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Fluctuating electric fields emanating from surfaces are a major possible source of decoherence in a number of
quantum applications, including trapped ions and near-surface nitrogen-vacancy diamond qubits. Here, we show
that at low temperatures, due to superradiant decay, phonon-induced excitation exchange between adsorbed
atoms can counterintuitively mitigate the electric field noise. We derive an exact mapping between the noise
spectrum of N interacting fluctuators with M vibrational levels to

(N+M−1
N

)
-1 noninteracting two-level dipoles.

The anharmonic interaction of the fluctuators with the surface is semiempirical and physically motivated. This
anharmonicity affects the noise spectral power intensity at higher temperatures. We describe conditions for
which the ubiquitous 1/ f noise emerges naturally from the coupled dynamics of identical fluctuators and whose
behavior depends critically on correlation among the fluctuators.

DOI: 10.1103/PhysRevA.105.L010402

Introduction. Electric field noise emanating from sur-
faces is a worrisome aspect limiting the duty cycles for a
host of miniaturized applications in quantum physics [1–3].
Patch potentials—spatially variant electrostatic potentials on
surfaces—affect force measurements of quantum electrody-
namics or noncontact friction at short distances [4–6]. Surface
electric field fluctuation is one of the largest contributors of
noise at mHz (milli) frequencies for operation of space-based
gravitational wave detectors [7]. Noise produced by fluctuat-
ing charges on diamond surfaces can even be more pernicious
than magnetic noise for near-surface nitrogen-vacancy (NV)
qubits [8–10]. Experiments have established that surface-
induced low-frequency noise is a major source of decoherence
in trapped ion qubit operations [11–13].

Identifying a single source of surface noise is a daunt-
ing challenge [14]. Nevertheless, there is growing evidence
supported by microscopic and phenomenological theories
and surface experiments to suggest that adsorbed impurities
(“adatoms”) on surfaces are at work in generating fluctuat-
ing electric fields in ion traps, silicon cantilever tips, and
NV-center diamonds [6,8,11,15–21]. No single behavior of
anomalous noise in ion traps has been observed over the full
range of temperatures [22–26] though noise tends to decrease
at lower temperatures.

When the impurity concentration is high, correlated dy-
namics between impurity fluctuators can begin to dominate.
In this Letter, we consider the effect of one such collective
coupling on the noise spectral power, where the adsorbed
fluctuating dipoles conspire to emit to and absorb from the
same phonon mode. Coherent radiation has been of long-
standing interest since Dicke’s seminal work demonstrating
the enhanced radiance among correlated emitters [27,28].

*ptlloyd@berkeley.edu

We show that collective many-body decay leads to a reduction
in noise intensity. We extend the usual two-level fluctuator
paradigm to include the anharmonicity of levels and study
the frequency and temperature influence of the anharmonic
interaction on the noise power spectrum. By exploiting the
symmetry properties of the phonon jump operators which
determine the evolution of a Lindbladian master equation
for N M-level fluctuators, we can make level-specific state-
ments on how the noise emerges from the convolution of
two-time correlators. The ubiquitous low-frequency 1/ f noise
emerges in this work due to the correlated dynamics of surface
adsorbed dipoles when mutually independent patches are dis-
tributed with an adatom number as 1/N . We show how this
particular distribution emerges from the correlated dynamics
in our derivation. This Letter constitutes a first-principles
microscopic derivation of the 1/ f noise and because the
impurity-surface interaction is described within a potential
landscape approach, the method is generally applicable over
a wide range of adatom masses and vibrational frequencies. It
can thus give rise to 1/ f noise in the common MHz regime
and at higher frequencies.

Interaction Hamiltonian and many-adatom master equa-
tion. A much studied possible source of noise in ion
microtraps originates from impurity atoms that are adsorbed
on metallic electrode surfaces. At large atom-surface sep-
arations, the surface potential is determined by the atomic
dynamical polarization and is attractive, while repulsive
forces dominate at short distances, where the adatom wave
function overlaps with the surface.

