,@"™). Updates W, + @w"" in O(B~2¢2) time.
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e QUERY(). Returns a vector u € RZ satisfying ||u — [Pz0], |2 < €|[Tl2 + €||v|2 in time

O(Bme2).

Runtimes and output correctness hold w.h.p. if there are at most O(Bm) calls to UPDATEV, UPDATEW
in total.

Proof. We decompose Pv by (6). The v in (6) is the current vector ¥ and the v in (6) is the
initial vector v here. We create two instances of Algorithm 4 D(®) and D) maintaining

é=SC'BW"? - W25+ SC'H BW 2%

(Lemma 5.5) and o B
¥ = SC(L(w), C)'H T BW/2yp

(Corollary 5.6) respsectively. INITIALIZE, MARK are forwarded to both D(i’) and D). The opera-
tions UPDATEV, UPDATEW are forwared only to D(®) as D) maintains ¢ where w and v do not
change. We also compute the exact value of the last term WY/2BL(w) BT W'/2v of P3T by

z = W/?BSovE(L(w), BT W!/2v).

For QUERY(), let ¢ = D®) QUERYPOTENTIAL(), 9 = D®).QUERYPOTENTIAL(). The EVALUA-

TOR returns 12~ rmc
- {W B(b}z—i_ {W Bq‘b}z+mz'

Clearly all runtimes transfer exactly from Lemma 5.8. It suffices to show the correctness of QUERY/().
For the true potentials ¢ = SC(L(w), C)THEBW1/21) and ¢ = SC(L(w), C)IHLBW!/2v we
have [Pw0], = [ 1/2B¢ + Wl/zBlb} + xz. Thus,

lu— [Pl ll, = [W7*Bz (6 - ¢) + WB, (4 — )|
<|[WZ*B2 (6 - 9)], + [WB2 (- )],
+ HJJ - 1/)]

B/W;By

(@) 1~
S‘¢_¢HSC(L_ +HI/J Q/JH

B/W;By

SC(L(w),C)
@)
< €l[vll2 + el

where (i) follows from the fact that L(wz) < SC(L(w),C) (and L(wz) = SC(L(w),C)) as Z is
completely inside C, and (i) follows from the guarantee of QUERYPOTENTIAL() of Lemma 5.8.
This completes the proof. O

5.4 Dynamic Locator

Theorem 5.10 (Dynamic Locator). For a graph G = (V, E) with dynamic edge conductances w €
Rg(()G) and a dynamic vector © € REG) | there is a data structure LOCATOR (given in Algorithm 5)
that supports the following operations against an oblivious adversary for parameters § < €2 < 1.
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. INITIALIZE(G,w,v(init),ﬁ,e). Initializes the data structure in time 5(mﬁ_2e_2) and sets
W+ w and T + v,

« UPDATEV(e,"%). Updates T, + T in O(B2e2) time.
« UPDATEW(e,@w"¥). Updates W, + w"" in O(8~2¢2) time.

e LOCATE(). Returns in time O(Bme=2) a set S C E(G) with |S| < O(e™2) containing all edges
e with |[Pw0le| > €||v||l2 whp.

Runtimes and output correctness hold w.h.p. if there are at most O(8m) calls to UPDATEV, UPDATEW
in total.

The following lemma is implicit in [KNPW11] and allows us to recover the large entries of « by
a low-dimensional projection of it.

Lemma 5.11 (¢s-heavy hitter, KNPW11]). There exists a function SKETCH(e,n) that given e > 0
explicitly returns a random matriz Q € RN*™ with N = O(e2 log® m) and column sparsity ¢ =
O(log®m) in O(N + m) time, and uses O(N +m) spaces to store the matriz Q. There further
exists a function RECOVER(Qx) that in time O(e~2log®m) reports a list S C [m] of size O(e2).
For any fized x, the list includes all i with |x;| > €||x|2 with high probability over the randomness

of Q.

Proof of Theorem 5.10. At a high level, Algorithm 5 simply maintains the formula given by Lemma 5.7
for q.') and ¢ given by the output of the dynamic potential maintenance data structure in Lemma 5.8.
Let us first show correctness and then analyze runtime. We only have to check correctness of
LocATE(). We follow the decomposition (6) with both v and ¥ being the current vector T here.
The (75 and 1,~b maintained by Algorithm 5 satisfy

é=SC'BW"? - W2y + SC'HTBW?%
and ot
i =SC'H"BW!/?%.
(Note that ¢ is defined differently from Theorem 5.9.)
Thus, for SCy = DG INITIALSC(), p as defined in LOCATE() of Algorithm 5 satisfies

_ /2 xwrl/2 P 0 p 0 )
P=Q (W w ) Bo+T D®) INtTIALSC() ¢+T DG) INrTIALSC() v+ Ty
_ w2 _ wl/2) ma 0 B 0 |
Q(W* - W) Bg + QW!/2BL(w)!SCy | ? T QW1/2BL(w)TscH] v
+ QW!/?BL(w) BTW!/?%
= QIv

for IIT as defined in Lemma 5.7. Note that (75 is padded with zeroes for computing B¢ as in
Algorithm 5. Because

|6 o| < c[[7]» (14)

SC(L(w),C
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Algorithm 5: Dynamic Locator

1

procedure INITIALIZE(G, w,v™) | 3 ¢)

2 € <+ €/10.

3 Let D(¥ be an instance of the dynamic potential data structure of Lemma 5.8.

4 Let D™ be an instance of the dynamic potential data structure of Lemma 5.8.

5 Let DG be an instance of the dynamic Schur complement data structure of

Theorem 4.10.

6 | DO INITIALIZE(G, w, v ¢ B).

7 | DW INITIALIZE(G, w, v ¢ 3).

8 | DGO INITIALIZE(G, w, €, ().

9 Initialize an N = O(e~2 log® m) by m matrix Q with rows g, q?, ... ¢ erm by

Lemma 5.11.

10 for i € [N] do

11 || 4D« Sove(L(w), BTWY2¢®). // 40 are rows of T % QW'/2BL(w)!.
12 end

13 | W+ w,T+v. y+— B Wo.
14 procedure UPDATEV (e, v™V)

15 | D) UpPDATEV (e, v™v).

16 | DW) UPDATEV (e, v®v).

17 | D). UPDATEV (e, v"%).
18 Te ¢ V"V, y <y + BTW(v"V — v,).
19 procedure UPDATEW(e, w™*V)
20 | D) .UPDATEW (e, v™¥).

// D®) does not update W, to w"W.
21 | DG UPDATEW (e, w™™).
22 W +— whV.
23 procedure LOCATE()
24 ¢ «— D@ QUERYPOTENTIAL().
// qb is padded with zeroes for computing B(AJS
25 ¥ < D®) QUERYPOTENTIAL().
— ~ 0 ~ 0 -
2% | peQ (W B Wl/z) Bo+I D6 INTTIALSC() ¢+T D6 INTTIALSC() vrly.
27 Return the set S returned by calling RECOVER(p) of Lemma 5.11.
and
1% =% sm < €Il (15)

by the guarantee of Lemma 5.8 we have that

|FE=], < i, + | fio - 1],

< Il + 2elll2 + (1 4+ | &~ & (1+e)|w-|

(w), ) SC(L(w),C
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< 2|72

By Lemma 5.11, the set S < RECOVER(p) contains all e such that Hﬁﬁ} is at least
e

= < ol
eanH2 < 2¢|[T .
Finally, if e satisfies |[ITv],| > 10¢||T|]2 then

[T,

> |[I9),| — Hﬁw-m”z

> 10¢[3]s — 2€[[Bll2 = (1 +€) & — 3| =1+ [$ =Dy = 22

SC(L(w),C) ©)

where the final step follows from Lemma 5.7 with (14). Thus e € S as desired.

Now we bound the runtimes. The runtimes of UPDATEV and UPDATEW follow directly from
Theorem 4.10 and Lemma 5.8. The cost of INITIALIZE is the cost of INITIALIZE in Theorem 4.10
and Lemma 5.8 plus the cost of computing I'. This involves solving N Laplacian systems, which
costs O(Nm) = O(me~2) time. This is dominated by O(mS8~2¢~2). Finally, the cost of LOCATE() is
6(,8m6_2) for computing 2;7), 17) by Lemma 5.8, and the cost of computing p in line 26 of Algorithm 5.
The first term in line 26 can be computed in time O(NBm) = O(Bme2) as W2 W2 i sup-
ported on O(Sm) entries and Q has N rows. The second and third terms in line 26 can be computed
by first multiplying D9 INITIALSC() times ¢ (or %) in time O(Bme2), as D) INITIALSC()
has O(Bme™2) edges, and then multiplying by T' which is a N-by-O(8m) size matrix in time
O(NBm) = O(Bme2) time. Thus the total runtime of LOCATE() is O(8me2) as desired. O

6 Reducing Adaptive to Oblivious Adversaries

In this section we show a blackbox reduction that is able to transform any dynamic algorithm that
maintains some sequence of vectors (v');>; against oblivious adversaries to one that can maintain
the vectors against adaptive adversaries. We formalize the requirements of the dynamic algorithm
via Definition 6.1. Roughly, Definition 6.1 states that the dynamic algorithm must support two
operations: (i) find the entries of the current vector v! with large absolute value, and (i) query
some set of the entries approximately.

