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Abstract Schiefer and Winfree recently introduced the chemical reaction network-
controlled tile assembly model (CRN-TAM), a variant of the abstract tile assembly
model (aTAM). In the CRN-TAM, tile reactions are mediated via non-local chemi-
cal signals controlled by a chemical reaction network. This paper introduces ALCH,
an imperative programming language for specifying CRN-TAM programs that
can be compiled and simulated. ALCH includes standard language features such
as Boolean variables, conditionals, loops, and CRN-TAM-specific constructs such
as adding and removing tiles. ALCH also includes the branch and parallel struc-
tures which harness the nondeterministic and parallel nature of the CRN-TAM.
ALCH also supports functional tileset specification. Using ALCH, we show that
the discrete Sierpinski triangle and the discrete Sierpinski carpet can be strictly
self-assembled in the CRN-TAM, which shows the CRN-TAM can self-assemble
infinite shapes at scale 1 that the aTAM cannot. ALCH allows us to present these
constructions at a high level, abstracting species and reactions into C-like code
that is simpler to understand. We employ two new CRN-TAM techniques in our
constructions. First, we use ALCH’s nondeterministic branching feature to probe
previously placed tiles of the assembly and detect the presence and absence of
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tiles. Second, we use scaffolding tiles to precisely control tile placement by occlud-
ing any undesired binding sites. This paper is an extension of our previous work,
updated to include a Sierpinski carpet construction and the parallel command.

Keywords Tile Assembly - Chemical Reaction Network - Sierpinski Triangle -
Sierpinski Carpet - Molecular Programming Language

1 Introduction

Molecular programming is a relatively new field that weaves together biology and
computer science to specify the behavior of molecules at the nanoscale. Early
research in the field was sparked in 1982 by Seeman’s pioneering work employing
DNA crossover tiles to self-assemble crystals at the nanoscale [24]. Seeman’s work
was later extended by Erik Winfree to include cooperative DNA tile self-assembly to
construct more complex shapes and patterns [28]. Winfree formalized the abstract
tile assembly model (aTAM) in his Ph.D. thesis, where he proved it is Turing
complete [28]. As a result, the aTAM is considered a programming language for
self-assembling two and three-dimensional nanoscale patterns and is still actively
investigated today [19,7,21,12,15,13].

Another commonly used model for biomolecular computation is the chemi-
cal reaction network (CRN), which models the interactions of abstract chemical
species. The CRN model assumes the solution is well-mixed, so computations are
amorphous and do not rely on geometry or structure. Two common variants of the
CRN model are stochastic CRNs and deterministic CRNs. Stochastic CRNs [14, 5,
25,29] are modeled with discrete species counts, and their reactions are probabilis-
tic; they are also closely related to other prominent models of computation such as
population protocols [1,6]. Deterministic CRNs [9,11,17] model the species’ state
continuously with real-valued concentrations governed by a system of autonomous
ordinary differential equations (ODEs). Both variants are known to be Turing
complete [26,10] and can be compiled into DNA strand displacement systems that
approximate their behavior [2].

In 2015, Schiefer and Winfree introduced the chemical reaction network-controlled
tile assembly model (CRN-TAM) [22,23]. Their model combines the amorphous
properties of stochastic CRNs with the spatial self-assembly of complex structures
afforded by the aTAM. More specifically, a CRN interacts with tiles from the
aTAM model to exert non-local control over the self-assembly process.

Overall, molecular programming is a rich field for algorithmic study. However, it
is challenging, tedious, and error-prone to manually specify chemical species, tiles,
or reactions when developing a molecular algorithm. To mitigate this, new soft-
ware tools and molecular programming languages are being developed that offer a
higher level of abstraction to molecular programmers. For example, Vasié¢, Solove-
ichik, and Khurshid developed CRN++, a high-level language for implementing
deterministic CRN programs [27]. The CRN++ language provides a toolset for
manipulating concentrations as numerical variables, with some support for con-
ditionals and loops. This simplifies the development of high-level deterministic
CRNs by abstracting away many low-level details. Similarly, Liekens and Fer-
nando’s Chemical Bare Bones (CBB) is a hypothetical chemical implementation
of the simple but Turing complete Bare Bones programming language [20]. CBB
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implements increment, decrement, and loop instructions using a catalytic particle
model in which a single multistate particle catalyzes reactions based on its state.
Another example is Cardelli’s Kaemika App [4], which incorporates a simple func-
tional programming language to streamline the generation of complex CRNs.

Several high-level abstractions have also been investigated for the tile self-
assembly model. For example, Becker developed a geometry-based system for gen-
erating shapes in the aTAM [3]. It allows users to describe how information and
assembly construction propagate along vectors defined in the physical space of
the assembly. Users can then generate an aTAM system by designing a system of
vectors and applying a well-defined procedure to convert it into tiles. Doty and
Patitz also developed an aTAM toolset, abstracting how information is shared via
the connections between individual tiles [8]. Users can generate an aTAM sys-
tem by specifying variables that are transmitted from tile to tile via bond labels
and transformation functions to “modify” those variables within a tile. Both of
these tools focus on the parallel, semi-uncoordinated concept of tile self-assembly
typical of aTAM constructions. In the CRN-TAM, on the other hand, the CRN
component allows precise control over which tiles are added and when.

CRN-TAM constructions often rely on sequences of reactions and tile attach-
ments, with sequential execution enforced by associating a chemical species with
each reaction in the chain. For this reason, the CRN-TAM is a natural fit for a
high-level imperative programming language. In this paper, we present the Algo-
rithmic Language for Chemistry (ALCH), an imperative language for specifying
CRN-TAM programs. ALCH targets the specific CRN-TAM design paradigm de-
scribed above, where the CRN component mediates a strictly controlled sequence
of tile actions. However, it also includes facilities to harness the massively parallel
nature of the CRN-TAM. We implemented a software compiler to translate ALCH
code into proper CRN-TAM programs as well as a simulator that visualizes the
assembly of a CRN-TAM program?®.

ALCH is reminiscent of other popular imperative languages, supporting loops
and conditionals but omitting numerical computation and function calls. ALCH
also contains many CRN-TAM specific statements that abstract away low-level
details of the model’s underlying semantics while maintaining that statements are
executed in sequence. Although ALCH is an imperative language, it supports par-
allel assembly via the parallel statement, which generates multiple threads, each
with their own sequence of instructions to be executed in parallel. ALCH also in-
cludes a branch statement, which is a control structure that nondeterministically
chooses between a finite number of self-assembly paths. In contrast to the par-
allel construct, nondeterministic branching in ALCH is implemented sequentially
with a reversible random walk so that only the effects of the succeeding branch
remain on the final assembly. ALCH also includes syntax for specifying tilesets in
a functional way, which eases the burden of specifying CRN-TAM programs with
a large number of tiles. We have designed ALCH to specifically target sequential
CRN-TAM constructions, with chemical parallelism entering in a controlled way
through multithreading. Although we are not aware of any shape that can be con-
structed in the CRN-TAM but not in ALCH, we do not claim that ALCH is as

1 The ALCH compiler and the CRN-TAM simulator, together with examples and visual
illustrations, are available at http://web.cs.iastate.edu/~lamp.
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general as the CRN-TAM; we expect that some valid CRN-TAM constructions
will be impossible to represent in ALCH.

Using ALCH, we demonstrate that the CRN-TAM can construct infinite shapes
that the aTAM cannot. For example, the discrete Sierpinski triangle is a well-
known self-similar fractal that can be weakly self-assembled in the aTAM [28] but
cannot be strictly self-assembled [19]. Weak self-assembly allows for “filler” tiles to
be used to propagate information through an assembly, whereas strict self-assembly
forbids this. Using ALCH, we show that the non-local communication provided by
the CRN-TAM is sufficient to overcome this limitation and specify a CRN-TAM
program that strictly self-assembles the discrete Sierpinski triangle. Our construc-
tion relies on the ability to add and remove scaffolding tiles and self-assembles
the fractal by probing previous placed tiles on the assembly. We also use the scaf-
folding tiles to occlude any spurious bonding sites, giving precise control over the
placement of the next tile. The construction proceeds in a sequence of stages where
each stage successfully self-assembles a subset of the discrete Sierpinski triangle.
After the completion of a stage, all scaffolding tiles are removed, leaving only the
Sierpinski triangle tiles. Thus, in the limit, only the Sierpinski triangle remains,
since the scaffolding tiles are removed infinitely often. In fact, the ratio of scaf-
fold tiles to Sierpinski triangle tiles approaches zero as the self-assembly process
proceeds.

