Robust Real-time Computing with Chemical
Reaction Networks *

Willem Fletcher!, Titus H. Klinge? [0000-0002-2297—6712] " Jaeg 1. Lathrop?,
Dawn A. Nye3[0000-0003—1192-2740] ' 31,4 Matthew Rayman?

1 Carleton College, Northfield, MN, USA, fletcherw@carleton.edu
2 Drake University, Des Moines, IA, USA, titus.klinge@drake.edu
3 Towa State University, Ames, IA, USA, jil,omacron,marayman@iastate.edu

Abstract. Recent research into analog computing has introduced new
notions of computing real numbers. Huang, Klinge, Lathrop, Li, and Lutz
defined a notion of computing real numbers in real-time with chemical
reaction networks (CRNs), introducing the classes Rrcrn (the class of
all Lyapunov CRN-computable real numbers) and Rrrcrn (the class of
all real-time CRN-computable numbers). In their paper, they show the
inclusion of the real algebraic numbers ALG € Rrcrn € Rrrcern and
that ALG & Rrrcry but leave open where the inclusion is proper. In this
paper, we resolve this open problem and show ALG = Rrycrn & RrrerN-
However, their definition of real-time computation is fragile in the sense
that it is sensitive to perturbations in initial conditions. To resolve this
flaw, we further require a CRN to withstand these perturbations. In doing
so, we arrive at a discrete model of memory. This approach has several
benefits. First, a bounded CRN may compute values approximately in
finite time. Second, a CRN can tolerate small perturbations of its species’
concentrations. Third, taking a measurement of a CRN’s state only
requires precision proportional to the exactness of these approximations.
Lastly, if a CRN requires only finite memory, this model and Turing
machines are equivalent under real-time simulations.

Keywords: Real Time, Chemical Reaction Networks, Robustness, Ana-
log Computing

1 Introduction

Over the last few decades, many theories of molecular computing have emerged.
These theories help inform experimental research and help explore the boundaries
of nanoscale computation. Some models of molecular programming are structural,
such as algorithmic self-assembly [8,9]; some models are amorphous, such as
chemical reaction networks [4, 15]; and some models combine these to characterize
more complex interactions [5,14]. Since molecular programming is a relatively
new field, many open problems exist concerning the computational limits of these
models.

* This research supported in part by NSF grants 1900716 and 1545028.

2 W. Fletcher, T. Klinge, J. Lathrop, D. Nye, M. Rayman

Investigating the complexity of computing real numbers in computational
models has historically significant roots. In Turing’s famous 1936 paper [16], he
defined a real number to be computable if its “expression as a decimal is calculable
with finite means.” Real numbers can also be classified according to how efficiently
they can be computed by a Turing machine. For example, rational numbers are
efficiently computable because their recurring decimal pattern can be produced
in real time—even by a finite automaton. More formally, a number o € R is
real-time computable by a Turing machine if n bits of its fractional component
can be produced in O(n) time. Many transcendental numbers are known to be
real-time computable, but surprisingly, no irrational algebraic number is known
to be real-time computable. In fact, in 1965, Hartmanis and Stearns conjectured
that if @ € R is real-time computable by a Turing machine, then it is either
rational or transcendental [10].

Recent research into analog computing introduced new notions of computing
real numbers. Bournez et al. introduced the notion of computing a real number
in the limit with a general purpose analog computer (GPAC) [1]. To compute
a € R “in the limit,” a designated variable x(¢) must satisfy lim; o, z(t) = «.
Computing real numbers in this way has also been investigated in population
protocols [2] and chemical reaction networks (CRNs) [11]. Huang et al. defined a
number a € R to be real-time computable by chemical reaction networks, written
a € RrrcrN, if there exists a CRN with integral rate constants and a designated
species X such that, if all species concentrations are initialized to zero, then x(t)
converges to a exponentially quickly [12]. This means that after n seconds, the
concentration of X is within 27" of «, so the CRN gains one bit of accuracy every
second. Huang et al. also required that all species concentrations be bounded to
avoid the so-called Zeno paradoz of performing an infinite amount of computation
in finite time using a fast-growing catalyst species [3]. When this restriction is
lifted, the measure of time is no longer linear but rather a function of arc length.
In this sense, no power is lost via imposing a boundedness requirement. Further,
it eliminates the undesirable Zeno paradox from the model.

A key aspect of Huang et al.’s definition of Rrrcry is the requirement that
the CRN be initialized to all zeros, prohibiting any encoding of « in the initial
condition of the CRN. The authors showed that e,m € Rgrrcrn, leveraging
the fact that the initial condition is exact. However, these constructions fail if
their initial conditions are perturbed by any ¢ > 0. Huang et al. also defined a
subfield of Rrrcrn they called Lyapunov CRN-computable real numbers, written
RrcrN- The definition of Ry cry is similar to Rrrcrn except with the additional
constraint that the terminating state of the CRN must be an exponentially stable
equilibrium point. Since an exponentially stable equilibrium point is attracting,
any initial condition within its basin of attraction will converge exponentially
quickly to it. As a result, any « € Rycrn can be computed even in the presence
of bounded perturbations to initial conditions. Huang et al. also proved that
ALG < Rrern € Rrrorn where ALG is the set of algebraic real numbers. The
authors left as an open problem which of these inclusions is strict.

