
Abstract  Risk assessments of air pollution impacts on human health and ecosystems would ideally 
consider a broad set of climate and emission scenarios, as well as natural internal climate variability. We 
analyze initial condition chemistry-climate ensembles to gauge the significance of greenhouse-gas-induced air 
pollution changes relative to internal climate variability, and consider response differences in two models. To 
quantify the effects of climate change on the frequency and duration of summertime regional-scale pollution 
episodes over the Eastern United States (EUS), we apply an Empirical Orthogonal Function (EOF) analysis 
to a 3-member GFDL-CM3 ensemble with prognostic ozone and aerosols and a 12-member NCAR-CESM1 
ensemble with prognostic aerosols under a 21st century RCP8.5 scenario with air pollutant emissions frozen 
in 2005. Correlations between GFDL-CM3 principal components for ozone, PM2.5 and temperature represent 
spatiotemporal relationships discerned previously from observational analysis. Over the Northeast region, both 
models simulate summertime surface temperature increases of over 4°C from 2006–2025 to 2081–2100 and 
PM2.5 of up to 1–4 μg m −3. The ensemble average decadal incidence of upper quartile Northeast PM2.5 events 
lasting at least three days doubles in GFDL-CM3 and increases by ∼50% in CESM1. In other EUS regions, 
inter-model differences in PM2.5 responses to climate change cannot be explained solely by internal climate 
variability. Our EOF-based approach anticipates future opportunities to data-mine initial condition chemistry-
climate model ensembles for probabilistic assessments of changing regional-scale pollution and heat event 
frequency and duration, while obviating the need to bias-correct concentration-based thresholds separately in 
individual models.

Plain Language Summary  Prior studies concluded climate change will worsen air quality in some 
polluted regions but typically neglected the role of climate variability. Uncertainty also arises from differences 
in climate model responses. Differentiating the relative contributions of these uncertainties to inter-model 
differences in projected air pollution responses to climate change is becoming possible with initial-condition 
climate model ensembles. We analyze day-by-day variations in air pollution over five eastern U.S. regions to 
quantify changes in frequency and duration of regional-scale high pollution and heat events with small initial-
condition ensembles from two different models. Under a 21st century climate change scenario in which air 
pollutant emissions are fixed at 2005 levels, both models simulate longer-lasting and more frequent Northeast 
PM2.5 episodes, which could exacerbate public health burdens, especially given correlations with temperature 
and ozone. Projecting changes in other Eastern United States regions is limited by inter-model differences 
that exceed the uncertainty attributable to climate variability. While our ensembles are small relative to those 
generated now with physical climate models, our findings add to a growing recognition that climate variability 
complicates the detection and attribution of observed and simulated air pollution trends.
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1.  Introduction
High ground-level concentrations of the top two U.S. air pollutants, fine particles (PM2.5) and ozone (O3) some-
times co-occur along with high temperatures across the eastern USA (EUS) during summer, with >50% same-
day coincidence of at least two of these extremes in the Northeast (Schnell & Prather,  2017) and generally 
about one-third coincidence in the highest O3 and temperature events (Phalitnonkiat et al., 2018). This corre-
lation between air pollution and heat events reflects common meteorological drivers including local stagnation 
under anticyclonic conditions moreso than temperature-driven responses of precursor emissions and chemistry 
(e.g., Vukovich, 1995; Porter & Heald, 2019). Air pollution health burdens in other mid-latitude regions have 
also been found to increase during heat waves (Filleul et al., 2006; García-Herrera et al., 2010; Shaposhnikov 
et al., 2014), although it is unknown if prolonged versus intermittent exposure to high pollution events elicit 
different human health responses. Future increases in intensity and frequency of heat stress events are expected 
(Coffel et al., 2017), raising the possibility that climate change will also exacerbate air pollution and associated 
adverse health outcomes. Here, we describe an approach to characterize changes in frequency and duration of 
high pollution and heat events in simulations of 21st century climate change, with a primary focus on PM2.5, avail-
able from two models, and a secondary focus on the co-occurrence of high PM2.5, O3, and temperature events.

Prior studies identified changes in the severity, duration and spatial extent of U.S. air pollution events under future 
climate scenarios (Mickley et al., 2004; Rieder et al., 2015; Schnell et al., 2016; Wu et al., 2008). Compound 
extreme weather events such as simultaneous occurrence of air stagnation and heat waves, which are likely to 
affect air pollution, are projected to increase by mid-to-late century (Zhang et al., 2018). Xu et al. (2020) showed 
a ten-fold increase in the co-occurrence of heatwaves and high PM2.5 events by mid-21st century. Air pollu-
tion has long been observed to co-vary with meteorology on hourly to interannual time scales (e.g., Camalier 
et al., 2007; Dawson et al., 2013; Kerr et al., 2019; Leibensperger et al., 2008; Lin et al., 2001; Logan, 1989; 
Rao et al., 1995; Tai et al., 2010; Vukovich, 1995), with an emphasis on air stagnation, temperature inversions, 
heat waves, and wildfires responding to heat and drought as drivers of the most extreme pollution events (Hong 
et al., 2019; Horton et al., 2012, 2014; Hou & Wu, 2016; Konovalov et al., 2011; Porter & Heald, 2019; Porter 
et al., 2015; Shen et al., 2016; Spracklen et al., 2009; Sun et al., 2017; Wang & Angell, 1999). Other work indi-
cates that local observed meteorology-pollutant relationships are strongly shaped by the underlying atmospheric 
dynamics that control synoptic transport (Barnes & Fiore, 2013; Kerr et al., 2019, 2020; Oswald et al., 2015; 
Previdi & Fiore, 2019; Sun et al., 2019; Tai et al., 2012). Overall, a wide range of modeling systems project 
that climate change will degrade air quality in some currently polluted U.S. regions, although models disagree 
as to the regional extent and magnitude of projected air pollution changes (Fiore et al., 2015; Fu & Tian, 2019; 
Jacob & Winner, 2009; Kirtman et al., 2013; Nolte et al., 2018; Nolte et al., 2021; Schnell et al., 2016; Weaver 
et al., 2009).

