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Abstract

The Schnorr-Stimm dichotomy theorem [31] concerns finite-state
gamblers that bet on infinite sequences of symbols taken from a finite
alphabet ¥. The theorem asserts that, for any such sequence S, the
following two things are true.

(1) If S is not normal in the sense of Borel (meaning that every two
strings of equal length appear with equal asymptotic frequency in 5),
then there is a finite-state gambler that wins money at an infinitely-
often exponential rate betting on S.

(2) If S is normal, then any finite-state gambler betting on .S loses
money at an exponential rate betting on S.

In this paper we use the Kullback-Leibler divergence to formulate
the lower asymptotic divergence div(S||a) of a probability measure «
on Y from a sequence S over X and the upper asymptotic divergence
Div(S||a) of a from S in such a way that a sequence S is a-normal
(meaning that every string w has asymptotic frequency a(w) in S) if
and only if Div(S||a)) = 0. We also use the Kullback-Leibler divergence
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to quantify the total risk Riskg(w) that a finite-state gambler G takes
when betting along a prefix w of S.

Our main theorem is a strong dichotomy theorem that uses the
above notions to quantify the exponential rates of winning and los-
ing on the two sides of the Schnorr-Stimm dichotomy theorem (with
the latter routinely extended from normality to c-normality). Modulo
asymptotic caveats in the paper, our strong dichotomy theorem says
that the following two things hold for prefixes w of S.

(1') The infinitely-often exponential rate of winning in 1 is 2P1(

(2') The exponential rate of loss in 2 is 2~ Riska(w),

We also use (1') to show that 1—Div(S||a)/c, where ¢ = log(1/min,ex a(a)),
is an upper bound on the finite-state a-dimension of S and prove the
dual fact that 1 — div(S||a)/c is an upper bound on the finite-state
strong a-dimension of S.

Sjo)w]

1 Introduction

An infinite sequence S over a finite alphabet is normal in the 1909 sense
of Borel [7] if every two strings of equal length appear with equal asymp-
totic frequency in S. Borel normality played a central role in the origins of
measure-theoretic probability theory [6] and is intuitively regarded as a weak
notion of randomness. For a masterful discussion of this intuition, see section
3.5 of [22], where Knuth calls normal sequences “oo-distributed sequences.”

The theory of computing was used to make this intuition precise. This
took place in three steps in the 1960s and 1970s. First, Martin-Lof [28§]
used constructive measure theory to give the first successful formulation of
the randomness of individual infinite binary sequences. Second, Schnorr [30]
gave an equivalent, and more flexible, formulation of Martin-Lo6f’s notion
in terms of gambling strategies called martingales. In this formulation, an
infinite binary sequences S is random if no lower semicomputable martingale
can make unbounded money betting on the successive bits of S. Third,
Schnorr and Stimm [31] proved that an infinite binary sequence S is normal
if and only if no martingale that is computed by a finite-state automaton
can make unbounded money betting on the successive bits of S. That is,
normality is finite-state randomness.

This equivalence was a breakthrough that has already had many conse-
quences (discussed later in this introduction), but the Schnorr-Stimm result
said more. It is a dichotomy theorem asserting that, for any infinite binary
sequence S, the following two things are true.

1. If S is not normal, then there is a finite-state gambler that makes



money at an infinitely-often exponential rate when betting on S.

2. If S'is normal, then every finite-state gambler that bets infinitely many
times on S loses money at an exponential rate.

The main contribution of this paper is to quantify the exponential rates
of winning and losing on the two sides (1 and 2 above) of the Schnorr-Stimm
dichotomy.

To describe our main theorem in some detail, let ¥ be a finite alphabet. It
is routine to extend the above notion of normality to an arbitrary probability
measure « on Y. Specifically, an infinite sequence S over % is a-normal if
every finite string w over Y appears with asymptotic frequency a‘w|(w) in
S, where o is the natural (product) extension of a to strings of length
¢. Schnorr and Stimm [31] correctly noted that their dichotomy theorem
extends to a-normal sequences in a straightforward manner, and it is this
extension whose exponential rates we quantify here.

The quantitative tool that drives our approach is the Kullback-Leibler
divergence [23|, also known as the relative entropy [12|. If o and S are
probability measures on X, then the Kullback-Leibler divergence of 8 from «

1S
(%

3’
i.e., the expectation with respect to « of the random variable log & : ¥ —
R U {oo}, where the logarithm is base-2. Although the Kullback-Leibler
divergence is not a metric on the space of probability measures on X, it does
quantify “how different” 8 is from «, and it has the crucial property that
D(al|B) > 0, with equality if and only if o = S.