Robust Real-time Computing with Chemical Reaction Networks 3

An additional consequence of computing a real number « “in the limit” with
CRN s is that recovering the bits of « is difficult. Even if we produce a exactly in
the concentration of a species X, we cannot read its individual bits without an
infinitely precise measurement device. Alternatively, if a CRN produced the bits
of o as a sequence of measurable memory states, then the bits can be read even
with imperfect measurements.

Another limitation of this method of computation is in implementation.
The concentration of a species in a solution containing a CRN is ultimately
determined by the discrete, integral count of the species. This places a countable
limit on the number of “exact” values a concentration can achieve even when a
CRN is otherwise perfectly initialized and executed. In the mass action model,
we often wave away this issue precisely because we do not have an infinitely
precise measurement device. This does, however, somewhat obviate the point
of being able to calculate values precisely. In fact, previous results concerning
CRNs frequently abuse this hand waving to reach theorems that are true of
the mass action kinematics but not of the reality it models. Instead, a more
reasonable question to ask is what values can we calculate robustly, quickly, and
approximately.

In this paper, we show ALG = Rycrn & Rrrcorn to resolve the open problem
stated above. This fully characterizes what values we may compute robustly and
quickly; however, this definition of computation yet suffers from the inherent flaws
described above. To resolve this weakness of the model, we acknowledge these
limitations and loosen the definition of computation to accept approximate results.
To do so, we only require that a CRN produces approximations of numbers in the
sense that an open interval around a concentration « is in an equivalence class
with « itself. This approach has three major benefits. First, a bounded CRN
may compute not only a single value in finite time but also a sequence of values.
Second, a CRN can tolerate small perturbations of its species’ concentrations
(and potentially other parameters). Third, taking a measurement of a CRN’s
state only requires precision proportional to the smallest of these intervals.

If we then fix a collection of these intervals into collection of memory maps for
a CRN’s species and allow it to compute their corresponding memory states in
sequence, we obtain a discrete model characterizing a robust chemical computer.
Indeed, given, in this sense, a robust CRN and a memory map which fully
describes it, a Turing machine may simulate the CRN by maintaining a tape for
each of its species indicating what memory state that species is in. We show that
this simulation can be done in real-time for CRNs which use only a finite amount
of memory. Although we conjecture that CRNs which use an unbounded amount
of memory can also be simulated in real-time (which, if true, would unify the
analog and discrete Hartmanis-Stearns Conjectures), finite memory suffices for
many real world applications.

The rest of the paper is organized as follows, with many proofs omitted for
brevity. Section 2 reviews some necessary preliminaries used in the remainder
of the paper. Section 3 resolves the open problem ALG = Rycrn & RrTCRN-

4 W. Fletcher, T. Klinge, J. Lathrop, D. Nye, M. Rayman

Section 4 characterizes CRNs in terms of a robust memory map. Lastly, Section 5
discusses the consequences of the proceeding sections.

2 Preliminaries

A Chemical Reaction Network (CRN), N, is a tuple N = (S, R), where S is a
finite number of species and R is a finite set of reactions on those species. In
this paper we investigate deterministic CRNs, i.e., CRNs under deterministic
mass action semantics that are modeled with systems of differential equations [6].
Given a deterministic CRN, let x;(t) denote the real-valued concentration of X;
at time ¢ for each species X; € S. Let x = (x1,...,2,) denote the state of N,
where n = |S|. We write the rate of change of each z; as % = filxy,...,2n)
and the rate of change of the entire system as f%‘ =fx = (f1,..., fn). Each
fi is a polynomial determined by N [6]. In this paper, rate constants for each
reaction in R are integral, and thus each f; € Z[z1,...,z,]. Furthermore, the
initial concentrations of the species, given by an initial state x(0) = xg, along
with fy determine the unique behavior of N. Lastly, when fxn(z) = 0, we call z
a fixed point.

The definition of real-time computable by a CRN used in this paper is given
by [11,12]. We repeat the definition here for convenience.

Definition 1. A real number « is real-time computable by CRNs if there exists
a CRN N = (S, R) and a species X € S with the following properties:

1. (Integrality.) All rate constants of R are positive integers.

2. (Boundedness.) The concentration x;(t) for each species in S is bounded by
a constant (3 for all time t € [0,00) when @y = 0.

3. (Real-Time Convergence.) If N is initialized with xy = 0, then for all times
t=>1, |z(t) — |of| <27

We denote the set of all real-time CRN-computable real numbers as Rrrorn.

Excluding the species that converges to «, the above definition places no restric-
tions on any species beyond that they be bounded. In many cases, this may be
undesirable. The next definition formalizes the notion of converging to a single
state, at which point the CRN can be considered finished.

Definition 2. An exponentially stable point of a CRN is a state z€ RY, for
which there exists o, d,C > 0 such that, if the CRN is initialized to a state xg
satisfying |z — @y| < &, then for all times t > 0, |z — z(t)| < Ce™ |z — xp|.

Definition 3. A real number « is Lyapunov-CRN computable if there exists a
CRN N = (S,R), a species X; € S, and a state z with z(X;) = |a| that satisfies
the following properties:

1. (Integrality.) All rate constants of R are positive integers.
2. (Boundedness.) The concentration x;(t) for each species in S is bounded by
a constant 8 for all time t € [0,00) when @y = 0.

