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Abstract

This paper compiles indices for the El Nifio—Southern Oscillation (ENSO) and seven unforced decadal-to-multidecadal
climate modes (Interdecadal Pacific Oscillation (IPO), Tripole Pacific Index (TPI), Pacific Decadal Oscillation focused over
North Pacific (PDO) and South Pacific (SPDO), North Atlantic Multidecadal Oscillation (AMO), South Atlantic Multidecadal
Oscillation (SAMO), and Indian Ocean basin (IOB)) in a 100-member ensemble of the Max Planck Institute Earth System
Model (MPI-ESM1.1) and a 35-member ensemble of Community Earth System Model (CESM1). Comparison among vari-
ous detrending approaches indicates that the best approach to remove the unforced component is by subtracting the ensemble
average temperature at each grid point from the original model output. Similar characteristics are investigated in the indices
of both MPI-ESM1.1 and CESM1 ensemble models. The results further indicate no statistically significant lead-lag correla-
tions between the unforced multidecadal climate modes originating from North Pacific (e.g., PDO) and North Atlantic (e.g.,
AMO), suggesting that a high correlation found in previous observational studies may be due to biased detrending approaches.

Keywords Global climate models - Unforced decadal-to-multidecadal climate variability - Atlantic multidecadal

oscillation - Pacific decadal oscillation

1 Introduction

Unforced decadal climate variability significantly modu-
lates the rate of climate change at both global and regional
scales and can lead to phenomena such as the so-called “hia-
tus”, a global warming slowdown in the early twenty-first
century. Because of the difficulty of separating forced and
unforced signal from climate record, the underlying mecha-
nisms governing decadal variability are still under intense
debate (Frankignoul and Hasselmann 1977; Knight et al.
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2005; Clement et al. 2015). Numerous studies suggest that
unforced ocean—atmosphere interactions originating from
the Pacific, Atlantic, and Indian Ocean are major drivers of
interdecadal climate variability (Delworth et al. 2007; Dong
et al. 2016; Meehl et al. 2016; Dong and McPhade 2017a),
which can then explain considerable proportions of recent
global and hemispheric climate changes (Mantua and Hare
2002; Deser et al. 2012; Si and Hu 2017).

Modes of Pacific decadal variability can be depicted
by the Interdecadal Pacific Oscillation (IPO, Power et al.
1999) and the Pacific Decadal Oscillation (PDO, Mantua
et al. 1997; Zhang et al. 1997; Mantua and Hare 2002). Both
the IPO and PDO are based on empirical orthogonal func-
tion (EOF) analysis that extracts information from detrended
long-term changes of sea surface temperature (SST). The
IPO characterizes the unforced climate variability in the
entire Pacific, whereas the PDO characterizes variability in
the North Pacific. Similar to the IPO, a non-EOF based met-
ric called the Tripole Pacific Index (TPI, Henley et al. 2015)
also characterizes climate variability in the entire Pacific, but
is computed using simple differences of regional-average
SST. Generally, the IPO, PDO, and TPI are highly correlated
in time (Henley et al. 2015; Newman et al. 2016), so they
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are often used interchangeably in regional climate impact
studies. For example, streamflow and flooding in Australia
(Micevski et al. 2006), drought in China (Qian and Zhou
2014), and precipitation in North America (Dai 2013) are
shown to be highly correlated to these Pacific-related dec-
adal variabilities. It has also been suggested that Pacific
decadal variability has a significant impact on the global
warming “hiatus” (Meehl et al. 2013; England et al. 2014;
Dong and McPhaden 2017b) and on the observed expan-
sion of Antarctic sea ice in the early of this century (Meehl
et al. 2016).

The Atlantic Multidecadal Oscillation (AMO, Schles-
inger and Ramankutty 1994; Kerr 2000; Enfield et al. 2001)
is traditionally defined as the averaged detrended SST in the
North Atlantic Ocean. Recent studies on the AMO variabil-
ity mainly focused on subpolar North Atlantic region, and
found the tropical Atlantic variability is less multidecadal
and well correlated with the AMO indices (O’Reilly et al.
2016; Zhang 2017; Kim et al. 2018; Zhang et al. 2019). The
AMO has demonstrated not only influence the climate on
North America and Europe (Enfield et al. 2001), but also
has broader hemispheric effects, for example, on the North
African monsoons and the summer rainfall in East Asia and
India (Lu et al. 2006; Zhang and Delworth 2006). Moreover,
the AMO plays a key role in passing the current climate
model bias to the future rainfall projection uncertainties in
the Mediterranean climate regions (Dong et al. 2021).