Some of the inter-model disagreement in the published literature likely reflects a lack of separation of forced 
climate change (“signal” due to rising greenhouse gases plus aerosols) from internal variability (climate 
“noise” due to natural processes within the climate system) (Deser et al., 2020; East & Garcia-Menendez, 2020; 
Garcia-Menendez et al., 2017). Computational limitations restricted the length and number of simulations for 
most prior model projections of future changes in air pollution (Fiore et al., 2012, 2015; Jacob & Winner, 2009; 
Weaver et al., 2009). Advances in computational power now permit large ensemble simulations with physical 
climate models (Deser, Knutti et  al.,  2012, Deser, Phillips et  al.,  2012, 2013; Kay et  al.,  2015), where each 
ensemble member has different initial conditions but otherwise is forced by the same greenhouse gas and aerosol 
emission scenarios. The range across individual ensemble members offers a measure of the noise associated with 
internal climate variability, while the ensemble mean provides an estimate of the forced signal. Prior analysis of 
initial condition ensembles within a single climate model has demonstrated a major role for internal climate varia-
bility, measured by the inter-ensemble range, in shaping the future regional meteorological trends (Deser, Knutti, 
et al., 2012, Deser, Phillips et al., 2012) to which air pollution will respond. Each ensemble member describes 
one possible response to the same forcing scenario, such that with sufficiently large ensembles, statistics can be 
developed to quantify the probability of “rare” events in the observed record. Extracting signals of climate change 
is particularly challenging for extreme quantities. Below, we demonstrate a novel approach with chemistry-cli-
mate models to characterize the role of internal climate variability on air pollution trends, aiming to discern more 
clearly robust responses of air quality to anthropogenic climate change.
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Schnell et al. (2014, 2015) concluded that coarse resolution global models capture the observed spatial extent and 
timing of large-scale O3 episodes, providing a strong basis for our analysis of air pollution simulated by global 
chemistry-climate models. Challenges to quantifying simulated changes in high pollution events include select-
ing an appropriate threshold and accounting for model biases that may require adjusting the model threshold 
to ensure a similar frequency of high events as observed. Separate adjustments may be needed not only within 
each individual model (e.g., Horton et al., 2012), but also each region of interest (Schnell et al., 2015; Turnock 
et al., 2020).

To overcome these challenges, we adopt a statistical approach that avoids individual model bias correction. 
We expand upon Eder et al. (1993), who first applied Empirical Orthogonal Function (EOF) analysis to iden-
tify EUS regions in which ground-level ozone is high or low simultaneously across the region. This statistical 
approach avoids the pervasive problem of identifying relevant model thresholds in the presence of model biases 
by instead targeting model skill at representing the underlying patterns of spatiotemporal variability. Specifically, 
we examine changes in the frequency and duration of high pollution events over five distinct EUS regions. We 
probe the role of natural climate variability, which arises internally within the climate system, as represented by 
two chemistry-climate models with interactive aerosol simulations. We also consider co-variations in high PM2.5, 
ozone, and temperature events in one model with full tropospheric chemistry, and compare to observed relation-
ships. The approach described below can be applied to rapidly gauge changing air pollution events as simulated 
by future large initial condition climate model ensembles that include full tropospheric (gas-phase plus aerosol) 
chemistry.

2.  Data and Methods
2.1.  Models and Observations

Our analysis centers on an existing 3-member ensemble generated with the GFDL-CM3 chemistry-climate model 
to project the impacts of climate change on air pollution during the 21st century. The GFDL-CM3 model includes 
fully coupled ocean-atmosphere-sea ice-dynamic vegetation land models, and stratospheric and tropospheric 
gas-phase chemistry and a bulk aerosol scheme (Austin et  al., 2013; Donner et  al.,  2011; Naik et  al.,  2013), 
enabling us to examine consistent changes in PM2.5, ozone, and temperature. Particulate matter (PM) and ozone 
precursor emissions are held fixed at 2005 levels as described by Clifton et al. (2014) while Well-Mixed Green-
house Gases (WMGG) follow the RCP8.5 scenario. We refer to this scenario as “RCP8.5_WMGG”. The native 
model resolution is a c48 cubed sphere which is post-processed to a 2° × 2° horizontal grid. All RCP8.5_WMGG 
ensemble members are identical except for their initial conditions, which are taken from the final day of a corre-
sponding transient 1860–2005 historical simulation. Each historical ensemble member was launched using initial 
conditions sampled at 50-year intervals in a “pre-industrial control” simulation that perpetually repeats 1860 
greenhouse gas, aerosol, air pollutant emissions and other forcings.

We also draw on an available 12-member “RCP8.5_WMGG” ensemble with the CESM1 coupled atmosphere-
ocean-sea ice-land model at 1° × 1° horizontal resolution generated at NCAR (Xu & Lamarque, 2018). CESM1 
includes an interactive aerosol scheme with three internally mixed modes (MAM3; Ghan et  al.,  2012; Liu 
et  al.,  2012). The NCAR-CESM1 RCP8.5_WMGG simulations do not include fully interactive tropospheric 
chemistry needed to simulate changes in oxidants, and thus we can only use them to provide additional context for 
the changes in high-PM2.5 and temperature events diagnosed with the GFDL-CM3 ensemble. Aerosol and precur-
sor emissions, as well as the monthly varying oxidant fields (ozone, hydrogen peroxide, and the hydroxyl radical 
from Tilmes et al., 2015), are held fixed at 2005 levels. Each NCAR-CESM1 ensemble member is configured 
identically except for a tiny perturbation (O (10 −14) K) imposed in the atmospheric temperature initial condition 
fields (Kay et al., 2015; Xu & Lamarque, 2018).

Both models apply monthly varying dry deposition, biogenic, and biomass burning emissions that repeat every 
year (Lamarque et al., 2011; Naik et al., 2013). Diurnal cycles are imposed for isoprene emissions and ozone dry 
deposition in GFDL-CM3. Wet deposition, lightning NOx, dust and sea salt are interactive with meteorology in 
both models. Dimethyl sulfide and marine organic aerosol are coupled to the simulated meteorology and thus 
respond to changes in climate in GFDL-CM3 (Naik et al., 2013) but are monthly varying and repeat annually 
in CESM1 (Lamarque et al., 2011). A simple representation of secondary organic aerosol (SOA) is included 
in GFDL-CM3 with monthly varying, annually repeating sources from biogenic terpenes and anthropogenic 
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butane calculated offline; while nitrate aerosol is included, it is not coupled to radiation (Naik et  al.,  2013). 
In CESM1, SOA precursor is emitted as a gas and converted to aerosol using a fixed yield, but nitrate is not 
included. The simulations in both models neglect feedbacks to air pollution through wildland fires (Abatzoglou 
& Williams, 2016; Spracklen et al., 2009) as well as changes in terrestrial biogenic emissions or dry deposition 
(Andersson & Engardt, 2010). These idealized simulations enable us to isolate the influence of rising well-mixed 
greenhouse gases on pollution events, brought about mainly by changing the meteorology.

Hourly surface ozone, daily maximum temperature at 2 m reference height (Tmax), daily surface PM2.5, and 
monthly chemical components of PM2.5 were archived from the lowermost atmospheric layer of all GFDL-CM3 
simulations. The PM2.5 diagnostic includes sulfate (assumed to be ammonium sulfate), carbonaceous aerosol 
(organic matter, black carbon, and SOA), the smallest size bin (of five) for dust, and the smallest two size bins 
(of five) for sea salt. We calculate maximum daily 8-hr average ozone (MDA8 O3) from the hourly ozone fields. 
PM2.5 is defined in CESM1 as the sum of daily mean sulfate, dust, black carbon, and primary and SOA in the 
Aitken and accumulation modes in the lowest atmospheric layer, which we convert from the native model mass 
mixing ratio (kg/kg) to mass density (μg/m 3). While neglecting nitrate aerosol could lead to underestimates in 
PM2.5, we find that PM2.5 is generally high compared to observations over the EUS in summer (Section 3). We 
also use daily mean temperatures at the surface and at 2m reference height from these simulations.

