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A real number x is absolutely normal if, for every base b ≥ 2, every two equally long 
strings of digits appear with equal asymptotic frequency in the base-b expansion of x. This 
paper presents an explicit algorithm that generates the binary expansion of an absolutely 
normal number x, with the nth bit of x appearing after npolylog(n) computation steps. This 
speed is achieved by simultaneously computing and diagonalizing against a martingale that 
incorporates Lempel-Ziv parsing algorithms in all bases.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In 1909 Borel1 [6] defined a real number α to be normal in base b (b ≥ 2) if, for every m ≥ 1 and every length-m
sequence w of base-b digits, the asymptotic, empirical frequency of w in the base-b expansion of α is b−m . Borel defined 
α to be absolutely normal if it is normal in every base b ≥ 2. (This clearly anticipated the fact, proven a half-century later, 
that a real number may be normal in one base but not in another [10,27].) Borel’s proof that almost every real number (i.e., 
every real number outside a set of Lebesgue measure 0) is absolutely normal was an important milestone in the prehistory 
of Kolmogorov’s development of the rigorous, measure-theoretic foundations of probability theory [20]. For example, it is 
section 1 of Billingsley’s influential textbook [5]. The recent book [9] provides a good exposition of the many aspects of 
current research on normal numbers.

Borel’s proof shows that absolutely normal numbers are commonplace, i.e., that a “randomly chosen” real number is 
absolutely normal with probability 1. Rational numbers cannot be normal in even a single base b, since their base-b expan-
sions are eventually periodic, but computer analyses of the expansions of π , e, 

√
2, ln2, and other irrational numbers that 

arise in common mathematical practice suggest that these numbers are absolutely normal [7]. Nevertheless, no such “natu-
ral” example of a real number has been proven to be normal in any base, let alone absolutely normal. The conjectures that 
every algebraic irrational is absolutely normal and that π is absolutely normal are especially well known open problems 
[7,9,33].

* Corresponding authors.
E-mail addresses: lutz@cs.iastate.edu (J.H. Lutz), elvira@unizar.es (E. Mayordomo).

1 Borel’s original definition was that x is normal in base b if x is simply normal in all bases b, b2b3, . . . Our definition here is well known to be equivalent 
to Borel’s.
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The work reported here concerns a much newer problem, namely, the complexity of explicitly computing a real number 
that is provably absolutely normal, even if it is not natural in the above informal sense. Sierpinski and Lebesgue gave explicit 
constructions of absolutely normal numbers in 1917 [29,21], but these were intricate limiting processes that offered no 
complexity analyses (coming two decades before the theory of computing) and little insight into the nature of the numbers 
constructed. In a 1936 note that was not published in his lifetime, Turing [31] gave a constructive proof that almost all real 
numbers are absolutely normal and then derived constructions of absolutely normal numbers from this proof. Moreover, 
although Turing does not mention Turing machines or computability, the note is typed, with equations handwritten by him, 
on the back of a draft of his paper on computable real numbers [30], so it is reasonable to interpret “constructively” in 
a computability-theoretic sense. And in fact his proof, with 2007 corrections by Becher, Figueira, and Picchi [3], explicitly 
computes an absolutely normal number x. However, this algorithm is very inefficient, requiring a number of steps that is 
doubly exponential in n to compute the nth bit of x. (Independently, Knuth [19] published in 1965 an explicit construction 
of an absolutely normal number, also inefficient).

Some 75 years passed between Turing’s algorithm and more efficient ones. It was only in 2013 that Becher, Heiber, 
and Slaman [4] published an algorithm that computes an absolutely normal number in polynomial time. Specifically, this 
algorithm computes the binary expansion of an absolutely normal number x, with the nth bit of x appearing after O (n2 f (n))

steps for any computable unbounded nondecreasing function f . (Unpublished polynomial-time algorithms for computing 
absolutely normal numbers were announced independently by Mayordomo [26] and Figueira and Nies [14,15] at about the 
same time.) We omit here extensive work on the discrepancy, that is, the order of convergence to normality of an absolutely 
normal number and its tradeoff with the time complexity of the construction of the corresponding number (see the latest 
results in [1], [25] and their references).

In this paper we present a new algorithm that provably computes an absolutely normal in nearly linear time. Our 
algorithm computes the binary expansion of an absolutely normal number x, with the first to nth bits of x appearing after 
O (npolylogn) steps. The term “nearly linear time” was introduced by Gurevich and Shelah [16]. In that paper they showed 
that, while linear time computability is very model-dependent, nearly linear time is very robust. For example, they showed 
that random access machines, Kolmogorov-Uspensky machines, Schoenhage machines, and random-access Turing machines 
share exactly the same notion of nearly linear time.

The novelty of our algorithm is its use of the Lempel-Ziv parsing algorithm to achieve its nearly linear time bound. For 
each base b ≥ 2, we use a martingale (betting strategy) that employs the Lempel-Ziv parsing algorithm and is implicit in the 
work of Feder [13]. This base-b Lempel-Ziv martingale succeeds exponentially when betting on the successive digits of the 
base-b expansion of any real number that is not normal in base b. Our algorithm simultaneously computes and diagonalizes 
against (limits the winnings of) a martingale that incorporates efficient proxies of all these martingales, thereby efficiently 
computing a real number that is normal in every base.