Here we use the empirical frequencies of symbols in S to define the asymp-
totic lower divergence div(S||a) of o from S and the asymptotic upper diver-
gence Div(S||a) of o from S in a natural way, so that S is a-normal if and
only if Div(S||a) = 0.

The first part of our strong dichotomy theorem says that the infinitely-

D(al|B) = Eq log

often exponential rate that can be achieved in 1 above is essentially at least
oPiv(Slle)lwl where w is the prefix of S on which the finite-state gambler has
bet so far. More precisely, it says the following.

1. If S is not a-normal, then, for every v < 1, there is a finite-state
gambler G such that, when G bets on S with payoffs according to «,

there are infinitely many prefixes w of S after which G’s capital exceeds
97 Div(S|le)|w]



The second part of our strong dichotomy theorem, like the second part
of the Schnorr-Stimm dichotomy theorem, is complicated by the fact that
a finite-state gambler may, in some states, decline to bet. In this case, its
capital after a bet is the same as it was before the bet, regardless of what
symbol actually appears in S. Once again, however, it is the Kullback-Leibler
divergence that clarifies the situation. As explained in section 3 below, in any
particular state ¢, a finite-state gambler’s betting strategy is a probability
measure B(q) on X. If B(q) = «, then the gambler does not bet in state gq.
We thus define the risk that the gambler G takes in state ¢ to be

riska(q) = D(al|B(q)),

i.e., the divergence of B(q) from not betting. We then define the total risk
that the gambler takes along a prefix w of the sequence S on which it is
betting to be the sum Riskg(w) of the risks riskg(q) in the states that G
traverses along w. The second part of our strong dichotomy theorem says
that, if S is a-normal and G is a finite-state gambler betting on S, then after
each prefix w of .S, the capital of G on prefixes w of S is essentially bounded
above by 27 Riskc(w) ~ In some sense, then, G loses all that it risks. More
precisely, the second part of our strong dichotomy says the following.

2. If S is a-normal, then, for every finite-state gambler G and every v < 1,
after all but finitely many prefixes w of S, the gambler G’s capital is
less than 27 Riska(w),

A routine ergodic argument, already present in [31], shows that, if a
finite-state gambler G bets on an a-normal sequence S, then every state of
G that occurs infinitely often along S occurs with positive frequency along
S. Hence 2 above follows from 2" above.

Our strong dichotomy theorem has implications for finite-state dimen-
sions. For each probability measure o on 3 and each sequence S over 3, the
finite-state a-dimension dimfg(S) and the finite-state strong a-dimension
Dim@q(S) (defined in section 4 below) are finite-state versions of Billingsley
dimension [5, 10| introduced in [26]. When « is the uniform probability mea~
sure on X, these are the finite dimension dimpg(S), introduced in [14] as a
finite-state version of Hausdorff dimension [20, 17|, and the finite-state strong
dimension Dimpg(.S), introduced in [2] as a finite-state version of packing di-
mension [35, 34, 17]. Intuitively, dim{q(S) and Dimgg(S) measure the lower
and upper asymptotic a-densities of the finite-state information in S.

Here we use part 1 of our strong dichotomy theorem to prove that, for
every positive probability measure a on ¥ and every sequence S over 3,

dimpg(S) < 1 — Div(S||a)/c,



where ¢ = log(1/mingeyx; a(a)). We also establish the dual result that, for all
such a and S,
Dimfg(S) < 1 —div(S||a)/c.