The discrete Sierpinski carpet is a self-similar discrete fractal related to the
Sierpinski triangle. The kernel for this fractal is a 3 by 3 grid with only the cen-
ter missing, and was shown to assembly weakly in [16]. In this paper we use the
ALCH language to define a CRN-TAM that strictly assembles the infinite dis-
crete Sierpinski carpet (DSC). It is unknown if the infinite DSC can be strictly
self-assembled in the aTAM. The ALCH programming language and simulator
simplifies the development process and the specification of the CRN-TAM system.

We first defined ALCH and presented the Sierpinski triangle construction in our
prior work [18]. This paper presents the same material, and additionally extends
ALCH to support parallelism via the parallel command. We have also added a
strict Sierpinski carpet construction to demonstrate the generality of our triangle
construction technique. Readers may consult the appendix of [18] for a more in-
depth explanation of the triangle construction than we present below.

The rest of the paper is organized as follows. Section 2 gives an overview of
the CRN-TAM model. Section 3 presents a detailed description of the ALCH
programming language, including how each statement is compiled to the CRN-
TAM. Section 4 gives an overview of the construction for the discrete Sierpinski
triangle using the ALCH language, with examples to illustrate key concepts such
as probing using nondeterministic branching. Section 5 discusses how to construct
the Sierpinski carpet using ALCH in relation to the construction of the Sierpinski
triangle. Finally, Section 6 discusses some conclusions from this work.

2 Preliminaries

We now review the chemical reaction network-controlled tile assembly model (CRN-
TAM), which combines the notions of the abstract tile-assembly model (aTAM) [28]
and the stochastic chemical reaction network (sCRN) [5]. For a complete intro-
duction to the model, see Schiefer and Winfree’s original paper [22].
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A tile type is a tuple |t |= (N, E,S,W) consisting of four bonds for the north,
east, south, and west sides of the tile, respectively. Each bond is a tuple B =
(B, sp) where ¢p is the label and sp is the binding strength which is a non-negative
integer. Given a finite set of tile types T, an assembly is a partial function « :
7?2 — T that encodes the positions of tiles in two-dimensional space. If a(i, ;)
is undefined, then we say that (i,j) is unoccupied in the assembly a. When two
adjacent tiles in a have matching bond labels £y on their abutting sides, we
say that they interact with a strength determined by their bond strengths sp.
We should note that, unlike in the original CRN-TAM model, we allow adjacent
bonds with the same label to interact with strength s, where s is given by the
minimum of the bond strengths. Our probe mechanism, discussed in a subsequent
section, relies on such asymmetric bonds. However, this is not fundamental to the
construction and only serves to simplify the construction.

The binding graph of an assembly « is a two-dimensional lattice of vertices
representing the tiles of a where two vertices are connected by an undirected edge
with weight s if their corresponding tiles in « interact with strength s. For 7 € N,
we say that an assembly is 7-stable if the minimum cut of its binding graph is at

least 7. We also denote assemblies using , and given a tile type , use

to denote the singleton assembly that consists of only a single tile of type ¢ placed
at the origin. Note that the number of tiles of a given tile type available in
solution is finite but unbounded. This is in contrast to the aTAM which assumes
an unlimited supply of all tile types throughout the self-assembly process.

A signal species is an abstract molecule type. In contrast to tiles, signal species
have no geometry and are used to facilitate non-local communication in the self-
assembly process. Every tile has a unique removal species t*, and given a finite
set T of tile types, we write T* = {t* || ¢ | € T} to denote the set of all tile removal
species of T.

A CRN-TAM program is a tuple P = (S,T,R,7,I) where T is a finite set of
tile types, S is a finite set of signal species that satisfies T* C S, 7 € N is the
temperature, I : SUT — N is the initial state which specifies how many tiles and
signal molecules are initially present, and R is a finite set of reactions that are of
the following six types.

1. Signal reactions are of the form X; + X2 — Y7 4+ Y2 where X1, X2,Y7,Y2 €
SU{e}. The e symbol denotes the absence of a species, therefore X +¢ — Y1 +Y2
is equivalent to X — Y7 + Y3. Since these reactions only consist of signal
species, their semantics are identical to those in the traditional sCRN model.
The species on the left-hand-side are called reactants and are consumed by
the reaction and the species on the right-hand-side are called products and are
produced by the reaction.

2. Deletion reactions are of the form X + — Y1+ Y2 where X,Y1,Y2 € SU{¢}
and € T. These reactions consume a tile, treating it as if it were a signal
species. Note, deletion reaction cannot consume tiles bound to the assembly.

3. Creation reactions are of the form X; +Xo — +Y where X1, X2,Y € SU{¢e}
and € T. These reactions produce tiles, making them available to interact
with assemblies.

4. Relabelling reactions are of the form X + =Y + where X, Y € SU{e}

and , eT.
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5. Activation reactions are of the form X + — + t* where X € S, |t|e T,

and t* is the signal removal species for . These reactions use tile | ¢ | to seed
a new assembly with | ¢ | placed at the origin.

6. Deactivation reactions are of the form —|— t" —|t|+Y where|t|e T, t" is
the removal signal for , and Y € S U {e}. These reactions remove the tile

from the singleton assembly , thereby deactivating it.

In addition to the reactions above, for each |t | € T, the following two reactions
included in the set of reactions R.

1. Addition reactions of the form + — @ + t* where and

are T—stable assemblies that differ by one copy of € T and t* € T* is the
removal signal for .

2. Removal reactions of the form @ +t* — +| ¢ | where again and
are T—stable assemblies that differ by one copy of €T and t* € T*

is the removal signal for . These reactions can only remove from @ if

there is an instance of | ¢ | that is bound at exactly 7 strength.

A CRN-TAM program P is initialized with nonnegative counts of each tile and
signal species type, according to I. In an execution of P, the reactions above occur
in a stochastic sequence. The species or assemblies on the left-hand side of a reac-
tion are the reactants and those on the right are the products. A reaction is enabled
if all of its reactants are present in solution. The subsequent reaction to execute
is always chosen randomly from the set of all enabled reactions. The likelihood of
choosing a particular reaction is proportional to the product of its reactant counts,
as with regular stochastic CRNs. If an execution reaches a state where no reactions
are enabled, we say that it has terminated. Some CRN-TAM programs, like the dis-
crete Sierpinski fractals in this work, do not terminate and continue indefinitely.
For more information on the kinetics of the CRN-TAM model, see [23].

The CRN-TAM distinguishes between free tiles in solution and tiles that are
part of activated assemblies. Free tiles can bond to assemblies, but two free tiles
cannot bond together. All tiles come into being as free tiles, including those in the
initialization; immediately after initialization, then, only signal, creation, deletion,
and relabeling reactions are possible. We refer to these reactions as the CRN
component of the CRN-TAM program. The CRN component usually serves to
coordinate activation, deactivation, addition, and removal reactions and guide tile
assembly growth.

In most CRN-TAM constructions, the CRN component is engineered to execute
at least one activation reaction, which creates a new tile assembly so tiles can
be added. Tiles created with creation reactions (or present in solution from the
start) can then bond via their addition reactions, and potentially later be removed
via their removal reactions. As discussed above, a tile can bond at any site on
an activated assembly where it would interact with strength at least 7; tiles are
subject to removal reactions when their interaction strength does not exceed 7.
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Note that if tile| ¢ | has a removal signal t*, then adding | ¢ | releases t*, and removing
requires and consumes t*. This allows the CRN component to interact more
precisely with the addition and removal reactions. Some constructions also employ
the deactivation reaction to eliminate existing (singleton) assemblies; unlike in the
aTAM, the number of concurrent assemblies can increase or decrease over time.

3 The ALCH Programming Language

We present an overview of the features of the ALCH language and its implemen-
tation. ALCH is an imperative language with provisions specific to the CRN-TAM
model such as the add, remove, activate, and deactivate statements which all take
a tile type as a parameter and execute the corresponding tile actions. ALCH pro-
vides high-level features such as conditions, loops, and variable declaration and
assignment. To guarantee the proper sequential execution of the code, special line
number species are used to track progress through the ALCH program. At this
time, ALCH only supports global variables and three datatypes: bool, BondLabel,
and Tile. Additionally, ALCH includes a toolset for functionally specifying tile-
sets. Variables of type bool may be reassigned throughout the computation, but
all BondLabel and Tile variables are immutable and final. One unique feature
of ALCH is the branch statement, which nondeterministically chooses and exe-
cutes multiple independent code blocks of tile addition and removal statements
until one block finishes execution. Effects from uncompleted blocks are reversed,
so only the code from the completed block remains. The branch statement also
returns a bool associated with the block that finished successfully. Using branch,
it is possible to query the state of tile assemblies without permanently attaching
tiles to them. Each block in a branch statement is implemented as a reversible
random walk. As an optimization, blocks can be given different weights to make
them more likely to be chosen at the nondeterministic branch point. ALCH also
supports multithreading via the parallel construct. We have designed ALCH to
target sequential and multithreaded CRN-TAM constructions specifically; though
it can describe a wide variety of constructions, ALCH is not designed to represent
all possible CRN-TAM programs, and may not be suitable for constructions that
leverage molecular parallelism in less straightforward ways.