The AMO and PDO/IPO are important sources of low-
frequency climate variability in Asia—Pacific region and
Northern Hemisphere mid-latitudes (McGregor et al. 2014;
Cai et al. 2019). It is found that the internal variability,
such as the PDO, may contribute as large as 80% of the
decadal variation of East Asia summer monsoon, and exter-
nal variability only explains ~20% (Zhou et al. 2013; Song
et al. 2014). Moreover, the relationship between East Asia
summer monsoon and the El Nifio—Southern Oscillation
(ENSO) variability could be modulated by the PDO (Song
and Zhou 2015). It has also been indicated that the AMO-
related Atlantic SSTs influence the changes in Walker cir-
culation in the tropical Pacific regions, which modifies the
ENSO signals on both annual and multidecadal timescales
(Levine et al. 2017).

Although the AMO is centered in North Atlantic Ocean,
the PDO component is partly connected to it. Si and Ding
(2016) indicated that the AMO plays an important role in
altering the PDO through the atmospheric teleconnection,
resulting in different PDO patterns between the 1960s and
2010s. Summer East Asian monsoon rainfall anomalies are
effectively influenced by the AMO and PDO/IPO modes.
The combination of negative IPO and positive AMO was
also shown to enhance the recent East Asia jet shift more
significantly than the individual factor alone (Huang et al.
2019). However, the relationship between the AMO and
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PDOV/IPO is still in debate and the temporal correlation of
them is a subject we will study in detail in this paper.

Another important climate index, termed the decadal
Indian Ocean basin (IOB, Yang et al. 2007), is the first mode
of SST variability in the Indian Ocean, and is an impor-
tant mode for the inter-annual variation of East Asian sum-
mer monsoon and rainfall (Song and Zhou 2014a; 2014b).
The response to ENSO-included surface heat flux anoma-
lies (Klein et al. 1999) and the tropospheric temperature
(Chiang and Lintner 2005) mechanisms are used to explain
the formation of IOB, and the air-sea atmospheric interac-
tions shape the spatiotemporal structures (Xie et al. 2010).
Because of close interactions between the tropical Indian
Ocean and Pacific Ocean, Dong et al. (2016; 2017a) sug-
gested that the evolution of the IOB is strongly influenced
by SST in tropical eastern Pacific Ocean, especially the
IPO. The IOB also features a slowdown in recent global
air temperature warming, and the anthropogenic forcing is
considered as the principal cause for the correlation change
of the IOB and IPO from around 1985 (Dong et al. 2017a).

The main objective of this study is to characterize indi-
ces for the decadal to multidecadal modes of variability in
two large ensembles of state-of-art Earth system models.
The compiled climate indices and the codes used to derive
them can be downloaded at https://github.com/carrolyb/
climate_index. Separating the unforced variability from
the forced response in the climate record is a critical but
unsolved problem in climate research (Wild et al. 2013).
Therefore, we will discuss various detrending approaches for
separating the unforced climate variability from the climate
change response externally forced by anthropogenic activi-
ties. Lastly, the simulated lead-lag relationships between
those climate modes are also analyzed.

2 Methods
2.1 Model simulations

This study examines interdecadal climate variability using
monthly mean values from a 100-member ensemble per-
formed with the Max Planck Institute Earth System Model
(MPI-ESM1.1). This “grand” ensemble is discussed in detail
in Maher et al. (2019). The model runs cover 1850-2020,
and this study uses surface temperature fields archived at a
resolution of 1.875°x 1.875°. For 1850-2005, all ensem-
ble members are driven by the same historical evolution of
natural and anthropogenic forcing, but the initial conditions
branch from different states sampled from a 2000-year con-
trol simulation. Years 2006 to 2020 are extensions of the
historical runs forced by the emission scenarios of Repre-
sentative Concentration Pathway 8.5 (RCP8.5).
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Moreover, the widely studied 35-member large ensemble
simulations between 1920 and 2020 in the Community Earth
System Model, version 1 (CESM1; Kay et al. 2015) are used.
The simulation is performed by CESM1 (Hurrell et al. 2013)
and its capability is evaluated in Meehl et al. (2013). The
horizontal resolution of the component is at the nominal 1°.
Similar to MPI-ESM 1.1, all CESM1 ensemble members are
driven by the same historical forcing from 1920 to 2005 and
RCP8.5 forcing from 2006 to 2020. The only differences
among the members are a small round-off level perturbation
in the atmospheric temperature on 1 January 1920.