The structure of this paper is based on the main result proof. Building on the base-b normality characterization in terms 
of finite state martingales and the universality of Lempel-Ziv martingale, we need to construct a conservative version of the 
Lempel-Ziv martingale that does not fluctuate too much and then establish a base change method for such conservative 
martingales. Finally a careful efficient combination of all resulting strategies for different bases is needed.

The rest of this paper is organized as follows. Section 2 presents the base-b Lempel-Ziv martingales and their main prop-
erties. Section 3 shows how to transform a base-b Lempel-Ziv martingale into a base-b supermartingale with an efficiently 
computable nondecreasing savings account that is unbounded whenever the base-b Lempel-Ziv martingale succeeds expo-
nentially. Section 4 develops an efficient method for converting a base-b martingale with an efficiently computable savings 
account to a base-2 martingale that succeeds whenever the base b savings account is unbounded. Section 5 presents an 
algorithm that exploits the uniformity of these constructions to efficiently and simultaneously compute (a) a single base-2 
martingale d that succeeds on the binary expansion of every real number x for which some base-b martingale succeeds 
on the base-b expansion of x and (b) a particular real number x on which binary expansion d does not succeed. This x is, 
perforce, absolutely normal. Section 6 presents an open problem related to our work.

For our complexity arguments, we use a (log-cost) RAM model. By [2] a nearly linear time bound on this model is 
equivalent a nearly linear time bound for any of the robust models in [16].

2. Lempel-Ziv martingales

For each base b ≥ 1 we let �b = {0, 1, . . . , b − 1} be the alphabet of base-b digits. We write �∗
b for the set of all (finite) 

strings over �b and �∞
b for the set of all (infinite) sequences over �b . We write |x| for the length of a string or sequence 

x, and we write λ for the empty string, the string of length 0. For x ∈ �∗
b ∪ �∞

b and 0 ≤ i ≤ j < |x|, we write x[i.. j] for the 
string consisting of the ith through jth digits in x. For x ∈ �∗

b ∪ �∞
b and 0 ≤ n < |x|, we write x � n = x[0..n − 1]. For w ∈ �∗

b
and x ∈ �∗

b ∪ �∞
b , we say that w is a prefix of x, and we write w 	 x, if x � |w| = w .

In our (log-cost) RAM model, if an input is represented as a string b1 . . .bk the algorithm can in time O (log(i)) request 
and obtain the value of bi for any i.

Let D be the set of dyadic rationals. Let f : �∗
b → [0, ∞) be a function. f is nearly linear time computable if there exists 

a, c > 1 and f̂ : �∗
b → D such that f̂ is exactly nearly linear time computable and for all w ∈ �∗

b , |̂ f (w) − f (w)| ≤ a/|w|c . 
(We denote f̂ as a nearly linear time computation of f .)

Let f : �∗ → [0, ∞) be a function. f is online nearly linear time computable if there exists g : �∗ → [0, ∞) such that
b b

2
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1. f , g are nearly linear time computable, with f̂ and ĝ nearly linear time computations of them;
2. for w ∈ �∗

b, a ∈ �b , f (wa) and g(wa) can be computed in polylogarithmic time from w, ̂f (w), ̂g(w).

A (base-b) martingale is a function d : �∗
b → [0, ∞) satisfying

d(w) = 1

b

∑
a∈�b

d(wa) (1)

for all w ∈ �∗
b . (This is the original martingale notion introduced by Ville [32] and implicit in earlier papers of Lévy [23,24]. 

Its relationship to Doob’s subsequent modifications [12], which are the “martingales” of probability theory, is explained in 
[18] along with the reason why Ville’s original notion is still essential for algorithmic information theory.) Intuitively, a 
base-b martingale d is a strategy for betting on the subsequent digits in a sequence S ∈ �∞

b , with the strategy encoded in 
such a way that d(S � n) is the amount of money that a gambler using the strategy d has after the first n bets. The condition 
(1) says that the payoffs for these bets are fair in the sense that the conditional expectation of d(wa), given that w has 
occurred (and assuming that the digits a ∈ �b are equally likely), is d(w).

A function g : �∗
b → [0, ∞) (which may or may not be a martingale) succeeds on a sequence S ∈ �∞

b if

limsup
n→∞

g(S � n) = ∞, (2)

i.e., if its winnings on S are unbounded. The success set of a function g : �∗
b → [0, ∞) is

S∞[g] = {
S ∈ �∞

b | g succeeds on S
}
.

A function g : �∗
b → [0, ∞) succeeds exponentially on a sequence S ∈ �∞

b if

limsup
n→∞

log g(S � n)

n
> 0, (3)

i.e., if its winnings on S grow at some exponential rate, perhaps with recurrent setbacks. The exponential success set of a 
function g : �∗

b → [0, ∞) is

Sexp[g] = {
S ∈ �∞

b | g succeeds exponentially on S
}
.

The f (n) success set of a function g : �∗
b → [0, ∞) is

S f (n)[g] =
{
S ∈ �∞

b

∣∣∣∣ limsup
n→∞

log g(S � n)

log f (n)
≥ 1

}
.