We developed a software compiler in C# that compiles ALCH programs into
CRN-TAM programs. We also developed a simulator for the CRN-TAM that in-
cludes the following two extensions to the model which are used only for op-
timization purposes: (1) it supports reactions with arbitrary arity, relaxing the
CRN-TAM requirement that reactions are at most bimolecular; (2) it allows any
reaction to add, remove, or activate a tile as a side effect and removes the require-
ment for the specific per-tile add and remove actions. Note that the output of
the ALCH compiler is strictly compliant with the original CRN-TAM as specified
in [22].

To demonstrate the expressiveness of ALCH, we will show that the CRN-
TAM can strictly self-assemble an infinite shape at temperature 2 that the aTAM
cannot. Consider an infinite staircase, visualized in Fig. 1, where for each k € N, the
(2k)th column is 2+ k tiles tall and the (2k+ 1)th column is one tile tall. The gaps
between steps (even-numbered columns) prevent an aTAM program from directly
transferring information about the height of one step to the next. Consequently,
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bool at_top;
activate C;
add H; add B; add A;
while (true) {
at_top = branch {
true() { add NHT; add HD; }
false() { add FT; add FD; }

)

if (at_top) {
remove HD; remove NHT;
add NH; add H;
add B; add A;

} else {
remove FD; remove FT;
add F;

Fig. 1: An ALCH simulation of the infinite staircase is shown in the upper left.
ALCH code for the staircase is shown on the right-hand side. The definitions of the
tile types are not shown but are provided visually with bond labels and strengths in
the lower left. On the right-most column of the simulation, the and tiles
probe the previous column to detect which tile should be placed. These probe tiles
are temporary and are eventually removed. The chemical reactions that ALCH
outputs are shown in Figure 2. Note that the temperature 7 of the CRN-TAM
program is 2.

all information about the height of steps must be passed along the base of the
assembly; an infinite tileset is required. However, the CRN-TAM can build and
remove probe tiles that allow the assembly to query the previous column. We take
advantage of this and show that the CRN-TAM can self-assemble this infinite
shape, as shown in Fig. 1. Note that we omit the tile and bond declarations but
include a graphical representation of the tile species used in the construction. See
Figure 2 for the resulting list of reactions that ALCH outputs (these reactions are
easier to interpret after reading the language implementation, described in detail
in this section).

Intuitively, the self-assembly of the infinite staircase is implemented with a
single infinite loop that repeatedly adds tiles to the assembly. Each execution of
the loop begins by probing the previous column using the branch statement, which
nondeterministically attempts to add the sequence of tiles and or the
sequence of tiles ’ NHT \ and \ HD \ If the latter succeeds, the variable at_top is set
to true, and if the former succeeds, the variable is set to false. Notice that the
true() branch will succeed if and only if the current column is the same height as
the previous column because of the top tile . The variable at_top is then used
to either (a) finish the current column and initialize the next column or (b) add a

single filler tile and continue with the current column. Using branch to query
local structural information during the assembly is powerful; we employ a similar
technique to show that the discrete Sierpinski triangle and discrete Sierpinski
carpet can be strictly self-assembled in the CRN-TAM.
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Initialization

— (St, Sy) with counts (1,0)
— (TOP;, TOPy) with counts (1,0)
— (R4, Ry) with counts (1,0)

— X, with count 1 if ¢ = 0, otherwise
count 0

— all tiles with count 0

activate C;

Xo = X1+ X3

X1 *)X2+

X3+C* = X4

+C*

add H; add B; add A;

Xy — X5+ H]|
X5+ H" — Xg
X6 — - — X0

while(true)

X10+Sf —)Xend—l-Sf
X10+ St — X11 + St

true(){add NHT; add HD;}

X171 < Xq2

Xi2 < Xi3 -‘r

X133+ NHT* < Xq4

X14 < X5 +
Xi5+ HD* + X6
X16 + Ry — Xoo2 + Rt
Xi6 + Rt = Xoo + R

false(){add FT; add FD;}

X11 < Xa7

X7 < X18 +
Xis+ FT* < X19
Xi19 < Xo0 +
X204+ FD* < X201
Xo1+ Ry — Xoa + Ry
Xo1 + Rt — Xo2 + Ry
Assign to at_top

Xo2 + Rt — Xo3 + Ry
Xo3 + TOPf — Xo5 + TOP;
Xo3 +TOP; — Xo5 +TOP;

X22 + Ry — Xo4 + Ry
X24 + TOP; — X5+ TOP;
X24 +TOP; — X25 + TOPy

if (at_top)

Xos + TOP; — Xog +TOP;
Xo25 + TOPy — X338 + TOP;

remove HD; remove NHT; add NH;
add H; add B; add A;

X6 — Xo7 + HD*

X27+—>X28
Xog — -+ — X10

remove FD; remove FT; add F;

X3g = -+ = X0

Fig. 2: Reactions for the staircase program in Figure 1. (S, Sy) is a constant
Boolean value, and (R, Ry) holds the return value of branch. Note that the branch
command has no specific reaction set. We can see its effects in the X7 species,
which, when present, nondeterministically triggers the first reaction in either the
true or the false branch. We have elided several add and remove reaction sets
to save space. Finally, note that there are a number of unnecessary intermediate
species like X4. These arise because of ALCH’s modular design, which conveniently
allows us to describe the reaction sets for different commands independently from
each other. It may be profitable to consider an optimizing ALCH compiler that

reduces inefficiencies like this.
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We now define each of the language features of the ALCH programming lan-
guage and explain how they are implemented in the ALCH compiler. We begin by
discussing how variables are implemented and define some useful notation that we
use to specify what reactions and species are created for each language construct.

The ALCH compiler processes all variable declarations at compile-time. All
BondLabel and Tile variables are added to a symbol table for later reference in
add, remove, activate, and deactivate statements. Since BondLabel and Tile vari-
ables are immutable and cannot be reassigned, this simple treatment is sufficient.
bool variables are implemented using two chemical species that are created at
compile-time, and we commonly refer to them as Boolean flags. A Boolean flag x
represents two chemical species (z,T), where at any given time one of z and 7 has
population 0 and the other has population 1. Unlike BondLabel and Tile variables,
bool variables are mutable and can be reassigned by switching which species has
population 1.

Most ALCH statements are implemented with a set of reactions, and each of
their corresponding reactions includes its line number species as a reactant. When
two statements are executed in sequence, the first statement emits the correspond-
ing line number species of the second when it is finished. This allows the sequential
execution of statements and avoids race conditions during the program execution.
For statements that return a bool, the compiler creates a dedicated Boolean flag
(z,7) (or, in some cases, links an existing flag) for that line of code and guarantees
that when the statement is executed, the associated flag contains the correct value.

When defining how each syntactical element of ALCH is implemented, it is
convenient to use notation such as <block> to denote compound ALCH statements
and expressions. For example, in the ALCH program in Fig. 1, the if statement
and surrounding code can be written abstractly as:

<blockl>
if (<block2>) {
<block3>

<block4 >

Notice how each <block> represents a sequence of statements. Here <blockl> must
emit the appropriate line number species for the conditional, and similarly, the if
statement must emit the appropriate line number species for <block4> when it is
finished. Since most of these language constructs are implemented with chemical
species and reactions, the following notation is convenient:

Xstart — <block> — Xong (1)

Intuitively this notation means that if the line number species Xstart is produced,
then all the statements corresponding to <block> will be executed. The line number
species Xgonq will be produced afterward. It is important to note that <block>
abstractly represents a sequence of ALCH instructions, which may themselves use
many intermediate line number species. Since some statements return a Boolean
flag, we also use T pock> and Fopjocks to denote the true and false species of
the returned Boolean flag after <block> is executed.
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3.1 Boolean Expressions and Variable Assignment

We now discuss how Boolean expressions such as (vall && val2) || !val3 are evalu-
ated as well as Boolean assignment statements such as bool a = <block>. We begin
with the logical operations of negation, conjunction, and disjunction.

Given an abstract Boolean expression represented by <block>, we consider
the implementation of the logical negation !<block>. Recall that, at compile-time,
<block> is given a dual-rail Boolean flag (z, ). To implement negation, we simply
need to return the negated flag (z,z). We handle this at compile-time when we
link the ! syntax element with the flag of its child element <block>. Intuitively,
the compiler will “cross the wires” of <block>’s Boolean flag when it encounters
I<block> so that its output flag is negated. Thus negation does not introduce any
new species or reactions but rather modifies the output of <block> directly at
compile-time so that Toyjocrs and Fipjocks are the same species and Fygcxs
and Tjplock> are the same species.