Robust Real-time Computing with Chemical Reaction Networks 5

3. (Exponential Stability.) z is an exponentially stable point.
4. (Convergence.) If N is initialized with xy = 0, then tlirn z(t) = =z
—00

We denote the set of all Lyapunov-CRN computable real numbers as Rpcory-

Observation 4 If z is an exponentially stable point of a CRN, then it is a fized
point of that CRN.

Note that the converse of Observation 4 is not true.

We use ALG to denote the set of real algebraic numbers of the rationals. This
is the set of real numbers which are the root of some polynomial f € Q[z], with
rational coefficients.

3 Lyapunov Reals are Algebraic

To investigate robustness issues in real-time computing, we first look at the
relationship between Rpcry and ALG and show that Rpcrn = ALG. As a
consequence, a bounded CRN may only compute the algebraic numbers reliably
in the sense that they exist inside of a potential well. Since Huang et al. proved
that ALG & Rrrcry and ALG € Rpcrny € Rrrern [12], it suffices to show
that ALG = Rpcrn to resolve that Rpcrn & Rrrern- We prove this result in
two parts. First, we show that every exponentially stable fixed point is isolated.
Second, we show that isolated fixed points necessarily have algebraic components.

Let En denote the set of exponentially stable points of a CRN, N, and let Fy
denote the set of fixed points of N. Recall that fixed points are not necessarily
isolated (consider a CRN which does nothing once initialized), however, the set
of exponentially stable fixed points, Ey, are isolated in Fy (not just Ey).

Below are two supporting lemmas, as described above. The proofs are omitted
for brevity.

Lemma 5. If z is an exponentially stable point of a CRN, N, then z is isolated
m FN.

Lemma 6. If z is a fixed point of a CRN, N, that is isolated in Fy, then the
components of z are in ALG.

Using these lemmas, it is now straightforward to prove the theorem.
Theorem 7. ALG = Rpcrn
Proof. Let a € Rycrn, and let N, X;, and z be the CRN, designated species, and
exponentially stable point that testify to this. By definition, z is exponentially

stable; by Lemma 5, z is isolated in Fiy; by Lemma 6, every component of z is
algebraic. Thus, z(X;) = |a| is algebraic, and therefore a € ALG. =

6 W. Fletcher, T. Klinge, J. Lathrop, D. Nye, M. Rayman

4 A Robust Notion of Memory in CRNs

In the previous section, we concerned ourselves with CRNs which are permitted
infinite precision to compute real values robustly in the limit. This excuses several
impossibilities for the elegance of its model at the expense of realism. In practice,
these CRNs would compute their intended values robustly in approximation and
would require only finite time.

In this section we explore the consequences of requiring a CRN to be robust
in this sense, that is that they compute values approximately in finite time. In
particular, we characterize the behavior of these robust CRNs in terms of these
approximations to arrive at a somewhat paradoxical discrete model of analog
computing.

Recall that boundedness is one of the three criteria for a real-time CRN. For
this section, we use the following definitions of boundedness.

Definition 8. A CRN N = (S, R) is $-bounded at xo € RS, if, when initialized
to xg, there exists some B > 0 such that © < B for each X € S. Moreover, N is
uniformly S-bounded on O < Rio if there is some 8 > 0 for which N is bounded
on each xg € O by (.

Unless otherwise specified, a bounded CRN is initialized to the point at which
it is bounded. Similarly, a uniformly bounded CRN is initialized to a point at
which it is bounded (and is implicitly bounded at any initial point).

There are two natural ways by which a CRN may compute a number «. It
may either do so exactly when a species’ concentration becomes « or in the
limit as per Lyapunov-CRN computability, real-time computability, or some
slower manner. Both approaches, however, are imperfect. In the latter case, the
concentration of the species computing « either must always maintain a non-zero
distance from « after any finite time or, at best, suffers from the same limitation
of computing « exactly: the inability to remain at «. The following theorem and
corollary formalize this notion.

Theorem 9. Let N = (S, R) be a bounded CRN. For each species X € S, x is
either constant or the set of times for which 'fj—f = 0 s countable.

Corollary 10. Let N = (S, R) be a bounded CRN. Pick c € Rsq. Then for any
non-constant species X € S, the set of times t € Rso where z:(t) = ¢ is countable.

It is clear from Corollary 10 that computing an exact value with a CRN is,
if not impossible, then a less meaningful concept than one would prefer. This
is not inherently problematic as a model of computation. A CRN is capable of
computing any computable function in the limit [7].

In each of these models, however, there is the implicit assumption that a
CRN may be precisely constructed by which we mean each rate constant and
the initial concentration of each species is exactly as prescribed. In practice,
this is impractical, which leads us to a notion of robustness. A CRN, informally
speaking, is “robust” if it can tolerate a small perturbation of its concentrations

Robust Real-time Computing with Chemical Reaction Networks 7

>

O w

concentration

NFA Input: () ! 1

Fig.1. In [13], Klinge, Lathrop, and Lutz provide a general CRN construction for
nondeterministic finite automata (NFAs). These NFAs utilize a dual rail system for
each state Z with z(¢¥) ~ 1 indicating that the NFA is in state Z at time ¢ and z(¢) ~ 0
indicating the NFA is not in state Z while the complementary species Z has the opposite
meaning. Above, we graph the concentration of X and X as input changes and show
the approximation regions.