Note that Sexp[g] = ∪ε>0S2
εn [g].

For technical reasons we will also need to consider the notion of supermartingale, which in many contexts turns out to 
be equivalent to the notion of martingale.

A (base-b) supermartingale is a function d : �∗
b → [0, ∞) satisfying

d(w) ≤ 1

b

∑
a∈�b

d(wa) (4)

for all w ∈ �∗
b .

Lemma 2.1. For each online nearly linear time computable supermartingale d there is an online nearly linear time computable 
martingale d′ and a constant α > 0 such that for every w ∈ �∗

b d′(w) ≥ d(w) − α. If for every w ∈ �∗
b d(w) ≤ a|w|c , then 

d′(w) ≤ a|w|c+1 − α. If for some m, C , d(w) = C for |w| ≤m then d′(w) = C for |w| ≤m.

Proof (proof sketch). We define d′ recursively as follows, d′(λ) = d(λ) and for w ∈ �∗
b, a ∈ �b

d′(wa) = d′(w) + d̂(wa) − 1/b
∑
b′

d̂(wb′)

d′ is online nearly linear computable. It can be proven by induction that d′ is a martingale and that for all for w ∈ �∗
b , 

d′(w) ≥ d̂(w) and d′(w) ≤ ∑
u	w d̂(u). �

A function g : �∗
b → [0, ∞) succeeds strongly on a sequence S ∈ �∞

b if (2) holds with the limit superior replaced by a 
limit inferior i.e., if the winnings converge to ∞. A function g : �∗ → [0, ∞) succeeds strongly exponentially on a sequence 
b

3
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input w ∈ �∗
b ;

x, L(x),d = λ,1,1 ;
T , j = {λ},0 ;
while true do
begin

i f w = λ then output d and hal t ;
i f L(x) = 1 then
begin

L(x) = b ;
for each 0 ≤ a < b do L(xa) = 1 ;
T , x( j), j = T ∪ {x}�b, x, j + 1 ;
x = λ ;

end
else
begin

a, w = head(w), tail(w) ;

L(x), x,d = L(x) + b − 1, xa, bL(xa)
L(x) d

end
end

Fig. 1. Algorithm for computing dLZ(b)(w).

S ∈ �∞
b if (3) holds with the limit superior replaced by a limit inferior i.e., if the winnings grow at exponential rate. The 

strong success sets S∞
str[g] and Sexpstr [g] of a function g : �∗

b → [0, ∞) are defined in the now-obvious manner. It is clear that 
the inclusions

Sexpstr [g] ⊆ Sexp[g] ⊆ S∞[g]
and

Sexpstr [g] ⊆ S∞
str[g] ⊆ S∞[g]

hold for all g : �∗
b → [0, ∞).

For each base b ≥ 2 the base-b Lempel-Ziv martingale is a particular martingale dLZ(b) based on the Lempel-Ziv parsing 
algorithm [22], as we now explain.

Formally, dLZ(b) is computed by the algorithm in Fig. 1, but some explanation is appropriate here. The algorithm is written 
with several instances of parallel assignment. For example, the second line initializes x, L(x), and d to the values λ, 1, and 1, 
respectively. The items T , j, and x( j) are not needed for the computation of dLZ(b)(w), but they are useful for understanding 
and analyzing the algorithm.

The growing set T of strings in �∗
b always contains all the prefixes of all its elements, so it is a tree. We envision this 

tree as being oriented with its root at the top and the immediate children v0, v1, . . . , v(b − 1) of each interior vertex v of 
T displayed left-to-right below T . The dictionary of the algorithm is the current set of leaves of T .

The string x in the algorithm is always an element of (i.e., location in) the tree T , and L(x) is always the number of 
leaves of T that are descendants of x. We regard x as a descendant of itself, so x is a leaf if and only if L(x) = 1.

It is clear that dLZ(b)(λ) = 1. In fact, the algorithm’s successive values of d are the values dLZ(b)(u) for successive prefixes 
u of the input string w . More precisely, if wt and dt are the values of w and d after t executions of the else-block, then 
w = (w � t)wt and dt = dLZ(b)(w � t).

For w ∈ �∗
b we define the tree T (w) as follows. If w = λ, then T (w) = {λ}. If w = w ′a, where w ′ ∈ �∗

b and a ∈ �b , then 
T (w ′a) is the value of T when the algorithm terminates on input w ′ . (Note that this is one step before it terminates on 
input w ′a.) For w ∈ �∗

b we define D(w) to be the number of leaves in T (w). For each x in T (w), L(x, w) is the number of 
leaves of T (w) that are descendants of x.

The computation is divided into “epochs”. At the beginning of each epoch, the string x is λ, i.e., it is located at the root 
of T . The string x then takes successive digits from whatever is left of w (because a, w = head(w), tail(w) removes the first 
digit of w and stores it in a), following this path down the tree and updating d at each step, until w is empty (the end of 
the last epoch) or x is a leaf of T . In the latter case, the jth epoch is over, the b children x0, x1, . . . , x(b − 1) are added to 
T as new leaves, x is the jth phrase x( j) of w , and x is reset to the root λ of T .

