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ABSTRACT

Chemical reaction networks (CRNs) are an emerging distributed
computational paradigm where programs are encoded as a set of ab-
stract chemical reactions. CRNs can be compiled into DNA strands
which perform the computations in vitro, creating a foundation for
intelligent nanodevices. Recent research proposed a software test-
ing framework for stochastic CRN programs in simulation, however,
it relies on existing program specifications. In practice, specifica-
tions are often lacking and when they do exist, transforming them
into test cases is time-intensive and can be error prone. In this work,
we propose an inference technique called ChemFlow which extracts
3 types of invariants from an existing CRN model. The extracted
invariants can then be used for test generation or model validation
against program implementations. We applied ChemFlow to 13
CRN programs ranging from toy examples to real biological models
with hundreds of reactions. We find that the invariants provide
strong fault detection and often exhibit less flakiness than specifica-
tion derived tests. In the biological models we showed invariants to
developers and they confirmed that some of these point to parts of
the model that are biologically incorrect or incomplete suggesting
we may be able to use ChemFlow to improve model quality.

CCS CONCEPTS
« Software and its engineering — Software testing and de-
bugging.
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1 INTRODUCTION

Many non-traditional programming paradigms have recently emerged,

including techniques to leverage physical processes to embed com-
putations in nanodevices (called molecular programming) [13, 45,
49, 53]. Chemical reaction networks (CRNs) are one such paradigm
where programs are encoded as a set of abstract chemical reac-
tions [9, 10, 15, 54]. CRNs are of special interest because they can
be compiled into a program using DNA strands and then executed
in vitro [4, 51]. As a result, CRNs help catalyze the development
of intelligent nanodevices; devices that could be leveraged for pur-
poses such as intelligent drug delivery [1, 17, 26].

Since CRNs form the foundation of living organisms, these are
also of interest to biochemists and synthetic biologists (engineers
of new biological functions), who build models to describe the
physical program implementations (both synthesized and natural).
There are now numerous repositories of reusable biological parts
available online, many of which can be represented as CRNs [8, 45].
Some of these repositories have even been likened to the Github
for synthetic biology [8, 11, 23]. Several recent advances include
higher level programming languages that compile into CRNs [48,
54]. Recently CRNs have even been formulated to represent neural
networks and these have been shown to be effective and efficient
at common classification tasks [49, 53] suggesting a potential for
nanolearning. If we examine recent publications promoting novel
uses/programming approaches for CRNs we find that as many as
half of the papers in the recent (2020/21) DNA conferences [24] are
on this topic. And if we examine the ACM digital library we find
recent papers crossing domains such as software engineering (in
venues such as TOSEM, TSE, ICSE, ASE, RE) and computational
biology, networking and chemistry domains.

While the science of programming CRNs is exploding, validating
their correctness lags. Much of the state of the art in validating CRNs
uses model checking or other formal approaches such as theorem
proving [18, 33, 36]. However, scalability of model checking is
often an issue, in particular in CRNs that have faults [20, 32, 36].
Users have instead started to ask about testing on forums such as
MATLAB help forum [39].

The CRN community uses two primary semantics for CRNs
(which differ in how the CRNs are simulated/evaluated). In this
work we focus on one type, stochastic CRNs. In recent work we
proposed an automated software testing framework for stochastic
CRNs, ChemTest [20]. However, ChemTest relies on the existence
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of program specifications. These specifications define both the
program inputs and the oracles using a temporal logic.

As we demonstrate in our motivating examples, writing manual
specifications for stochastic CRNs is time consuming and poten-
tially error prone. And as in traditional software, CRNs may have
ambiguous specifications, may be autogenerated, or may come with-
out any specifications (such as biological organisms). All of these
issues suggest the need for automated inference and generation
techniques. Since CRNs are known to be equivalent to a common
structure in distributed software testing, Petri nets [9], and there is
a large body of literature on ways to analyze these networks [41],
we ask if we can leverage that research to analyze CRNs and extract
(invariant) properties of the CRNs. If we can infer a CRNs behavior
sufficiently, we have a powerful technique that can be used for test
generation, and to validate known models.

In this paper, we explore this idea. We have created a technique
called ChemFlow. ChemFlow extracts linear invariants from stochas-
tic CRNs using a form of Gaussian elimination. It creates different
types of invariants, some which can be easily incorporated into a
testing framework. Others require more complex harnessing (reac-
tion counting). We implemented and evaluated both in this work.
ChemFlow is significant for the software engineering community;
as we move to the new nanocomputational world (as is already hap-
pening) we need to provide strong software engineering practices
that can guide and ensure program correctness.