To evaluate simulated EUS spatiotemporal patterns in air pollution, we use observations of near-surface daily 
mean PM2.5 and MDA8 O3 measured at U.S. and Canadian ground-based networks that were optimally inter-
polated to a 1° x 1° grid over the EUS (Schnell et al., 2014; Schnell & Prather, 2017). These gridded datasets 
are available for 1999–2013 and 1993–2013 for PM2.5 and ozone, respectively. We also use the 1° x 1° temper-
ature fields that Schnell and Prather (2017) regridded from the 0.5° × 0.5° European Centre for Medium-Range 
Weather Forecasting Interim reanalysis maximum daily 6-hourly temperatures sampled at 2 m reference height.

2.2.  Empirical Orthogonal Function (EOF) Analysis

We analyze daily PM2.5, ozone, and temperature data during summer (June-July-August). We focus on summer, 
the season when ozone is highest, because we are interested in co-occurrence of ozone and PM2.5, which we 
examine in the GFDL-CM3 model (Section 5). Before conducting EOF analysis, we standardize all data, sepa-
rately for each grid cell, by removing the mean of the entire time series and dividing by the standard deviation. 
The EOFs are the eigenvectors of the covariance matrix derived from the data matrix (dimensioned space by 
time). Each EOF is a spatial loading pattern for a mode of spatiotemporal variability that identifies where air 
pollution or temperature varies coherently; polluted/clean air and hot/cold temperatures occur across the region 
indicated by the EOF at the same time.

The first five EOFs derived from the PM2.5 observations capture 77% of the variance in daily summertime 
PM2.5 concentrations over the EUS domains shown in Figure 1. The EOFs derived from the observed MDA8 
O3 (Figure S1a) and daily maximum temperature (Figure S1b) datasets each capture 73% of the total variance. 
Table S1 in Supporting Information S1 lists the variance explained by the first 10 EOFs. The order in which the 
EOFs emerge is not identical, but the same EOFs always emerge in the top five. We apply Varimax rotation to the 
first five EOFs across all variables, which we selected by considering a change point in the amount of variance 
explained by each successive EOF derived from observations (Wilks,  1995). Varimax rotation re-distributes 
the  total variance explained by the five retained EOFs, which can align the rotated EOFs more closely with under-
lying physical processes. Our analysis uses these rotated EOFs and accompanying PCs. The EOF analysis reduces 
the data set size for temporal analysis from the number of individual grid cells (>400) to five EUS regions. Below 
we refer to the EOFs by the region names shown in Figure 1. For some of our analysis we define a regional mask 
where the EOF loading exceeds 0.5.

Prior analysis of summertime daily ground-level ozone over the EUS revealed similar EOFs to those in Figure 1 
(Eder et al., 1993; Fiore et al., 2003; Lehman et al., 2004). Our approach, and our choice to retain the first five 
EOFs for Varimax rotation closely follows Lehman et al. (2004). Even though the time periods in these studies 
differ, similar EOF patterns emerge. The EOFs derived from summertime ground-level MDA8 O3 observations 
(Figure S1a) spatially correlate with those for PM2.5 (r = 0.93–0.99, highest in the Northeast). EOFs for daily 
temperature (Figure S1b) also correlate with those for PM2.5 (r = 0.85–0.95, highest in the Northeast and Upper 
Midwest), implying a common underlying dependence on weather-driven daily variability.
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We apply a parallel analysis to the model data (Figures 1, S1a, S1b); see Tables S2-S3ab in Supporting Infor-
mation S1 for variance explained by the first 10 raw EOFs in GFDL-CM3 (PM2.5, ozone and temperature) and 
CESM1 (PM2.5 and temperature only). The spatial dimension decreases from 113 grid cells in GFDL-CM3 and 
465 in CESM1 to five regions. De-trending prior to the EOF analysis does not change the spatial patterns. The 
correspondence of the five EOFs in the three variables we consider with those emerging from the ozone analysis 
of Lehman et al.  (2004; see their Figure 2) suggests that the EOFs physically represent regions experiencing 
similar daily weather-driven variability. We confirm in the GFDL model that the EOFs change little under the 
21st century climate change scenario, by conducting the EOF analysis separately on the simulated daily PM2.5 
for 2006–2025 versus 2086–2100 (Figure S2). We also find that the EOFs are robust across ensemble members 
(Figures S3ab).

Each EOF is accompanied by a principal component (PC) time series spanning summer days in all years. By 
definition, the PCs are uncorrelated and combine linearly to explain the largest possible variance captured by the 
reduced version of the overall data set. The PC represents how strongly expressed a particular EOF is on each 
summer day. We orient each PC such that high pollution or temperature values are positive. These time series are 
the foci for our analysis of changes in the frequency and duration of regional-scale high-pollution events.

We illustrate how the PC can be used to quantify the number of summertime regional-scale pollution events for 
the Northeast (Figure 2). We consider the observational period during which numerous studies have documented 
decreasing EUS air pollution in response to emission control programs implemented in the 1990s and 2000s 
(Boys et al., 2014; Cooper et al., 2012; Frost et al., 2006; Murphy et al., 2011). For example, 60% decreases in 
sulfur dioxide emissions from 1990 to 2010 have been linked to 45% lower sulfate aerosol (Skyllakou et al., 2021). 
Summertime ozone decreases have been attributed to NOx and VOC emissions reductions of 40% and 14%, 
respectively, from 2002 to 2011 (Simon et al., 2015). We define events in the upper quartile (75th percentile; red 
line in Figure 2) as ‘‘high’’. To quantify changes in observed high PM2.5 and ozone events, we count the number 
of days on which the PC exceeds this threshold. From 1999–2005 to 2007–2013 (time periods indicated by the 
blue dashed vertical lines in Figure 2), the number of observed days with high pollution over the Northeast drops: 
from 239 to 80 days for PM2.5 and from 221 to 102 days for MDA8 O3. This EOF analysis thus enables us to 
diagnose changes in the frequency of regional-scale high pollution events, without defining an event locally at 
each monitor or model grid cell relative to a specific concentration threshold.

Our analysis does not focus on the magnitude of the pollution concentrations during these events. Rather, our 
primary interest is to define changes in event frequency and duration, and co-occurrence of high PM2.5, ozone, 

Figure 1.  Regions emerging from an Empirical Orthogonal Function (EOF) analysis on standardized anomalies of 
summertime daily surface PM2.5 over the Eastern United States. Shown are the Varimax-rotated EOF pattern loadings derived 
from (top) gridded observations (middle) one of three ensemble members in the GFDL-CM3 chemistry-climate model, and 
(bottom) one of 12 NCAR-CESM1 ensemble members. Blue text indicates the total variance explained by each EOF.
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and temperature under the RCP8.5_WMGG climate change scenario for the 21st century. In any case, the largest, 
longest-lasting pollution episodes – especially those with coincident high heat, high ozone, and high PM2.5 – are 
typically associated with peak pollutant concentrations (Schnell & Prather, 2017).