2.2 Observational dataset

The observational dataset used here is from the NASA God-
dard Institute for Space Studies (GISS) Surface Tempera-
ture v4 (GISTEMP, Lenssen et al. 2019). The ocean tem-
perature products within GISTEMP are based on the NOAA
Extended Reconstructed SST (ERSST) (Lenssen et al. 2019)
and thus unforced climate variability computed from GIS-
TEMP and ERSST are highly consistent. The GISTEMP
dataset is a monthly mean time series at a 2° X 2° horizontal
resolution from 1880 to present. Missing values are mainly
in polar regions, southern Africa, and some Southern Ocean
regions during of the nineteenth century. However, this issue
has little effect on the present study, because the indices are
mostly computed using SST between 60°S and 60°N.

2.3 Definition of climate modes

Definitions of the unforced climate modes calculated in the
study include the following:

e ENSO is calculated as the monthly detrended SST
anomalies averaged in the Nifio 3.4 region (5°S-5°N,
170°W-120°W). The time series is then smoothed with
a 5-month rolling mean.

e AMO and SAMO indices are defined as the aver-
age of detrended SST in the subpolar North Atlantic
(40°N-60°N, 0°-80°W) and South Atlantic (60°S-0°,
60°W—40°E), respectively.

e TPl is the detrended SST differences between the equa-
torial Pacific (10°S—10°N, 170°E-90°W) and the aver-
age of the northwest (25°N-45°N, 140°E-145°W) and
southwest Pacific (50°S-15°S, 150°E-160°W) (Henley
et al. 2015).

e [PO, PDO, SPDO and IOB are defined as the time
series of the first EOF mode of detrended SST in the
entire (60°S-60° N, 110°E-70°W), North (0°-60°N,
110°E-100°W), and South (60°S-0°, 110°E-70°W)
Pacific, and the Indian Ocean (30°S-30°N, 40°E~120°E),
respectively.

Moreover, we also compute the average surface tempera-
ture in Northern Hemisphere (0°-~60°N), Southern Hemi-
sphere (60°S—0°), and near-globally (60°S—60°N, exclud-
ing the high-latitudes) (denoted as “NH”, “SH”, and “GL”,
respectively) for the comparison and synthesis in the study.

To emphasize the multidecadal time scale, unforced
climate modes other than the ENSO are also smoothed by
a low-pass symmetric filter with 13 weights and a half-
amplitude point at an appropriately 12-year period (Tren-
berth et al. 2007), after the EOF or spatial-average analysis.
We recognize that the smoothing or low-pass filtering is an
important process in the calculation of unforced multidec-
adal climate indices (Cane et al. 2017; Tung et al. 2019) and
the effectiveness of slightly different smoothing on different
indices has been studied (Frankcombe et al. 2018). However,
compared to the discussion of detrending approaches, some
influences caused by the low-pass filtering are relatively
small, for example, the ordering of low-pass filtering and
EOF analysis (Xu and Hu 2018), and as a result, the low-
pass filtering is not detailed discussed in our study.

All indices are calculated from annual average tempera-
tures (except for the ENSO), and standardized. The detrend-
ing approaches, which is critical in the calculations of all
multidecadal indices, are discussed in detail in the next
section.

3 Separating the unforced climate
variability from the forced climate
response

Figure 1 shows the low-pass filtered surface temperature
anomaly trends from 1850 to 2020 from the MPI-ESM1.1
and CESM1 ensembles, and from the GISTEMP. The long-
term warming is apparent in both model results and the
observation, whereas the warming rates among different
regions are significantly different. Results from the GIS-
TEMP show clear decadal variabilities, which are missed in
the models due to the phase cancellations in the ensemble
average. The temporal correlation coefficients between the
ensemble-average MPI-ESM1.1 and GISTEMP are similar
to those from the ensemble-average CESM1 and GISTEMP,
and they (i.e., all of them are larger than 0.84) indicate that
the two model ensembles both represent the positive tem-
perature trends and the capability between MPI-ESM1.1 and
CESMI1 ensembles is generally similar to each other.