To process a conjunction of logical expressions, we evaluate each expression
from left to right and immediately return a false Boolean flag if an expression is
false. Only when all expressions have evaluated to true will a true Boolean flag be
returned. Below is how the statement <expl> && <exp2> is implemented:

Kstart —> <expl> — X3 (2)

X1+ Teexpl> = X2 + Teexpl> (3)
X1+ Feexpl> = X5+ Feexpl> (4)
Xy — <exp2> — X3 (5)

X3+ Teexpa> = Xt + Tcexp2> (6)
X3+ Feexpa> = X+ Feexp2> (7)

Notice how <expl> is evaluated first, which emits the line number species X;. The
line number species together with the species Texp1> and Feexp1> are used to
determine whether the expression should immediately return false by producing
the X line number species or continue by producing X2 to start evaluating <exp2>.
This process continues until one expression evaluates to false, or all expressions
are true, and the X; line number species is produced. A dedicated Boolean flag
for the conditional is needed for output because the compiler cannot identify any
preexisting child element that is guaranteed to hold the correct return value after
execution. This Boolean flag is added to the CRN at compile-time, along with
the following reactions to update the flag according to whichever X; or X; line
number species is produced:

Xt + Tresuit = Xend + Tresult (8)
Xt + Fresult = Xend + Tresult 9)
X¢ 4+ Tresutt = Xend + Fresult (10)
X ¢+ Fresult = Xend + Fresuls (11)

Here the species Tyesuly and Freguly correspond to the unique Boolean flag generated
for this conjunction statement, and Xenq is the line number species that initiates
the block immediately following the conjunction. We implement logical disjunction
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in a very similar way: the first time an expression returns true, we immediately
return true; if all expressions return false, we return false.

We now describe how Boolean assignment statements such as a = <block> are
implemented. To execute this command, we evaluate the right-hand side of the
assignment. As discussed above, <block> has an associated Boolean return flag;
when <block> finishes execution, this flag is guaranteed to hold the correct return
value. We then use the flag species as catalysts to direct execution to the lines of
code that set the variable a to true or to false accordingly. Below are the reactions
that implement the assignment a = <block>:

Xstart — <block> — X3 (12)
X1+ T<b10ck> —- Xt + T<block> (13)
X1+ Feplock> = Xf + Feplock> (14)

The line number species X+ and Xy encode the Boolean return value of <block>,
and the following four reactions copy this result into the global Boolean flag for
the variable a:

Xt 4+ To = Xena + Ta (15)
Xt + Fo = Xena +Ta (16)
X¢+Ta — Xend + Fa 17)
X+ Fa — Xena + Fa (18)

Here T, and F, are the species representing the global Boolean flag associated with
the variable a. Since we do not know whether a is true or false at compile-time,
we must account for both possibilities. Note that we use the <block> Boolean flag
species only as catalysts, so the dual-railed representation is preserved.

Since the CRN-TAM requires all reactions to be at most bimolecular, we can
use at most one non-line-species product and one non-line-species reactant per
reaction. To process information, we must often split computations across several
reactions and pass information down in the line number species. Above, for exam-
ple, the intermediate line number species X; and X; serve to temporarily store
the return value so we can process it in the following reactions. This and similar
patterns frequently occur throughout our implementation of ALCH.

3.2 Conditionals and Loops

ALCH also supports conditional execution and is implemented similarly to the
previous constructions, as shown below. We also support else blocks by modifying
reaction (21) to output an X ¢ molecule and adding an additional reaction X; — X»
where X5 is the line number species for the else block. ALCH also supports while
loops which are implemented similarly but alternates between the line number for
<exp> and the internal <block>.

Xstar X 1
iF (<exp>) start — <exp> — X3 (19)
<block> X1+ T<exp> = Xt + T<exp> (20)
4 X1+ Feexp> = Xend + F<exp> (21)
)

Xy — <block> — Xcng (22
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3.3 Tile Addition, Removal, Activation, and Deactivation

In order to enforce a controlled, sequential execution of commands, our tile in-
structions must pause program execution until they succeed and have cleaned up
after themselves. When ALCH executes an add command, for example, we must
not proceed to the next command in sequence until the tile is added, and we have
cleaned up any excess species involved in that addition. This ensures that no un-
desired tile or signal species are present in solution, and execution can proceed
predictably.

Recall that in the CRN-TAM, every tile species is associated with at most
1 tile removal signal A*, and the following two sets of reactions.

+% [8]|+ 4 (23)
+ 47— |[a]|+[4] (24)

Assemblies and differ only by one instance of , placed in . We

are given the option to have tiles with no removal signals in the CRN-TAM, but
ALCH gives each tile type a unique removal signal. Therefore, we can add a tile
by placing it in solution and relying on the first reaction above to attach it to the
assembly. We then wait to proceed until we can clean up the tile removal signal
that the new tile releases when it bonds to an assembly. The implementation of
add tileA is as follows where Xstart is the line number species of the add statement
and Xgnq is the line number species of the statement that immediately follows.

Xstart — X1 + (25)
X1+ A" — Xend (26)

Note that we cannot produce X.,q until we have both added and cleaned up
its removal signal A*. This ensures that add pauses program execution until it
succeeds and cleans up after itself, as discussed at the start of this section.

The implementation of remove tileA is similar, but it relies on the existence of
Reaction (24) discussed earlier:

Xstart — Xl + A* (27)
X1+ — Xend (28)

Assembly activation is more difficult. The CRN-TAM allows only activation
reactions of the form: X + — + A*. There are two difficulties here. First,

it is challenging to guarantee that is activated as a new assembly instead of
being added to a preexisting assembly. In order for an activation reaction for
to proceed, we must already have in solution; if is in solution, we cannot
prevent it from bonding to an existing compatible site. Instead of guaranteeing
this explicitly, we rely on users of ALCH to prevent these situations. The second
difficulty is that tile activation reactions cannot output a line number species,
so we have no easy way of passing execution to the next reaction in our desired
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sequence. We handle this issue by producing the desired line number species in
advance, as shown in the implementation of activate tileA below.

Xstart — Xl + X3 (29)
X1 — Xo —l— (30)
X2+H+A* (31)
)

X3 + A — Xend (32

Although the line number species X3 is present initially, the last reaction cannot
execute until the end, when A* is also present.

We straightforwardly implement tile deactivation, subject to similar constraints.
Instead of temporarily having two line number species in solution, we temporarily
have none as we wait for the deactivation reaction to return one.

3.4 Nondeterministic Branch Construct

We allow nondeterminism in our language through the branch construct. A branch
statement contains multiple branch paths; a branch path is a sequence of tile
addition and removal instructions collectively associated with a Boolean value. At
the start of a branch statement, a program nondeterministically chooses one of
the branch paths and begins executing it. Broadly speaking, branch returns the
Boolean value of the path that ultimately finishes successfully. Each path contains
only reversible commands, so if one path is impossible to complete, execution will
ultimately reverse out of it and proceed down a different path. Since we require
branch paths to be reversible, we allow only add and remove commands inside
branch paths. It is straightforward to modify the add and remove reaction sets to
be reversible; we discuss this below. It is possible to support additional commands
by making other language constructs reversible, but for our purposes here, add
and remove statements are sufficient.

It is important to note that our notion of reversibility is not complete. For
example, suppose we execute add tileA inside a branch path. If this statement is
reversed, the system will attempt to remove the tile E However, if there are

multiple instances of bonded to the assembly, it is not guaranteed to remove
the same tile added earlier in the branch. Additionally, if we add a tile at a strength
greater than 7, we will not be able to remove it when attempting to reverse the
addition. Any ALCH programmer should exercise caution when using the branch
statement to avoid such side effects.

The branch statement is implemented with a single branch point that can lead
to any one of the branch paths, as shown in Fig. 3. From that branch point, we
execute only one branch path at a time. Since each branch path is reversible, if
execution proceeds down a branch that is incapable of completing, it will eventually
return to the branch point via random walk. When a branch finishes execution,
we return the Boolean flag that corresponds with the path that completed.