When the algorithm terminates, it is clear that exactly one of the following things must hold.

(a) w = λ.
(b) w = x(0) . . . x( j − 1).
(c) w = x(0) . . . x( j − 1)u for some nonempty interior vertex u of T (w).

In case (a) or (b) we call w a full parse. In case (b) or (c) we call x(0), . . . , x( j − 1) the full phrases of w . In case (c) we call 
u the partial phrase of w .
4
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Notice that the function h(w) = (T (w), j(w), D(w)) is online nearly linear time computable. Notice that our algorithm 
does not work in nearly linear time when computing d as a product of |w| factors. We give below an alternative character-
ization of dLZ(b) that will be useful later.

Define the set Ab = {
1+ (b − 1)r

∣∣ r ∈N
}
and the generalized factorial function f actb : Ab → Ab by

f actb(1 + (b − 1)r) =
r∏

k=1

(1+ (b − 1)k)

for all r ∈ N .

Observation 2.2. For all n ∈ Ab,

1 ≤ f actb(n)

e
1

b−1
(n
e

) n
b−1

≤ n. (5)

Using Euler-Maclaurin formula we also have

Observation 2.3. For all n ∈ Ab,

f actb(n) = (6)

C · n n
b−1 · e−(n−1)(b−1) · n1/2 · e(b−1)/(12n) · e−(b−1)3/(720n3) · e(b−1)5/(30240n5) · eO (1/n7). (7)

Using the terms in Observation 2.3 we define

f̂ actb(n) = C · n n
b−1 · e−(n−1)(b−1) · n1/2 · e(b−1)/(12n) · e−(b−1)3/(720n3) · e(b−1)5/(30240n5). (8)

All terms in the definition of f̂ actb(n) are computed with an approximation of eO (1/n7) , that is, all terms in the exponents 
will have precision 7 logn + O (1).

Lemma 2.4. (Feder [13]) Let w ∈ �∗
b .

1. If w is a full parse, then

dLZ(b)(w) = b|w|

f actb(D(w))
.

2. If w is not a full parse and u is its partial phrase, then

dLZ(b)(w) = b|w|

f actb(D(w))
L(u, w),

where L(u, w) is the number of leaves below u in T (w).

The following lemma follows from Lemma 2.4.

Lemma 2.5. For S ∈ �∞
b and α ∈ (0, 1) the following three conditions are equivalent.

(a) S ∈ Sb
(1−α)n [dLZ(b)].

(b) There exist infinitely many full parses w 	 S for which

D(w) logb |w| < α(b − 1)|w|.
(c) There exist infinitely many full parses w 	 S for which

D(w) logb D(w) < α(b − 1)|w|.

Corollary 2.6. For S ∈ �∞
b the following three conditions are equivalent.

(a) S ∈ Sexp[dLZ(b)].
5
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(b) There exist α < 1 and infinitely many full parses w 	 S for which

D(w) logb |w| < α(b − 1)|w|.
(c) There exist α < 1 and infinitely many full parses w 	 S for which

D(w) logb D(w) < α(b − 1)|w|.

We conclude this section by explaining the connection between the Lempel-Ziv martingales and normality. First, Schnorr 
and Stimm [28] defined (implicitly) a notion of finite-state base-b martingale and proved that every sequence S ∈ �∞

b obeys 
the following dichotomy.

1. If S is normal, then no finite-state base-b martingale succeeds on S . (In fact, every finite-state base-b martingale decays 
exponentially on S .)

2. If S is not normal, then some finite-state base-b martingale succeeds exponentially on S .

Some twenty years later, Feder [13] defined (implicitly) the Lempel-Ziv martingale dLZ(b) and proved (implicitly) that 
dLZ(b) is at least as successful on every sequence as every finite-state base-b martingale. That is, for finite-state base-b mar-
tingale d, the inclusions

S∞[d] ⊆ S∞[dLZ(b)], S∞
str[d] ⊆ S∞

str[dLZ(b)],
Sexp[d] ⊆ Sexp[dLZ(b)], Sexpstr [d] ⊆ Sexpstr [dLZ(b)]

all hold. This, together with Schnorr and Stimm’s dichotomy result, implies that dLZ(b) succeeds exponentially on every non-
normal sequence in �∞

b . Hence a real number x is absolutely normal if none of the martingales dLZ(b) succeed exponentially 
on the base-b expansion of x.

In order to avoid time bounds that are dependent on the alphabet size b, we will consider the following variant of dLZ(b) ,

dLZ+(b)(w) =
{
1, if |w| ≤ 2b
dLZ(b)(w)

dLZ(b)(w�2b) , if |w| > 2b.

Notice that S∞[dLZ(b)] = S∞[dLZ+(b)] and that for any a.e. unbounded f , S f (n)[dLZ(b)] = S f (n)[dLZ+(b)].
Notice that if log(|w|) > b then a polynomial bound on b is a polylogarithmic bound on |w|.

3. Savings accounts

In this section we construct a conservative version of the Lempel-Ziv martingale dLZ+(b) consisting of a new super-
martingale d′ that can be smaller than dLZ+(b) but that has a savings account in the sense explained next. We will need this 
conservative version in the base change transformation in section 4.