Definition 6.1. We call a dynamic algorithm an e-approzimate (L, S)-locator for an online® se-
quence of vectors (v);>1, if in each iteration ¢ > 1 the dynamic algorithm returns a set I C [n] of
size at most S containing all ¢ with |v!| > ¢ in L time.

We call a dynamic algorithm an e-approximate C-evaluator, if it supports a query operation
that, given some I C [n], returns all ¥; for i € I in C(|I]) time for some T € R" with |[v— v’z <.

We show that, given a locator (a dynamic algorithm that can tell us the large entries), and
locators (dynamic algorithms that tells us the entries of the vectors) with different accuracies, we
can combine these dynamic algorithms to work against an adaptive adversary. The more accurate
locators will be used less frequently, resulting in an expected time complexity faster than the most
accurate locator.

5The sequence is may depend on outputs of the data structures.
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Theorem 6.2. Assume we have e-accurate (L, S)-locator and (e/2%)-accurate Cj-evaluators for
i =0,...,K for an online sequence of n-dimensional vectors (v');>1. Both dynamic algorithms
hold against an oblivious adversary. Also assume there is an €/25 -accurate T-evaluator against an
adaptive adversary.

Then there exists a dynamic algorithm against an adaptive adversary that in each iteration
returns whp. some T' with ||T* — v!|| < O(elog?n). Each iteration takes expected time

T(S K Ci(s
O<5K+%+L+2%>.
i—

Note that the T-evaluator against an adaptive adversary could just be a method to compute
the exact solution statically. Alternatively, one could run several dynamic algorithms against an
oblivious adversary in parallel, but use each data structure only once to answer a query.

In the overview of Section 2.3 we outlined how Theorem 6.2 is obtained. We here give a quick
recap. Let w be the result of the T-evaluator and w’ be the result of one of the other evaluators
against an oblivious adversary. We want to construct an output w whose distribution is similar
to N(w,o?) for some variance o = O(elogn). Note that w.h.p || — v*|| < O(elog®n) because
of the random Gaussian noise we added. We wish to improve upon the naive time of explicitly
computing w by directly adding Gaussian noise to w. We achieve this by performing this sampling
in a different way which guarantees that we compute w explicitly only with some small probability.

Let d be the density function of N'(w,c?) and d' be the density function of V' (w’,02). Then
there is some small o > 0 and very unlikely event D with d'(x) < exp(«a)d(x) for all @ ¢ D. For
example, Figure 2 shows density function d(x) and the scaled density function exp(—a«) - d'(x) for
the 1-dimensional case. If one were to pick uniformly at random a point below the top curve in
Figure 2 and return its x-coordinate, then this corresponds to sampling from A (w, 0?). The same
distribution can be obtained by first flipping an unbalanced coin, and with probability exp(—«)
we sample from the area below the bottom curve exp(—a«)d'(x) in Figure 2 (i.e. sample according
to N(w',0?)). Otherwise, with probability 1 — exp(—a), we sample from the area between the
two curves. This way we are able to sample from A (w,o?) more efficiently because only with
probability 1 — exp(—a) must we compute w. As computing w’ is faster than computing w, the
expected time complexity improves.

This scheme is proven formally in Section 6.1 for the general case where the vectors are n-
dimensional. The scheme can be extended recursively: note that in order to sample from N (w’, 0%),
we can use the same scheme again via some w”, i.e. when sampling from N (w’,0?) we can sam-
ple from N (w”,0?) instead with probability exp(—a). This is why Theorem 6.2 has K many
different evaluators with increasing accuracy. The evaluators with higher accuracy are used with
smaller probability, thus the expected time complexity improves. This recursive scheme is proven
in Section 6.2 and we use it in Section 6.3 to prove Theorem 6.2.

6.1 Simulating Gaussian Error

Here we prove the algorithm outlined in the previous subsection. We want to construct a variable
with distribution N (v,0?). This is done by flipping a biased coin: with probability exp(—a) we
return a vector according to A (u,0?). Alternatively, with probability 1 —exp(—a) we must return
a random vector whose distribution we pick in such a way, that the result of our algorithm has
distribution NV(v,0?). The exact algorithm is given in Algorithm 6 and Lemma 6.3 stated the
guarantees of that algorithm.
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Figure 2: Density function d of N(v,0?), and density function d of N'(®,0?) scaled by some
exp(—a), a > 0 so that d(x) exp(—a) < d(x).

Algorithm 6: Basic Simulation Algorithm

1 procedure SIMULATE(v € R",u € R",a > 0,0 > 0)

// Simulates v +x for x ~ N(0,0?).
2 with probability exp(—«a) do
3 Sample & ~ N(0,0?)
4 return u 4+«
5 end
6 while true do
7 Sample & ~ N(0,0?) conditioned on W <a
8 with probability 1 — exp (W — a) do
9 ‘ return v+ x
10 end
11 end

Lemma 6.3. Let z be the result of a call to SIMULATE(v, w, o, o) (Algorithm 6) with o > 2In(1.25/6)e/«
for any 6 > 0 and € > ||v — ul|a. Then the distribution of z has total variation distance at most 0
compared to N'(v,0?). Further, the expected time complexity is bounded by O(n).

To prove Lemma 6.3, we first consider the distribution of the result returned by Line 6 to Line 9
of Algorithm 6.

Lemma 6.4. Consider executing Line 6 to Line 11 of Algorithm 6 and let z be the returned vector,
i.e. z is the output of Algorithm 6 conditioned on being returned in Line 9. Then the distribution
of z under this condition has density function
T Nl
() = exp(— ||z2012J|| ) — exp( ||;Uz’u|| — )
V2moP[|||2]]?2 — ||z — u + v]]?] < 202a] (1 — exp(—a))
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Proof. Up to normalization, the density function of the distribution of z is

U (oY (o (el = el
2o 202 202
B O O e N E

\o2ro 202 202

We now compute the normalization factor. For that note the set of possibly returned vectors is
S={z|lllz = vz — Iz — ull2| < 20%a} and

/ 1 Iz —ul?) / 1 Iz —©l*) 4
ex —_—— z = —eXx - @ z
28 V270 P 202 28 V2o P 202

= Pllllz)* — [l — u+ v’ < 20%]

for some & ~ N (0,02). So the normalization factor is
P |2l - |z — w+v|?| < 20%] (1 - exp(—a))

and the density function is

exp (~ L8 ) — exp (Ll — )
20 p 20 @

V2moP[||z]|?, |z — u + v||? < 202a] (1 — exp(—a))

O

Our algorithm relies on the fact that the density function of AV(u, 0?) is smaller than the density
function of M (v,o?) when scaled by exp(a). This is generally not true, unless we restrict the two
density function on to some event E C R™. Using the following result from differential privacy, we
show that this event occurs with high probability, if the variance o? of the added noise and the
scaling-parameter « are sufficiently large.

Lemma 6.5 ([DR*14, Appendix A]). Let u,v € R", € > |[u —v||, ¢ > 2In(1.25/8), o > ce/a and
x ~ N(0,0%). Then P[|||z||* — ||z — u + v||*| > 2a0?] < 4.

We now have all tools available to prove Lemma 6.3.
Proof of Lemma 6.3. The density function of z conditioned on |||z — v||? — ||z — u||?| < 20%a is
V0P [ lal2 — flz — (u— v)|} < 20%]
exp (—”z—;’QE) — exp (i;;;ﬁ - a)
VIroP | [|2]? - & — (u - v)|[?] < 20%] (1 - exp (~a))

V2P [ [l ~ @~ (u - v)|?| < 20%]

exp (—a)

+ (1 —exp(—a))
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Algorithm 7: Recursive Simulation Algorithm

1 procedure SIMULATE(v1,...,v; € R", o > 0,0 > 0)

// If k=2 we call Algorithm 6 instead.