3.  Model Evaluation
Typical approaches evaluating models with observations at specific locations and times are problematic for our 
study. First, these free-running, fully coupled chemistry-climate models generate their own weather and thus 
cannot reproduce the stochastic climate variability present in the real atmosphere, for example year-to-year vari-
ations, and imprinted on the air pollutant measurements. Second, the simulations cannot capture observed trends 
due to changing anthropogenic emissions because they hold air pollutant emissions constant at 2005 levels. In 
light of these challenges, we adopt a statistical approach to evaluate three aspects of the GFDL-CM3 and NCAR-
CESM1 PM2.5 simulations: (a) multi-year summertime average PM2.5 and the dominant chemical components 
(sulfate and organic carbon), (b) the EOFs derived from daily PM2.5, and (c) probability distributions of region-
ally averaged daily PM2.5. We also summarize prior evaluation of ground-level MDA8 O3 and temperature in 
GFDL-CM3 to support the cross-correlative analysis of these variables and PM2.5 in Section 5. EOF analysis does 
not require exact space-time matching, and is ideally suited to evaluate spatiotemporal patterns in climate models 
that generate their own weather and thus cannot be expected to reproduce observations at a particular location and 
time. This spatiotemporal evaluation, however, requires extensive observational networks with data of sufficient 
length and quality, such as are available over the EUS.

Summertime mean PM2.5 and its major components. The summertime ensemble mean PM2.5 simulated by both 
models reflects the observed spatial pattern of summertime ensemble mean PM2.5 in the gridded observations 
(Figure S4a). The observed spatial mean, median, and maximum values are 14.5, 14.2, and 21.6 μg m −3, respec-
tively. The simulated statistics fall closer to observed in GFDL-CM3 (13.9, 13.9, and 20.6 μg m −3) than in CESM1 

Figure 2.  Proof-of-concept application of Empirical Orthogonal Function (EOF) analysis to track observed decreases in 
high pollution events as emission controls were phased in during the 2000s. Northeast principal components derived from 
observed summertime (top) daily mean PM2.5 accompanying the EOF shown in the top left of Figure 1 and (bottom) MDA8 
O3 from 1999 to 2013 accompanying the EOF shown in the top left of Figure S1a. Shown are the 75th percentile thresholds 
(red lines) used to define and count the number of high regional-scale pollution events in two separate time periods (blue 
dashed lines).
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(13.7, 12.0, and 30.4 μg m −3, highest over the Southeast). Comparison with 
the IMPROVE network (Solomon et al., 2014) suggests both models overes-
timate PM2.5 by more than 2 μg m −3 at some EUS rural sites (Figure S4b), 
although the comparison in Figure S4a with gridded observations at spatial 
scales closer to the model horizontal resolutions is most pertinent. Evaluat-
ing chemical composition at the IMPROVE sites reveals excessive organic 
carbon (over 5 μg m −3) in CESM1 in the Southeast, although sulfate is too 
low (by at least 2  μg m −3; Figure  S4b). GFDL-CM3 overestimates both 
species by at least 2 μg m −3 at several EUS IMPROVE sites.

EOFs derived from summertime daily PM2.5. The EOF analysis applied to 
observed daily surface PM2.5 from 1999 to 2013 identifies the same underly-
ing modes of variability as from each of the three GFDL-CM3 model ensem-
ble members for the 2006–2100 period (Figure 1 and S3a). The CM3-derived 
EOFs capture less overall variance (64%–65%; range is over ensemble 
members) than the observation-derived EOFs (77%). The overall similarity 
of the patterns implies that this model captures the underlying dynamical 
and chemical processes that shape the observed spatiotemporal variability. 
Figure 1 also shows EOFs derived from summertime daily PM2.5 simulated 
by one NCAR-CESM1 ensemble member (Figure S3b displays other ensem-
ble members). The PM2.5 EOFs derived from CESM1 capture ∼50% of the 
overall variance in the modeled data set. Four of the EOFs correspond to 
those derived from observations (Figure 1), but rather than a coastal mid-At-
lantic EOF, CESM1 highlights a spatial mode of variability centered over 
Missouri and Kansas. The spatial error in this pattern may reflect shortcom-
ings in the geographical placement of the Atlantic or Pacific subtropical high 
pressure systems and the Great Plains Low Level Jet, and their accompany-
ing precipitation patterns (Bowden et al., 2013; Li et al., 2013; Schmidt & 
Grise, 2019; Tang et al., 2017). The Northeast EOF, where the two models 
agree most in their projected changes, serves as a major focus of our analysis 
and is similarly well captured by both CESM1 and GFDL-CM3.

Probability distributions of daily regional averaged PM2.5 in summer. From 
Figure 1, we select grid cells where the EOF loading exceeds 0.5 to define a 
regional mask separately for each model and the observations. We apply this 
mask to calculate daily regional mean PM2.5 for 2006–2010 and 2003–2007 

for the models and observations, respectively, and then sort into 2 μg m −3 concentration bins. The mismatch 
of time periods reflects a compromise to align the model with constant year 2005 emissions and the observa-
tions. The 5-year period is intended to minimize influences from both emission trends and weather fluctuations. 
Figure 3 shows the distribution of the average number of days each summer as a function of regional mean PM2.5 
concentrations for the Northeast, Upper Midwest, and East Texas regions (Figure S5 shows the mid-Atlantic 
and Southeast). The high tail is most relevant to understanding how high PM2.5 events will change as the planet 
warms, and is generally better captured by GFDL-CM3 than CESM1, except over the East Texas region where 
GFDL-CM3 captures the mode but underestimates the frequency of the highest PM2.5 concentrations (>17 μg 
m −3; Figure 3). While the mode over East Texas is underestimated by CESM1, some ensemble members simu-
late PM2.5 concentrations >26 μg m −3, as in the observations. The GFDL-CM3 distributions over the Northeast, 
mid-Atlantic and Southeast reflect the mean positive bias evident from Figure S4ab. In CESM1, the positive bias 
is even higher over the Northeast (and Southeast), with little similarity to the observed distribution shape. We 
place more emphasis below on the GFDL-CM3 simulations from which we have ozone, PM2.5, and temperature 
available. The NCAR-CESM1 simulations provide a broader context on inter-model differences and on climate 
variability as measured by the range across ensemble members.

Summertime MDA8 O3 and Temperature. The GFDL-CM3 simulations include interactive gas-phase chemistry, 
enabling us to examine connections with PM2.5 and temperature in Section 5. Prior evaluation indicates that 
the model represents changes in the mean and high tail of ground-level ozone observed at eastern U.S. Clean 

Figure 3.  Distributions of the average number of summer days with regionally 
averaged daily PM2.5 falling within 2 μg m −3 concentration bins. Averages are 
taken over the regions where the Empirical Orthogonal Function loading in 
Figure 1 exceeds >0.5 in the observations (black) for the years 2003–2007 and 
in the individual (orange) GFDL-CM3 (left) NCAR-CESM1 (right) ensemble 
members over the Northeast (top), Midwest (middle), and East Texas (bottom) 
for model years 2006–2010.
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Air Status and Trends Network sites during summer, despite a systematic high bias (Naik et al., 2013; Clifton 
et al., 2014; Rieder et al., 2015, 2018). The model has previously been shown to capture observed relationships 
between ozone and temperature, and between relative ozone variability and the mid-latitude jet location, over the 
Northeast region (Barnes & Fiore, 2013; Rasmussen et al., 2012). GFDL-CM3 also captures the spatial distri-
bution of observed 1976–2005 summertime monthly mean and extreme temperatures (Mascioli et  al., 2016). 
Figures  S1a and  S1b show matching EOF patterns derived from the RCP8.5_WMGG simulations and from 
observations of MDA8 O3 and daily temperature, with the exception of the NCAR-CESM1 Mid-Atlantic EOF for 
temperature (recall NCAR-CESM1 does not simulate ozone interactively).