Definition. A function g : �∗
b → [0, ∞) is a savings account of a supermartingale d : �∗

b → [0, ∞) if g is nondecreasing with respect 
to substring order and, for every w ∈ �∗

b , d(w) ≥ g(w).

In the following construction we use Observation 2.2 and Lemma 2.4 to get a far more conservative version of dLZ+(b) . 
We define a function goal(w) such that

b ≤ dLZ+(b)(w)b−goal(w) ≤ b6|w|2
and then a nondecreasing upper bound taken(w) ≥ goal(w) such that for every S , taken(S � n) coincides with goal(S � n)

infinitely often.

Construction 3.1. Let d = dLZ+(b) be the base-b-Lempel-Ziv martingale. We define a new supermartingale d′ = e′ + g′ as follows.
We first define e′ . Let w ∈ �∗

b . For |w| ≤ 2b, e′(w) = b, taken(w) = 0. For |w| > 2b, let w = x(0) . . . x( j − 1)u, for z =
x(0) . . . x( j − 1) a full parse and u the partial or the last full phrase of w. Let

goal(w) = |w| − 
D(w)(logb(D(w)))/(b − 1)� + �D(w)(logb(e))/(b − 1)�
−
logb(D(w))� − 
logb e

1
b−1 � − 
logb dLZ(b)(w � 2b)� − 1,

taken(w) = max{taken(z), goal(w)},
e′(w) = d(w)b−taken(w).
6
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Let g′ be defined as follows. Let w ∈ �∗
b, a ∈ �b. For |w| ≤ 2b, g′(w) = 0 and for |w| ≥ 2b,

g′(wa) =
{
g′(w) if goal(wa) ≤ taken(w)

g′(w) + e′(w) b−1
b if goal(wa) > taken(w)

Theorem 3.2. Let d′ and g′ be as defined in Construction 3.1. Then d′ is a supermartingale and g′ is its savings account,

Sexp[dLZ(b)] ⊆ S∞[g′],
d′ is computable in an online nearly linear time bound that does not depend on b, and there exists a, c > 1 not depending on b such 
that for every w ∈ �+

b , d′(w) ≤ b · a · |w|c , d′(λ) = b.

Proof of Theorem 3.2.
Notice that from Construction 3.1, we can assume that b < log |w| for all complexity bounds in this proof.

Claim 3.3. d′ = e′ + g′ is a supermartingale and g′ is a savings account for d′.

Proof. Let us prove that d′ is a supermartingale. Note that by definition of D , goal(wa) does not depend on a. When 
goal(wa) ≤ taken(w) we have that∑

a∈�b

e′(wa) = e′(w)

d(w)

∑
a∈�b

d(wa) = b · e
′(w)

d(w)
· d(w) = b · e′(w).

Since g′(wa) is constant the martingale equality holds in this case.
In the second case, when goal(wa) > taken(w), since they are integer values goal(wa) ≥ taken(w) + 1. We have that∑

a∈�b

d′(wa) = ∑
a∈�b

e′(wa) + ∑
a∈�b

g′(wa)

= e′(w)
d(w)

∑
a∈�b

b−goal(wa)+taken(w)d(wa) + ∑
a∈�b

g′(wa)

≤ e′(w) + b(g′(w) + e′(w) b−1
b ) = b(e′(w) + g′(w)) = bd′(w).

Since e′ is nonnegative, by definition g′ is a nondecreasing function. Therefore g′ is a savings account of d′ . �
Claim 3.4. For every w ∈ �∗

b with |w| > 2b

e′(w) = d(w)b−taken(w) ≤ b6 · D(w) · L(u, w).

d(w)b−goal(w) ≥ b

for u the partial or the last full phrase of w.

Proof. Use that taken(w) ≥ goal(w), Lemma 2.4, and Observation 2.2. �
Claim 3.5. If y ∈ �∞

b and goal(y � n) is unbounded then y ∈ S∞[g′].

Proof. If goal(y � n) is unbounded then infinitely often we use the second case in the definition of g′ and have that 
taken(y � n) = goal(y � n) > taken(y � (n − 1)), e′(y � n) = d(y � n)b−goal(y�n) , and g′(y � n) = g′(y � (n − 1)) + e′(y � (n −
1)) b−1

b .
Since goal(y � (n − 1)) ≥ goal(y � n) − 1, then taken(y � (n − 1)) = goal(y � (n − 1)). By Claim 3.4, e′(y � (n − 1)) ≥ b, 

therefore g′(y � n) ≥ g′(y � (n − 1)) + b − 1.
Since g′ is monotonic, y ∈ S∞[g′]. �

Claim 3.6. For every α ∈ (0, 1), Sb(1−α)n [dLZ(b)] ⊆ S∞[g′].

Proof. If y ∈ Sb
(1−α)n [dLZ(b)] then by Lemma 2.5 for infinitely many n, D(y � n) logb(D(y � n)) < α(b − 1)n.

Notice that therefore goal(y � n) is unbounded and by Claim 3.5 y ∈ S∞[g′]. �
Claim 3.7. For every w ∈ �∗

b , e
′(w) ≤ e′(λ) log(|w|)6|w|2 and g′(w) ≤ ∑

v	w e′(v). Therefore d′(w) is polynomially bounded.