Consider the following branch statement where <trueblock> and <falseblock>
are arbitrary sequences of add and remove statements.
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branch.t branCh_f

// \\
result = branch {
add tileA;

I

remove tileB;
} set false
false (1) {

remove tileC ;
} set true

o
\om

s

Fig. 3: Possible execution paths through a branch statement. Instructions associ-
ated with true and instructions associated with false are executed nondeterminis-
tically via a random walk. The branch statement terminates when one path runs
to completion, and it returns the corresponding Boolean flag. The integers inside
the parentheses of the true and false bias the random walk by that factor.

branch {
true() { <trueblock> }
false () { <falseblock> }

}
The above branch statement is implemented in ALCH with the chemical reactions:
Xstart <> <trueblock> — X} (33)
Kstart <> <falseblock> — Xy (34)

A few things should be noted about the above implementation. First, both the
<trueblock> and <falseblock> use the same line number species Xgtart. Second, those
reactions are reversible, as indicated by the bidirectional arrows. Third, once one of
the blocks finishes, it is completed with an irreversible reaction that terminates the
branch statement. Fourth, the add and remove commands outside of branch are
not reversible; inside branch paths, we modify each add and remove command to
make them reversible. In our original description of tile actions in Subsection 3.3,
we required tile commands like add to succeed and clean up after themselves before
proceeding to the next ALCH statement. A reversible add command might not
ever succeed, so we must update this requirement. Reversible add may return to
the previous command without adding a tile; if it does so, we require it to clean up
any excess species that it has created in the addition attempt. This guarantees that
a reversible add command never leaves any extra species in solution, regardless of
whether its branch path fails or succeeds.

The reversible implementation add statement consists of the two reversible
reactions X < and A* <+ X5. Note that execution cannot pass from X; to

X9 without adding and cleaning up the resulting A*, and execution cannot

reverse from X3 to X; without detatching from the assembly and cleaning its
species up from solution. A reversible remove statement is implemented similarly.
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The last thing to note about the branch statement is that it returns a Boolean
flag. Therefore a dedicated flag must be created at compile time and be appropri-
ately set after the execution is completed. Therefore the following reactions are
also needed to set this Boolean flag.

Xt + Tresult = Xend + Tresult (35)
Xt + Fresult = Xend + Tresuls (36)
Xf + Tresuit = Xend + Fresult (37)
X¢ 4 Fresult = Xend + Fresult (38)

3.5 Multithreading in ALCH

Thus far, we have focused on the “single-threaded” component of ALCH, which
allows us to quickly implement sequential algorithms one instruction at a time.
The CRN-TAM, on the other hand, has at its disposal natural many-way chemical
parallelism. We leverage this parallelism in ALCH via the parallel command, which
allows multiple ALCH threads to execute simultaneously. Within the scope of the
parallel command, users can specify an arbitrary number of threads as either single
or unbounded. The single thread executes one block of code on a single thread.
The unbounded command continually spawns threads, all of which execute the
same block of code, until one of those threads calls the finish command to halt
thread spawning. All threads of both types must complete fully before execution
continues past parallel. (When an unbounded block completes its task and one
thread calls finish, there may be a number of other threads from the same block
that have not concluded and may become stuck. We allow the user to handle these;
in most cases, we expect that these threads will terminate themselves via the same
conditional block that checks for completion and calls finish.)

The parallel command spawns the specified single threads or unbounded col-
lections of threads and then waits for all of them to complete. A parallel command
can contain any combination of single and unbounded commands, as illustrated
in the example below, where each <block> is an arbitrary block of code:

parallel {
single { <blockl> }
single { <block2> }
unbounded { <block3> }
}

When implementing a parallel command, then, we must trigger each of the single
and unbounded commands that it contains. We will defer implementation of con-
tinuous thread spawning to our discussion of the implementation of unbounded,
discussed below; the initial triggering mechanism in parallel is the same for single
and unbounded commands, so the implementation details of parallel do not need
to distinguish.

Let S; be the first line number species in the ith component of a parallel, and let
M; be the line number species that the ith component produces after terminating.
To initialize all the single and unbounded thread components, we sequentially add
each S; species into solution. We must then collect all M; species so that we know
each thread is completed. We again do so sequentially (using Y; as line number
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species for clarity). Once we have collected all M; species, we pass execution to the
next statement after parallel by creating a Yy molecule. All of this is accomplished
with the following reactions.

Xo — X1+ 50 Yo+ Mo — Y1
X1 = Xo+ 51 Yi+ M =Y
Xn—1 — Yo+ Sn—1. Yn-1+ Mp—1 — Y.

Similar to other imperative languages that support multithreading, ALCH does
not guarantee the absence of cross talk between threads. For example, simultaneous
additions or removals of the same tile can cancel out and produce unexpected
results. In general, programmers should exercise caution to prevent race conditions
and errors caused by multiple threads interfering with one another. We provide a
more detailed treatment of these issues in our discussion below on the correctness
of ALCH’s multithreading.

3.5.1 Single Threads and Unbounded Threads

Within a parallel block, a thread labeled single will be executed exactly once in
parallel with the other threads created in the parallel block. We implement a single
thread by generating reactions for that command’s code block as normal, and link
them with the appropriate S; and M; species as described above. Parallel single
blocks can also be nested within each other.

An unbounded block will continuously spawn threads until one of them exe-
cutes the finish command. At that point, unbounded block stops spawning threads
and waits for all spawned threads to complete before signaling to the containing
parallel block that it is done. The unbounded block can be used to quickly fill in
large regions of an assembly with tiles at a rate comparable to the original aTAM.
The difficulty in implementing an unbounded number of threads is that we can
define only a bounded number of chemical species. Combined with the difficulty of
absence detection in chemical systems, this makes it challenging to coordinate an
unbounded number of threads and determine when all have finished. Fortunately,
we can leverage the spatial structure capabilities of the CRN-TAM to store how
many threads we have created and signal when all have finished.

At the beginning of our ALCH program, we activate one single-tile assembly
for each unbounded command. We refer to the seed tile for unbounded command
C as Tyc, and the assembly it forms as Ac. We define unique tile types for each
unbounded command to avoid crosstalk.

When executing C, we first attach tile Ty to Tye. Tile Ty denotes the bound-
ary of our spatial storage region; when we encounter it later, we will know we know
we have reached the end of the region. We can then spawn threads using a loop-
ing construction similar to the while loop implementation discussed above. The
condition of this while loop is a single Boolean variable, which we will later set
to false on executing the finish command. For each thread that we spawn, we add
the tile T onto our Ax assembly to form a growing line extending out from T,
as shown in Fig. 4.
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Fig. 4: An assembly that stores the count of currently running threads spawned by
an unbounded block. Each ALCH program generates an assembly like this for each
unbounded command it contains. The five tiles indicate that five threads
are currently running in parallel. When each thread completes, it will remove its
tile. When all threads have completed, the tile is removed, signaling
the CRN that it is safe to continue.

Parallel

unbounded

single single

| [oa
finished
:
false
4
»

w |
|

Fig. 5: A flowchart showing how control passes through an example parallel
block. Note that the unbounded <block3> threads never merge back; ALCH relies
on the counting mechanism to coordinate unbounded threads.

Recall that a thread stops executing when it reaches the end of its code block;
when each thread completes, we remove a Thco tile from As. The number of
unbounded threads from command C that are currently executing in solution,
then, is the same as the number of To¢ tiles in Ac. When one thread executes the
finish command, we set the loop variable to false, and stop spawning new threads.
We must then wait for all currently executing threads to finish and remove the
remaining T¢ tiles. On the main, coordinating thread that spawned all the un-
bounded threads, then, we attempt to remove T;¢. This can only happen once all
unbounded threads have completed. When we successfully remove T} and detect
its signal in solution, we merge back into the containing parallel command.

The implementation of unbounded relies on constructs like while loops and tile
additions. Since we have already described in detail how to create these in ALCH,
we will present the implementation of unbounded as ALCH code. Inside the scope
of a parallel block, the command unbounded { <block> } compiles into

add T_1C;
while (! finished) {
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<spawn thread for block>
add T-2C;

}

remove T_1C;
finished = false;

The implementation of <spawn thread for block> is straightforward; we need only
create the first line number species S of the new thread with a reaction: Xo —
X1 + S. We must also generate reactions for the statements in <block>, with a
remove command at the end:

<block>
remove T_2C;

Finally, when the finish command is reached, we simply set finished = true.

Note that this implementation prevents the use of nested unbounded com-
mands, since we require a unique threading tiles for each unbounded block. How-
ever, unbounded blocks can be nested inside single blocks. Note also that any
Boolean variables we use are global; without access to an unbounded number of
chemical species, we cannot define thread-local Boolean flags using the dual-rail
mechanism described earlier.

3.5.2 Correctness of Multithreading in ALCH

In our discussion of multithreading, we have thus far assumed that that we can
create arbitrary threads by adding new line number species without worrying
about the line number species interfering with each other. We will now discuss the
correctness of ALCH’s multithreading and present several caveats.