4.  21st Century Changes in Summertime PM2.5

4.1.  Mean Values, Composition, and Probability Density Functions

Summertime mean PM2.5 increases across the contiguous USA during the 21st century in the GFDL-CM3 ensem-
ble mean, with the largest increases occurring over the Northeast and Upper Midwest, by up to 1–2 and 3–4 μg 
m −3 by mid- (2041–2060; Figure S6) and end-of-century (2081–2100), respectively (Figure 4; note the colorbar 
saturates to allow comparison with CESM1 and the individual components, with a maximum increase of 4.3 μg 
m −3). We consider changes as significant if the ensemble mean change exceeds the 95th percentile of a sample 
constructed from differences in 2006–2025 means across pairs of ensemble members (Text S1 in Supporting 
Information S1). CESM1 projects smaller ensemble mean PM2.5 increases (<1.5 μg m −3) across the Northeast by 
end-of-century, and decreases over Louisiana, southern Mississippi and Alabama by over 0.5 μg m −3 and 2 μg 
m −3 (maximum decrease is 2.5 μg m −3) by mid- and end-of-century, respectively. By 2081–2100, CESM1 also 
simulates decreases exceeding 0.5 μg m −3 over the central Plains (Figure 4). In both models, sulfate and organic 
carbon drive PM2.5 increases in the Northeast, with organic carbon contributing more to simulated changes in the 
Southeast. Significant sulfate increases are projected by both models in some Western regions. GFDL-CM3 also 
simulates organic carbon increases across the Northwest, in contrast to CESM1. While it is possible that the lack 
of interactive tropospheric chemistry and therefore reliance on off-line oxidant fields in CESM1 could produce 
some of the inter-model differences in PM2.5, the inter-model differences in organic carbon in Figure 4 suggest 
larger roles for changing meteorology.

Simulated changes in average temperature and precipitation are also shown in Figures 4 and S6. Summertime 
daily near-surface air temperatures warm in both models, by over 2 and 4 K by mid- and end-of-century respec-
tively. While GFDL-CM3 simulates a warmer, drier summer over the EUS, CESM1 warms but wettens although 
significant changes only occur over a limited area. We do not find evidence that a warmer and drier climate 
always accompanies higher PM2.5, or that more rainfall lowers PM2.5. For example, CESM1 simulates declining 
PM2.5 along the Gulf coast without a significant increase in precipitation. Earlier work demonstrated complex 
relationships between PM2.5 and meteorology that do not simply scale with temperature or precipitation (Dawson 
et al., 2013; Tai et al., 2010).

For each ensemble member, we construct distributions by averaging PM2.5 over each EOF region (Figure 1) on 
every summer day of the first, middle, and last decades of the 21st century. These distributions are displayed as 
boxplots in Figures 5 and S7. We consider forced changes as detected relative to internal climate variability in 
cases where a given statistic for all ensemble members does not overlap in different time periods. GFDL-CM3 
simulates increases across the interquartile range (25th, 50th, and 75th percentiles) over the Northeast, Midwest, 
and Mid-Atlantic regions, whereas changes are not detectable over East Texas or the Southeast regions as these 
statistics overlap across ensemble members in all three time periods. Over the Northeast, the interquartile statis-
tics also increase in CESM1, but no shift is detectable over the Midwest, and 75th percentile values decline over 
East Texas. These changes in the two models are consistent with the long-term trends in the PCs associated with 
the EOFs in Figure 1: increasing 10-summer smoothed PCs from 2006 to 2100 in the Northeast, Midwest, and 
Mid-Atlantic derived from the GFDL-CM3 simulations (Figure S8a), and increasing Northeast but decreasing 
East Texas 10-summer smoothed PCs in the NCAR-CESM1 (Figure S8b). Taken together with the mean changes 
in Figure 4, these findings suggest that the uncertainty in the model responses to rising greenhouse gases is larger 
than the uncertainty arising from internal variability, except in the Northeast where both models project PM2.5 
increases.
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Figure 4.  Change in summertime (June-July-August) PM2.5, sulfate, organic carbon, daily 2m air temperature (max for 
GFDL-CM3; mean for CESM1), and precipitation from 2006 to 2025 to 2081–2100, simulated with GFDL-CM3 (left; 3 
ensemble member mean) and CESM1 (right; 12 ensemble member mean) for the RCP8.5_WMGG scenario. Grid cells 
marked with an “x” indicate that the ensemble mean change is not significant relative to changes arising solely from internal 
variability (see Text S1 in Supporting Information S1 for details).
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4.2.  High-PM2.5 Events: Frequency, Duration and Intensity

We illustrate our approach with the GFDL-CM3 Northeast EOF for PM2.5. We select the upper quartile defined 
by the full 2006–2100 time series (e.g., all values above the red line in Figures S8a and S8b) and count, separately 
for each ensemble member, the number of summer days when PM2.5 falls in the upper quartile. Over the 21st 
century, all three GFDL-CM3 ensemble members simulate an increase in this statistic (Figure 6). An ordinary 
least squares regression suggests an increase in the number of summer days with PM2.5 concentrations falling in 
the upper quartile of 16–20 days (r 2 = 0.3–0.4; range is across ensemble members) by end-of-century. While the 
changes are not linear with time, this simple metric enables a comparison of changing frequency over time across 
ensemble members and variables. Table S4 in Supporting Information S1 reports the GFDL-CM3 ensemble 

mean of these regression statistics for high-PM events, as well as ozone and 
temperature, in all five regions.

To assess changes in the duration of high PM2.5 events, we define short 
(1–2 days) versus long (3+ day) durations of top quartile summertime PM2.5 
events by tracking the number of successive days the PC stays in the upper 
quartile. For each decade, we sum over all 1–2 versus 3+ day events. We 
then average across all ensemble members and report the ensemble mean 
number of events per decade (filled circles in Figures 7 and S9). Anthropo-
genic climate change increases the number of 3+ day events (red symbols in 
Figures 7 and S9) in the GFDL-CM3 ensemble mean over the 21st century 
in all regions except for the Southeast, although not all increases are signif-
icant relative to internal variability or to events of different duration lengths 
(Section 4.3). While ensemble mean 3+ day upper quartile PM2.5 events also 
increase in CESM1 over the Northeast, CESM1 simulates little change in this 
statistic over other regions (Figures 7 and S9).

An increase in longer duration events could occur simply because the 
frequency of upper quartile events, where the upper quartile is defined rela-
tive to the full 2006–2100 period, is greater toward the end of the simulation. 
Even a small long-term upward trend in a PC, as is evident from the smoothed 

Figure 5.  Distributions of regional average daily PM2.5 (μg m −3) in each ensemble member of the GFDL-CM3 model (top) and NCAR-CESM1 (bottom) RCP8.5_
WMGG simulations over the Midwest (left), Northeast (middle) and East Texas (right) regions at the beginning, middle, and end of the 21st century; see Figure S7 for 
the Mid-Atlantic and Southeast.