2 with probability exp(—«a) do

3 ‘ return SIMULATE(vg, ..., Vg, 2a,0) // Call Alg. 6 if k= 2.
4 end

5 while true do

6 Sample & ~ N(0,0?) conditioned on ‘”mHQ_”z;zvﬁm”z‘ <a

7 with probability 1 — exp( “mllz—llg;vzmn? —a) do

8 ‘ return vy +x

9 end
10 end

which is also the density function of & ~ A(0,0?) conditioned on |||z|]? — ||z — (u — v)|?| < 20%a.
Thus the total variation distance is bounded by § via Lemma 6.5.

For the time complexity, note that the probability of returning the vector during an iteration
of Line 6 is 1 — exp(—a). Consequently, if we reach Line 6, it is invoked (1 — exp(—a))~! times
in expectation. The probability of reaching Line 6 is 1 — exp(—a), so Line 6 is invoked 1 time in
expectation. As each iteration needs O(n) time to process the n-dimensional vectors, the expected
runtime of the procedure is O(n). O

6.2 Recursive Simulation

In this subsection we provide and analyze a recursive variant of Algorithm 6. This variant replaces
Line 3 of Algorithm 6, which samples some A (u,02), by a recursive invocation of Algorithm 6. We
first analyze the distribution of the returned vector in Lemma 6.6 and then bound the expected
time complexity in Lemma 6.7.

Lemma 6.6. Consider a call to Algorithm 7 with inputs vi,...,vx € R", k > 2, € > |v; —
vit1ll2/257t foralli=1,...,k—1, 0 > 2In(1.25/8)e/a, Then the returned value has total variation
distance at most (k —1)d compared to N'(vy,c?).

Proof. We prove this by induction over k, the number of vectors.
Base Case For k = 2 we call Algorithm 6 instead, so the claim is true by Lemma 6.3.

Induction Now assume Lemma 6.6 holds for some k — 1 and consider a call to SIMULATE with
vectors vy, ...vj. Let v],...,v}_;, @ = 2a be the parameters of the recursive call in Line 3 and let
€/ = 2¢. Then

€ =¢/2> |lv; —vill2/2" = ||[vig1 — vill2/2"7" = |[v] — v ]2/27" and
o> 2In(1.25/8)e/a = 21n(1.25/8)€' /o

so the conditions to apply the induction hypothesis are satisfied. Thus, the vector returned in
Line 3 has the same distribution as A (v}, 0?) = N (va,0?) up to total variation distance (k — 2)d.
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Note that Algorithm 7 is the same as Algorithm 6, except for Line 3, so by the same proof as
in Lemma 6.3 we return a vector that is distributed like A'(v1,0?) up to total variation distance
(k—2)0+6 = (k—1)d. O

For computational efficiency, note that Algorithm 7 does not need to read vector vy when
performing the branch of Line 3. The following lemma bounds the probability of accessing any wv;
for ¢ < k.

Lemma 6.7. Consider a call to Algorithm 7 with inputs v, ...,v; € R™, o > 0. The probability that
vector v; is accessed is at most 2'« for all i < k. Further, the expected time complezity (ignoring
the time for accessing any v;) is bounded by O(kn).

Proof. Vector vy is accessed with probability 1 — exp(—a) < a < a2'. Vector v; for i > 1
is accessed with probability 1 — exp(—a2'~2?) when calling SIMULATE(v;_1, ..., Uy, @, @), or with
probability 1 — exp(—a2~!) when calling SIMULATE(v;, ..., U, a, o). Thus the overall probability
after a call SIMULATE(vy, ..., v, o, 0) is

i—1 i—2
H exp (—a2t_1) (1 — exp (—a22_1)) + H exp (—a2t_1) (1 — exp (—a22_2))
t=1 t=1
Probability of recursing Probability of recursing
to SIMULATE(vj, ..., Uk, &, 0) to SIMULATE(Vi—1, ..., Vg, @, 0)

= exp <—a ZZ% 2t> (1 — exp (—a2i_1)) + exp <_a§2t> (1 — exp (_a2i—2))
( a2 - ) (1 — exp (—a2i_1)) + exp (—a(2i_2 — 1)) (1 — exp (_agi—2))
= exp ( a(2 ) — exp (—a(Zi — 1)) +exp (—a(2"—2 _ 1)) ~exp (—Oz(Qi_l B 1))
(—a@? = 1)) —exp (—a(2' - 1))
= (1 — exp (—a(2l - 22'—2))) -exp (—a(zi—2 _ 1))
<1-exp(—a(2 - 272))

The time expected time complexity is at most O(kn) because each recursion has expected time
O(n) by Lemma 6.3. O

6.3 Proof of Theorem 6.2

We can now prove Theorem 6.2 by applying Algorithm 7 to the vectors returned by the evaluator
data structures.

Proof of Theorem 6.2. Given the locator and evaluators, we construct a new dynamic algorithm A
against an adaptive adversary. The construction is done in a paragraph further below. For now,
we claim that the output of the new dynamic algorithm A has the following distribution.

Let w! be the output of the ¢/2%-accurate oracle against an adaptive adversary. Then sample
x ~ N(w?, (cielogn)?) for some sufficiently large constant c;. At last, set all entries of @ with
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absolute value smaller than coelog?n to 0. Call the resulting vector uw. We claim the dynamic
algorithm A will have the distribution of this vector z.

Vector z satisfies w.h.p. ||z — v||ec = O(elog?n), so returning z would satisfy the promised
approximation guarantees of Theorem 6.2 and the algorithm would work against an adaptive ad-
versary because the output does not depend on any of the oracles that use the oblivious adversary
assumption.

We now describe the new dynamic algorithm A4 and how it constructs this vector z more
efficiently than the procedure described above.

Algorithm Let I be the set returned by the e-accurate locator. For i > 1 let w?’ be result of
the /2K~ 2_accurate oracles against oblivious adversaries when querying only entries from I. Let
x/; = SIMULATE(w}, ..., wgﬂ, 27K cielogn) (Algorithm 7). Then set all entries of 2 with absolute
value smaller than c2610g2 n to 0 and let 2’ be the resulting vector. Here co > c; is picked such
that w.h.p. |&; — w}| < c2/2 - elog?n. Our algorithm returns this vector 2.

Correctness We claim 2’ has the same distribution as z up to total variation distance 1/poly(n).
For ¢ = 2¢/2% we have ||w! —w T[]y < e/257% < €211, So 2} has distribution N (w}, (c10 logn)?)
up to total variation distance 1/poly(n) by Lemma 6.6 for some large enough constant ¢;. Thus if
I only contained indices 7 where w.h.p. z; would be 0 anyway, then 2z’ has same distribution as z
up to total variation distance 1/poly(n).

Note that by ||w!—v’||s < € we have that I (which by definition contains all indices with |v}| > ¢)
also contains all indices 7 with |w}| > 2¢. Further, w.h.p. we have ||w' — x| < c2/2¢log?n by
choice of c3 > ¢1. So i € I this would imply |a;| < |w}|+|w} —x;| < 2e+4cy/2€elog?n < crelog? n so
w.h.p. z; will be set to 0. Thus the total variation distance of z and 2’ is at most some 1/poly(n).

Complexity By Lemma 6.7, we use each w; with probability at most 2!/25 = 21=K for § < K
and running SIMULATE on K + 1 many |I|-dimensional vectors needs O(|I|K) = O(SK) time. We
can delay the query to w’ until the vectors actually need to be used. As w; is obtained from
evaluator with complexity C'x_;4o for ¢ > 1, we obtain time complexity

Ci(95)
2

K
O(SK + L+ Co(S) +T(S)/2% +>°
i=1

).

7 Interior Point Method

In this section we provide the machinery we use to reduce minimum cost flow to dynamic graph
data structure problems. First, in Section 7.1 we provide the general IPM framework for linear
programming from [DLY21] that we use. Then, in Section 7.2 we introduce the data structures,
subroutines, and bounds that we develop in this paper to implement this framework efficiently
and in Section 7.3 we combine these pieces to give the efficient IPM. The proofs for the tools we
introduce are provided in Section 7.4, Section 7.5, and Section 8 (for the runtime bound for the
graph solution maintainer (Definition 7.4) in Theorem 7.7).
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7.1 Robust IPM Framework

Here we provide the the linear programming setup that we use to model minimum cost flow and
the IPM framework provided by [DLY21] for solving them. In particular, throughout the section,
we consider the general linear programming problem. Given B € R™*" ¢, £,u € R™, and d € R"
where £ < u entrywise, we wish to solve.
min c'x. (16)
z€R™ |BTz=d and £<z<u

In the special case where B is the incidence matrix of graph and £ = 0, this problem directly
corresponds to the minimum cost flow problem. Many of the reductions we provide in this section
apply to this general linear program and we will explicitly state in which cases we instead assume
that B is the incidence matrix of graph.