We first discuss correctness without taking tile actions into account, and then
consider the impact of tile actions. To begin, we note that Boolean flag species are
not a concern. All modifications to Boolean flag species are atomic: i.e., similar
to Xo + Fy — X1 + X1, where both flag species are updated within a single reac-
tion. (Flag species are all global, so threads can communicate with each other via
Boolean variables; this is intended behavior. We cannot associate CRN flags with
each of an unbounded number of threads, so it would be extremely challenging to
implement thread-local variables without complex tile mechanisms.)

Threads spawned from single commands do not share line number species,
and so present no risk of cross-talk. Threads spawned from the same unbounded
commands do share line number species, but this also does not introduce any
failure modes. If line number species X, can only transform into line number
species X} or X, then it is guaranteed to do so regardless of the presence or
absence of additional X, in solution. (We choose a nondeterministic example for
generality.) The thread is therefore guaranteed to proceed as intended from X, to
either X3 or Xe.

We now consider tile actions. All tile actions in ALCH are transactional; the
CRN component produces a tile species and then consumes its removal signal,
or vice versa. The tile assembly component facilitates the transaction, and can
(in general) convert any tile species to its removal signal and vice versa. We do
not distinguish between add and activate or between remove and deactivate; as
discussed above, we rely on the user to take this into account manually.

Suppose we have two threads A and B; thread A attempts to send a tile to
the assembly (by addition or activation), producing and later attempting to
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consume removal signal t*. We identify several ways in which B might potentially
interfere with this process.

One possibility is that B might consume |t | before it can bond to an assembly.
In this case, B must already have produced a t* molecule, which A can consume
instead of the t* which it was to receive from the assembly. Both threads can there-
fore complete their transactions. The total number of assembly tiles is unchanged;
this is the intended affect on the assembly, as A sends a tile and B retrieves one.
We can conceptualize this as the send and retrieval “cancelling each other out”.

The difficulty, of course, is that no tiles have actually been exchanged with the
assembly. This poses several issues.

— In a situation where no |t | is available for removal on any assembly and no
can be added anywhere, the ALCH commands to add and remove would
ideally block forever. Under our implementation of multithreading, if addition
and removal are both executed, then both can continue without blocking.

— Similarly, suppose would have bonded at strength greater than 7. In this
case, B should block, A should continue without blocking, and should be
stuck on the assembly. Under our implementation, the assembly is unchanged
and B doesn’t block.

— If A is executing an activation command, the activation line number species
(X2 in equation (32) above) is left over and can later convert an intended tile
addition into an activation.

— If B is executing a deactivation command, the deactivation line number species
(the equivalent of X2 in reverse) never appears and B blocks forever.

In practice, however, we do not expect that these possibilities will be an issue very
often; we rely on the user to handle any issues.

The other possibilities for interference from B on A are similar; we omit the
analysis and conclude that, with the caveats mentioned above, ALCH’s multi-
threading system functions as intended.

3.5.8 A Multithreaded Construction of an 8 X 8 Square

To demonstrate multithreading in ALCH, we exhibit a fast construction of an 8 x 8
square. We can construct such a square sequentially in ALCH, but only slowly,
one tile at a time. Since add commands are blocking in ALCH, any single-threaded
construction must know the correct tile to add before adding it and proceeding
to the next. Any single-threaded construction will therefore likely either be very
complex or specify each tile position manually. Our multithreaded implementation
avoids these pitfalls, and is shown below; due to the simplicity of the tile structure,
we omit the tile listing.

We begin by activating a seed tile to serve as the lower left corner and
initializing the variable not_done to false to track square completion. We then per-
form 7 tile additions to construct the south and west edges (terminating in special
tiles and , which serve as starting points for the east and north edges.)
We use the single command to construct the south and west edges in parallel.
Also in parallel with the edge construction, we use three unbounded regions to
continually add to fill the square and and to construct the remain-
ing edges. Each unbounded region adds the corresponding tile inside a while loop,
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activate S;
bool not_done = true;
parallel{
single{ add B; add B; add B; add B;
add B; add B; add R; }
single{ add L; add L; add L; add L;
add L; add L; add T; }
unbounded{
while (not_done){
branch {
true(){add F;}
true(){add FT;}
true(){add FR;}
true (){} }}
finish; }
single{ add D;
not_done = false; } }
activate Q;

Fig. 6: This is the finished 8 x 8 square constructed by our multithreaded example

code. Tile in the lower left is the seed tile; all tiles , , , and are

harcoded. Addition of @ in the upper right signals that the square is complete.
This construction is at temperature 7 = 2 to enable cooperative bonding. All
bonds between two tiles in the set {, , , , } are strength two (i.e.,
the red and blue tiles that make up the west and south edges). This allows us to
build the west and south edges without additional support. All other bonds are
single-strength to force cooperative bonding.

simulating an unlimited supply of each type. The add commands take place inside
branch constructs with alternate empty paths; this prevents threads from being
stuck inside branch statements after no more tiles can be added.

Tile @ can only be placed in the north-east corner of the square, bonded

to and ; see Fig. 6 for an image of the completed square. We add

a final single thread in parallel, which attempts to add @; when it succeeds,
it toggles not_done, ending the while loops in the unbounded threads. With the
while loops ended, threads from each unbounded region reach the finish command,
preventing the unbounded regions from spawning more threads. Once all threads
clean themselves up, the parallel command ends, and our construction activates a

final assembly to signal that the construction is complete.

Recall from Subsection 3.4 that add commands inside branch are reversible,
and clean up after themselves. We therefore need not worry about excess , ,

or remaining in solution after execution. Every time any thread begins the
command add F, for example, that thread will either complete the command or
reverse back past it; in either case, ALCH cleans up all excess species, as discussed
in Subsection 3.4.

This program leverages the chemical parallelism of the aTAM to speed con-
struction, but is still fully modular: it knows when it has finished, and cleans up
all parts of itself to set the stage for any subsequent ALCH commands.
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In the general case, where we construct an n x n square using this method, we
would expect an asymptotic speedup (as compared to any single-threaded ALCH
construction, all of which must perform O(n2) tile additions sequentially on the
same thread.). We omit a detailed analysis of the 8 x 8 square runtime, however,
in favor of an intuitive argument. We construct the west and south edges each in
O(n) sequential add instructions. The bulk of the remaining add instructions are
dedicated to filling in the O(n?) inner spaces in the triangle. With a linear number
of threads present, each calling add repeatedly, ALCH can place O(t2) number of
tiles in ¢ time.

Even so, a quadratic speedup is minimal compared to the potential many-way
parallelism that the CRN-TAM is capable of. Schiefer and Winfree[23] suggest a
“tree counter” program for producing large species counts. This pattern uses a
hard-coded set of reactions of the form S; — S;41 + S;+1 to produce exponential
species counts in linear time. ALCH does not support this exponential technique;
it may be profitable to leverage this pattern to greatly accelerate thread spawning
in ALCH parallel sections. If users specify a tree counter depth at compile time,
ALCH has enough information to generate an exponential number of single thread
copies or unbounded thread counters in linear time. We believe that with this
enhancement, ALCH could emulate the efficient copy-tolerant language decider
from [23]; we are unsure about the nondeterministic decider from that work, but
suspect that ALCH would require further development to support it.

3.6 Functional Tileset Specification

We have demonstrated a variety of ALCH features designed to handle program
logic on the CRN side; we will now discuss a feature that is designed to expedite
tile set design. A common tendency in aTAM and CRN-TAM constructions is
to rely on sets of tiles that are duplicated with minor changes. In our discrete
Sierpinski triangle construction, for example, we create separate tile species both
for odd and even rows to prevent crosstalk and for the two symmetric halves (split
along the diagonal) of the triangle. This gives us four sets of tiles, each of which is
very similar to the others. Ideally, we would abstract out the similarities between
these four sets to avoid tedious work and potential copy-paste-modify errors.

In ALCH, we use the TileSet system to avoid this type of code duplication.
We can think of a TileSet as a function that accepts bond labels as arguments and
returns a set of tiles. A TileSet contains a list of tiles, with bond labels that can
be TileSet arguments or previously defined labels. TileSets can also include other
TileSets as components, and can pass their arguments down in the expected way.
TileSets can nest arbitrarily deep, but we require a TileSet to be defined before it
is referenced, so reference loops are impossible.

We also include the modifiers transpose, flipx, and flipy , which perform the cor-
responding transformations on component TileSets. When constructing the sym-
metric halves of the discrete Sierpinski triangle, for example, it is convenient to
use transpose to generate one half from the other. The register command supplies
a TileSet with arguments and adds all resulting tiles to the ALCH program.