Figure 6.  Increasing frequency of summertime high-PM2.5 days over the 
Northeast. ‘‘High’’ days are defined as the Northeast principal component 
derived from summertime daily PM2.5 falling within the upper quartile defined 
with respect to the full 2006–2100 period, separately for each GFDL-CM3 
ensemble member (colors). Slopes and coefficients of determination (r 2) from 
ordinary least squares regression are shown in the panel.
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black curve in Figure S8a for the GFDL-CM3 Northeast, Mid-Atlantic, and Southeast EOFs, could be responsible 
for increasing both event frequency and duration. Changes in duration may be relevant for understanding changes 
in health burdens, especially if extended duration events trigger non-linear health responses. We also aim to 
determine if duration has changed independently from frequency, such as might occur if regional atmospheric 
circulation becomes more sluggish in response to rising greenhouse gases. We examine changes in duration alone 
by sampling the highest decile of the PCs derived from summertime daily mean PM2.5 in GFDL-CM3 in the first 
versus last three decades of the 21st century. We then calculate an average length of episode for each time period. 
Figure 8 shows the ensemble mean duration (colored bars) and the range over the three ensemble members (black 
vertical bars). The ensemble member range in the last three decades exceeds the range in the first three decades 
over the Northeast, Midwest and the Mid-Atlantic, with ensemble mean increases of <0.2, <0.4, and <0.6 days, 
respectively, suggestive of an underlying change in ventilation affecting these regions, such as a northward shift 
of the summertime mid-latitude jet (Barnes & Fiore, 2013; Kerr et al., 2020). These relatively small increases 

Figure 7.  Longer duration upper quartile regional-scale PM2.5 events occur more frequently under the RCP8.5_WMGG 
scenario in some regions in GFDL-CM3, but only over the Northeast in CESM1, while the frequency of short events changes 
little. Shown are the number of times the Principal Component derived from daily mean summertime PM2.5 exceeds the 
upper quartile value (calculated from the full 2006–2100 time period) and stays above that value for 1–2 (black) or 3+ (red) 
days, summed over each decade within each ensemble member (open circles) prior to averaging over all GFDL-CM3 (left) 
and NCAR-CESM1 (right) ensemble members (N; filled circles) over the Northeast (top), Upper Midwest (middle) and East 
Texas (bottom) under the RCP8.5_WMGG scenario. The vertical range for a given decade is a measure of internal variability. 
A forced response to rising greenhouse gases is ‘‘detected’’ when all of the open circles in a later decade are outside the range 
simulated in the early decades.
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in duration, however, imply that much of the change occurring in Figure 7 is due to changes in frequency. We 
conclude that increases in duration independent from frequency occur in the GFDL-CM3 simulations, but that the 
changes in event length in Figure 7 are strongly influenced by the long-term upward trend in the PC (Figure S8a) 
resulting in a higher frequency of upper quartile events by the end of the century (Figure 6).

As a means of gauging changes in the ‘‘intensity’’ of events, we construct regional averages of daily PM2.5 over 
the five regions (where EOF loadings >0.5 in Figure 1) and report the ensemble mean changes in both models by 
the 2050s and 2090s in Table S5 in Supporting Information S1. Ensemble mean increases occur in this statistic 
across all regions within the GFDL-CM3 model (+0.8–3.7 μg m −3 by the 2090s; largest over the Northeast). In 
CESM1, the ensemble mean increases by the 2090s only over the Northeast (by 1.0 μg m −3). We explore the range 
across individual ensemble members in the next section.

4.3.  Changing Regional High-PM2.5 Events in the Context of Internal Climate Variability

A novel aspect of our analysis is the use of multiple ensemble members to gauge the significance of changes in 
high pollution events in light of variability arising naturally (internally) in the climate system. The open circles 
in Figures 7 and S9 denote individual ensemble members. We first consider changes as significant if all ensem-
ble members in the later period fall outside the range of values from the earlier period. GFDL-CM3 simulates 
significant changes in 3+ day events between the first three and last three decades of the 21st century over the 
Northeast, Upper Midwest, and mid-Atlantic (Figures 7 and S9). An increase in longer duration events over the 
Northeast is robustly detected for different event duration definitions (4+, 4–6, 5+, and 6+ days, Figure S10a). 
Increases are also detected as significant against internal variability for all event durations except 4–6 days over 
the Mid-Atlantic, and except for 5+ or 6+ day durations over the Upper Midwest. While the GFDL-CM3 ensem-
ble mean number of 3+ day events also increases between the early and late 21st century over East Texas and 
the Southeast (Figures 7 and S9), the ensemble member ranges in early versus late decades overlap, indicating 
that these changes are not fully emerging from those solely due to internal climate variability. CESM1 only 
indicates a significant increase in the number of 3+ day events between the first and last decades over the North-
east (Figures 7 and S9), and does not simulate significant change over any other region. Furthermore, detec-
tion of Northeast changes significant against internal climate variability with CESM1 is not robust to duration 
length choice (Figure S10b). Our analysis below aims to differentiate the role of internal variability versus model 
response uncertainty in leading to these inter-model differences.

An analysis of maximum and minimum changes in the 75th percentile daily mean summertime PM2.5 values 
reveals that differences in the model responses (such as arise from different meteorological responses to climate 
change and different representations of chemical responses) outweigh the role of climate variability (Table S5 in 
Supporting Information S1). The range of changes simulated by the 3-member GFDL ensemble lies completely 

Figure 8.  Increasing duration of summertime high-PM2.5 events over the Northeast, Midwest, and Mid-Atlantic. Average 
length (days) of regional-scale (EOF regions in Figure 1) summertime PM2.5 events in the beginning (green; 2011–2040) 
versus end (brown; 2071–2100) of the 21st century in the GFDL-CM3 RCP8.5_WMGG simulations. For each period, we 
sample the days when the Principal Component values derived from daily PM2.5 fall in the upper decile, defined separately 
for early versus late 21st century to ensure the same number of days in each period. Vertical bars indicate the range across the 
three ensemble members.
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outside that of the 12-member NCAR ensemble for the Northeast, Midwest, and Mid-Atlantic regions. All three 
GFDL ensemble members simulate increasing 75th percentile values across all regions except for the East Texas 
region at mid-Century. In contrast, the sign of the change simulated by CESM1 is only consistent across all 12 
ensemble members for the Northeast (increase) and Mid-Atlantic (decrease) by end of century (recall the mid-At-
lantic EOF is displaced inland in CESM1; Figure 1).