This general binding is captured with an anharmonic po-
tential, exp-3, U (z) = β̃

β̃−3
U0[ 3

β̃
eβ̃(1−z/z0 ) − ( z0

z )3], where U0

is the potential depth at the equilibrium position z0. β̃ = β0z0,
where β0 is the reciprocal range of repulsion and z is the
distance of the adatom from the surface [29,30]. The full
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potential depends on the transverse (x, y) coordinates due to
surface roughness and impurity mobility [31], but we take
these contributions to average out or otherwise be weak on
a metal surface where the electrons are smeared out. Thus,
we only focus on motion normal to the surface. Each bound
state of this potential is associated with a permanent dipole
moment [17,32] and transitions between the states produce
electric noise. Near z0 the harmonic approximation holds and
the fundamental overtone transition frequency can be written

as ω0 = ω12 ≈
√

3U0(β̃2−4β̃ )
mz2

0 (β̃−3)
, where m is the adatom mass. We

emphasize that most of the following work applies to a varied
class of possible surface potentials [33,34].

We consider an ensemble of N adatoms interacting with
the surface through M bound states, and described by a den-
sity matrix ρ̂. A transition from level ν to µ (Eµ < Eν) on
atom n is described by the operator b̂µν

n = |µ〉〈ν| accompa-
nied by the emission of a phonon into the bulk of frequency
ωµν = ων − ωµ. Following similar arguments as those found
in Refs. [35–39] for atom-photon coupling, we derive the
master equation for our system [40]. We assume and vali-
date the usual Markovian approximation that bath correlations
decay much faster than the correlation among the adatoms
and that retardation effects can be ignored [41]. Under these
conditions, we can solve for the cooperative decay %µν

mn and
energy shift δωm,n and obtain an effective description for the
correlated adatom ensemble, which we write in Lindbladian
form

∂t ρ̂ =
M∑

µν

i[ρ̂, Ĥµν] + Lµν (ρ̂), (1)

with

Ĥµν =
N∑

mn

b̂µν†
m b̂µν

n

(
ωµν + δωµν

mn

)
,

Lµν (ρ̂ ) =
N∑

mn

%µν
mn

1 − e−βωµν

[
b̂µν

m ρ̂b̂µν†
n − 1

2

{
b̂µν†

n b̂µν
m , ρ̂

}

+ e−βωµν

(
b̂µν†

m ρ̂b̂µν
n − 1

2

{
b̂µν

n b̂µν†
m , ρ̂

})]
. (2)

The Hamiltonian describes that a phonon after being emitted
from an adatom transitioning from state ν to state µ can be
absorbed by one of the other adatoms, promoting it from state
µ to state ν. This is analogous to the exchange of virtual
photons in dense multilevel atomic gases. The dissipative
interaction of adatoms m and n in state µ and ν is given by
the matrix %µν

mn = 3
2%

µν
0 f (kµνrmn), where the level transition

frequency is %µν
0 = |〈µ|∇U |ν〉|2ωµν

2π h̄c3N given that kµν = ωµν

c , N is
the bulk density, and c is the phonon speed in the bulk. Both
the coherent exchange process and the decay carry an intrinsic
dependence on the distance of any pair of two adatoms, given
by the function f [35]. In the long-wavelength limit, f is a
constant. Thus we can safely remove the spatial dependence
from consideration, but will return to it in the last section of
the text. The inverse temperature, in units of frequency, is
β = T −1, where T = kbT /h̄, with T as the temperature in
Kelvin. The quantity of merit in our derivations is βω0, where
ω0 is the main transition frequency.

Adatom exchange symmetry. The interaction potential is
harmonic about z0, and thus the approximate fundamental
transition rate is %0 = %12

0 ≈ 1
4π

ω4
0m

c3N . This expression is use-
ful in the N > 1 case since in the long-wavelength limit,
where kµνrmn & 1, the decay is spatially independent such
that %µν

mn becomes constant with elements, %µν
0 . In this limit, an

emitted virtual phonon is equally likely to be absorbed by any
of the adatoms, revealing that the system is fully symmetric
under exchange of two adatoms.