(or rate constants) at any time without affecting its function. This is intuitively
a difficult task since changing any such condition clearly alters the solution to
the system of ODEs describing the CRN.

Exponentially stable points are a good example of robustness in the following
sense. If a CRN manages to get within an e-ball of such a point z, it proceeds to
z in the limit without exception. Ideally, a robust CRN would transition from
exponentially stable point to exponentially stable point during its computation
with some outside force periodically driving it away from each stable equilibrium.

Exponential stability is a far stricter requirement than is necessary to compute
a number «, but it does illustrate an important point. If a CRN computes «
either in the limit or for longer than a countable set of times, there is always
a buffer zone around it which must necessarily be considered in an equivalence
class with . In Figure 1, this corresponds to the intervals labeled A, B, and C
which could be considered equivalence classes for 1, %7 and 0 respectively. We
formalize this notion in the following theorems and definitions.

Theorem 11. Let N = (S, R) be a bounded CRN, and let X € S be a non-
constant species. For any time tg € Rsq, there exists a § > 0 such that for all
t € (to,to +0), x(t) # x(tg). Moreover, there exists an € > 0 and a t € (to,to + 0)
such that |z(t) — x(to)| > e.

In light of Theorem 11, we state a notion of computation useful (but alone
insufficient) for CRN.

Definition 12. A CRN N = (S,R) (e,d)-computes a real number o € Rxg
if there is an X € S and a time tg € Rsq such that |x(t) — a| < € for all
t € (to, to + d).

Less formally, a CRN (¢, d)-computes a real number « if it gets close enough
to it for a long enough time. To continue our earlier example, the correct choice
of € and d make x(t) correctly compute 0 and 1 but never the garbage state % in

8 W. Fletcher, T. Klinge, J. Lathrop, D. Nye, M. Rayman

Figure 1. This underscores that the particular choice of these two parameters is
critical for the CRN’s intended purpose. Indeed, a species X of a bounded CRN
so computes every element of the closure of its image for some single choice of
d for every e and vice versa! The latter is obvious (pick € to be larger than the
CRN’s bound), and we formally state the former.

Theorem 13. Let N = (S, R) be a bounded CRN, and let € > 0. Then there
exists a d > 0 such that each X € S (e, d)-computes every element of cl(x(Rxq)).

The following definition resolves this €,d conundrum described above by
eliminating any overlap of (e, d)-computed real numbers.

Definition 14. A CRN N = (S, R) unambiguously computes a set A € R>¢
if for each a € A there exists a species X € S which (€4, dy)-computes o for
some €q,do > 0 and for each distinct oy, as € A which X (€q,,dq,)-computes
and (€qy, da,)-computes respectively, the intervals (a1 — €y, 01 + €4,) and (a2 —
€ay, A2 + €q,) are disjoint.

This notion of unambiguous computation leads directly to a robust notion of
CRN memory, but we first state a motivating theorem behind its construction.

Theorem 15. No CRN can unambiguously compute a somewhere dense subset
D of Ry for any choice of €y,dq > 0 for each a € D.

Theorem 15 shows that many natural encodings of countably infinite sets to
bounded intervals cannot be unambiguously computed by a CRN. An example
of such is given below where we encode 1 — .1, 2 — .01, 3 — .11, and so on.

Corollary 16. Let f: N — [0,1] be the map

fo = 3 (|2] modz)z.

No CRN can unambiguously compute the set f(N).

To avoid this problem, any encoding requires an open interval around each
value o the CRN must compute wherein the entire interval is considered to be «.
Moreover, a CRN can only have countably many such disjoint sets. In our running
example, Figure 1 demonstrates three such intervals for each state species. This
leads to the following definition wherein we encode a collection of disjoint open
intervals to map to identifying natural numbers.

Definition 17. Let ¢ € RT. A memory map is a map f : N — 2([0,c])
satisfying the following conditions:

— f(0) =[0,b), where 0 < b < c.

— VneZt, f(n) = (a,b), where a,be Q and 0 <a <b<ec.
— VYm,neN, if m # n, then f(n) and f(m) are disjoint.

— f(o0) =[0,¢]\ nLE)N f(n) and is countable.

Robust Real-time Computing with Chemical Reaction Networks 9

Definition 18. The set of all memory maps on [0,c] is M.. The order of
f e M., written ord(f), is the cardinality of the support of f over N.

Definition 19. The inverse memory map of f € M. is a map f< : [0,¢] > N
such that for all r € [0,c], r € f(f(r)).

In principle, a CRN cannot reasonably be initialized to any state more precise
than to an interval of a memory map. Indeed, the consequence of Corollary 10 is
the well known fact that if a species ever has a non-zero concentration, it will
at almost every time ¢ > 0, so no power is gained from being able to initialize a
species to 0.

Before proceeding, the definition of a memory map, it should be noted, is
descriptive of a CRN, not prescriptive. Any memory map can model any CRN,
but not all memory maps model any particular CRN well. For example, any (-
bounded CRN can be modeled by the uninteresting memory map that maps every
concentration less than S to 0. Similarly, a memory map with randomly chosen
intervals is both equally valid and equally ill-suited. We do not yet, however,
have all of the definitions necessary to describe what makes for a good choice of
memory map and so return to this topic later in this section.