Proof. Use Claim 3.4. �

7
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Claim 3.8. d′ can be computed in online nearly linear time (in time n logc n for c not depending on b).

Proof. We first proof that e′ : �∗
b → [0, ∞) can be computed in online nearly linear time. Let

ê′(w) = b|w|

f̂ actb(D(w))
L(u, w)b−taken(w).

Then

|e′(w) − ê′(w)| ≤ b|w|−taken(w)L(u, w)

∣∣∣∣∣ 1

f actb(D(w))
− 1

f̂ actb(D(w))

∣∣∣∣∣
≤ b|w|−taken(w)L(u, w)

∣∣∣∣∣ f̂ actb(D(w)) − f actb(D(w))

f actb(D(w)) · f̂ actb(D(w))

∣∣∣∣∣
≤ b|w|−taken(w)L(u, w)

∣∣∣∣∣1− eO (1/D(w)7)

f actb(D(w))

∣∣∣∣∣ = e′(w)|1 − eO (1/D(w)7)|

≤ e′(w)
1

CD(w)7
+ O (1/D(w)14)

≤ 1

CD(w)4
+ O (1/D(w)11)

Notice that D(w) ≥ √|w|, therefore,
|e′(w) − ê′(w)| ≤ b/C1/|w|2 + O (1/|w|5).

Since ê′ is computable in online nearly linear time, e′ is too.
Again, for w ∈ �∗

b , let w = x(0) . . . x( j − 1)u, for z = x(0) . . . x( j − 1) a full parse and u a partial or full phrase of w . If 
goal(w) > taken(z), let t be the shortest such that t 	 u and goal(zt) > taken(z).

Notice that by Lemma 2.4 and the definition of g′ ,

g′(w) =
{
g′(z) if goal(w) ≤ taken(z)
g′(z) + ∑

v	u,|zv|≥|zt| e′(zt)/L(t, w) b−1
b L(v, w) if goal(w) > taken(z),

where L(v, w) is the number of leaves below v in T (w). Given precomputed values for f (u) = ∑
v	u L(v, w), the value of 

g′(w) can be easily computed in online nearly linear time. �
This completes the proof of Theorem 3.2. �

4. Base change

We use infinite sequences over �b to represent real numbers in [0, 1). For this, we associate each string w ∈ �∗
b with 

the half-open interval [w]b defined by [w]b = [x, x + b−|w|), for x =
|w|∑
i=1

w[i − 1]b−i . Each real number α ∈ [0, 1) is then 

represented by the unique sequence seqb(α) ∈ �∞
b satisfying

w 	 seqb(α) ⇐⇒ α ∈ [w]b
for all w ∈ �∗

b . We have

α =
∞∑
i=1

seqb(α)[i − 1]b−i

and the mapping seqb : [0, 1) → �∞
b is a bijection. (Notice that [w]b being half-open prevents double representations.) We 

define realb : �∞
b → [0, 1) to be the inverse of seqb . A set of real numbers A ⊆ [0, 1) is represented by the set

seqb(A) = {seqb(α) | α ∈ A}
of sequences. If X ⊆ �∞

b then

realb(X) = {realb(x) | x ∈ X}.

8
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Construction 4.1. Let d : �∗
b → [0, ∞) be a polynomially-bounded martingale with a savings account g.

We define γ : �∗
b → [0, 1] a probability measure on �∞

b , γ (w) := b−|w|d(w)/d(λ).
Using the Carathéodory extension to Borel sets, γ can be extended to any interval [a, c]; we denote with γ̂ this extension. (In 

fact if we consider all U ⊆ �∗
b such that all u, v ∈ U , u �= v are incomparable and [u]b ⊆ [a, c] for all u ∈ U , then γ̂ ([a, c]) =

supU
∑

u∈U γ (u)).
We define μ : {0, 1}∗ → [0, 1] by μ(y) = γ̂ ([y]2).
Finally we define d(2) : {0, 1}∗ → [0, ∞) by d(2)(y) = 2|y|μ(y).

Theorem 4.2. Let d be a base-b martingale that is polynomially bounded such that d(w) is constant for |w| ≤ 2b, and let g be a 
savings account of d. Let d(2) be defined from d and g as in Construction 4.1. Then

realb(S
∞[g]) −Q⊆ real2(S

∞[d(2)]).
Moreover, if d is computable in an online nearly linear time bound not depending on b, then so is d(2). If for all w ∈ �+

b , d(w) ≤
a|w|c then for all y ∈ {0, 1}+ , d(2)(y) ≤ 3a|y|c/d(λ).

Proof of Theorem 4.2. We will first show that Carathéodory extension of d works for sequences base change, and then 
approximate the resulting d(2) using d restricted to �m

b for a fixed m.

Property 4.3. If for all w ∈ �∗
b , d(w) ≤ a|w|c then for all y ∈ {0, 1}∗ , d(2)(y) ≤ 3a|y|c/d(λ).