3.1 Comparison of various detrending approaches
to isolate the internal variability

The temperature time series based on GISTEMP in Fig. 1

is a mixture of the forced signal (e.g., greenhouse gases,
aerosols, solar radiation, volcanic eruptions and others) and
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Fig.1 Average surface tem- ) Global mean SST+SAT (b) North Pacific mean SST
perature anomalies (sea surface ; MPI-ESM1.1
temperature (SST) + surface air CESM1 '

temperature (SAT)) relative to
1951-1980, smoothed by the
13-year low-pass filter for (a)
global, (¢) Northern Hemi-
sphere, and (e) Southern Hemi-
sphere, and regional average
SST for (b) North Pacific, (d)
North Atlantic, and (f) equato-
rial Indian Ocean. Red and blue

—— GISTEMP
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unforced variability, whereas the time series based on MPI-
ESM1.1 or CESM1 do not include the unforced variability
due to the ensemble average. Thus, some studies used the
difference between observation and ensemble-average time
series to isolate the internal signals (Knight 2009; Terray
2012). However, how to obtain the unforced climate vari-
ability based on the simulation themselves is still in debate.
Here we refer to this separation of forced and unforced tem-
perature change as “detrending”. Some previous studies have
investigated and evaluated various detrending approaches
(Ting et al. 2009; Frankignoul et al. 2017), which are further
examined here.

The performance of five different detrending approaches:
global detrending (D1), regional detrending (D2), linear fit
detrending (D3), quadratic fit detrending (D4), and local
detrending via ensemble-average (D5), are evaluated in the
rest of this Sect. 3.1.

The basic principle of global detrending approach (D1) is
that the global-mean SST provides one of the most reasona-
ble references to represent human-caused activities response,

@ Springer

and the anthropogenic forcing is assumed to be spatially uni-
form (Zhang et al. 1997). The forced component is assumed
to be the global average (60°S—60°N) SST time series, and
it is then subtracted from each grid point of the ensemble
member. Because the issue of the warming rates between
different regions and globe does not receive much attention,
the D1 approach is widely used in many studies (Trenberth
and Shea 2006; Phillips et al. 2014). Proposed by Steinman
et al. (2015), the D2 (i.e., regional detrending) approach is
similar to the D1 approach, whereas the regional-average
SST in the dominant region of corresponding unforced
index [e.g., the regional average SST in the subpolar North
Atlantic (40°-60°N, 0°-80°W) for AMO index, whereas for
PDO, the dominant region is in the North Pacific Ocean
(0°-60°N, 110°E-100°W)] is estimated as the response of
SST to anthropogenic forcing, and it is subtracted in the
detrending procedure.

For D1 and D2 in this study, the internal multidecadal
climate indices are determined by: (1) calculating the mean
temperature time series in the global- (D1 approach) or
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region-coverage (D2 approach) for each model member, (2)
estimating the forced signal by averaging the total mem-
bers (e.g., 100 members for MPI-ESM1.1) temperature time
series from step 1, (3) subtracting the forced component
from each grid box to isolate the internal variability com-
ponent, (4) performing the average or EOF-based analysis
procedures over different dominant regions to obtain each
internal multidecadal climate index for each member. We
note that to avoid the influence of grid size differences, the
latitude-weighted scheme is considered for both detrending
and the indices compilation procedures for modes defined
as the average of detrended SST.

The D3 (i.e., linear fit detrending) approach is one of
the easiest choice that has been used by previous studies.
It assumes the response to external forcing as a linear trend
in time (Enfield et al. 2001). In this approach, the linear
trend of temperatures at each grid point is subtracted from
the original time series. The D4 (i.e., quadratic fit detrend-
ing) approach is similarly done at grid point, but assuming
a high-order quadratic fit in the form as

Y=a+bxt+cxr

where Y is the quadratic fitted curve, t is the time, and the
a, b, and c are coefficients. These two local detrending pro-
cedures do not require a (relatively) large ensemble and can
be applied to observational record.

The D5 (i.e., local detrending via ensemble-average or
ensemble-average local detrending) approach assumes that
the ensemble average at each grid point is the forced com-
ponent. The ensemble average is then subtracted from the
time series of the corresponding grid point in each ensemble

MPI-ESM1.1 NH (b)

member. However, this approach requires a sufficiently
large ensemble size (of which we will discuss in depth in
Sect. 3.2), so that the forced component can be robustly esti-
mated as the ensemble average. Obviously, this approach is
not applicable to observation.