All such transitions are captured by a collective operator
L̂µν =

∑N
i b̂µν

i acting on all adatoms equally. This affords
a particularly simple description, where we can naturally
reduce Eq. (1) in the fully symmetric basis. Then the action of
the fully symmetric operators strictly isolates the symmetric
subspace from all other states [42,43]. We denote the
symmetric states as |m1m2 · · · mM〉, where mi, etc., indicates
the number of atoms in level i with N =

∑
i mi. The action

of Lµν on a state is given by L̂µν | . . . , mµ, . . . , mν, . . .〉 =√
(mµ + 1)mν | . . . , mµ + 1, . . . , mν − 1, . . .〉. Furthermore,

the evolution of populations in the symmetric basis are
decoupled from coherences. Assuming an unexcited initial
state, the system remains in the subspace spanned by

(N+M−1
N

)

populations of the symmetric subspace, denoted by ρm1,...,mM .
These populations are eigenstates of the Hamiltonian,

which therefore does not contribute to the system evolution.
This renders an effective classical model for the interacting
adatoms. This is understood directly by expanding Eq. (1) in
the symmetric population basis

ρ̇m1,...,mM

=
∑

µ,ν

Fµν[Gνµ × (e−βωµν ρ...,mµ+1,...,mν−1,... − ρm1,...,mM )

+ Gµν × (ρ...,mµ−1,...,mν+1,... − e−βωµν ρm1,...,mM )], (3)

where Fµν = %
µν
0

1−e−βωµν and Gµν = mµ(mν + 1). Equation (3)
defines a linear matrix equation for the density matrix com-
ponents, ρ̇i =

∑
j Mi jρ j , where ρ j is the jth state in the

symmetric basis we have described and Mi j is the transition
element between two of the states. Now that we have a de-
scription for the dynamics of the vibrational states of our
system, we can write an equation for the change in dipole
moment. Choosing ρ̂i = |i〉〈i| as the projector of the symmet-
ric state i, we can write the dipole operator of this state as
µ̂(t ) =

∑
i Diρ̂i(t ), where Di is the associated dipole moment

magnitude. This value is given by the sum over the dipole
moments of the populated levels of the ith state weighted by
their occupation (e.g., ρ̂5 = |201〉〈201| → D5 = 2d1 + d3).

Noise spectrum of correlated anharmonic fluctuators. We
calculate the magnitude of the electric field noise by invoking
the Wiener-Khinchin theorem [44,45], which in this context
states that the electric field noise power spectrum is the
Fourier transform of the autocorrelation function of µ̂,

S(ω) =
∫ ∞

−∞
dτ [〈µ̂(τ )µ̂(0)〉 − 〈µ̂(0)〉2]eiωτ . (4)

The correlation functions can be evaluated using the quan-
tum regression theorem [46]. The first term in Eq. (4)
can be written as 〈µ̂(τ )µ̂(0)〉 =

∑
i, j DiDj〈ρ̂i(τ )ρ̂ j (0)〉.

Since the operators ρi just represent projections, they
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FIG. 1. (a) The coefficients Ck in Eq. (5) are shown as a function of eigenvalues λk for N = 3. The up (blue) and down (red) pointing
triangles correspond to numerically exact calculations at T/ω0 = 0.2, 1, respectively. The widespread distributions of weights Ck over ten
orders of magnitude suggest an approximation scheme utilizing the largest Ck . (b) The noise power spectrum illustrates the point: With only
the highest weighted (Ck, λk) pairs, here up to four pairs, results converge to the exact values for T/ω0 = 0.2. The convergence will only be
more rapid for higher temperatures. Here, we chose U0 = 0.6 eV, m = 100 amu, β0 = 1.86 Å−1, and z0 = 3.1 Åas an example of a tightly
bound adatom species. We note that qualitatively similar results are obtained for weakly bound adatoms, where the noise spectrum is shifted
to lower frequencies.

satisfy the same equation of motion as the density ma-
trix ∂t 〈ρ̂i(τ )ρ̂ j (0)〉 =

∑
j′ Mi j′ 〈ρ̂ j′ (τ )ρ̂ j (0)〉. As the matrix

is diagonalizable, M = A−1DA with eigenvalues {λk ! 0},
a particularly simple solution is in terms of the eigen-
modes 〈ρ̂i(τ )ρ̂ j (0)〉 =