Research on normal sequences and normal numbers (real numbers whose
base-b expansions are normal sequences for various choices of b) has grown
rapidly in recent years. Part of this is due to the fact that Agafonov [1]
and Schnorr and Stimm [31] connected the theory of normal numbers so di-
rectly to the theory of computing. Further work along these lines has been
continued in |21, 29, 3, 33|. After the discovery of algorithmic dimensions
in the present century [24, 25, 14, 2|, the Schnorr-Stimm dichotomy led to
the realization [8] that the finite-state world, unlike any other known to
date, is one in which maximum dimension is not only necessary, but also
sufficient, for randomness. This in turn led to the discovery of nontrivial
extensions of classical theorems on normal numbers [11, 36] to new quanti-
tative theorems on finite-state dimensions [19, 16|, a line of inquiry that will
certainly continue. It has also led to a polynomial-time algorithm [4] that
computes real numbers that are provably absolutely normal (normal in ev-
ery base) and, via Lempel-Ziv methods, to a nearly linear time algorithm for
this [27]. In parallel with these developments, connections among normality,
Weyl equidistribution theorems, and Diophantine approximation have led
to a great deal of progress surveyed in the books [15, 9]. This paragraph
does not begin to do justice to the breadth and depth of recent and ongoing
research on normal numbers and their growing involvement with the theory
of computing. It is to be hoped that our strong dichotomy theorem and the
quantitative methods implicit in it will further accelerate these discoveries.

2 Divergence and normality

This section reviews the discrete Kullback-Leibler divergence, introduces
asymptotic extensions of this divergence, and uses these to give useful char-
acterizations of Borel normal sequences.

2.1 The Kullback-Leibler divergence

We work in a finite alphabet ¥ with 2 < || < co. We write ¢ for the set of
strings of length £ over 3, ¥* = [ J;2, % for the set of (finite) strings over X,
3¢ for the set of (infinite) sequences over X, and X% = ¥* U ¥%. We write
A for the empty string, |w| for the length of a string w € ¥*, and |S| = w for
the length of a sequence S € ¥*. For x € ¥=¢ and 0 < i < |z|, we write z[i]



Figure 1: Two views of the simplex A({0, 1,2})

for the i-th symbol in x, noting that x[0] is the leftmost symbol in z. For
r €Y% and 0 < i < j < |z|, we write z[i..j] for the string consisting of the
i-th through j-th symbols in x.

A (discrete) probability measure on a nonempty finite set €2 is a function
7 : Q — [0, 1] satisfying

Y ww) =1 (2.1)
we

We write A(Q) for the set of all probability measures on 2, AT(Q) for
the set of all # € A(Q) that are strictly positive (i.e., m(w) > 0 for all
w € ), Ag(Q2) for the set of all 7 € A(2) that are rational-valued, and
Aa(Q) = AT(2) N Ag(R2). In this paper we are most interested in the case
where 2 = ¥ for some ¢ € ZF.

Intuitively, we identify each probability measure 7 € A(£2) with the point
in RI®l whose coordinates are the probabilities 7(w) for w € Q. By (2.1)
this implies that A(Q) is the (]Q| — 1)-dimensional simplex in RI®l whose
vertices are the points at 1 on each of the coordinate axes. (See Figure 1
for an illustration with |2|= 3.) For each w € {2, the vertex on axis w is
the degenerate probability measures 7, with 7, (w) = 1. The centroid of the
simplex A(€) is the uniform probability measure on €2, and the (topological)
interior of A(Q) is AT(Q). We write dA(Q) = A(Q) ~ AT(Q) for the
boundary of A(f).



Definition. (/23/). Let o, 8 € A(SY), where  is a nonempty finite set. The
Kullback-Leibler divergence (or KL-divergence) of 8 from a is

INaHﬁ)=:Ehlm;%, (2.2)

where the logarithm is base-2.

Note that the right-hand side of (2.2) is the a-expectation of the random
variable o
log—=: Q2 —R

B
defined by
a L aw)
(o85) )= u 55
for each w € Q. Hence (2.2) is a convenient shorthand for
Dalld) = 3 ae) log 5.

weN

Note also that D(«||3) is infinite if and only if a(w) > 0 = f(w) the some
w € .

The Kullback-Leibler divergence D(al|f) is a useful measure of how dif-
ferent 5 is from «. It is not a metric (because it is not symmetric and
does not satisfy the triangle inequality), but it has the crucial property that
D(a||8) > 0, with equality if and only if @« = . The two most central
quantities in Shannon information theory, entropy and mutual information,
can both be defined in terms of divergence as follows.

1. Entropy is divergence from certainty. The entropy of a probability
measure o € A(f), conceived by Shannon [32]| as a measure of the
uncertainty of «, is

H(a) =) a(w)D(m,||a), (2.3)

weN

i.e., the a-average of the divergences of o from the “certainties” .
b w

2. Mutual information is divergence from independence. If a, € A(Q)
have a joint probability measure v € A(2 x Q) (i.e., are the marginal
probability measures of 7), then the mutual information between av and
B, conceived by Shannon [32] as a measure of the information shared
by a and (3, is

Ia; B) = D(aBlh), (2.4)



i.e., the divergence of v from the probability measure in which « and
B are independent.