To solve (16) we leverage the general robust IPM framework of [DLY21]. This method crudely
follows a central path by maintaining centered points defined as follows.

Definition 7.1 (Centered Point). For X & {x € R"|x; € (£;,u;)} we say (z,s) € R™ x R™
is p-feasible for p > 0 if x € X, B'x = d, By + s = c¢/u for some y € R*. We say (z,s) is
p-centered® if (x, s) is p-feasible and Hquﬁ(m)_l/z(s + V(;S(a:))H < & where ¢(x ) < > icim) %i(x)
with ¢;(z) < —log(u; — x;) — log(x; — £;) for & € X.

This definition is motivated for the fact that, p-central path point, defined as

x, ' argmin p-c' x4 ¢(x)
zeX |BTz=d

is the unique p-centered point with ||[V2¢(z)~2(s + Vé(2))||ec = 0. To see this, note that ¢ is
convex on X and the optimality conditions for x,, are that

xcX ,B'z,=dand c+ puVe(z,) Lker(BT).

However, ¢ + uV¢(z;) L ker(BT) if and only if ¢ + upV¢(z,) € im(B) which we can write equiv-
alently as ¢ + uVé(z,) = pBy, for some y,. Finally, the condition ¢ + uVe¢(z,) = uBy, is
equivalent to By, + s, = ¢/p for s, = —Vo(z,), ie. IV2¢(x,) % (s, + Vo(x,))|lo = 0 as
V%ﬁ(mu) is posmve definite. Consequently, a p-centered point is a point which maintains an ap-
proximate notion of the optimality of x,,.

The IPM framework works by maintaining p-centered points by controlling centrality measures
as potentials. The definition of these quantities (Definition 7.2), the framework (Algorithm 8), and
the result from [DLY21] that we use about this framework (Theorem 7.3) are all given below.

Definition 7.2 (Centrality). For p-feasible (x, s) we define centrality measure y(x, s) € R™ where
vi(x,8) & ¢ ()2 (s;+ ¢(x)) and ¢ (x) = [Vé(x)); and ¢! (x) = [V2p(x)]s;. Further, we define
def

centrality potential V(x,s) = 3 ;cim) cosh(A - v;(x, s)) where A & 1281log(16m) and cosh(z) &
Slexp(z) + exp(—2)] for all z € R.

In [DLY21], the condition is By+s = ¢ and HV2¢( 25/ + Vo(x || < 5 instead. We do the replacement
from s/p to s to simplify the algorithm description and notations in the data structures. Further, the choice of variable
names is different in the two papers with variable names chosen here for the application of minimum cost flow.
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Algorithm 8: A robust interior point method in [DLY21]
1 procedure CENTERING(B, x, s, £, u, fistart, flend)

// Invariant: (x,s) is p-centered with U(x,s) < cosh(\/64)
// (See Definitions 7.1 and 7.2)
2
3 Define step size « © ﬁ
4 = [t = Ustart, L =, S =8
5 while p > pieng do
6 Set weight matrix W «+ V2¢(z) L.
7 Set iterate approximation (Z,s) € R™ x R™ such that
[W™Y2(E — 2)||oo < @ and [WY2(5 — 8)|joc < .
8 Set step direction v € R™ where v; < sinh(\v;(Z,3)) for all ¢ € [m] and
sinh(z) & 3 (exp(z) — exp(—2)).
9 Set step size h < —a/|| cosh(AY(Z,S))]|2.
10 Set vll, v1 such that W2yl € ImB, BTWY2p1 = 0, and
lo! = Pwoll2 < alfv[lz and [Jv* — (I - Pw)oll2 < affvll2
where P < W1/2B(B'WB) 'BTW!/2
11 Set © «+ x + AW 2vt, 5+ s+ hW 120l 1« max{(1 - G177 ) Hend }
12 If|ﬂ—p|2aﬂ,thens<—%s,ﬂ<—,u
13 end
14 Return (z, s)

Theorem 7.3 (Theorem A.16 in [DLY21]). Using the notation in Algorithm 8, let (@), () be
the value of (x,s) before the step (Line 11) and let (), sM) be the value (x,s) after the step. If
(9, 50 is fi-feasible and U(x(?), s(0)) < cosh(\/64), then (M), sM) is 7i-feasible and

a\

W oy < (1D ) g0 0 - ,
Uz s )_(1 8\/m)\11(w , 8 + ady/m < cosh()\/64)

Proof. The proof of [DLY21, Theorem A.16] shows ¥ (x(1) s(1)) < (1 — #)‘m) o (20, 5(0)) 4

aly/m for any |i/ — pu| < o where WH(x,s) = || V2¢(x) Y2 (s/pu + V(b(a:))H . We picked 1/ =1
and replaced s/z by s. O

7.2 Robust IPM Tools

Here we discuss the key tools we develop in this paper to efficiently implement the robust IPM
(Algorithm 8) of [DLY21] discussed in the previous Section 7.1.

First, as discussed in Section 1.1, a key advance of this paper is efficient procedures for ap-
proximately maintaining the iterates of Algorithm 8, i.e. approximating the result of approximate
projection steps. We formalize this maintenance problem as a data structure problem defined below.
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Definition 7.4 (Solution Maintainer). We call a data structure a (7init, Tphase)-Solution maintainer
if it supports the following operations against an adaptive adversary with high probability:

o INITIALIZE(B € R™*™, w® ¢ R7?, 2@ e R™ sO) e R™ o, C,, k, C): Given input constraint
matrix B, weight vector 'w(o), iterate (a:(o), 3(0)), accuracy parameter «, weight range r, phase

length k, sparsity of changes z, initialize the data structure with w := w®, z =20 and
s:= s in time O(Tinit) with Tinie = Q(m).

o STARTPHASE(Z € R™, 3 € R™): Given input iterate (Z,3) with |[W=Y2(z — x|, < 1
and |[W'2(3 — s)|a < 1, update & + 2 and s < 3 in amortized O(Tphase) time with
7;)haso = Q(m)

o MOVE(w 0 e R v e R™ pU) ¢ R) — R™ x R™: In the j-th call to MOVE, given input
weights w(), dlrectlon vU) | and step size hU) with A9 |[v) ||y < 1, MOVE updates w « w?),

T T+ h(j)W;/Z(I —P;)vY), and s + s+ h(j)W 1/2P o),

where W; = dlag( (7)) and PJ o W1/2B(BTW B)~ 1BTW1/ and MovE outputs (ZV7),30)) ¢
R™ x R™ with [[(WD)~2@0) —2) | <, [(WD)/2(5 ()—S)HOO < a, and the number of
coordinates changed from the previous output bounded by O(22%+1a~21log®m + S;) where

{i e m]:w? £wi ™Y I = g0 anq sV = §(.j_2)}’ .

def

S; &

The input w") and v\¥) and output (E(j ) gl )) are given implicitly as a list of changes to the
previous input and output of MOVE.

Furthermore, the above operations need only be supported under the following assumptions:

1. Phase length: STARTPHASE is called at least every k calls to MOVE and at most twice in a
row.

2. Number of changes: for all j > 1 there are at most min{C,2%i,m} coordinates changed in

w0 v from wl=Y vU=D where ¢; is the largest integer with ¢ with j = 0 (mod 2°).

3. Magnitude of changes: for any |j2 — j1| < L, we have \/wz(-jz)/wl(-jl) < C,.L? for all i € [m).

Our algorithm actually always has S; = 0, but we state Definition 7.4 with possibly nonzero S;
for more generality.

In the particular case of graphs, one of the key results of this paper is the following efficient
solution maintenance data structure in the particular case of graphs (shown in Section 8.1).

Theorem 7.5 (Graph Solution Maintenance). In the special case that B is the incidence matriz of
a m-edge, n-node graph, szT,, C, = O( ) and oo = (1), there is a (Tinit, Tphase)-solution maintainer
(Definition 7.4) with Tiniy = (m) and Tphase = O(m + m15/16k29/8)

Note that in the solution maintenance data structure problem it is required that STARTPHASE
be called at least every k calls to MOVE. Consequently, to apply this data structure to implement
the robust IPM framework the input Z and s to STARTPHASE, i.e. weighted /s approximations to
(z,s), need to be computed efficiently. We formalize this problem below.
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Definition 7.6 (Solution Approximation). We call a procedure Tapprox-approzimator if given
p-feasible (x,s), weights w), ... w®) ¢ R, directions oW ... o) e R™, and step sizes
RO .. h*) such that

. h(i)Hv(i)”2 <1,

e all the changes in w and v are supported on z many edges and the input is given as these
changes,

. % < \/w?)/wéj) < rforalli,j € [k] and ¢ € [m],

with high probability, we can compute p-feasible (x,s) such that

T—xT— Z hOW 1/2 — Pw,)v"
i€[k]

< e and E—S—Zh(i) 1/2PW1()

1€[k]

<e

wi! Wi,

in O(Tapprox) time where W; def diag(w(i)),

In the particular case of graphs, in Section 7.4 we provide the following theorem on efficient
solution approximation.