Now equipped with a notion of memory, we must define the trajectory of a
species X through that memory (and a CRN’s trajectory in terms of its species’).
This is not inherently clear because a species X must pass over all intermediate
memory locations when transitioning between two non-adjacent states. Even
if there are only finitely many such intermediary states, including them in the
trajectory provides no additional information. That X passes through them
during the transition is a direct consequence of x being continuous. In Figure 1,
for example, we never want to include the B interval in our trajectory.

But since each memory state consists of an open interval, X must spend
a non-zero length of time inside of it. This brings us back to the definition
of (e, d)-computability. If we require X to (e, d)-compute the midpoint of the
interval of a memory state with € being half of the interval’s width and d being
an adjustable parameter, we can arrive at a useful definition of trajectory. To
fully formalize this, however, we first have to develop a bit more notation.

Definition 20. Let N = (S, R) be a 3-bounded CRN. For each X € S, let
fx € Mg be a memory map. A species X € S is in the memory state m € N at

time t if x(t) € fx(m). Similarly, N is in the memory state m € N° at time t if
for each X € S, X is in the memory state m(X).

Definition 21. Let N be a [3-bounded CRN. For X € S, let fx € Mg be a
memory map. X enters a memory state n € N at time to if there exists an € > 0
such that for all 0 < ¢ < e, x(tg —€') ¢ fx(n) and z(tg + €) € fx(n). Similarly,
X leaves n at time t1 if there exists an € > 0 such that for all 0 < € < ¢,
x(t1 —€) € fx(n) and z(t1 + €') ¢ fx(n). The state time of X in n (with no
intermediate states) is the difference t1 — to.

There are a few consequences to the above definitions worth mentioning.
When a species is initialized to a memory state n, it leaves n without first having

10 W. Fletcher, T. Klinge, J. Lathrop, D. Nye, M. Rayman

entered n. A species may also transition from n € N to oo (or in other words, it
may touch the boundary of n) and then return to n, in which case it does not
leave or enter n. This is a desirable property as o is not a useful memory state
except, perhaps, in the limit as ¢ — oo. Further, no species may enter or leave
the memory state oo by definition.

There remain a few edge cases in the above definitions. If a species never
entered a memory state n before it leaves n (i.e. it was initialized to n), then we
say it entered at time ¢ = 0. In a similar vein, if a species never leaves a memory
state, we say it leaves at ¢ = oo purely as a matter of notational convenience
(even if in the limit it transitions to the memory state o).

Lastly, we remark that sojourn time (arc length) is generally a better measure
of runtime for CRNs [3]. In the case of bounded CRNs, however, state time
suffices as it is always within a constant factor of sojourn time. This is because
each species concentration of a bounded CRN necessarily has a bounded rate of
change.

We now have the tools necessary to define the trajectory of a CRN. We first
give an informal description here with example and then rigorously define it (see
Definition 22). The trajectory of a S-bounded CRN N initialized to xg is the
ordered sequence of memory states obtained as follows. Start from the initial
memory state ng. Each time one or more species enters a new memory state for
which its state time is at least d, append the new state of N to the sequence.
Continue indefinitely or until there are no further memory state changes.

This construction avoids the undesirability of recording in-between memory
states of other species as they transition to their next memory state. It also has
the added benefit of bringing into the trajectory a notion of a species staying in
a memory state for a long time. In a species trajectory, we merely record where
the species’s concentration goes to but not for how long it stays there. In the
memory trajectory of a full CRN, however, if a species’s memory state only rarely
changes, we can see that behavior in how infrequently it changes in comparison
to other species. For example, if one wishes to record a species’s memory state
at regular intervals, the simple solution is to set up a clock with an appropriate
period which has no interaction with the rest of the CRN except to place itself
into the memory trajectory as a timestamp.

To complete our running example, Figure 1 has the following trajectory (for
the species X, X): (4,C)(C, A)(A4,C)(C,A)(A,C). In this case, because the
construction of the CRN requires that z +Z = 1, a symmetric choice of intervals
A and C across % causes X and X to always be in opposite states at all times.

Using this intuition, we now formally construct the definition of trajectory as
follows.

Definition 22. Let N = (S, R) be a $-bounded CRN at xg € Rgo- For X € S,
let fx € Mg be a memory map. The memory trajectory of N when N is
initialized to xo with delay d € RT, written traj(zo,d), is a sequence of N
defined by traj(xo,d)(n)(X) = mj,q(X, €0, m xo0,0,d),d) where mj,s; and
my ..t are helper functions defined below.

meat(
next
n
nex

Robust Real-time Computing with Chemical Reaction Networks 11

To define the helper functions in the above definition, let N = (S, R) be a
B-bounded CRN at xg € Rio. For X € S, let fx € Mg be a memory map. Let
T(X,xg,d) be the set of times when X enters a memory state for which its
state time is at least d € RT when N is initialized to ®g, and define T'(xq,d) =
ngT(X’ o, d)

Next define my eyt : REg x Rzg x Rt — R to be the function which, given
an initial state xg of IV, a time t € R5, and a delay d > 0, selects the least
to € T'(xo,d) for which tg > ¢.

First, by Corollary 10, f5 = oo only when X is instantaneously between
memory states or if X is constant and initialized to such a value. Both are
undesirable system behavior easily avoided. myeyt specifically excludes the
former from trajectories while the latter is a mere matter of initialization. Unless
otherwise specified, we never initialize a CRN to such a state even if it is a state
for which the CRN is bounded. Second, there is always a least element of each
T (xo,d) for mypext to select since a species X can be in at most two memory
states (leaving one for the other) per every d interval of time, which we formally
state below.