∑
k A−1

ik

∑
l Akl〈ρ̂l (τ )ρ̂ j (0)〉eλkτ . The

first term in Eq. (4) can thus be written as 〈µ̂(τ )µ̂(0)〉 =∑
i, j DiDj

∑
k A−1

ik

∑
l Akl〈ρ̂l (0)ρ̂ j (0)〉eλkτ . Note that the term

λk = 0 corresponds to the steady state and can be simplified
into 〈µ̂(0)µ̂(0)〉, canceling the second term in Eq. (4) as
expected. We further note that the projector can be simpli-
fied into the steady-state value 〈ρ̂l (0)ρ̂ j (0)〉 = 〈ρ̂ j (0)〉δl j =
ρ j (0)ssδl j . The Fourier integral can now be performed ana-
lytically, when observing the time symmetry of the correlator
〈µ̂(τ )µ̂(0)〉 = 〈µ̂(−τ )µ̂(0)〉 in the steady state,

S(ω) =
∑

i, j

DiDj

∑

k\{λk=0}
A−1

ik Ak jρ j (0)ss
∫ ∞

−∞
dτeλk |τ |eiωτ

= −
∑

i, j

DiDj

∑

k\{λk=0}
A−1

ik Ak jρ j (0)ss 2λk

λ2
k + ω2

,

where the integral converges because λk < 0. For the same
reason, the noise spectrum is strictly positive definite. A
concise interpretation can be obtained by defining Ck =
2

∑
i, j DiDjA−1

ik Ak jρ j (0)ss such that the noise spectrum be-
comes a sum of Lorentzians

S(ω) =
∑

k\{λk=0}
Ck

−λk

λ2
k + ω2

. (5)

This simple exact solution expresses the remarkable equiv-
alence of the electric field noise from an N-body correlated
system to that of

(N+M−1
N

)
-1 (the number of states excluding

the steady state) independent effective two-level fluctuators.
In this picture, each fluctuator has a weight Ck with an effec-
tive lifetime τk = λ−1

k . This provides a natural order of decay
that is useful for a simplified analysis of noise spectra at high
and low frequencies.

Correlated noise. The impurity-surface interaction
potential, transition energies ωµν , dipole moments dµ,

transition rate constants %µν , and temperature T define our
surface-fluctuator system. Numerical calculations indicate
that dµ decreases with increasing vibrational level while
%µµ+1 peaks at some intermediate level [40]. Figure 1(a)
displays the decomposition of terms in Eq. (5) at the example
of a tightly bound adatom species. Each component λ
corresponds to a Lorentzian noise profile. While it is evident
that many Lorentzians contribute at both low and high
temperatures, only a few λ terms dominate the noise power
spectrum decomposition. The effect on the noise power
spectrum is shown in Fig. 1(b), where the sum of only a few
λ terms are necessary to reproduce the converged numerical
results (calculations converge with M = 10), reaffirming the
expectation that the level population is thermally activated
and determined by the Boltzmann factor T = e−βω0 . At low
temperatures T/ω0 < 1, transitions occur near the harmonic
minimum z0 such that only the lowest two states are dominant.
The noise spectrum can be expanded perturbatively in powers
of T ,

SN (ω) = 2(d1 − d2)2 N%0

(N%0)2 + ω2
T + O(T 2). (6)

An immediate observation, in comparing to Eq. (5), is λ =
N%0. This proportionality of the eigenvalues with N is ex-
ploited below to describe how the ubiquitous 1/ f noise
emerges. The equivalent coefficients Ck are independent of
N . The frequency-independent white noise magnitude per
adatom, 1

N SN (ω = 0), now scales as 1
N2 , as observed in

Fig. 2(b). This suggests that at low temperatures, correlated
phonon transitions conspire to suppress electric field noise
[see Fig. 2(a)]. In this regime, a larger number of adatoms not
only decreases the noise per adatom but, in fact, decreases the
total noise of N adatoms to a value lower than that of a single
adatom (N = 1). This is a reasonably surprising consequence
of superradiant decay applied to noisy adatoms on surfaces.