We must also specify a naming scheme so that we can reference TileSet tiles
later in the program. As part of every TileSet invocation, whether for a compo-
nent of another TileSet or via the register command, the user must provide an
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BondLabel a;
BondLabel b;
BondLabel c;
BondLabel d;

TileSet Set0(x, y) {
Tile t0(x, 2, a, 0, a, 2, a, 0, "Ti”, "red”);
Tile t1(b, 0, y, 2, b, 0, b, 2, *Tj”, "blue”);
}

TileSet Setl(z
Tile t2(a, 2 , 0, a, 0, a, 0, "Tk”, "gray”);

Set0 set(c, z);

transpose (Set0 set_t(d, z));

register Setl tiles(d);

Fig. 7: The five tiles generated by the presented code sample.

invocation name. The user is also responsible for giving each component tile in
each TileSet a name. (The TileSet system is functional in nature, but this naming
scheme is reminiscent of the practice of naming class members in object oriented
languages.) For each generated tile, then, ALCH concatenates all the relevant
tile invocation names, delimited with the underscore character, and appends the
component name of the tile itself.

We illustrate this scheme with code sample from Fig. 7. The five tiles gener-
ated by this code are named: tilest2, tiles.set_t0 , tilessettl , tiles_set_tt0 , and
tiles_set_t_t1 .

4 Strict Self-Assembly of the Discrete Sierpinski Triangle

We now present the CRN-TAM construction that strictly self-assembles the dis-
crete Sierpinski triangle (DST) using ALCH. To see the complete specification of
the construction in ALCH, along with a video visualization of the self-assembly,
see http://web.cs.iastate.edu/~lamp/.

Before we give the details of the construction, we will define what we mean by
self-assembling a shape. We say that a CRN-TAM system N assembles a shape
S C 72 if the following is true: for each position p = (z,y) € 72, there exists a
time ¢ in every fair execution of N such that at all times ¢’ > ¢, position p is filled
if p € S and empty otherwise. Intuitively a fair execution is such that any reaction
which is enabled infinitely often must occur at some finite time ¢.

We begin with an overview of tile types and a brief description of their pur-
pose and then describe the DST construction algorithm in detail. Since the DST
is symmetric about the line f(z) = z, we refer to the two symmetric halves as
the lower symmetric triangle (LST) and the upper symmetric triangle (UST). We
first discuss the techniques to strictly self-assemble the LST, which can be eas-
ily modified to construct the UST in parallel. In our construction, it is useful to
distinguish between three types of tiles: (1) structural tiles, (2) scaffold tiles, and
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(b) Vertical scaffold (c) Diagonal scaffold (d) Sierpinski triangle

Fig. 8: (a) The initial hard-coded structure upon which we build the lower half of
the DST. (In the final program that constructs the whole DST, this structure has a
symmetric upper half.) (b) Demonstrates how our construction extends a vertical
scaffold down to occlude all the potential tile bond sites on column currently being
constructed. (¢) Shows the diagonal scaffold before erasing itself and starting a new
diagonal scaffold. (d) Shows a section of the Sierpinski triangle that includes the
lower and upper symmetric halves; the part corresponding to (c) is highlighted.

(3) probe tiles. Structural tiles are permanent and form the DST itself. Scaffold
tiles are used to construct temporary auxiliary structures to facilitate the DST
construction. Probe tiles are rapidly added and removed to query existing infor-
mation of previously placed structural tiles. To avoid unwanted crosstalk between
the symmetric halves, we duplicate the set of structure tiles into a symmetric
group with bonds that are incompatible with the LST tiles. We also differentiate
the tile types of even and odd columns to prevent a partially constructed column
from interfering with the construction.

We now discuss the construction for the strict self-assembly of the DST. The
first step in our construction unpacks the initial structure shown in Fig. 8a with
hard-coded tile activation and addition statements. This is easily accomplished
by adding tiles in a specific order that avoids ambiguity in placement. After the
initial structure tiles are placed, we then construct the LST column by column,
adding structure tiles one-at-a-time, completing each column before proceeding to
the next. We also use a variable to track whether we are currently constructing an
even or odd column. The process of adding one structure tile at a time is akin to
a dot-matrix printer, placing dots of ink one line at a time.

We present a list of even LST tiles in Figure 9a. Note that most structure tiles
have an heo bond of strength at least one on their eastern edges so that probe tiles
can attach cooperatively.

4.1 Scaffold Construction

We construct two types of scaffolds. The diagonal scaffold, shown in red in Fig.
8, runs along the diagonal of the DST and provides an anchor for the vertical
scaffold, which is shown in cyan. The vertical scaffold covers up potential bond
sites that we do not wish to bond to, as illustrated in Fig. 8b. The diagonal scaffold
is straightforward to construct; before constructing each column, we extend it out
by two more tiles. For the vertical scaffold, we must extend it only as far as the base
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(a) These are the struc- (b) These tiles (c) The blue tiles form the vertical

ture tiles that form the odd form the scaf- scaffolding that obscures bond sites to

columns of the LST; we omit folding that runs facilitate adding tiles at specific loca-

the even column tiles and along regions of tions. The yellow tiles form the probes

the tiles for the entire UST, the southwest- that determine whether a position in

which are very similar. to-northeast the previous column is filled or empty.
diagonal.

Fig. 9: Tiles types used in the DST construction.

of the DST. We extend the DST base row out by one space to denote the bottom
of the vertical scaffold. We begin the vertical scaffold with and construct

most of it from vertically double-bonded tiles. We use so that we know
when we are done when removing the scaffold.
The special final tile has a single bond on its north and south edges;

it cannot attach until it can bond cooperatively with the base tile below it and
the scaffold tile above it. When our system succeeds at placing , it knows

to continue to the next phase. We allow the assembly to remove as well, in
case bonds at the bottom instead of W; scaffold construction proceeds as

a random walk, which we bias with reaction rates.

Since the diagonal scaffold is not part of the DST, we must periodically clean
it up. Some columns in the LST are entirely solid up to the diagonal; when we
encounter one of these, we destroy the existing diagonal and begin a new diagonal
starting from the top of the solid column. As with , we start with a special
diagonal tile so that we can remove the diagonal in a loop and know when to stop.

4.2 Adding Structure Tiles with the Probe

When beginning to place tiles on a new column i, the vertical scaffold must be
completely initialized as in Fig. 8b. We must know which tile, if any to add to the
DST at each vertical position: T-joint, straight connector, etc. To that end, after
constructing the vertical scaffold, we initialize a 3 x 3 Boolean grid, centered on
(i,1), of Boolean flag variables. This grid stores whether those tile positions are
occupied in the full DST; note that if we know the 3 x 3 grid around a position, we
know which tile, if any, goes there. The lower six squares are entirely determined by
whether i is even or odd; the lowest row of the LST is solid, and the second-lowest
alternates every space between filled and empty. To determine the upper-left space,
we use the “probe” to measure whether (i — 1, 2) is filled or empty in column i —1,



26 Titus H. Klinge et al.

measured calculated (XOR)

measured calculated (XOR) ololo
known
| BT —— e
«single Jast
= ol L
space t § known onestep P
detected filled at start
space
detected next tile to add
(a) Nlustrates how the probe detects (b) Illustrates how the next 3 x 3 window
empty spaces in the Sierpinski trian- around the probe is updated using the previ-
gle; both paths are done in parallel. ous window and the tile detected by the probe.

Fig. 10: Visualization of querying nearby tiles and updating the 3 x 3 window.

which we have already constructed. We do this by nondeterministically attempting
to build two structures in parallel, as shown in Fig. 10a, and can deduce the value
of (i—1,2) based on which one succeeds. If the upper left space (i —1,2) is empty,
then it is possible to place a tile there; using double-bonded probe tiles, we build
south from the scaffold and then west into the potential empty space. If this
construction succeeds, we know that the space is empty. We exploit cooperative
bonding to determine if (: — 1,2) is filled. Structure tiles connect to each other
with double bonds; each structure tile, however, has at least a single bond on its
east edge. Our probe tile, then, has a single bond on its north and west edges.
It can bond cooperatively with the scaffold and space (i — 1,2) only if (i — 1,2)
is filled. We use ALCH’s branch structure to nondeterministically try both paths
until one succeeds, at which point our program knows the upper-left space of the
3 x 3 grid. We can then calculate the upper-center and upper-right spaces using
the XOR characterization of the DST.

With the grid filled in, our program can put the correct tile into solution (or
skip forward if no tile is required). All incorrect bond sites in column ¢ are covered
by the vertical scaffold, so our tile is guaranteed to bond at the correct location.
We must then “slide” the 3 x 3 grid one space north (updating the Boolean flags
accordingly) to process the next tile site, as illustrated in Fig. 10b. The lowest six
spaces of the new grid overlap with the old grid, so we already know them. As
during initialization, we can calculate the upper-left space using the probe method
and the remaining two using XOR. We proceed in this fashion up the entire column
until it is completed. Note that when adding tiles in the middle of column i, we
must make sure they do not bond into column 7 + 1 using bond sites on the part
of column ¢ that we have already constructed. We use even and odd bond types
to prevent this; the tiles we add for column 7 are incompatible with the bond sites
in column j.