Lemma 23. Let N = (S, R) be a B-bounded CRN initialized to xo € RE,. Fiz a
delay d € RY. Then for any d interval of time, N’s memory trajectory contains
at most 2|S| memory states.

From this lemma, 1m0yt is well defined. We extend its definition to a recursive
form as follows.

m

" t(wo t d) = {mﬁe}l(t(wo’mneXt(wO’t,d)7d) n >0
nex L]

n=>0

To finish formalizing the definition of memory trajectory, mjq @ S % Rio X
R>o x R* — N is the function which, given a species X € S, an initial state xq
of N, a time t € R>g, and a delay d > 0, returns the last memory state n € N
for which species X enters n at a time ¢ty < ¢t when N is initialized to xg. More
intuitively, m),4 remembers the current memory state of a species while it is
transitioning to another memory state.

We can at last now state what makes for a good memory map. The guiding
principle behind the choice of memory map is that a CRN in a memory state
should behave identically going forward regardless of what particular concentra-
tion each species has inside of it. In the spirit of Theorem 15, this then leads to
the following natural definition.

Definition 24. Let N = (S, R) be a uniformly S-bounded CRN and, for each
X € S, a memory map fx € Mg. Fiz a delay d € R*. N is memory deterministic
(with respect to { fx } ycg and delay d) if there is a function § : N% — N¥ such that
if m e N® is a memory state in N’s memory trajectory, then the next memory
state in N’s memory trajectory (if one exists) is 6(m). When no such memory
state exists, 6(m) = m.

12 W. Fletcher, T. Klinge, J. Lathrop, D. Nye, M. Rayman

It is important to note that the transition function ¢ described in the above
definition is relative to which memory state(s) the CRN it describes may be
initialized. The behavior of unreachable memory states are outside the scope
of the definition. With respect to any such memory state, §’s behavior is unre-
stricted. In general, § itself need not necessarily even be computable (although it
typically should be). For a well behaved CRN (one which admits many possible
initializations), however, 6 must satisfy the definition for every valid initialization
simultaneously.

Before moving on, observe that all bounded CRNs are memory deterministic
for a choice of memory map. Recall that the memory map which maps all
concentrations to 0 is valid for every CRN. Similarly, each CRN modeled with
this memory map is memory deterministic with §(m) = m. Otherwise put, a
good choice of memory map for a CRN requires not just that it be memory
deterministic but that it is also sufficiently refined to produce a useful model.

Now, unsurprisingly, the notion of a memory map bears a strong resemblance
to a Turing machine tape. We know that CRNs and Turing machines are equivalent
models [7]. The question remains, however, if one model can outperform the
other in some significant way. We can address this question in one direction by
providing a means for a Turing machine to simulate a CRN. In general, this is a
difficult task. With memory maps, this becomes easier. Since neither model is
allowed to speed up indefinitely, we may treat a single step of a Turing machine as
a constant length of time. Then we may define that a Turing machine simulates
a CRN N if it follows N’s memory trajectory on its tape(s). Formally, we have
the following definitions.

Definition 25. Fiz k € Z%. Let A = {(wn,tn)}

(Z’Q“)k x Rsg. A Turing machine with at least k tapes initialized to wgo follows A
if there is a strictly increasing computable sequence {s,}, .y of N such that for
each i € Zy, the contents of tape T; at step s, is wy(i). Similarly, M real-time
follows A if there is a constant ¢ > 0 such that each s, < ct,

nen e a sequence of tuples in

Definition 26. Let N = (S, R) be a (uniformly) S-bounded CRN and, for each
X €S, let fx € Mp. Fiz a delay d € RT. A Turing machine M follows N
according to {fx}y.g With delay d if for each X € S there exists a computable
injective map itoax : N — Z% such that M follows

A = {(itoa(traj(xo,d)(n)), m} . (x0,0,d))}

neN

when initialized to xg € Rio (for every initialization xq € Rgo for which N is
bounded), where itoa(traj(xo,d)(n))(X) = itoax (traj(xe,d)(n)(X)) for X € S
and n € N. Similarly, M real-time follows N according to {fx}y.g with delay
d if M real-time follows A when initialized to xg € Rgo (for every initialization
xo € RS, for which N is bounded).

We can extend our running example to these definitions as follows. For the
itoa functions, interval A maps to 1, B maps to 10, and C maps to 0. Moreover,
since the CRN was constructed directly from a finite automaton, it only takes two

Robust Real-time Computing with Chemical Reaction Networks 13

steps to compute each subsequent memory state and write it to the appropriate
tape. If follows trivially, then, that there is a Turing machine which real-time
follows the CRN.

More generally, since Turing machines and CRNs are equivalent models [7],
there is always a Turing machine that follows any CRN N. The more interesting
(and far more difficult) question is if there always exists a Turing machine M and
some choice of itoa functions for which M real-time follows N. Intuitively, analog
computing should be more efficient than discrete computing in some respect.
Indeed, were a CRN either unbounded or if it were allowed an unbounded number
of species, this is easy to show. To see why this is less certain for robust, bounded
CRNs, we need a few lemmas.