Theorem 7.7. In the special case that B is the incidence matriz of a m-edge, n-node graph there
is Tapprox-approximator with Tapprox = O(m + 2k3r2e72).

Finally, to apply these results, we need to prove that the weights which in turn are induced
by V2¢(x) do not change by too much. For this, in Appendix 7.5 we prove the following. The
statement is similar to the bound in [GLP21, Lemma 6.5] generalized to our setting. Note that this
bound applies to the IPM framework regardless of whether or not B is the incidence matrix of a
graph.

Lemma 7.8. For p9-centered (0, 50) and p™M-centered (M), sM) with p(0 A1 /32 p, if
' s0) 4+ Vo(xD) for j € {0,1} it follows that

) &
2
> AEO) oy, <u(1’ —u<°>> |
B/ (@(0)1/2>3¢! (2 (1))1/2 @ (xM) i 91 (@) + ¢ (21)

7.3 Robust IPM Implementation

Here we show how to use the tools of Section 7.2 to efficiently implement the Algorithm 8. The
algorithm, Algorithm 8, and its analysis, Lemma 7.9, are given below.

Theorem 7.9. For any k > 1, plend < Hstart, and fistare-centered (x, s) with W(x,s) < cosh(A\/64),
Algorithm 9 outputs a jicna-centered (a!, ) with W (', ') < cosh(A/64) in time O((Taie-+ Y (Tphase-+
EPPFOX)) log(ﬂstart /Mend)) .

Proof. First, we verify that the conditions of the solution maintenance data structure (Defini-
tion 7.4) are satisfied with C,, C, defined as in the Algorithm 8.
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Algorithm 9: Algorithm 8 Implementation with Solution Maintenance and Estimation

1 procedure CENTERINGIMPL(B, x, s, £, u, listart, fend, k)

2

'y

® N o @

10
11
12
13
14
15

16
17
18

19
20

Define step size « o ﬁ, weight range C, = O(1), and sparsity parameter
C, = O(log’ m)
Set 7t = pt = pstart, T=1T, 8 = 8§, W = diag(vqu(i)_l)’ J=0
SOL.INITIALIZE(B, w, x, 5, a, Cy, k, C,) where SOL is a (Tinit, Tphase)-solution maintainer
(Definition 7.4)
while > pieng do
if k divides j or p = pienq then // Reset every k iterations
Let (x, s) be the solution SOL implicitly maintained.
Find fi-feasible (Z, 3) with [[W™Y2(z — Z)||2 < & and [WY2(s —3)||s < 100 by
using a Tapprox-approximator (Definition 7.6) with k = k,r = O(k*), 2 = O(k?).
if |z — | > o then
SOL.INITIALIZE(B, w, @, s, a, 1, k, 2)
S +— %E, < // Reinitialize. All coordinates may have changed
end
SOL.STARTPHASE(Z, §)
end

// Step: ¢+ x+hWY2(I—-Pw)v, s« s+ hW1/2Pyuv

Set the direction v; = sinh(\v;(Z,s)) and the step size h = —a/|| cosh(A\y(Z,S))||2.
(Z,s) < SOL.MOVE(w, v, h)

e max(1— g2 s ond). w < diag(V26(@) 1), and j  j +1

end

Return (z, s)

e (C,: Note that both w, v are entrywise functions of @, s and Definition 7.4 promises that x,s

changes in at most O(2%i+1¢e2 log®m + S;) coordinates. Since we only change w when @
or § changes, we have S; = 0. Using the parameter choice ¢ = ©(1/logm), the number of
changes is bounded by O(2%%+1 log® m). This verifies the condition C, = O(log® m).

C,: For any two iterations U1 and xU2) associated with path parameters ,u(jl) and u(jQ),
Lemma 7.8 shows that

(1) (G2) _ (D)2 (2) — ()2
G PP S O M )" gy, (B i
¢! (z(i2)) B! (x72)) + ¢l (x (1)) plin)

1€[m]

where n/) & s0) 4 Vqﬁ(a:(j )). Note that to apply this lemma, we used that all iterations are
centered (which we will show later) and that p(1) ~, /32 192) (since we reinitialize the data

structure every ©(,/m) steps). For L = |j; — jo|, we have |p02) — (1] < %uul), S0
(J2) (J1)

(b;/(w(jl)) 10 (n? —n; )2 -
¢ (@02) =iz .GZ[:} ¢} (xU2)) 4 ¢ (x90)) +0(”L%).
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To bound the first term, we note that every term in the summation is bounded by O(1).
We split the sum into two cases. The first case is when ¢/ (x) does not change by more
than a O(1) factor. In this case, one can prove that ||p+h — T[(‘])”(b//(x(j)) = O(«) because

|+ — :c(j)H(W(j)),l < a, [|sUHD — sU) ||y < a and WO ~p 1) V2¢(x@)) L. Therefore,
after L steps, the sum for the first case is bounded by O(«?L?) = O(L?). For the second case,
we can use |0+ — m(j)H(Wu))—l < a to show that there are at most O(L?a?) coordinates
where ¢” changes by more than a constant multiplicative factor. Hence, this shows that

" e(i1)
% = O(L?). (17)

This verifies the condition C;, = O(1).
Now, we bound the potential. Theorem 7.3 shows that

a\
new ,new) - o
U ("W, 2"V < (1 &/ﬁ) U(x,x) + alym

for every step (excluding the effect of STARTPHASE). For STARTPHASE, we have that |[W~/2(z —
z)ll2 < 155 and [W2(s — 3)|l2 < 105- This increases ¥ by at most ﬁﬁ/(a},s) additively.
Finally, for the change of Tz, it would increase ¥ by at most 2aA¥(x, s), but this happens every
32y/m steps. Therefore ¥ is decreasing on average and stays polynomially bounded.

Next, we discuss the parameters for the 7T,pprox-approximator. The number of terms is ex-
actly given by k. For the number of coordinate changes z, Definition 7.4 promised that ®,s
changes by 6(2%’“) coordinates at the j-th step. Since we restart every k iterations by calling
STARTPHASE, by aligning our steps numbers appropriately, we have that >, , pha566(224) =
6(maxj in a phase 226i) = 6(k2) Finally, the weight ratio is due to (17) with L = k.

Finally, for the runtime, note that there are 5(% log(pstart /ttend )) steps. For every k steps, we
use a Tapprox-approximator and call SOL.STARTPHASE and they cost Tphase and Tapprox respectively.
All other costs are linear in the output size of the data structure and are not bottlenecks. Therefore,

the total cost is 6((7;nit =+ @(Ehase =+ Epprox)) lOg(/Lstart/ﬂend))- [

7.4 Efficient Solution Approximation

In this section, we prove Theorem 7.7. Our algorithms leverage two powerful tools from algorithmic
graph theory, in particular nearly linear time algorithms for subspace sparsification [LS18].

Proof of Theorem 7.7. Our algorithm for approximating & involves two steps, we first find a o’
such that it is close to the true vector #* & x + 2iclk] ) Wil/z(I - Pwi)'v(i), but may not satisfies
B'a' = d. Then, we show how to use &’ to find & that is close to * and satisfies BTz’ = d.