Figure 2 compares the ensemble average of multidecadal
variability using the five different detrending approaches.
The ensemble average of climate indices estimated using
the local linear fit detrending (red lines in Fig. 2) does a
poor job. As argued by previous studies (Trenberth and
Shea 2006; Bonfils and Santer 2011), this linear detrend-
ing approach fails to account for the nonlinearity of climate
warming (such as the solar radiation, the acceleration due
to faster greenhouse gas emission growth in the late twen-
tieth century, and the unscheduled volcanic eruptions) and
introduces large errors in both amplitude and phase of the
estimated unforced variability (Frankcombe et al. 2015).
Similar discrepancies, though to less extent, are also found
in the quadratic fit detrending (orange lines in Fig. 2), which
indicates that the quadratic fit detrending approach, although
considering the nonlinearity of the time series, is still far
from the optimal choice for removing the forced component.

The global detrending approach (green lines in Fig. 2)
should address the nonlinear nature of climate change. This
approach does remove much of the external forcing com-
ponent, but some residual still remains, because the warm-
ing rates in the specific regions can be quite different from
the global average. For example, the warming trend in the
Northern Hemisphere in the twentieth century is known
to be larger than the global mean trend. Thus, the global
detrending procedure underestimates the role of exter-
nal forcing in the NH, and some of the forced trend still

MPI-ESM1.1 SH
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contaminates the estimated unforced variability. Conversely,
because of a slower regional warming, the externally forced
signal is overestimated in the Southern Hemisphere, result-
ing in an artificial cooling in the unforced variability (green
line in Fig. 2b), which should not have any long-term trend.

The ensemble average of unforced variability after the
“regional detrending” approach is very closer to zero (blue
lines in Fig. 2, but they are hard to be distinguished in
Fig. 2a, b, ¢ because the blue and black lines are very close
to each other) compared with the results based on linear fit,
quadratic fit, and global detrending approaches. However,
the ensemble average of unforced modes in Fig. 2d still devi-
ate from zero, because the warming evolution (as a function
of time) for specific target region still fails to account for the
spatial heterogeneity within the region. The residual signals
are close to zero, only because the index is defined based on
averaged detrended SST. The flaw is be exacerbated when
the EOFs are used in extracting the modes (such as the IPO
in Fig. 2d). Thus, the regional detrending approach still can-
not robustly isolate the unforced variability.

Finally, we show that the average of indices computed
after the ensemble-average local detrending approach (black
lines in Fig. 2) to be very close to zero. This clearly illus-
trates that these indices accurately capture unforced decadal
variability. This makes the ensemble-average local detrend-
ing approach the preferred choice to isolate the unforced
variability from the long-term climate record. We adopt this
approach in the consequent analysis of this study.

3.2 The ensemble size required to isolate
the unforced variability

How big of an ensemble is required to effectively remove
unforced variability? Frankignoul et al. (2017) evaluated
various choices for removing the forced variability in cli-
mate models, and indicated that multidimensional ensemble
empirical mode decomposition (EEMD) and the quadratic
detrending approaches only remove the forced signals effi-
ciently in one large ensemble model. Frankcombe et al.
(2018) also suggested that the ensemble average from a sin-
gle ensemble model is a good option for the estimation of
the forced component, even with few ensemble members.

We take advantage of the size of the MPI-ESM1.1 grand
ensemble to investigate the question. We generate synthetic
sub-ensembles by randomly selecting members of the MPI-
ESM1.1 ensemble. For each potential ensemble size, we
produce 100 random sub-ensembles. As we mentioned
before, if the forced component is removed from the tem-
perature trends perfectly, the ensemble averaged time series
is expected to be close to zero when the ensemble size is
large enough. The root mean square error (RMSE) of the
average unforced temperature time series (such as the visible
deviation of colored lines from zero in Fig. 2) can therefore
be used as a metric to evaluate how well the forced response
is removed. Figure 3 shows the RMSE of each sub-ensemble
size, and the bars indicate the uncertainties (calculated as the
standard deviation) of that size.