Two additional properties of the Kullback-Leibler divergence are useful
for our asymptotic concerns. First, the divergence D(«/||3) is continuous on
A(2)? (as a function into [0, oc]). Hence, if o, € A(f2) for each n € N and

lim «a,, = « in the sense of the Euclidean metric on the simplex A(€2), then
n—oo

li_)rn D(ay||la) = lim D(a||ay,) = 0. Second, the converse holds. It is well
n—oo n—o0
known [12] that

D) 2 5ozl Bl

where [la — Bll; = > cqla(w) — B(w)] is the Z-norm. Hence, if either
hm D(ap]la) =0 or hm D(allay,) = 0, then h_)m an = .

More extensive dlscussmns of the Kullback-Leibler divergence appear in

12, 13].

2.2 Asymptotic divergences

For nonempty strings w,x € ¥*, we write

#o(w,x) = ‘{m < M —1 | z[m|w|..(m + 1)|w| — 1] = w}

|w]

for the number of block occurrences of w in x. Note that 0 < #5(w,x) < %

For each S € ¥¥ n € Z*, and A # w € ¥*, the n-th block frequency of
s #0(w, S[0-njul 1)
w, S[0..n|w|—

Note that (2.5) defines, for each S € X and n € Z™, a function

ni X N {A}— Q.

For each such S and n and each £ € Z™, let ng)n =T | »¢ be the restriction
of the function 7g,, to the set »¢ of strings of length .

Observation 2.1. For each S € X% and n, { € 7T,
T € Ag(X),

(0)

i.e., Ty, 18 a rational-valued probability measure on .



We call ng)n the n-th empirical probability measure on %f given by S.
A probability measure a@ € A(X) naturally induces, for each ¢ € Z*, a
probability measure o) € A(X¢) defined by

|w|—1
a9 (w) = H a(wli]). (2.6)

The empirical probability measures ng) provide a natural way to define

useful empirical divergences of probability measures from sequences.

Definition. Let £ € ZT, S € X%, and a € A(X).

1. The lower £-divergence of o from S is dive(S||a) = liniinfD(Ttg)nHa(Z)).
2. The upper (-divergence of a from S is Divy(S||a) = lim sup D(ﬂg)nHOé(g)).
n—o0 ’

3. The lower divergence of a from S is div(S||a) = sup dive(S||a)/¥.
ezt

4. The upper divergence of o from S is Div(S||a) = supyez+ Dive(S||a) /L.

A similar approach gives useful empirical divergences of one sequence
from another.

Definition. Let £ € Z+ and S, T € ¥¥.

1. The lower £-divergence of T' from S is dive(S||T) = linl)infD(nSnH T[Tn).

o

The upper £-divergence of T' from S is Divy(S||T") = lim sup D(7TS n|| T[T n)
n—o0

3. The lower divergence of T' from S is div(S||T) = supyez+ dive(S||T) /L.

4. The upper divergence of T' from S is Div(S||T) = sup,ez+ Dive(S||T)/¢.

2.3 Normality

The following notions are essentially due to Borel [7].
Definition. Let a € A(X), S € X%, and L € ZT.

1. S is a-f-normal if, for all w € ¥,

lim 75, (w) = a9 (w).



2. S is a-normal if, for all £ € ZF, S is a-f-normal.

8. S is L-normal if S is p-€-normal, where p is the uniform probability
measure on 3.

4. S is normal if, for all £ € 777, S is £-normal.

Lemma 2.2. For all « € A(X), S € X%, and £ € Z™, the following four
conditions are equivalent.

(1) S is a--normal.
(2) Div,(S||a)=0.
(8) For every a-f-normal sequence T € ¥, Div,(S||T) = 0.
(4) There exists an a-C-normal sequence T € 3 such that Divy(S||T) = 0.
Proof. Let «, S, and £ be as given.
To see that (1) implies (2), assume (1). Then lim ng)n = a9 so the

n—oo
continuity of KL-divergence tells us that

. T (£) 0y _
Div,(S||a) = nll_l}I;OD(T[SmHOé ) =0,

i.e., that (2) holds.
To see that (2) implies (3), assume (2). Then li_>m D(ng)nﬂa(g)) =

¢Divy(S]|a)) = 0, whence the .Z7 bound in section 2.1 tells us that lim T[g)n =

n—oo

. For any a-f-normal sequence T € ¥¥, we have lim ng,{)n = a(é), whence
n—oo ’

the continuity of KL-divergence tells us that
: Y @) 110\ _ 01,0 —
Dive(S|IT) = lim D) mf)) = D(@®][ja®) =0,

i.e., that (3) holds.