Let S C [m] be the set of at most z coordinates of w and v that change and let C' C [n] be an
arbitrary subset (that we set later) such that every edge in S has both endpoints in C'. Further, let
A= > iclk] h(i)Wg/sziv(") and Ay & > ic[k] h(i)W;pv(i) so that 3¢ h(i)Wi/z(I—Pwi)v(i) =
Ay —Ay. Note that Ay can be computed in O(m+ zk) time by first computing > h() and with
this computing [As]; for j ¢ S in O(1) time and for j € S in O(k) time. Consequently, to compute
Z in the given time bound, it suffices to approximately compute Aj.
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Next, let L £ BTW,B and F < V' \ C and note that

- I -L..L L 0 I 0 :
— OW. FFHFC FF Twl/2,,6)
A1 ie%h wiB [ 0 I ] [ 0 SC(L; o) ] [ ~LerLyy 1 ]B Wit

since Lpp = [L(i)]FF and Lrpe = [L(i)]FC for all 7 by the definition of C. Further, let Bo be
the incidence matrix of edges with both endpoints in C' and B_¢ be the incidence matrix of the
remaining edges so that BTW}/2U(Z') = ngg/z'v(i) + BiCW1/2'v for all i € [k]. Combining yields
that, A1 = a1 + a3 + as + a4 where

a1 2 3 WOW,BcSC(L;, O) BLW, o) (18)
1€[k]
def (4) —LppLrc CoV-1RTwW/2,,00)
a; = Y hWWB_¢ I SC(L;,C) 'B-W, v
1€[k]
as = > hW,BcSC(L;, C)f [ ~LerLpp 1 } Bl W'y
1€[k]
def ; I —Ly.Lpc || Ly 0 I 0 | o7 <xr1/2
a, = Z h(Z)WB_C [ FE FE ) 1 -1 B_CW / v.
bt 0 1 0 SC(L;,C) —LorLpp 1
(19)

Our algorithm simply computes A; through the above formula where every instance of SC(L;, C)
is replaced with some efficiently computed SC; ~5 SC(L;, C) for § we set later.

def

To compute the §(v32-, first for each i, we define L;(S) = BEWZ-BS where Bg is the incidence

matrix of edges S and let Loy &= L) — L;(S) for any ¢ € [k]. Note that this definition does not
depend on ¢ by the definition of S. Using [LS18, Theorem 1.3], we can compute C' C V' such that
every edge in S has both endpoints in C' and a Laplacian SC € RE*C guch that SC ~; SC(Leyt, C)
and |C| < nnz(SC) = O(|S|672) = O~(:z§:2) in O(m) time with high probability. We use this
procedure to determine C' and compute SC. Further, we define SC; = SC + L;(S) and note that
SC; ~5 SC(L;,C) for all i € [k] and nnz(SC;) = nnz(SC;) + |S| = O(z6~2).

Now, we let ai,az,as,as be the result of computing ai,as, a3, as respectively where each
SC(L;,C) is replaced with SC; and each matrix inversion is computed to high precision using

nearly linear time SDD-solvers for Ly} and SC(L;,C)~" (Theorem 3.1). Further, we let o’ =
T + ) ic4) @i + Az. Note that h(i)BgWilpv(i) can be computed explicitly for all i € [k] in O(m +
kz6~2) time by simply iterating through the changes in w and v and noting that each change only
effects the resulting O(202) coordinate vector in 2 coordinates. Further, this implies that d; =
hDSC(L;, C’)TBEWg/zv(i) can be computed to high precision in O(kzd~2) time by using a nearly
linear time Laplacian system solver too apply SC(L;, C)f. Next, to compute a; © Zie[k] W;Bcd;
note that the contribution of each row of B¢ for e € S can be computed O(k) and the contribution
of all the remaining rows can be computed in O(m); thus, a; can be computed from the d; in O(m+
kz). Further, given the d; by using a nearly linear time SDD solver to apply LIZ}; to a vector we see
that @y can be computed in O(m). Similarly, all the e; © SC(L;,C)f [ —LCFLE}: I } BICW1/2’U

can be computed in O(m + zkd~2) and from these @3 can be computed in an additional O(m + kz2)
time (analogous to computing @1). Further, @4 can be computed O(m + zké~2) since summation
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can be moved to the SC(L;, C)T. Putting these pieces together shows that & can be computed in
O(m + zkd=2).
Next, to determine what to set § to. Note that

*_ —
l&* ~ &y

~1 - -1 T o
> wW,B [ _LFfLFC ] (SC(L;,0)t —sC) [ LFII““LFC ] BTW/2(h0(0)
1€[k]

-1
Wk

-1 [ 11 T o
<r Y WZ-B[ LFfLFC](SC(Li,C)T—SCZ)[ LFII”LFC] BTW.,/2(h0y(0)

—1
Wi

-1 - -1 T
< 3 | wi 1/23[ LFfLFcl(sc(Li,C)T—scb[ LF{LFC] BTW./>

2

—r 3" [SC(L;, O)Y2(SC(L;, €)f — SCHSC(L;, )| = O(rks)

2

where in the third line we used that assumption & < ,/(w;);/(w;); < r, in the fourth we used that

s

) < 1, and in the fifth we used that

-1 T -1
and that |[M;MyMs;s||, = H(MIMl)l/zMg(MgM;—)l/zH2 for matrices M, My, M3 of appropriate

dimension and that SC; ~5 SC(L;,C). Consequently, it suffices to set § = O(¢/(rk)) and this
gives the result for computing &.

Now, we show how to find a feasible Z using «’. From the first part, we can find =’ such that
|’ — :1:*||W;1/2 <35in O(m + zr?k3 /€2) time. Note that BT2* = BT 2 = d. However, we may not

have BTa/ = d. To fix this, we define
z< 2+ W,BB'W,B)"!(d—B'a).
This can be found in an extra O(m) time (Theorem 3.1). Furthermore, we have
|& — @'y = [W,/*BBTW,B) ™' (BT2" ~ BTa/)],
< |[W, @ a2 < 5.
Hence, we have ||z — wlej <eand B'z =d.

The algorithm and analysis for computing s’ is analogous with As set to 0 and the signs of the
exponents of some W; flipped. The main difference is that s’ is automatically feasible and hence

we simply set 8 = s’. To see this, we note that the new Ags) is given by

-1 -1
(s) _ (1) I —LppLrc Lpp 0 I 0 | oTwl/2, ()
Aj iez[k}h B[O ; 0" scw.oy || —LopLsh 1 |[BTW
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Note that after we replacing SC(L;, C)T by its approximation, the vector above is still in the image
of B. Hence, s’ — s* is in the image of B.
O

7.5 Robust IPM Stability Bound

In this section we prove Lemma 7.8 which bounds the relative change in ¢ in each iteration of the
robust IPM method (See Section 7). We first provide helper Lemma 7.10 and Lemma 7.11 and
then use it to prove Lemma 7.8. The first lemma is a statement about 1-dimensional log-barrier
problems.

Lemma 7.10. Let £,u € R™ with €; < u; for all i € [m], ¢ € R, wgo),w&),wgl),w&) € [%, %]m,
and for j € {0,1} let

2U) & arg min c-x— Z w log x—4 Z w log —x)

max;cm) % <z<min;ec [m] W

Then, for r(a) < max{a —3,a™! — 3,0} we have

= (i)« £ () <ol el

i€l i€[m]

2
.
Remark. Note that r ( (O; ¢ ) large implies either (! or (%) is much closer to #; compared to

the another one. The inequality above shows that if the weights do not change too much, then z(!)

cannot be too much closer to £; compared to z(©).

Proof. Without loss of generality, we assume z(©) < z(1). By the optimality condition of (), we

have that ( .)

(
C—Zx —I—Z

1€[m] & i€ [m]

Subtracting this equation for 7 = 0 and 1, we have

wl)  wfl] wl  wl) ”
DO e gt sl BadD DNl by /v 1l B (20)

i€[m] i€[m]

We bound the left and right hand side above separately.

To lower bound the left hand side of (20), we let a; = m;()l)__xéo) € (0,1) (since () > 20 > ¢;).
Note that © @ ©
Wy ; Wy ; . (&%) Wy ; (1)
2@ —p, 2O —p, O — 40 (1 —o w“) ’

If a; < 2('w212 wgol)) then

0 1 0 1 0 1
w] wp)es(wy) —wp)) 2wy —wpl))
2(0) — L; 1) — L, — (1) — 4(0) - (1) — 2(0)



© (V> —a;/2 and

where we used 'wg)i) — wg’li) < 0 in the last inequality. Otherwise, we have w, ; —w,
hence ) © 0 ()
Wy ) Wy Wy oWy S & (w“ 1/2) 1 e 0
1— o i = 1— oy - 11—y “3l-a;

where we used that wéli) > % and % — % > % Combining both cases, we have

i€] ¢
. © . ()2 1 of
>—2 Z (wy ;) —wy ;)" + Z 3
bl ’ 3 1 - al
az<2(w(l)—w2?i)) az>2(wélz) _wé?i))
1 1
—2 3 (wf] —wp)P+2 Y (21)
i€[m] aiZ% '

'wéll) — w( )) at the end.

implies a; > 2(
= m(l) 20 ¢ (0,1). Note that

where we used that o; > g

To upper bound the right hand side of (20), we let 8, = —©
0 1 1
W el (g ul
u; — 20 ;-2 ) — g0 1=