The RMSEs rapidly decrease as the number of ensem-
ble members increases from 5 to 35. For larger time scales
(e.g., 170-year in Fig. 3a: trend since 1850 or 120-year in
Fig. 3b: trend since 1900), as the size increase approxi-
mately to more than 50, the errors become close to those

Fig.3 The root mean square (a) 170Year (b) 120-Year
error (o) as a function of the 0.10 . 0.15
size of sub-ensembles for dif- ’ —+ Regfon A
ferent time scales (a: 170-year, ©0.075 —+ Reg!on B
b: 140-year, c¢: 70-year, and d: 3 — Region C
40-year) and different spatial g 0.05 0.05
scales (Region A: 60°S-60° N, g
110°E-70°W, Region B: 0°-60° 0.025
N, 110°E-100°W, and Region
C: 30°S-30°N, 40°E-120°E). 0 0
The error bars indicate the
uncertainties (standard devia- 0.20 (c) 70-Year (d) 40-Year
tion) derived from 100 sub-
ensembles and the sub-ensem- 0.15 0.30
bles are generated by randomly o
sampling from the 100-member o 0.20
MPL-ESMI.1 ensemble §0-10
= 0.05 0.10
0 0
20 40 60 80 20 40 60 80
Member Member
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from the grand ensemble with 100 members. It means
that adding more ensemble members products little ben-
efit. The result suggests that the forced component can
be robustly removed from the climate record and thus an
ensemble of ~50 members can isolate the unforced vari-
ability at centennial scale (Fig. 3a, b). However, if the
time scale is shorted to 70-year (Fig. 3c: trend since 1950)
or 40-year (Fig. 3d: trend since 1980), the RMESs are sig-
nificantly larger, and more ensemble members (approxi-
mately 65 or larger) are needed. To further investigate
potential relationship between the optimal ensemble size
and different spatial coverages, we perform the compari-
son among three typical regions, i.e., Region A: 60°S-60°
N, 110°E-70°W, Region B: 0°-60°N, 110°E-100°W, and
Region C: 30°S-30°N, 40°E-120°E. With the decrease of
the Regions A, B, and C areas, the RMSEs and optimal
ensemble size do not increase proportionally. The evolu-
tions over ensemble members for Region C are similar
to those for Region A, suggesting that the optimal size
to effectively isolate the internal signal is more related
to region characteristic than the spatial scale. We notice
only one ensemble model (i.e., MPI-ESM1.1) is analyzed
in this study, and the requirement for number of ensem-
ble member may slightly differ for different ensemble
models.

(b) MPLESM1.1-AMO

3.3 Characteristics of climate indices
and the lead-lag relationships of Atlantic
and Pacific decadal variability

First of all, we analyze various climate indices based on
ensemble-average local detrending approach of the full
MPI-ESM1.1 (100 members) and CESM1 (35 members)
ensembles.

The correlation patterns between the unforced climate
modes and the global surface temperature are shown in
Fig. 4. Also shown are the spatial patterns based on the
results from GISTEMP using a quadratic fit detrending.
The correlation pattern of the PDO is characterized by two
negative centers in the central-western regions of the north
and south subtropical Pacific, and a large positive feature in
the central-eastern tropical Pacific. Both negative centers of
the PDO pattern are well captured in the MPI-ESM1.1 and
CESM1 as in the GISTEMP observations.

However, large differences are seen in the AMO patterns.
The MPI-ESM1.1’s and CESM1’s AMO correlation pat-
terns are characterized as a horseshoe-like field in the North
Atlantic, whereas the feature is significantly strong and with
less variation in the GISTEMP pattern. Correlations are also
much further away from the North Atlantic in the observa-
tions. The features are also shown for patterns of the IOB.
This should be attribute to the imperfect detrending approach
used in the observed dataset. As discussed before, the quad-
ratic fit detrending approach used for GISTEMP is not as

Fig.4 The spatial pattern of correlation coefficient between surface
temperature and different indices during 1920-2017 of the MPI-
ESM1.1 ensemble, the CESM1 ensemble, and GISTEMP. For the
ensembles, the value plotted is the average of the correlation fields

from all individual ensemble members. Note the unforced climate
indices for MPI-ESM1.1 and CESMI1 are based on the ensemble-
average local detrending approach, whereas the indices for GISTEMP
are based on the local quadratic fit detrending approach
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good as the ensemble-average local detrending approach and
an effective approach to isolate unforced variability from a
single member record still needs to be improved. This could
cause higher correlation coefficients between the AMO/IOB
(and less so for the PDO) and global temperature fields (as
shown in Fig. 4j, k), because the forced response is not com-
pletely removed from the climate record.