Let y ∈ {0, 1}∗ . Let Ay = {
w ∈ �∗

b | |w| = |y| and [w]b ∩ [y]2 �= ∅}
. Then

d(2)(y) ≤ 2|y| ∑
w∈Ay

b−|w|d(w)/d(λ)

≤ 2|y| ∑
w∈Ay

b−|w|a|w|c/d(λ)

≤ 2|y|(2−|y| + 2b−|y|)a|y|c/d(λ)

≤ 3a|y|c/d(λ)

Property 4.4. Let α ∈ [0, 1) −Q. If seqb(α) ∈ S∞[g], then seq2(α) ∈ S∞[d(2)].

Proof. Let x = seqb(α) ∈ S∞[g]. Let y = seq2(α).
We use here that d has a savings account g , so if g(x � n) >m then for all w with x � n 	 w , g(w) >m.
Let m ∈N and choose n such that g(x � n) >m. Let q be such that [y � q]2 ⊆ [x � n]b (this q exists because α ∈ [0, 1) −Q). 

Let us see that d(2)(y � q) >m/d(λ).
Let r ∈ N . Let Aq

r = {
w ∈ �∗

b | |w| = r and [w]b ⊆ [y � q]2
}
. Then

d(2)(y � q) = 2qγ̂ ([y � q]2) = 2q lim
r

∑
w∈Aq

r

d(w)/d(λ)b−|w|

≥ 2qm/d(λ) lim
r

∑
w∈Aq

r

b−|w| = 2qm/d(λ)2−q =m/d(λ).

The last chain of equations holds because [y � q]2 ⊆ [x � n]b and for every w ∈ Aq
r , [w]b ⊆ [y � q]2, so x � n 	 w for any 

w ∈ Aq
r . �

We next compute d(2) . For each m ∈N we define μm : {0, 1}∗ → [0, 1] by

μm(y) =
∑

|w|=m,[w]b∩[y]2 �=∅
γ (w).

Claim 4.5. For every y ∈ {0, 1}∗ and m ∈N , |μ(y) − μm(y)| ≤ 2b−mamc/d(λ).

Proof. Let a, c be such that d(w) ≤ a|w|c for every w (using that d is polynomially bounded). Then since at most two 
strings w with |w| =m have the property that [w]b ∩ [y]2 �= ∅ and [w]b � [y]2, we have

|μ(y) − μm(y)| ≤ 2b−mamc/d(λ). �

9
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For each m ∈N we define d(2)
m : {0, 1}∗ → [0, ∞) by d(2)

m (y) = 2|y|μm(y).

Claim 4.6. For some c > 0, for every y ∈ {0, 1}∗ , for every m ∈N ,

|d(2)(y) − d(2)
m (y)| ≤ 2|y|2−m logb+c logm+1/d(λ).

Corollary 4.7. For some c′ > 0, for every y ∈ {0, 1}∗ ,

|d(2)(y) − d(2)
|y|/ logb+c′ log |y|(y)| ≤ 1/|y|3 · 1/d(λ).

Proof. Take c′ = (4 + c)/ logb and use the previous claim. �
Property 4.8. For m ∈ N , y ∈ {0, 1}∗ , d(2)

m (y) can be computed by considering a maximum of 2b neighbor strings w ∈ �r
b for r =

|y|/ logb to m, computing d(w) for each of them and doing an addition and a multiplication for each.

Proof. Consider P , the smallest prefix free set of strings w ∈ �∗
b such that [w]b ⊆ [y]2, and notice that |w| ≥ |y|/ logb for 

each such string. For each r there are at most 2b − 2 strings of length r in P (otherwise we can replace some of them by a 
single string of length r − 1). For length m we may need two more strings |w| =m, [w]b ∩ [y]2 �= ∅. �
Corollary 4.9. For y ∈ {0, 1}∗ , d(2)

|y|/ logb+c′ log |y|(y) can be computed by considering a maximum of 2b neighbor strings w ∈ �r
b for 

r = |y|/ logb to |y|/ logb + c′ log |y|, computing d(w) for each of them and doing an addition and a multiplication for each.

By Corollary 4.7 f (y) = d(2)
|y|/ logb+c′ log |y|(y) approximates d(2)(y) within a 1/|y|3 ·1/d(λ) bound, and by the last corollary 

f can be computed in online nearly linear time. Using that d(w) is constant for |w| ≤ 2b we have a nearly linear time 
bound independent of b.

This concludes the proof of Theorem 4.2. �
5. Absolutely normal numbers

In this section we give an algorithm that diagonalizes against the Lempel-Ziv martingales for all bases in nearly linear 
time.

We use the following theorem which is a union lemma for online nearly linear martingales that works for a set of 
martingales that is uniformly computable, uniformly approximated and uniformly polynomially bounded.

Theorem 5.1. Let (dk)k∈N be a sequence of base-2 martingales such that for each of them there exists a function d̂k : {0, 1}∗ → [0, ∞)

with the following properties

1. d̂k is computable in an online nearly linear time bound that does not depend on k.
2. There is a, c > 1 such that for every k ∈N , y ∈ {0, 1}∗

|dk(y) − d̂k(y)| ≤ a

|y|c .

3. dk(λ) = d̂k(λ) = 1 and there is a, c > 1 such that for every k ∈N , y ∈ {0, 1}∗ , dk(y) ≤ a|y|c .