If B, < 2('w(0)- — wglz), we have that

U,

we wy] _Biw,) —wy)) 2w, —wl))
u; — :L'(O) B u; — 3;‘(1) - gj(l) — gj(o) - gj(l) — g;(o)

where we used wz(LO) 'w( ) > 0 at the last inequality. Otherwise, we have 'w(o) 7312 < B;/2 and

hence o0 ) ) )
w® _ Wy Wy — W — Bw,; ﬂz(% — W, ;) < 1B <0
wi 1B, -8, ST1-8,  C 31-8
Combining both cases and using 3; > 2 5 implies 8; > 2(w 732 —w! )), we have
(0) wV
1 (0 Wy Wy, ©) _ (2 _ 1 1
i€[m] 1€[m] Bizg 7
Combining (21) and (22) with (20), we have
1 1 1 1
2 < (0) My L
22 w@z wZZ +8 1—0%_2. ( Ui wu,z) ] 1_ﬂz
i€[m] ﬁzZ%
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Using this, (00 < () and the formula of 7, we have

™ _p. () ® _p. - _ (0)
x i uU; — x i u; —
Z r <7$(0) —&) +7r (7% _$(0)> < Z max{igj(o) ) —3,0} + Z max{f—x(l) —3,0}

i€[m] i€[m] ¢ i€[m]

= Z max{i—?) 0}+ > max{l_lﬂ 3,0}

1€[m]
1 1
< Z >
aiZ% I—ai ﬁiZ% 1_ﬂ2
a6~ [ ¢ ol - ]

We leverage this lemma to generalize to higher dimensions in the following lemma.
Lemma 7.11. In the setting of (16), given weights wé ),w(uo),wé ),'w(ul) [%, %]m let
def

T; = argmin ¢z — Z we log T — Z 'w log x)
zeX |BTz=d i€m] icm)

for j € {0,1}. Then for r(a) < max{a —3,a™! — 3,0} we have

1) 20
> (S 2 (i) <l e

i€

i

Proof. For all t € R let «®) 20 4 ¢5, with 6, = 2 — 20, By the definition of ), we have
that for j € {0,1}

2\ = arg min cz® — Z ’w log " Z w log (t))
teRlz(Wex i€lm ze[m]
= argmin t-c'd, — Z wh log(td,,; — (£ —:c Z 'w log ()) t04.:)
teR|zMex i€[m] [m]
= argmin ¢-¢é— Z wY )log Z 'w log —t) (23)
ERIEOEX ) o) 0 et

~ def
where ¢ = ¢' 6, and

(0) 20 ; ;
£;—x! u;— @) 0N
TR (J) MOEMOKS m_ (O),wh,wm) if 02, > 0
Wy, W i 6
(&, ) W, ) < N N O )

O SO om Wa Wiy ) 10 <0
1 i ’L z

Applying Lemma 7.10 to (23) then yields the result as for all i € [m] with ,; > 0, we have that

YO - .(0)
T s e RO R R (1)
1_62 mg)—ml(.) T, —KZ 1—u2- mg)—mg) U; — &;
7 ©) N0) and 0— 1w ) = (0)
0-4¢; z, —t x, — ¥ — U T —ui u; — x;
MONNO) M _O
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and similarly when §,; < 0, we have

(0)

1-— ez mEO)—ml(.l) U; — &, 1-— ﬂi mgo)—ml(.l) T, — 4
— = Ol = and — = o) =
0—¢; z, —u; w; — m('0) 0—u (0 _g (0 _ ¢
:1:(.0)—:1:(.1) ! :1:(.0)—:1:(.1) !
7 K3 K3 7

Leveraging Lemma 7.11, we prove the main result of this section, Lemma 7.8.

Proof of Lemma 7.8. To apply Lemma 7.11 for j € {0,1} we define & Lof %[:“(0) + pM], gl =
L2y, gl = 2n0) 4 € — ¢/f and

~ {qr-“9¢® if ¢/ (@) < ¢ (V)

C;, =
¢/ M else

With these definitions, we note that Byl + ¢+ Vqﬁ( ' ) =70, Slnce Lemma 7.10 considers only

exact minimizers of weighted log barriers, we remove the term 6 usmg the weights as follows, we
def def
define (b@,l( T) = Zze[m] log(z; — £;), (bu,z( T) = Zze[m] log(u; —x;), ¢o(x) = Zze[m} (Zﬁg,i(a}), and

bu(®) = 3 ;cpm] Pui(x). Then, we define the weights

G) _ Sign([Wu( N 79 and g9 = 1 sign([Veui(29));) ()

o

=1- c =1 . .
' Vo@D + [Vous@D)]i] ' Vo@D + [Vous@D)]i]
so that Zie[m}(agj)v¢g7i(w(j)) + ,ng)V(bm(w(j))) = Vo(x¥)) — 7 and

By +e+ Y (Ve (a)) + BV i(x?)) = 0.

i€[m]
Consequently, _
zU) = argmin ¢« + Z a(] bei(x) + Z ﬁgj)qﬁu,i(:c).
zeX |BTz=d i€m] ie[ 1
Hence, we can apply Lemma 7.10 with 'w§ Z) = a(] ) and w ﬂ(] prov1ded < 'w(] ) < % and

1< wz(LZ < 8 for all i € [m] and j € {1,2}. To show this, note that

. =(7) =) =(7)
ol 1)< ——— 7 I/ - Im | <] (24)
|67 (@U)] + |¢), ; ()] \/¢;; (zD) + \/qﬁ” () \/gbg(m(a‘))
where we used the definition of ¢, and ¢; in the equality. Now, using the definition of ﬁgj ), we have

= [P =m0 it o (w) < o)
7 (J),u(]) ngl),u(l) otherwise

otherwise

_Jo if ¢ (x1) < ¢ff (z1177)
- ! ,,751)#(1) (O)M(O) :

51



Hence, we have

|ﬁ§j>| " p® — %O /ﬁ 25)
¢// B maX \/¢// a;(o \/¢//
=(9)
Using that x(© ~ ~1 /32 e @) /1] (x H < 3L we have that \/% < %. Hence, (24)

shows that \'we ) 1] <1/8 for all i < m and j. The same proof gives the bound of ,ng).

)2
’2
.

Consequently, Lemma 7.10 shows that

e ) (
S ( _£)+z ( EO)>§16[HwZ — o+ ol? - w)

i \@’ igm] \%i =%

Using (24) and (25), we have that

™, 1) _ 0) (0))2
o~ + ot ot <3 32 T oy

<3252y (V) — D)2 + (n (O)M(l) " )2
= S/ @) + o (@)

1€[m]
) — )2
3 — ;) 1
=% ¢” )7 enemy taF e e

1€[m]
(1)_ (0)+2 1 _ 0?2
n; ") p =
< 64 i AR 2
o 2 e e mon ()

Finally, we note that ¢/ () < max(% E ; ﬁl, Zl:igéi) - ¢ (x™1). Hence, we have

¢! (z) o
> & (@) < > maX{w(O) 4w, — 2

@ (2 (0)1/2>3¢% (x(1))1/2 2D g, w;—a(1)
0 et b ) R

—¢; u; — x)
= Z <ac(0 £Z> + Z " <uZ - ac(o))

oot - o ot

max

The result then follows from (26) and (27). O

8 Final Runtime Bound

In this section we show Theorem 7.5 which describes how efficiently the data structures we developed
in Sections 4 to 6 can implement an IPM step. Our final runtime is then achieved via Theorem 7.9.
Finally, we cite previous work to explain how to get an initial point for the IPM, and how to get a
mincost flow after running O(y/m) IPM iterations.
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8.1 Efficient Solution Maintenance

Theorem 7.5 (Graph Solution Maintenance). In the special case that B is the incidence matriz of

a m-edge, n-node graph, if C,,C, = O(1) and a = Q(1), there is a (Tinit, Tphase)-solution maintainer
(Definition 7.4) with Tinix = O(m) and Tphase = O(m + m15/16129/8)

We first make several useful definitions. We let «(7), s) be the true iterates after the j-th call
to MOVE. Our algorithm will explicitly approximate iterates V), 3). Using these approximate
iterates, the algorithm will output z\) 50 satisfying the desired update schedule, i.e. at most
0(22%a2) coordinates are updated after the j-th call to MoVE. Additionally, call an index j
corresponding to the j-th MOVE operation special if it occurs immediately following a STARTPHASE
operation. The formal construction of 9 and sV is given in the following definition.