To further estimate the temporal characteristics of dif-
ferent modes in the Atlantic and Pacific, Fig. 5 shows the
frequency distribution of the period of all members for
indices from MPI-ESM1.1 and CESMLI. It is indicated from
the results that the dominant period of the PDO is around
30-60 years. More than half members in both MPI-ESM1.1
and CESM1 confirm a 30-50-year period of the [OB. How-
ever, 46% and 40% members in MPI-ESM1.1 and CESM 1
models have similar autocorrelation characteristics (not
shown here) reflect the dominant period is ~ 50 to 70-year
for the AMO. Significant period distribution peaks in 50-60-
and 35-45-year bands for the NH and SH, respectively,
suggest a larger cycle period of the NH mode. This feature
further indicates that the unforced climate variability in the
North Atlantic might have dominated the Northern Hemi-
sphere’s climate variability in a similar long-term decadal
time scale.

Now, we investigate the correlation between different
climate indices with various lead-lag times. For effec-
tively demonstrating the results, another ensemble model,
CanESM2 (the second-generation version of the Canadian
Earth System Model, Flato et al. 2000) with 50 members,
is considere. It is clear that the PDO, IPO, and SPDO are
highly correlated, and the time evolution of the three indices
is similar. The ensemble average peak correlations between
the TPO and PDO (Fig. 6a) and between the PDO and
SPDO (Fig. 6¢) in MPI-ESM1.1 indices are 0.93 and 0.81,

0.06 8 PDO (b)

respectively. Similar lead-lag characteristics are also found
in the results from CESM1 and CanESM?2 ensembles (blue
and green lines in Fig. 6, respectively).

The relationship between the decadal climate variability
in the North Pacific and North Atlantic has been extensively
studied and reviewed (Zhang et al. 2019). For example,
Zhang and Delworth (2007) compared the simulated and
observed SST in the Pacific and Atlantic, and they found
that the AMO contributed to the PDO. Their study indicated
that the simulated unfiltered AMO leads the simulated PDO
by 3 years with a maximum correlation of 0.66, and the
observed unfiltered AMO leads the PDO by 12 years with a
maximum correlation of 0.47. Other studies also suggested a
strong relationship between the AMO and PDO. d’Orgeville
and Peltier (2007) used SST dataset from Hadley Center
(Rayner et al. 2003) to show that the AMO leads PDO by
13 years or lags PDO by 17 years. This is further supported
by Li and Luo (2013), who suggested that the PDO leads the
AMO by 19-21 years, with a 0.71 correlation coefficient, or
the AMO leads PDO by 16-18 years with a coefficient of
0.84. Furthermore, Wu et al. (2011) showed that the AMO
lead PDO by 11-12 years, but the correlation coefficient is
a more modest 0.35.

However, based on our analysis in Fig. 6b, a small (less
than 0.2) correlation coefficient showing the PDO leading
AMO by 3 to 10 years is found in the ensembles, suggesting
that the lead-lag relationship between the simulated AMO
and PDO in these ensembles is not in agreement with previ-
ous observation-based studies. Our analysis uses the most-
effective detrending approach, the ensemble-average local
detrending approach, which requires a large ensemble to per-
form. Similar to the discussion of indices compiled by MPI-
ESM1.1 model, analysis based on some other large ensem-
ble models (e.g., the 35-member CESM1 and 50-member

AMO (c) 10B

] MPI-ESM1.1
0.051 — cesm1

n ]

0.06 d) SPDO (e)
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= 0.02
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Fig.5 Frequency distribution of different unforced climate indices from all members. The red and blue boxes indicate the results based on MPI-

ESM1.1 and CESM1 ensembles, respectively
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Fig.6 Cross (lead-lag) cor- 1 (a) IPO/PDO (b) AMO/PDO
relations between (a) IPO and MPI-ESM1.1 . .
PDO, (b) AMO and PDO, (©) ' IPO Ieadlng AMO Iead|ng

— CESM1
—— CanESM2

PDO and SPDO, and (d) AMO
and SAMO. The results are the
average correlation coefficients
of the individual ensemble
member, and the error bars are
the standard deviations scaled
by 1/A/N, with N being the
number of ensemble members
(N=100 for MPI-ESM1.1,