The natural first question to ask is how can a Turing machine can keep up in
real-time with a CRN from the definition of real-time following. A CRN, after all,
is allowed to change all of its species concentrations simultaneously while a Turing
machine, following the CRN’s memory trajectory and not directly simulating
the CRN, must keep all but one (except in the unlikely case where two or more
species change memory state at the exact same time) of its species-tracking tapes
effectively constant between memory trajectory transitions.

This is not a limitation since a species must linger in a memory state for a
minimum length of time. A CRN with n species and delay d can only experience
at most n memory states in every open interval of length d (see Lemma 23). This
is what makes a Turing machine M real-time following a CRN occur in real-time.
It follows that M can compute each of these state changes sequentially while
only requiring a constant factor of |S| more time in the worst case.

The remaining difficulty is to show that a bounded CRN cannot ‘cheat’ in
the sense that a Turing machine would require an infinite alphabet or an infinite
number of states or tapes to real-time follow it. We show this is the case when
each memory map has only finite order and the transitions between memory
states is memory deterministic.

Theorem 27. Let N = (S, R) be a uniformly 5-bounded CRN, let fx € Mg for
each X € S with ord(fx) < o0, and let d € R*. If N is memory deterministic,
then there is a Turing machine which real-time follows N according to {fx}xcg
with delay d.

Corollary 28. Let N = (S, R) be a uniformly 5-bounded CRN, and let fx € Mg
for each X € S. Fix a delay d € RT. If N is memory deterministic and N’s
memory trajectory is either finite or there exists a memory state which appears
at least twice in it, then there is a Turing machine which real-time follows N
according to {fx}yeg with delay d.

5 Discussion

In this paper, we have shown that only the algebraic real numbers are computable
by CRNs using exponentially stable equilibria. Intuitively, this means that every
transcendental real number cannot be computed robustly by a CRN in the sense

14 W. Fletcher, T. Klinge, J. Lathrop, D. Nye, M. Rayman

of Definition 3. This led us to explore in Section 4 what it means for a CRN to
compute robustly. We started from two notions of computation. First, a CRN
can compute a value exactly, which a non-constant CRN can achieve only for a
measure zero length of time. Second, a CRN may compute a value in the limit,
which has two problems of its own. A CRN never precisely achieves a value
computed in the limit. Moreover, we showed earlier in Theorem 7 that only the
algebraic numbers can be so computed reliably. Any non-algebraic number, if
the CRN is improperly initialized with any epsilon error, cannot be computed in
the limit.

These limitations led us to ask what happens when we require a CRN to
behave identically for a range of inputs rather than a single set of concentrations.
The result was the notion of a memory map, a strangely discrete model of an
analog implementation of computation. Arguably, under this model, a CRN’s
reactions correspond to transitions between states of a Turing machine while
species concentrations correspond to tape states.

This ultimately led to Theorem 27. In the more familiar terminology of the
discrete world, it tells us that a robust CRN is no more capable of executing a
NFA than a Turing machine is. This is perhaps unsurprising. The main advantage
a CRN has to leverage over a Turing machine is in its ability to rewrite its entire
tape with a new word of any length. With finite memory, this advantage is lost.

Notice, however, that Theorem 27 says nothing about the existence of a robust
CRN capable of simulating a NFA. For that, we turn to [13] for a CRN with a
more restrictive notion of robustness which nonetheless satisfies the definitions we
derived here and Theorem 27. We briefly summarize this below as an illustrative
example.

Given a NFA M, a CRN N is constructed with two species, X, and X, for
each state ¢ of M. These species alternatively take concentrations close to 1 or
0 to represent M being in state g or not in state ¢ respectively for X, and vice
versa, for Yq. The appropriate memory map for each of these species would be to
map 0 to an interval around 0, 1 to an interval around 1, and 2 to everything
in-between. The correct delay to choose for this CRN is the length of the clock
cycle (which also admits an identical memory map). For the input signal (which,
again, admits an identical memory map), we may assume that there is an external
CRN generating it which makes the N memory deterministic.

First, note that N is uniformly bounded on all of its valid inputs. Moreover, if
we apply Theorem 27 to the CRN described above, we obtain a Turing machine
which not only behaves identically but can be transformed back into the same
CRN [13]. As such, these are truly inverse statements. Moreover, the theorem
can be applied to more general cases as well.

Given a Turing machine M, Fages et al. construct a GPAC-generable function
(easily translated into the CRN world) that simulates M within bounded time
and tape space [7]. The input parameters for each bound can be adjusted, of
course, but once fixed, the resulting simulation permits a single memory map
model for all of its input configurations to which Corollary 28 applies. In a sense,
these, too, are inverse statements.

Robust Real-time Computing with Chemical Reaction Networks 15

Now the question becomes where to go from here. It is known that, given
an NFA, there is a robust CRN which simulates it in real-time [13]. Similarly,
we have provided a proof that, given a robust CRN with memory maps of only
finite order, there is a Turing machine which real-time follows it. In short, for
the regular languages, robust CRNs and Turing machines are fully equivalent
models with neither having an advantage over the other. We conjecture that
the same is true of an arbitrary robust CRN, that is given a robust CRN with
a memory deterministic collection of memory maps, there is a Turing machine
which real-time follows it. This, if true, has several important implications.