Since a-f-normal sequences exist, it is trivial that (3) implies (4).

Finally, to see that (4) implies (1), assume that (4) holds. Then we have

: 0 11O\ _ 1y —
nli}n;OD(T[S,anT,n) - DIVZ(SHT) - 07

whence the £ bound in section 2.1 tells us that

. 4 4
lim [Img), =m0, [, = 0. (27)

10



We also have

: 0 _ (0
W T =

whence ,
Jimn 1, — o0, = 0. (28)

By (2.7), (2.8), and the triangle inequality for the Zj-norm, we have
: 0 _ O —
Jim g, — o =0,
whence
lim TE(SZ)H = oz(é),
n—oo ’
i.e., (1) holds. O

Lemma 2.2 immediately implies the following.

Theorem 2.3 (divergence characterization of normality). For all « € A(X)
and S € 3%, the following conditions are equivalent.

(1) S is a-normal.
(2) Div(S||a) = 0.
(3) For every a-normal sequence T € ¥, Div(S||T) = 0.

(4) There exists an a-normal sequence T € ¥ such that Div(S||T) = 0.

3 Strong Dichotomy

This section presents our main theorem, the strong dichotomy theorem for
finite-state gambling. We first review finite-state gamblers.
Fix a finite alphabet ¥ with |X| > 2.

Definition (|31, 18, 14]). A finite-state gambler (FSG) is a 4-tuple
G = (Q7 57 87 B)7

where Q) is a finite set of states, § : QQ X X — @Q is the transition function,
s € Q is the start state, and B : Q — Ag(X) is the betting function.

11



The transition structure (@, J, s) here works as in any deterministic finite-
state automaton. For w € ¥*, we write d(w) for the state reached from s by
processing w.

Intuitively, a gambler G = (Q,d, s, B) bets on the successive symbols
of a sequence S € X¥. The payoffs in the betting are determined by a
payoff probability measure o € A(X). (We regard a and S as external to
the gambler G.) We write dg o(w) for the gambler G’s capital (amount of
money) after betting on the successive bits of a prefix w C S, and we assume
that the initial capital is dg o(\) = 1.

The meaning of the betting function B is as follows. After betting on a
prefix w C S, the gambler is in state §(w) € Q. The betting function B says
that, for each a € 3, the gambler bets the fraction B(d(w))(a) of its current
capital dg o(w) that wa C S, i.e., that the next symbol of S is an a. If it
then turns out to be the case that wa C S, the gambler’s capital will be

B(0(w))(a)
a(a)
(Note: If a(a) = 0 here, we may define dg o(wa) however we wish.)

The payoffs in (3.1) are fair with respect to a, which means that the
conditional a-expectation

dgo(wa) = dgo(w) (3.1)

Z a(a)dg,qo(wa)

(D>

of dgo(wa), given that w C S, is exactly dgq(w). This says that the
function dg  is an a-martingale.
If 6(w) = q is a state in which B(q) = «, then (3.1) says that, for each
a € %, dgo(wa) = dgo(w). That is, the condition B(q) = a means that
G does not bet in state g. Accordingly, we define the risk that G takes in a
state ¢ € @) to be
riska(q) = D(e|[B(q))-

i.e., the divergence of B(q) from not betting. We also define the total risk
that G takes along a string w € ¥* to be

Riskg(w) = ) riskg (8(w)).

uCw

We now state our main theorem.