Superradiant decay. Figure 2(a) displays the noise spec-
trum for three different temperatures. We recover the su-
perradiant behavior at low temperatures as discussed above,
where the overall low-frequency noise is attenuated. This
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FIG. 2. The noise spectral function for adatoms of mass m = 100 amu interacting with the surface potential at depth U0 = 250 meV
at T/ω0 = 0.1, 0.4, and 1 with β0 and z0 as before. (a) The correlated noise spectrum is shown for different patch sizes N . At T/ω0 < 1,
correlated superradiant decay results in a lowering of the white noise with an increasing number of correlated adatoms N . Thus, in this regime
one adatom is a larger source of noise than two or more correlated adatoms. With T/ω0 ∼ 1, superradiant decay does not prevent an increasing
noise magnitude as a function of increasing N . (b) The magnitude of the white noise spectra per adatom at different T/ω0 is shown to decrease
with increasing N where in the low-temperature limit the N−2 scaling appears as predicted by Eq. (6). The solid lines are guides for the eye.

effect is weakened at intermediate temperatures and eventu-
ally reversed, and the total noise increases with increasing
N . Remarkably, the noise per adatom generally remains sup-
pressed as seen in Fig. 2(b). At higher temperatures, the
influence of the interaction potential anharmonicity on the
level structure and transition rate constants (see below) in-
creases. As analyzed in Fig. 1, the contribution of different
(λk,Ck ) sets to Eq. (6) shifts such that at ω/(N%0) ≈ 1,
the spectral dependence turns over from constant to 1/ f 2.
Throughout, we remain at temperatures such that the adatom
does not detach from the surface via thermal fluctuations.

Anharmonicity. For rising temperatures the anharmonic
behavior of the model potential will have an observable in-
fluence on the noise power spectrum. At T/ω0 = 0.2, the
dominant effective two-level fluctuator approximates the ex-
act white noise spectrum to within a few percent. At higher
temperatures more and more bound states contribute, a pro-
cess we illustrate here by considering the next-to-leading
order in the expansion in T in Eq. (6). A parametric measure
of anharmonicity is found by expanding U (z) about z0 to the
third order in z, such that the frequency asymmetry between
level spacing is δ = ω0 − ω23. With increasing N , the spectral
density of the T 2 contribution C2(N, δ) plateaus, but with
increasing δ, the plateau heights also increase [40].

Emergent 1/ f noise. The overall noise originates from
the mesoscopic scale and randomly scattered impurities with
differing local densities which together define a surface cov-
erage. The interaction with the phonon hub is therefore given
by the separation of all adatom pairs. Instead of reintroducing
this spatial dependence, we provide an insightful approxima-
tion of this complex system by segregating the surface into
patches, whose adatoms are fully correlated, while each patch
interacts independently with the phonon hub. Thus, the noise
power spectrum can be approximated as a weighted sum of
the patches of size N , Stot(ω) =

∑Nmax
N=1 D(N )SN (ω) with a

corresponding relative weight factor D(N ).
In particular, at low temperatures the noise spectrum can be

written as SN (ω) = C N%0
(N%0 )2+ω2 , where C are the coefficients of

the Lorentzian in Eq. (6). Since C has no N dependence, it can
be moved out of the sum and normalized. Next, we consider a

distribution whereby each patch is weighted by D(N ) = N−1,
as a heuristic model where the relative frequency of small
patches is high and that of large patches is low.

Then,

lim
Nmax→∞

Stot(ω) = C
2

(

−%0

ω2
+

π coth
(

πω
%0

)

ω

)

. (7)

The noise thus shows a universal frequency dependence set
by the fundamental transition rate %0. At small frequen-
cies, ω/%0 & 1, the noise thus approaches a constant value
π2/(6%0) while 1/ f behavior emerges for ω/%0 > 1 (see
Fig. 3). For a finite number of adatoms in a patch, the spectral
behavior shows 1/ f noise across a finite frequency range,
before returning to the typical 1/ f 2 behavior at the highest
frequencies.

This derivation is complimentary to the phenomenological
derivation of 1/ f noise by Dutta and Horn [47]. There, it is
demonstrated that the noise of thermally activated two-level

FIG. 3. The emergence of 1/ f noise with a D(N ) = 1
N patch

distribution. The black bottommost curve results from a sum over
Nmax = 10 correlated adatoms in Stot(ω) while the blue curve is the
Nmax → ∞ limit in Eq. (7). The latter has a universal functional form
in ω/%0. With increasing numbers of correlated adatoms in each
patch, the noise spectrum turns from 1/ f 2 to 1/ f .