First, it’s known that CRNs and Turing machines can simulate each other with
a polynomial-time slowdown [3]. If this conjecture is true, even in a more restricted
form, it would eliminate the slowdown from a Turing machine simulating a CRN.

Of perhaps more interest is the Hartmanis-Stearns Conjecture (HSC) [10].
Both Turing machines and robust CRNs are clearly capable of outputting the
digits of a rational number in real-time. For Turing machines, this means writing
to some output tape. For CRNs, this does not mean outputting a concentration
but rather raising a concentration high or low in a memory trajectory in the
appropriate sequence. In this manner, assuming our stated conjecture, then if
one could construct a robust CRN to output the digits of a nonrational algebraic
number, it would also resolve the HSC for Turing machines.

Acknowledgments. The authors thank anonymous reviewers for useful feedback
and suggestions. This research supported in part by NSF grants 1900716 and
1545028.

References

1. Bournez, O., Campagnolo, M.L., Graca, D.S., Hainry, E.: The general purpose
analog computer and computable analysis are two equivalent paradigms of analog
computation. In: Cai, J.Y., Cooper, S.B., Li, A. (eds.) Theory and Applications of
Models of Computation. pp. 631-643. Springer Berlin Heidelberg, Berlin, Heidelberg
(2006)

2. Bournez, O., Fraigniaud, P., Koegler, X.: Computing with large populations using
interactions. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) Mathematical Foun-
dations of Computer Science 2012. pp. 234-246. Springer Berlin Heidelberg, Berlin,
Heidelberg (2012)

3. Bournez, O., Graga, D.S., Pouly, A.: Polynomial time corresponds to solutions of
polynomial ordinary differential equations of polynomial length. J. ACM 64(6)
(Oct 2017). https://doi.org/10.1145/3127496, https://doi.org/10.1145/3127496

4. Cappelletti, D., Ortiz-Mufioz, A., Anderson, D.F., Winfree, E.: Stochas-
tic chemical reaction networks for robustly approximating arbitrary prob-
ability distributions. Theoretical Computer Science 801, 64-95 (2020).
https://doi.org/https://doi.org/10.1016/j.tcs.2019.08.013

5. Clamons, S., Qian, L., Winfree, E.: Programming and simulating chemical reaction
networks on a surface. Journal of The Royal Society Interface 17(166), 20190790
(2020). https://doi.org/10.1098 /rsif.2019.0790

16

10.

11.

12.

13.

14.

15.

16.

W. Fletcher, T. Klinge, J. Lathrop, D. Nye, M. Rayman

Epstein, I.R., Pojman, J.A.: An Introduction to Nonlinear Chemical Dynamics:
Oscillations, Waves, Patterns, and Chaos. Oxford University Press (1998)

Fages, F., Le Guludec, G., Bournez, O., Pouly, A.: Strong Turing completeness
of continuous chemical reaction networks and compilation of mixed analog-digital
programs. In: Feret, J., Koeppl, H. (eds.) Computational Methods in Systems
Biology. pp. 108-127. Springer International Publishing, Cham (2017)

Furcy, D., Summers, S.M., Wendlandt, C.: Self-assembly of and optimal encoding
within thin rectangles at temperature-1 in 3D. Theoretical Computer Science (2021).
https://doi.org/https://doi.org/10.1016/j.tcs.2021.02.001

Hader, D., Patitz, M.J.: Geometric tiles and powers and limitations
of geometric hindrance in self-assembly. Natural Computing (Mar 2021).
https://doi.org/10.1007/s11047-021-09846-2

Hartmanis, J., Stearns, R.E.: On the computational complexity of algorithms.
Transactions of the American Mathematical Society 117, 285-306 (1965),
http://www.jstor.org/stable/1994208

Huang, X., Klinge, T.H., Lathrop, J.I.: Real-time equivalence of chemical reaction
networks and analog computers. In: Thachuk, C., Liu, Y. (eds.) DNA Computing
and Molecular Programming. pp. 37-53. Springer International Publishing, Cham
(2019)

Huang, X., Klinge, T.H., Lathrop, J.I., Li, X., Lutz, J.H.: Real-time computability
of real numbers by chemical reaction networks. Natural Computing 18(1), 63-73
(Mar 2019). https://doi.org/10.1007/s11047-018-9706-x

Klinge, T.H., Lathrop, J.I., Lutz, J.H.. Robust biomolecular fi-
nite automata. Theoretical Computer Science 816, 114-143 (2020).
https://doi.org/https://doi.org/10.1016 /j.tcs.2020.01.008

Klinge, T.H., Lathrop, J.I., Moreno, S., Potter, H.D., Raman, N.K., Riley, M.R..:
ALCH: An Imperative Language for Chemical Reaction Network-Controlled
Tile Assembly. In: Geary, C., Patitz, M.J. (eds.) 26th International Con-
ference on DNA Computing and Molecular Programming (DNA 26). Leib-
niz International Proceedings in Informatics (LIPIcs), vol. 174, pp. 6:1-6:22.
Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany (2020).
https://doi.org/10.4230/LIPIcs. DNA.2020.6

Severson, E.E., Haley, D., Doty, D.. Composable computation in dis-
crete chemical reaction networks. Distributed Computing (May 2020).
https://doi.org/10.1007 /s00446-020-00378-z

Turing, A.M.: On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society s2-42(1), 230-265
(1937). https://doi.org/10.1112/plms/s2-42.1.230