Then we can compute in online nearly linear time a binary sequence x such that, for every k, x /∈ S∞[dk].

Proof. Let d : {0, 1}∗ → [0, ∞) be defined by

d(w) =
∞∑
k=1

2−kdk(w).

Then d is a martingale. Let ̂d : {0, 1}∗ → [0, ∞) be

d̂(w) =
(c+2) log |w|+loga∑

k=1

2−kd̂k(w).

Notice that ̂d is computable in online nearly linear time.
10
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Claim 5.2. For each w ∈ {0, 1}∗ , |d(w) − d̂(w)| ≤ (a + 1)/|w|c+1 .

|d(w) − d̂(w)| ≤
(c+2) log |w|+loga∑

k=1

2−k|dk(w) − d̂k(w)| +
∞∑

k=(c+2) log |w|+loga+1

2−kdk(w)

≤
(c+2) log |w|+loga∑

k=1

2−ka/|w|c +
∞∑

k=(c+2) log |w|+loga+1

2−ka|w|c

≤ a/|w|c + a|w|c/(a|w|c+2) = a/|w|c + 1/|w|2.
Our algorithm will diagonalize against d, constructing a binary sequence x as follows. If x � n has been defined then 

choose the next bit of x as i ∈ {0, 1} that minimizes ̂d((x � n)i).

Claim 5.3. If x /∈ S∞[d] then for every k, x /∈ S∞[dk].

Let n ∈N, k ∈N , dk(x � n) ≤ 2kd(x � n).

Claim 5.4. x /∈ S∞[d].

Let w ∈ {0, 1}∗ . We prove that for i ∈ {0, 1} chosen to minimize ̂d(wi) it holds that d(wi) ≤ d(w) + (a + 1)/(|w| + 1)c+1.
Since ̂d(wi) ≤ d̂(w(1 − i)) it holds that

d(wi) ≤ d̂(wi) + (a + 1)/(|w| + 1)c+1

≤ d̂(w(1 − i)) + (a + 1)/(|w| + 1)c+1 ≤ d(w(1 − i)) + 2(a + 1)/(|w| + 1)c+1.

Since d is a martingale, it follows that d(wi) ≤ d(w) + (a + 1)/(|w| + 1)c+1.
Therefore

d(x � n) ≤ d(x � (n − 1)) + (a + 1)/nc+1

and x /∈ S∞[d]. �
We now have all the ingredients for our main result.

Theorem 5.5. There is an explicit algorithm that computes the binary expansion of an absolutely normal number z in online nearly 
linear time.

Proof. The algorithm arises from a combination of Theorem 3.2, Lemma 2.1, Theorem 4.2, and Theorem 5.1, notice that all 
of them give fully explicit constructions.

As explained in section 2, a real number z is absolutely normal if none of the martingales dLZ+(b) succeed exponentially 
on the base-b expansion of z.

For each b, let d be the polynomially bounded and online nearly linear time computable supermartingale with a sav-
ings account g′ defined in Theorem 3.2 and construction 3.1 as a conservative substitute of dLZ+(b) (that is, Sexp[dLZ(b)] =
Sexp[dLZ+(b)] ⊆ S∞[g′]).

Let d′ be the online nearly linear time computable and polynomially bounded martingale with d′(w) ≥ d(w) for all w
given by Lemma 2.1. Notice that since d′(w) ≥ d(w), g′ is a savings account for d′ .

For b �= 2, we now use Theorem 4.2 for d′, g′ and we have an online nearly linear time computable martingale 
d(2) : {0, 1}∗ → [0, ∞) that succeeds on the base-2 expansion of the irrational reals with base-b expansion in S∞[g′]
(realb(S∞[g′]) −Q ⊆ real2(S∞[d(2)])).

For b = 2 we directly take d(2)(w) = d′(w)/d′(λ). Notice that Q ⊆ realb(S∞[d′]) because seqb(Q) ⊆ Sexp[dLZ(b)].
For each b the computation of db = d(2) fulfills the conditions of Theorem 5.1, so we can compute in online nearly linear 

time a binary sequence x such that, for every b, x /∈ S∞[db] and therefore real2(x) /∈ realb(Sexp[dLZ(b)]). So x is the binary 
expansion of an absolutely normal number. �
6. Open problem

Many questions arise naturally from this work, but the following problem appears to be especially likely to demand new 
and useful methods.

As we have seen, normal numbers are closely connected to the theory of finite automata. Schnorr and Stimm [28] proved 
that normality is exactly the finite-state case of randomness. That is, a real number α is normal in a base b ≥ 2 if and only 
11
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if no finite-state automaton can make unbounded money betting on the successive digits of the base-b expansion of α with 
fair payoffs. The theory of finite-state dimension [11], which constrains Hausdorff dimension [17] to finite-state automata, 
assigns each real number α a finite-state dimension dim(b)

FS (α) ∈ [0, 1] in each base b. A real number α then turns out to 
be normal in base b if and only if dim(b)

FS (α) = 1 [8]. Do there exist absolutely dimensioned numbers, i.e., real numbers α for 
which dimFS(α) = dim(b)

FS (α) does not depend on b, and 0 < dimFS(α) < 1?
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