Theorem 3.1 (strong dichotomy theorem). Let a € A(X), S € ¥, and
v <1

12



1. If S is not a-normal, then there is a finite-state gambler G such that,
for infinitely many prefizes w C S,

dg.o(w) > 27 PV Sllelwl
2. If S is a-normal, then, for every finite-state gambler G, for all but
finitely many prefives w C S,
dg.o(w) < 9~ Riskg (w)
Proof. To prove the first part, let .S be a non-normal sequence. Then by

Theorem 2.3 we know that Div(S||a) > 0. Let » < 1 and let € > 0. By the
definition of Div(S||a) there must exist ¢ such that

Divy(S||a)/€ > r Div(S||a). (3.2)

That is
lim sup D(Ttg)nHa(z)) > {r Div(S||a).
n—oo

We can pick a subsequence of indices ng’s, such that limg_, o D(T[,(;)nk |al®)) =
Divy(S||a). Therefore by inequality (3.2)

D(ry), [|la®) > ¢rDiv(S]|a) (3.3)

for sufficiently large k. In particular, by compactness of RIZI equipped with
Z-norm, we can further request that

kli)rr;o ﬂg)nk exists. (3.4)

Let my = mo(r,m) € Ag(XY) be the m-th ﬂg)nk that satisfies (3.3), in-
dexed by k. By the way we define 71y, we have

D(7tsm, ||a'?) > D(mol|a?) > £r Div(S||a), (3.5)

and
||to — ﬁg)nhH — 0, asm — oo and k — o0, (3.6)

whence D’s continuity in section 2.1 tells us that

D(r),,lIm) 0. asm — oo and k - oo. &7

13



Also note that,

lim D(m||el?) = lim D(r) ||al?) = Divy(S||e) > 0. (3.8)
m—r0o0 k—o00 STk
For a fixed 1ty = 79(r, m), by the definition, for any ny sufficiently large,
we have

D), [1a) > D(rolja@)(1 - ) > 0. (3.9)

By doing the above we pick a probability measure 7 that is “far” away
from o), we now hard code 7y in a gambler G = (Q, 6, s, B), where

if L
Q=xs1, o(w,a) = wa 1 wal < , s= A, and B(w)(a) = my(a|w),
A if |wa| =¢

where 7y(a|w) describes the conditional probability (induced by 719) of oc-
currence of an a after w € @, and is defined by my(a|lw) = mp(wa)/mH(w),
where for v € @, the notation my(u) is defined recursively by mo(w) =
ZaEE 0 (wa)

Note that G can be viewed as a gambler gambling on every ¢ symbols,
in the way that he always “waits” until he sees the first £ — 1 symbols of a
string u = wa of length ¢, and then bets a fraction of 7p(wa) of his capital
on the next symbol being an a.

Let u = ag---ag—; be in Xf. The following observation captures the
above intuition:

B(XN)(ap) -+ - B(u[0..£ —2])(ap—1)  mo(u)

a(ap) - - - o(ag-1) ~ aO(u)

Now let w = S [ ng for some k. We can view w as
W = UQU] ** * Up—1Up, Where |u;| =€ for 0 <i<n—1and u, =ag---ay, with m <.

Then we have

n n—1
7o (u;)\ B(A)(ag) - -+ B(up[0..m — 1)) (am) 700 (u;)
dg.o(w) = >C ,
Gaw) (1;[ a(ui)) a(ag) -~ alan) 01;[ o(w)
(3.10
where Cj is the minimum value of B(A)(ao)"'B("”[O‘m_u)(am), where u, =

a(ao)--ofag—1)

14



ag - - - @y ranges over ¥<¢.  Taking log on both sides of (3.10) we get

n—1
=0 W
#[\(’LL,’[U) U) O(U)
mZ::e " O (u) %Z S8 30 ()
”(Z)n(u) Tt(é)n(u)
_n|§|: [ () log 75 B — ) (u)log ;(;(u) ]
ul=~¢
— (D0 1) — DY, 1m0)) @11)

Then by (3.7) and (3.9), we have
log dg, —10g Cy > n(D(n), [l — D(),|[m0))

> n(D(rolla®)(1 ~ )~ Dl im0)) = D)1~ 26).
Therefore, by (3.5) we have

dg o(w) > Cp2 T2 D(ol|a(®) 5 gfuwlr(1-26) Div(S]la)
Since r and 1 — 2¢ can be picked arbitrary close to 1, take r(1 — 2¢) > ~,

then
dg.o(w) > 97 Div(S]|a)|w]

for w = S | ng long enough.

We now prove the second part of the main theorem.

Let S be a normal number, G an arbitrary finite-state gambler. By
Proposition 2.5 of [31], G = (Q,J, s, B) will eventually reach to a bottom
strongly connected component (a component that has no path to leave) when
processing S. A similar argument can also be found in [33]. Without loss
of generality, we will therefore assume that every state in G is recurrent in
processing S.