We also select the three NCAR-CESM1 ensemble members with either the smallest or largest changes in 75th 
percentile daily mean summertime PM2.5 concentrations (Table S5 in Supporting Information S1). Nearly a factor 
of 3 range occurs if one considers the average of the 3 NCAR-CESM1 ensemble members with the smallest 
versus the largest simulated changes by the 2090s over the Northeast. We conclude that inter-model discrepancies 
reported in the published literature regarding the sign and magnitude of the PM2.5 response to climate change 
reflect not only model differences but also internally arising climate variability. This “climate noise” could be 
quantified with sufficiently large ensembles that isolate the anthropogenic climate change “signal” (ensemble 
mean) from the “noise” (ensemble range). Multi-model large ensembles, such as the multi-model 100-member 
ensembles now being generated for physical climate models, can further distinguish inter-model differences 
(model response uncertainty) from internal variability (Deser et al., 2020).

5.  PM2.5-Ozone-Temperature Linkages
We turn next to the GFDL-CM3 simulations to examine relationships between ozone, PM2.5 and heat, and how 
climate change may alter these relationships. Along with the increase in upper quartile PM2.5 events discussed in 
Section 4.2, GFDL-CM3 also projects more frequent ozone events in both the Northeast and the Mid-Atlantic as 
well as heat events (Table S4 in Supporting Information S1). Increasing exposure to multiple pollutants and heat 
could imply an increase in the public health burden, particularly if non-linear responses are triggered by coinci-
dent or consecutive exposure to high events. The observational analysis of Schnell and Prather (2017) indicates 
that EUS extreme events in temperature, MDA8 O3 and daily mean PM2.5 often occur within a day of each other 
but the specific temporal relationships vary by region. Since we find little change in the regional-scale modes of 
variability (EOFs) in PM2.5, ozone, or daily Tmax induced by rising long-lived greenhouse gases (Figure S2), we 
examine here any changes in the relationships between the PCs. Table 1 shows the correlations between the PCs 
derived from GFDL-CM3 MDA8 O3, daily mean PM2.5 and daily Tmax during the first (2006–2015) versus last 

Tmax and O3 Tmax and PM O3 and PM

REGION Lag −1 Lag 0 Lag +1 Lag −1 Lag 0 Lag +1 Lag −1 Lag 0 Lag +1

Only Summers of 2006–2015

  Northeast 0.55–0.57 0.57–0.63 0.38–0.46 0.47–0.55 0.61–0.67 0.60–0.65 0.17–0.34 0.55–0.62 0.70–0.72

  Mid-Atlantic 0.69–0.72 0.68–0.74 0.54–0.61 0.23–0.32 0.30–0.41 0.30–0.40 0.27–0.36 0.48–0.55 0.57–0.62

  Upper Midwest 0.68–0.71 0.60–0.65 0.41–0.43 0.44–0.54 0.50–0.63 0.42–0.54 0.27–0.35 0.56–0.61 0.68–0.71

  East Texas NA NA NA NA NA NA 0.16–0.30 0.37–0.46 0.50–0.56

  Southeast NA NA NA NA NA NA 0.12–0.31 0.31–0.49 0.31–0.51

Only Summers of 2091–2100

  Northeast 0.35–0.40 0.37–0.45 0.24–0.31 0.39–0.47 0.49–0.58 0.49–0.58 0.11–0.19 0.46–0.54 0.65–0.70

  Mid-Atlantic 0.53–0.60 0.53–0.60 0.43–0.52 0.22–0.29 0.27–0.34 0.26–0.33 0.34–0.44 0.55–0.62 0.63–0.67

  Upper Midwest 0.49–0.53 0.40–0.47 0.22–0.33 0.45–0.54 0.50–0.61 0.43–0.53 0.27–0.34 0.53–0.58 0.67–0.67

  East Texas NA NA NA NA NA NA 0.37–0.50 0.54–0.64 0.61–0.69

  Southeast NA NA NA NA NA NA 0.22–0.35 0.42–0.53 0.48–0.59

Note. Minimum - maximum correlation coefficients (r) between principal components for pairs of variables simulated by the three GFDL-CM3 model ensemble 
members (Tmax is daily maximum temperature at a 2m reference height; O3 is MDA8 O3; PM is daily mean PM2.5) in the first versus the last decade of the simulations. 
Correlations are reported for each region on the same day (Lag 0) or with the first variable lagging (Lag −1) or leading (Lag +1) by 1 day. NA denotes r < 0.20; the 
strongest correlations with r > 0.4 within each region are shown in bold. Multiple bold entries for a given relationship and region indicate overlapping ranges.

Table 1 
Regional PM2.5-Ozone-Temperature Relationships in Summer (June-July-August)
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(2091–2100) decade of the RCP8.5_WMGG simulations. The lags associated with the strongest correlations in 
Table 1 are broadly consistent with those identified by analysis of the 95th percentile of observed warm season 
pollution and temperature events (Schnell & Prather, 2017; see their Figure 4def), despite our use of a different 
metric. Modeled relationships in Table 1 are consistent with observational analysis indicating weak tempera-
ture-ozone relationships in the Southeast (e.g., Camalier et al., 2007).

Strong correlations emerge in all regions when PM2.5 lags MDA8 O3 by a day. PM2.5-MDA8 O3 correlations 
strengthen or remain similar from 2006–2015 to 2091–2100 in the GFDL-CM3 ensemble. Future work is needed 
to determine if these relationships are governed by meteorology or chemistry. For instance, enhanced ozone (and 
hydroxyl radical (OH)) production on one day may contribute to secondary aerosol formation that accumulates 
to high PM2.5 concentrations the following day. While secondary inorganic aerosol formation is represented in 
GFDL-CM3, the treatment of SOA is simplified and may miss feedbacks. Since biogenic emissions and wildfires 
do not respond to meteorology, these simulations likely underestimate the response of air pollution to meteorol-
ogy, and climate change.

The correlation of temperature with ozone is strongest for for the same day or ozone preceding temperature by a 
day over the Northeast and Mid-Atlantic, and when ozone precedes temperature by a day over the Upper Midwest. 
GFDL-CM3 projects a significantly weaker temperature-ozone correlation in all of these regions over the 21st 
century (Table 1). The degraded correlation between ozone and temperature under climate change was previously 
shown to occur in this model, and attributed to the summertime mid-latitude jet shifting northward (Barnes & 
Fiore, 2013). We find no correlation in either of the southern regions (East Texas and Southeast) between temper-
ature and ozone. The absence of an ozone-temperature relationship in GFDL-CM3 agrees with earlier obser-
vation-based work showing that humidity offers more explanatory power for ozone in these regions (Camalier 
et al., 2007), possibly reflecting a key role for land-atmosphere couplings (Kavassalis & Murphy, 2017; Tawfik 
& Steiner, 2013).