Definition 8.1 (Approximate iterates). Say there have been j MOVE operations so far. If the
next operation is STARTPHASE(&, §), then set 2UTD « & and sUHY + 5. If the next operation is

MOVE operation (j + 1), then let d,,d, satisfy
|60 — nUFD( - Pj+1)v<ﬂ'+1>Hoo <e and |8, h<ﬂ'+1>Pj+1v<ﬂ'+1>Hoo <e, (28)

with 8,8, supported on O(e2) coordinates. If the previous operation was Move, define and let

Ut  z0) 4 W;fldm and 30D 30 4 W]-_J:{255- Otherwise, if the previous operation was

STARTPHASE define 01 « zU+1) +W;i215m and 3V « gU+D) —|—Wj_j{255 (so that we redefine

U U+,

We show that the ) are slowly changing, except potentially at special indices. This is because
|62]l, = O(1) as it is supported on O(¢~2) nonzeros and AU+ |[pU+D |y < 1.
We now argue that d, and d5 can be computed efficiently.

Lemma 8.2 (Computation of d,,d5). In the context of Theorem 7.5, there is an operation that
computes 84,0, satisfying (28) in average amortized time O(m'>/*e¢=7/8) and succeeds with high
probability against adaptive adversaries.

Proof. We first write hU+D(I — P 1)0U+) = plitlyU+) — pU+DP, 140+ and handle both
parts separately up to error €/2. The first part can be trivially handled, as it can be explicitly
maintained in time proportional to the number of changes in v7), and ||RUTDv+)||; < 1. For the
second part, we first call the dynamic LOCATOR (Theorem 5.10) to get a set S of size O(¢~2). Then
we call the dynamic EVALUATORs (Theorem 5.9) wrapped inside Theorem 6.2 with € < ¢/(C'log? n)
on S by calling QUERY() on S. The algorithm for d, follows exactly as the second term. Also,
84,08, are supported on |S| = O(¢~2) coordinates by Theorem 6.2.

Correctness follows directly from the guarantees of Theorems 5.9, 5.10 and 6.2. It suffices to
analyze the amortized runtime. We focus on the cost of applying Theorem 5.9 inside Theorem 6.2,
as the cost of Theorem 5.10 is less. Let &; © 2% so that the i-th EVALUATOR is run with accuracy
€ 4 0;€ in Theorem 6.2. Let 5; be the terminal size parameter for the i-th EVALUATOR.

There are two possible ways to run the i-th EVALUATOR. Either it pays 6(m) time per call to
solve a Laplacian exactly (while this algorithm is randomized, we can hide randomness by adding
polynomially small noise that is larger than the error we solve the Laplacian to [LS15]) or applies
Theorem 5.9. Let us calculate the runtime of the latter approach. After §;m edge updates or
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marking, the data structure must re-initialize. Thus, after " MOVE updates, because C, = 6(1),
there are at most 6(T2 +Te2) total edges we have queried or updated: 6(T2) from updates, and
O(Te2) from the set S returned by LOCATOR. We assume for now that the O(T?) term dominates
— thus the data structure must reinitialize every /B;m iterations, where each initialization costs
é(m,Bi_ 26; ?) time. Thus the amortized reinitialization time per Move is

O(mpB; 22 //Bim) = O(v/mB; **e2572).

By Theorem 6.2, the i-th EVALUATOR is queried with probability O@i), hence the expected query
time is O(B;me; 20;) = O(Bime=26; ") by Theorem 5.9 QUERY(), or O(§;m) if EVALUATOR simply
solves a Laplacian every iteration. Thus, the amortized runtime for the i-th EVALUATOR is

O (min {&-m,ﬁime_zéi_l + \/Eﬁi_5/26_25i_2}) )
For the choice 5; = m_1/75i_2/7, this becomes
O (min {&m, m6/76_25;9/7}) .

This is maximized when the two expressions are equal at §; = m~1/16¢-T7/8, yielding a runtime of
O(m15/ 167/ 8) as desired. Finally, note that this means that ¢ > m =14 or the previous runtime
is trivial. All 8; > m~Y/7, so Te 2 < T? for the choice T = /Bim > m3/7 > €2, so the o(T?)

term dominated earlier, as desired. O

We now show that 29) and 39 are close to @), (7).

Wj_l/2 (@(J’) _ w(j)) H <

Lemma 8.3. For € = 557 and 2z, s0) defined in Definition 8.1, .

a/10 and HW;/2 (§(j) — S(j))Hoo < «/10.

Proof. Tt suffices to analyze j between STARTPHASES, as 29,39 and ), sU) are both set to , 3
during a STARTPHASE. Over L steps between STARTPHASEs (from j; to jo = j; + L), we have

that HW]-_Z1/2 (:E(jz) — :c(j2)) HOO is at most

’|Wj—21/2 Z le./2 (69) _ h(j—l—l)(I _ Pj+1)v(j+1))
J€l,32)

< max /[Jwj/wg,l

J€[d1,52]

e}

Z 5(mj) _ h(j+1)(1 _ Pj+1)v(j+1)
J€lj1,j2)

(i)
< C,L%L = eC,L* < /10,

< rL? and (28).

oo

where (i) follows from the guarantee that of Definition 7.4 that Hw(jz)/wjl

The bound on the error for s follows similarly. O

Proof of Theorem 7.5. We show this by carefully defining £1),35U) given Y ),§(j ). We mimic the
approach based on binary expansions given in previous works on robust IPMs, for example [BLSS20,
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Theorem 8|. Precisely, we first calculate Z; ot 625 ), i.e. the sum of errors in the last 2% steps.

If this exceeds 51557, then we set zW) + ) otherwise we set ) < U~ (no change). We do

the same for 37). Now, the bounds on number of changes follows from the bounds |82 < O(1) and

that |[W;"/? 92¢
could change by 1557555, because every step satisfies [|dz[l2 < 1 or |]Wj_1/2(:c — )|l < 1. This
completes the proof of the number of changes.

We now claim that HW]-_l/2 (i(j) — :E(j))H < /10, so HW]-_l/2 (E(j) — w(j)) H < « by com-

bining with Lemma 8.3 for € = 55 = O(1/k%) as C, = O(1). This claim follows from the same
argument as [BLSS20, Theorem 8]: each interval [ji, j2] can be split into logn intervals contained
in intervals [j — 2%, ] for j < jo. Each of these has at most a/(100log n) error, so the total error
is at most «/(1001log n) - logn < «/10.

Finally, we must calculate the runtime of 7Tppase. The first cost is 6(m) (eg. for reading
Z,8). The second cost is calling Lemma 8.2 k times (as there are at most & MOVE operations
between STARTPHASE). For our choice € = ©(1/k%), the total time for this is O(m!5/16e~7/8k) =
O(m15/161:29/8) a5 desired. O

(& — &)||2 < 1 in STARTPHASE. More precisely, over 2% steps, only O(2%a~21log? n)

8.2 Initial Point, Final Point, and Proof of Main Theorem

It is standard to get an initial u-centered feasible pair (x,s) for path parameter p = pstart
(mU)°M . Additionally, given a u-centered feasible pair (z,s) for path parameter j = pieng
(mU)~9M) we can recover a high-accuracy mincost flow (and hence round to an exact solution).

>
<

Lemma 8.4 ([BLL"21, Lemma 7.5, Lemma 7.8]). Given a graph G = (V, E) and mincost flow in-
stance with demand d € [~U, ..., U]V, costs c € [~U,...,U]¥, and capacities £,u € [-U, ..., U]¥,
we can build a mincost flow instance on a graph G' with at most O(m) edges with demands, costs,
and capacities bounded by poly(mU). Additionally, we can construct a psart-centered pair (f, s)
on G’ for pstary = poly(mU). Additionally, given a 1/poly(mU)-accurate mincost flow on G’ we
can recover an exact mincost flow on G in time 5(m logU).

Proof of Theorem 1.1. We apply Lemma 8.4 to get an initial point for Algorithm 9. Then, we run
Algorithm 9 and round to an exact mincost flow using Lemma 8.4. This succeeds by Theorem 7.9
in time

6 <<7;nit + @(%haso + Epprox)) IOg (%)) = 6 <<7;nit + @(%haso + Epprox)) IOg U) .
(29)

It suffices to plug in the values of Tinit, Tphase from Theorem 7.5 and Tpprox from Theorem 7.7.
We take k = m'%® s0 Topase = O(m'/16k29/8 ) = O(m) by Theorem 7.5. Also by
Theorem 7.7, Tapprox = O(m + 2r2k3/€?) for z = O(k?),r = O(k*),e = Q(1), so Tapprox =
O(m + 2r2k3/e2) = O(m + k'3) = O(m) for k = m!/®8. Thus, the expression in (29) evaluates to
O(m3/21/58 og U) as desired. O
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