Let w=ag---ap_1 CS. Then

BO\)(ao) --- 3(5( [a0--an—2]))(an-1)

46,a(w) = a{a0) - afan_1)
B a)\ #ac,w(g,a)
-1 11 ( C(M‘a() )> , (3.12)

qEQ aeX
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where the notation #¢ (¢, a) denotes the number of times G lands on state

g and the next symbol is a while processing w. Similarly, we use the notation

#G w(q) to denote the number of times G lands on ¢ in the same process.
Taking the logarithm of both sides of (3.12), we have

logdga(w) =Y #awlg a)log (()())

qeEQ aeX
#Gw Q7 B(Q)(a)
= q;?#cw 26; - )10 8 =) (3.13)

By a result of Agafonov [1], which extends easily to the arbitrary proba-
bility measures considered here, we have that, for every state g, the limit of

7#;5“ (‘(1:;) along S exists and converges to a(a). That is

lim #Gw(% )

B o = a(a), (3.14)

for every state q.
Therefore, by equations (3.13) and (3.14), and the fact that there are
finitely many states, we have

log dea(w) < #a.u(a) > (a(a) + o(1)) log B(cé)()a)
qeQ agXl
—Z-I‘lSkG V#cw(g +Z#Gw Zo(l) log B(q)(a)
7€ a€Q a€x a(a)
= — RlSkG —|— Z #G w Z 0(1) log B(Q)(a)
qeQ (DY a(a)

= Riskg(w)(—1 + o(1)).

It follows that

dG a(w) < 2_(1+0(1)) Riskp (w)

)

so part 2 of the theorem holds.

4 Dimension

Finite-state dimensions give a particularly sharp formulation of part 1 of the
strong dichotomy theorem, along with a dual of this result.

16



Finite-state dimensions were introduced for the uniform probability mea-
sure on ¥ in [14, 2] and extended to arbitrary probability measure on ¥ in

[26]. For each a € A(X) and each S € ¥¢, define the sets

&S = {S € [0,00)‘ (IFSG G) lim sup oz‘“"(w)l_sdga(w) = oo}

w—S

and

&5(S) = {s € [0,00)‘ (IFSG G) lillgl_igfa|w‘(w)l_sd(;7a(w) = oo}

The limits superior and inferior here are taken for successively longer pre-
fixes w C S. The “strong” subscript of By, (S) refers to the fact that
ol (w)l—* da,o(w) is required to converge to infinity in a stronger sense than

in 8*(S).
Definition (|26]). Let o € A(X) and S € ¥¥.
1. The finite-state a-dimension of S is dimgpg(S) = inf &*(S).
2. The finite-state strong a-dimension of S is Dimgg(S) = inf &%,.(5)

It is easy to see that, for all @ € AT(X) and S € ¥¢, 0 < dimfg(S) <

Theorem 4.1. For all « € A(X) and S € ¥ let ¢ = log(1/mingeyx, a(a)).
Then,
dimgg(S) <1 —Div(S||a)/c

and

Dimgg(S) < 1 —div(S||a)/c.

Proof. Let t < Div(S||a)/c, and let s = 1 —¢. Fix [ such that Div,(S||a)/l >

te, then for almost every n, D(ng)nﬂa(g)) > lte. Note that, al*l(w) >

(1/29)] for every w € X*.
Define the gambler G be G = (Q, 6, 50, B,,), where Q = 51,

0(w,a) =

wa if Jwa| < ¢
A if jwa| = ¢

so = A, and Bp(w)(a) = ng) (aJw), where ng)n(a\w) describes the condi-

n
tional probability (induced by TK(SE)H) of occurrence of an a after w € Q.

17



Let w = ag - - ay—q be in X¢.

Bu(N(a0) - Bo(ul0.£ — 2))(ar_y)  Tan(u)
a(ag) -+ alap—q) O’

Then for z € ¥* with z C S and |z|= In, we have

ol (z)l_sdg,a(z) = ol (z)th,a(z)
0 rm(;)n(u)

— a\z\(z)t H 7T5,n u)

ext ol (u)

Therefore,

1 I=1t 0 |1(0)
Q2 dga(2) = 2= 2P
> 2—c|z|t+c\z\t

Since the number of states is fixed, this implies dimfg(S) < 1-Div(S||a)/c.
The proof of the other case is similar, where we use the fact that, for

infinitely many n, D(TE(SZ)HHCV(Z)) > ltc. O
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