N=35 for CESM1, and N=50
(c)

PDO/SPDO

AMO/SAMO

for CanESM?2) 1

PDO leading

AMO leading

-0.5

CanESM2 ensemble models) together indicate that there is
no significant correlation between the AMO and PDO.
Moreover, as a test, we isolate the unforced signal in
the ensemble model by using other flawed detrending
approaches, and surprisingly high correlations in the lead-
lag relationship are found. For example, the maximum cor-
relation coefficients are 0.78 and 0.42 (red and blue lines in
Fig. 7a) showing the AMO leading PDO, if using “linear fit
detrending” and “quadratic fit detrending” in MPI-ESM1.1
ensemble model, respectively. Although the maximum coef-
ficients from the quadratic fit detrending based results in
CESMI1 and CanESM2 models are not as large as those in
MPI-ESM1.1, the peak values of 0.65 and 0.92 from the
linear fit detrending based results in CESM1 and CanESM2
further demonstrate that the imperfect detrending approach

(a) MPI-ESM1.1 (b)

10 20 10 20

should be the cause of high linkages between the AMO and
PDO modes. This is agreement with the study of Steinman
et al. (2015), who argued that statistically significant corre-
lation between the two indices suggested by previous stud-
ies may be due to biases in the linear detrending approach
(which is more severe than quadratic detrending in Fig. 7).
Moreover, we also find that the low-pass filter at different
frequencies will not significantly influence the relationship
between the PDO and AMO (not shown here). Lastly, we
note that the PDO and AMO relationship inferred from the
models can shed insights on the uncertainty of the previ-
ous analysis, but we cannot conclusively claim that model-
inferred relationship indeed is what happened in the real
world, which has provided limited sampling (during modern
era) from tackling AMO-PDO interaction.

(c) CanESM2

—— Linear fit

—— Quadratic fit AMO leading

0.5

AMO leading

AMO leading

10 20

20 10 20

Year

Fig.7 Same as Fig. 6 but based on linear fit detrending and quadratic fit detrending in (a) MPI-ESM1.1, (b) CESM1, and (¢) CanESM2
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4 Summary

We have calculated indices for a suite of well-known
modes of unforced variability (i.e., PDO, SPDO, IPO, TPI,
AMO, SAMO, IOB, and ENSO) in two large ensembles
of climate model runs: a 100-member ensemble of the
Max Planck Institute Earth System Model (MPI-ESM1.1)
and a 35-member ensemble of CESM1. We have made the
compiled indices publicly available for other researchers
to use in their analyses.

Decomposing the forced response and the unforced
variability in climate records is a key procedure in obtain-
ing accurate multidecadal climate modes. We examine five
different approaches for removing the forced component
from the temperature time series. It is found that most
of the techniques, despite widely used in previous stud-
ies, do a poor job to isolate the unforced variations in the
model output. The best estimates came from the ensemble-
average local detrending approach, in which the ensemble
average time series at each grid point is subtracted from
the time series of each individual ensemble member. How-
ever, note that it is still difficult of isolating the unforced
variability from a single ensemble member effectively. We
also suggest that approximately 50 members are required
in an ensemble to isolate the unforced variability cleanly
at a centennial scale, and more ensemble members are
needed for shorted time scale (e.g., years from the satellite
record). Meanwhile, more future studies are needed to fur-
ther investigate the relationship between optimal ensemble
size and different regions.

Most importantly, low correlation coefficients between
the AMO and PDO in the two large ensembles indicate
that there is no statistically robust linkage between climate
variability in the Pacific and Atlantic in the two ensem-
bles (Steinman et al., 2015). This challenges some previ-
ous studies (Zhang and Delworth 2007; d’Orgeville and
Peltier 2007; Wu et al. 2011; Li and Luo 2013), which
were problematic due to the inevitable issue of removing
the forced component from the surface temperature data
suggested by our work. A further examination of this plau-
sible Pacific-Atlantic linkage is motivated by the recent
CLIVAR (Climate Variability and Predictability Program)
effort of producing a diverse group of large ensembles by
various modeling centers. Possible research efforts also
include taking advantage of the long-term pre-industrial
control simulation of CMIP6 models, and the emerging
paleoclimate reanalysis of the last Millennium.
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