L010402-4



CORRELATED MANY-BODY NOISE AND EMERGENT 1/F … PHYSICAL REVIEW A 105, L010402 (2022)

fluctuators is of 1/ f type in a given frequency range if their
energy distribution within and well beyond that frequency
range is constant. The underlying physical reason is that the
associated lifetimes τ are then distributed as D(τ ) ∝ τ−1.
Here, due to superradiant decay, each patch has a character-
istic timescale τN ∼ 1

%0N ; larger patches have faster dynamics
and therefore shorter decay timescales (less noise). This offers
an alternative origin for the emergence of the distribution
D(τ ) ∝ τ−1 for the assumed distribution of patch sizes. Thus,
we provide a physical derivation for the ubiquitous 1/ f noise
that does not depend on a priori assumptions on an as-
sumed energy level distribution and emerges naturally from
the coupled dynamics as a discrete sum over a distribution of
identical fluctuators. At higher T/ω0, level multiplicity and
interaction anharmonicity will enter, as discussed above. We
note that a linear relationship between the dominant λk and
N exists at higher temperatures, suggesting that a key ingre-
dient for our description of 1/ f emergence persists beyond
Eq. (6) [40].

Realization. The appearance of correlated dynamics de-
pends on the adatom species, specific surface interaction, and
impurity density. Correlated dynamics will generally emerge
when the dominant phonon wavelength exceeds the typi-
cally adatom-adatom separation, i.e., C ≡

√
R(2πc/ω0) !

1, where c is the phonon speed in the material. Such conditions
tend to be satisfied in ion traps with a large adatom con-
centration of relatively massive adatoms or molecules, whose
surface vibrational energies h̄ω0 are low. These energies may
vary from 1 eV for a hydrogen adatom to 1 meV for loosely
bound heavy adatoms [17,29,48,49]. For instance, argon or
xenon impurities on a gold surface (c ≈ 3240 m/s) have vi-
brational energies h̄ω0 ∼ 1–5 meV [50,51], such that C > 1
for moderate densities R > 10−3 Å−2. The superradiant sup-
pression of electric field noise is expected in such systems
at T < 50 K, i.e., βω0 / 1. Noise magnitudes for these pa-
rameters vary from 10−14 to 10−9 V2 m−2 THz−1 [40]. More
reactive adatoms such as carbon, nitrogen, or oxygen, typical
contaminant species, can possess higher binding energies and
thus h̄ω0 ! 10 meV, therefore reaching the correlated regime
at greater densities, R ∼ 5 × 10−3 Å−2. With %0 ≈ 1

4π

ω4
0m

c3N
for masses typical of physisorbed species, such as rare-gas
atoms, and ω0 ∼ 1 THz, %0 ranges from 1 to 100 MHz. For
chemisorbed species which are more tightly bound to the
surface, the condition C ! 1 is met at higher temperatures

and larger %0. We emphasize that this theoretical framework
makes no assumption on operating conditions and can thus
generally be applied.

Concluding remarks and outlook. Superradiant decay,
caused by the collective emission into and absorption from
a phonon bath, can suppress the electric field noise emanating
from N fluctuating impurities on surfaces. The electric field
noise of this N-body correlated system maps to

(N+M−1
N

)
-1

independent effective two-level fluctuators. This is facilitated
by exploiting the inherent permutation symmetry of adatoms
at close distances. We further find that the correlated dynamics
of N adatoms in surface patches with relative frequencies 1/N
results in the ubiquitous 1/ f noise spectrum.

Future extensions of this correlated model for noise sup-
pression can account for impurity diffusion and exchange of
adatoms between patches. Care is then necessary to allow for
spatial dependence of the phonon dynamics and the possible
population of states without perfect permutation symmetry.
This more complex scenario may allow the emergence of
robust 1/ f noise for a wider class of particle distributions than
considered in the present Letter. Another promising direction
lies in the regime of high temperatures. Interesting features
at these temperatures can already be seen in Fig. 1, where
the equivalent two-level fluctuators are distributed in a more
regular fashion than at low temperatures. Moreover, a single
Lorentzian tends to dominate more with increasing temper-
ature, requiring fewer pairings of (Ck, λk ) for a converged
description of the noise spectrum. This suggests a possible
way in which the otherwise more complex computations at
higher-temperature calculations could be simplified. However,
a comprehensive model needs to account for the possible ther-
mal ejection of adatoms at high temperatures. A recent work
[19] compliments this work with detailed numerical simula-
tions of specific adsorbates on a gold surface and similarly
comes to the conclusion that correlated dynamics is crucial
for the emergence of 1/ f noise.
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