For temperature and PM2.5, we additionally draw on the NCAR-CESM1 simulations. All ensemble members in 
both models simulate the strongest correlations with zero lag (Tables 1 and S6 in Supporting Information S1). 
All NCAR-CESM1 ensemble members simulate the strongest PM-temperature correlations over the Northeast 
(ensemble mean r = 0.58; Table S6 in Supporting Information S1), but unlike GFDL-CM3, PM2.5 and temper-
ature are not correlated over the displaced Mid-Atlantic region in CESM1 even though an EOF analysis of the 
CESM1 daily summertime temperature fields reveals a similarly shifted pattern as for PM2.5 (Figure S1b). While 
GFDL-CM3 simulates no relationship between temperature and PM2.5 in either southern region, CESM1 indi-
cates a weak temperature-PM2.5 anticorrelation for East Texas (Table S6 in Supporting Information S1). Prior 
observation-based work has demonstrated more complex relationships between PM2.5 and meteorology (Dawson 
et al., 2013), in part because individual PM2.5 components display different relationships with meteorological 
variables (Tai et al., 2010; Wu et al., 2019). For the highest observed EUS summertime PM2.5 events, however, 
strong relationships with temperature have been found (Porter et al., 2015). Over the Northeast, we identify a 
change (weakening correlation) in the PM2.5-T relationship across the three GFDL ensemble members from 
2006–2015 to 2091–2100 (Table 1).

6.  Discussion and Conclusions
Prior work has shown that some regions experiencing high pollution at present will suffer from poorer air quality 
as the planet continues to warm, if additional controls on air pollutant emissions are not implemented. These 
studies, however, often conflict (Fiore et al., 2015; Jacob & Winner, 2009; Weaver et al., 2009) and have typically 
neglected the role of naturally arising internal climate variability by simulating only a small number of years 
(Deser, Knutti et al., 2012, Deser, Phillips et al., 2012; Garcia-Menendez et al., 2017; Hawkins & Sutton, 2009). 
With initial condition ensembles in the GFDL-CM3 and CESM1 climate models under a 21st century RCP8.5 
scenario with air pollutant emissions frozen in 2005 (denoted RCP8.5_WMGG), we estimate uncertainty due to 
internal climate variability as the range across the ensemble members available from each model. Relative to this 
internal variability, we evaluate long-term changes in mean and high air pollution events driven by rising green-
house gases, as well as differences in model responses to rising gases. Model response differences can reflect 
choices regarding process representation (e.g., which emissions interact with meteorology, and fixed oxidant 
fields in the NCAR-CESM1 simulations).
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We demonstrate how EOF analysis can be applied to quantify changes in both the frequency and duration of 
summertime regional-scale pollution episodes over the Eastern United States (EUS). By revealing underlying 
spatiotemporal patterns of variability, this statistical approach avoids the challenge of bias-correcting individ-
ual models, which would be necessary if we were to define high pollution events using an absolute concentra-
tion threshold. This approach will work best in cases where biases are systematic, where models capture EOFs 
derived from observations, and where these underlying modes of spatiotemporal variability are not changing in 
response to forcings applied in the simulations. We find that the models agree best over the Northeast region, 
where summertime mean surface temperatures increase by over 4°C during this century, accompanied by a rise 
in summertime mean PM2.5 (up to 1–4 μg m −3). Our analysis of principal components (PCs), the time series 
accompanying each EOF that indicates how strongly expressed each spatial pattern is on each summer day, 
reveals an increase in the decadal incidence of upper quartile PM2.5 events lasting 3+ days over the Northeast 
that is significant relative to climate variability in GFDL-CM3 for the first three versus last three decades, as 
indicated by no overlap of ensemble members in the two periods, and significant in CESM1 from the first to the 
last decade (Figure 7).

The GFDL-CM3 simulations capture, at least qualitatively, observed temporal relationships between EUS MDA8 
O3, daily average PM2.5, and daily Tmax, including those identified by Schnell and Prather  (2017). The close 
temporal occurrence of ozone and PM2.5, and in some cases temperature, events could be relevant to public health, 
particularly if non-linear responses occur from consecutive or simultaneous exposure. Same-day and consecu-
tive-day exposure to ozone and PM2.5 occurs across the EUS, with GDFL-CM3 projecting a strengthening of this 
correlation in the southern EUS during the 21st century. Correlated extremes of air pollution and temperature 
may become more relevant for public health in future decades, particularly in the northern part of our domain 
where both ozone and PM2.5 remain correlated with temperature (Table 1) and where the frequency and duration 
of events may increase (Figures 7 and 8). Mascioli et al. (2016) showed that GFDL-CM3 simulates daily Tmax 
in excess of the 90th percentile defined relative to 1961–1990 for nearly the entire summer by the 2090s in the 
RCP8.5 scenario. This standard RCP8.5 scenario warms even more than RCP8.5_WMGG because global aero-
sols decline, removing the net cooling influence from aerosols, while air quality improves. We find that Tmax falls 
in the upper quartile defined relative to 2006–2100 on most summer days by the end of the century (Table S4 in 
Supporting Information S1).

The changes we diagnose from GFDL-CM3 imply a trend toward longer-lasting exposures to high pollution 
events, which may have implications for human and plant health, particularly when accompanied by more intense 
heat events. By holding anthropogenic emissions fixed in our scenario, we do not consider the potential for 
human activities to exacerbate or mitigate air pollution. This major source of uncertainty has been emphasized 
in prior studies assessed in Intergovernmental Panel on Climate Change reports (Kirtman et al., 2013). While we 
focused on summertime, climate change may extend what is currently “summer” weather and the accompany-
ing pollutant concentrations over the EUS into spring and fall, as occurred in October 2010 over the Southeast, 
triggering high fire and biogenic emissions (Zhang & Wang, 2016). Weather-sensitive emission feedbacks such 
as from wildfires and biogenic emissions were not included in our simulations, and would most likely further 
amplify pollutant exposure of vulnerable populations and vegetation.

The 12-member NCAR-CESM1 ensemble provides a broader sampling of possible climate states than the 
3-member GFDL-CM3 ensemble. Outside of the Northeast, CESM1 simulates different changes in summertime 
mean PM2.5 and upper quartile events than GFDL-CM3, and we find that in some regions, the models do not 
overlap in their simulated 21st century changes. While three ensemble members is a poor sampling of climate 
variability, the discrepancies between the two models are sufficiently large as to imply fundamental model differ-
ences in their climate responses to rising greenhouse gases. As emphasized by Hawkins and Sutton (2009), uncer-
tain model responses have the potential to be reduced by advancing process-level understanding and improving 
its representation in models. Air quality projections produced with multi-model chemistry-climate ensembles 
could transform the capacity to develop probabilistic assessments of changes in regional-scale pollution event 
frequency and duration, and their co-occurrence with heat, as well as any other metrics of interest for public 
health or ecosystem welfare. Such ensembles can be parsed separately for uncertainty arising from climate vari-
ability versus different model responses.

Our EOF-based approach can be readily applied to any future single or multi-model initial condition chem-
istry-climate model ensembles. For example, future simulations could sample a wide range of scenarios and 
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incorporate potentially important feedbacks that were neglected in our simulations. A more immediate direction 
could link EOF patterns to specific meteorological conditions, in which case one could probe existing multi-
model initial-condition physical climate model ensembles, with as many as 100 members per model already 
available (Deser et  al.,  2020), for insights into projected changes in ozone and PM2.5 events. Understanding 
and preparing for the range of changes in pollution events that could arise from climate variability may be as 
important as quantifying the signal from climate change, particularly if climate mitigation leads to less extreme 
warming scenarios for the 21st century than simulated here.

Data Availability Statement
Data and code underlying our analysis and displayed in figures is available in Dryad at https://doi.org/10.5061/
dryad.d2547d83s.
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