4.3 Constructing the Upper Symmetric Triangle

We have discussed how to construct the lower symmetric triangle (LST); it is
straightforward to extend this method to the upper symmetric triangle (UST).
Since the DST is symmetric, we need not track any additional information. We gen-
erate a symmetric scaffold corresponding to the vertical scaffold discussed above.
(Since the diagonal scaffold is off-center, we skip the symmetric version of )
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When we add a structure tile to the LST, we add its symmetric version as well.
We must also make a straightforward modification to our method for finishing off
the solid columns (rows in the UST) that signal diagonal scaffold cleanup.

5 Strict Self-Assembly of the Discrete Sierpinski Carpet

We have seen that the CRN-TAM can strictly self-assemble infinite shapes at
scale 1 that the aTAM cannot. In this section, we show that these techniques can
be easily modified to self-assemble other self-similar fractals such as the discrete
Sierpinski carpet (DSC). We conjecture that all connected, self-similar fractals
defined in [16] can be strictly self-assembled in this way.

Our construction of the discrete Sierpinski carpet uses similar tile types as
the ones in our Sierpinski triangle construction. Since the DSC is also symmetric
about the diagonal y = x, we self-assemble the lower-symmetric triangle (LST)
and the upper-symmetric triangle (UST) in a similar way to the DST.

The LST is composed of the seed tile and forty-three structural tiles. The
number of tiles is larger than the DST because we must keep track of three states
to specify each position in the LST of the carpet, compared to two states in the
triangle. Unlike the DST, we do not need to keep track of even and odd columns to
mitigate tile conflicts and crosstalk. We resolve this crosstalk issue by modifying
the scaffold to occlude bonding sites in the column we are constructing and in
the adjacent column. However, we must duplicate the set of structural tiles to
construct the UST without interference by transposing the tiles in the LST.

We use probe tiles in much the same way as in the DST, with the main dif-
ference that in the DSC, we modify the “filled” probe to detect the state of the
tile in addition to its presence. We use the information gained by the probe tiles
to compute the state of tiles which have not been placed yet.

Recall that the DST uses a diagonal scaffold to support its construction. In
the DSC, two scaffolds are constructed, in vertical and horizontal directions for
each layer. (In this construction, layers are concentric squares of increasing size.)
As shown in Fig. 11a, we construct the right angle scaffold by building north and
east from the frame at the same time. We find the intersection point of these two
rays by cooperatively attaching a tile that joins these two structures, denoted as
SJ in the figure.

As in the DST, these right angle scaffolds allow cooperative bonding of probes
with the assembly and occlude bonding sites in the layer being constructed. These
scaffolds have two advantages over the DST scaffolds. First, they do not interfere
with tile positions that are part of the structure being built. Second, the DSC can
be constructed without even and odd unique columns, reducing the number of tile
types. This is accomplished by covering the outside edges of the structural tiles in
the current layer under construction. This is shown in Fig. 11b.

We construct the right angle scaffold by simultaneously building north from
the east edge of the horizontal frame and the building east from the north edge of
the vertical frame. We find the intersection point of these two rays by cooperatively
attaching a tile that joins these two structures.

Another new technique used in the DSC construction utilizes the diagonal
symmetry of the shape to determine information about a tile position without
probing. This is especially useful when information about the state of a tile is
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Fig. 11: (a) Shows the right angle scaffold finding the intersection point of the cur-
rent row and column. This structure enables use to build the DSC outward layer-
by-layer. We also fully surround the construction area which prevents crosstalk
during construction. (b) Demonstrates the vertical and horizontal construction
scaffold. As with the DST this scaffold occludes all potential bonding sites in the
previously constructed layer. (c) Illustrates how we exploit symmetry to gather
information about the assembly without probing.

required that has not been placed in the assembly. However, symmetry of the shape
allows us to determine this information from another tile position that does contain
a placed tile. For example, in the DSC we can utilize this technique to determine
the tile type to place at position (n,n) on the diagonal during construction of layer
n. In this case, in order to determine which tile type to place at (n,n) we must
determine the state of the tile at position (n,n+ 1), which has not yet been placed.
However, by symmetry tile position (n + 1,n) is the same state, which we have
already calculated and stored in species structured as a 3 by 3 window. Using this
calculated symmetric state we can then determine the correct tile type to place at
position (n,n). Fig. 11c depicts this situation in the assembly.

6 Conclusion

In this paper, we define ALCH, a programming language for the CRN-TAM. ALCH
targets sequential CRN-TAM constructions, but supports multithreading as well.
ALCH’s notion of multithreading is powerful enough to create unbounded numbers
of threads, as in our square construction that mimics the infinite tile supplies of
the aTAM, but fully modular in the sense that multithreaded regions clean up
after themselves and know when they have finished.

We use ALCH’s sequential functionality to exhibit a strict self-assembly of
the discrete Sierpinski triangle (DST) and the discrete Sierpinski carpet (DSC).
Our use of ALCH allows us to conceptualize these constructions at the level of
imperative tile commands and familiar control structures like conditionals and
while loops. Furthermore, since it is impossible to strictly self-assemble the DST
in the aTAM, our construction serves as a proof that the CRN-TAM can strictly
self-assemble infinite shapes that the aTAM cannot.

We utilize two new techniques in our constructions. First, we have use a probe
mechanism to measure which tiles have been placed, allowing us to derive informa-
tion from the already-constructed system. The probe technique showcases ALCH’s
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nondeterministic branch structure, exploring multiple potential executions to find
one that can complete. It also enables us to query the parts of the DST we have
already constructed. Second, we have use a temporary scaffold to occlude unde-
sirable tile bonding sites and precisely control where new tiles are added. Both
of these techniques leverage the CRN-TAM'’s ability to remove tiles and create
temporary structures.

We consider an alternate strategy to construct the DST using a CRN-TAM
Turing machine implementation to control scaffold construction and tile place-
ment. This entailed maintaining a secondary representation of the DST in the
Turing machine tape, updating and querying it as the construction proceeds.
The Turing machine would likely require unbounded storage to retain the last-
constructed column even if it does not store the whole DST. On the other hand,
our CRN-TAM construction acts as a “transformer,” converting a stream of local
data into a stream of tile placements without retaining unbounded information.
The only part of the DST that we store in a computational form is the local 3 x 3
grid. We update it using the probe mechanism, thereby converting measurements
of the existing DST into a bounded representation of the local DST area.

Our second technique, occluding bond sites with a temporary scaffold, is very
general; we can apply it to any construction where we have a frontier of potential
bond sites and must bond at a precise one. We expect this technique to be useful
in constructing a wide variety of infinite shapes in the CRN-TAM. Our DST and
DSC constructions do not require a Turing machine, but the full power of CRN-
TAM universality is available to use in combination with occlusion scaffolds. We
speculate that it is possible to construct every connected recursively enumerable
subset of Z? using variants of this technique.

Regardless of whether we can do this, however, under our definition of self-
assembly from Section 4, we are not strictly limited to constructing shapes that are
recursively enumerable. We can easily self-assemble basic recursively enumerable
sets, such as a comb shape where the ith tine of the comb is present if and only if
the ith Turing machine in some standard order halts on an empty input. We can
also self-assemble the corresponding co-recursively enumerable set, i.e., the comb
that has tines for each Turing machine that never halts. We begin creating the
comb with all of its tines, and remove tines as our simulated Turing machines halt.
(The recursive and co-recursive constructions both involve simulating all Turing
machines in parallel using the well-known dovetailing technique: simulate the first
for one step, then the first and second for one step, and so on.)

Note that adding or deleting a comb tine is straightforward, even in the middle
of the constructed comb. Suppose we wish to add or remove a comb tine at position
i. We can destroy the entire comb after position ¢, rebuild position ¢ appropriately,
and then restore the parts we destroyed. For each index j € N, there exists some
count ¢; of Turing machine timesteps after which all of the first j Turing machines
that halt have done so. When we have simulated the first ;7 Turing machines for
at least t; steps, we will have finalized the comb up to position j in accordance
with our definition of shape self-assembly from the start of Section 4.

We find it somewhat unsatisfying that our notion of assembly allows us to
assemble undecidable co-recursively enumerable objects. CRN-TAM systems can
“cheat” by constructing shapes in such a way that it is never possible to know
whether a particular position has been finalized. A more restrictive notion of as-
sembly would force a computability criterion onto tile position completion time.
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Since many shapes of interest are completely decidable, including the ones dis-
cussed above, we do not address the theoretical ramifications in this work.

We hope that ALCH and the tools and techniques presented here will catalyze

research into the CRN-TAM and similar hybrid models.
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