We evaluate ChemFlow by first comparing tests created from its
invariants against manually generated test cases for a wide range of
CRN programs which have specifications. We find that the invari-
ants have good fault detection and that they tend to be less flaky.
We also see that adding reaction counting increases the quality of
the invariants. We then evaluate the use of invariant detection in
four subjects which lack manual specifications. Two of these are
based on metabolic models of a living organism Escherichia coli.
We presented the biological invariants to developers (bioinformati-
cists) who work with these types of models and write programs
to analyze them. They pointed out that some invariants represent
potential inconsistencies between the model and known behavior.

The contributions of this work are:

(1) A linear invariant inference technique for chemical reaction
networks, called ChemFlow;

(2) A large study showing invariants provide good fault detec-
tion and can indicate potential problems with model quality;

(3) An analysis of some tradeoffs between different types of
invariants and manual specifications.

In the next section we present some motivating examples and
background. We follow this with a presentation of our invariant
test generation technique (Section 3). We then present our study in
Sections 4 and 5, followed by discussion. We present related work
in Section 6. Finally, we conclude and present future work.

2 MOTIVATION AND BACKGROUND

We begin with some motivating examples to demonstrate the need
for automated invariant inference in CRNs. We then present some
background on CRNs and the state of the art in CRN testing.
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2.1 Three Motivating Examples

Scenario One: Unclear Specifications We begin with one of our
subject programs obtained from a tutorial on building CRNs [9]
for which we needed to write test cases. The author of this tutorial
presents a CRN that satisfies the specification Suppose we are given
a state with an unknown number of molecules of species X and Y and
we want to decide whether or not #X is equal to #Y modulo 3. They
then present a program with five reactions (see background below
for specifics of CRN program notation etc.). Our interpretation of
this specification is that the program accepts two inputs (X and
Y) and performs modulo 3 arithmetic. It then returns a Boolean
result (0 or 1) stating if these are equal. We quickly realized the
specification was unclear. We initially assumed a 0 or 1 return value,
but of course, this may also be 0 or any strictly positive value (if
true). The specification fails to state which way the program works.
In our initial (incorrect) test cases we checked for a return value of
1 as true. Many tests failed and it took hours and many iterations
to determine the exact specifications for this simple, correct CRN.
Scenario Two: Autogenerated Code. Another of our study sub-
jects (Hailstone 4), is an auto-generated CRN created by a compiler
using a high level domain specific language. This function (Hail-
stone) is a well known function. However, the particular formu-
lation of the program has 91 reactions and 50 species. Although
we know the general functional properties of Hailstone, we do not
know the exact values of the various input/outputs and we could
not extract complete specifications manually for this program.
Scenario Three: Model Quality for Existing Programs. The
last example is for evaluating conformance of a model and its im-
plementation. We again look at one of our study subjects, a CRN
extracted from the metabolic model of a living organism. The CRN
is a model, not the actual program implementation. While our or-
ganism is well studied, there are no exact specifications for a living
organism. These are learned over time using years of collective
experimentation. In addition, the organisms evolve. We, therefore,
want to extract specifications from the existing model and com-
pare with the organism’s known behaviors. The biological CRN
has almost 500 reactions and as many species.

2.2 Chemical Reaction Network Programs

Chemical reaction networks (CRNs) and its many variants are
widely used to model the interactions of molecules [15, 19]. Here,
we use the stochastic mass-action variant which models the state
of the network with integral count of molecules rather than real-
valued concentrations. CRNs are now commonly used to develop
chemical algorithms by carefully specifying the interactions be-
tween abstract molecules. Recently, researchers have developed
methods to synthesize abstract chemical networks into strands of
DNA molecules [4, 13, 51].

Roughly, the stochastic model of a CRN is defined as a pair
N = (S,R) where S is a finite set of species (abstract molecule
types) and R is a finite set of reactions that operate over the species.
A reaction is composed of reactants and products, which are vectors
of species, and are often denoted using the format

A+BEE c4p.
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The reaction above depicts the interaction of two molecules, A and
B, that come together in solution, interact, and produce molecules C
and D. The rate of the reaction is proportional to the rate constant
2.43 and the product of the number of A and B molecules in solution.
In the stochastic model, this overall rate determines a probability
that the reaction will occur and how long it will remain in the new
state (sojourn time). Thus, if the number of A molecules is 10 and
the numbers of B molecules is 2, then the propensity of this reaction
firing at a specific time is determined by the quantity 10-2-2.43/V
where V is the volume of the solution. The probability that the
reaction fires is determined by its propensity and the propensity of
all the other reactions in the system. When the volume is constant
we can write the above reactionas A+ B — C + D.

We give an example CRN to illustrate the semantics of a sto-
chastic CRN. Consider the CRN N = (S, R) with species S =
{X,Y, PE, PO} and R consisting of the following four reactions.

X — PO+Y (R1)
PO + PO —> PE (R2)
PE + PO —> PO (R3)
PE + PE — PE (R4)

This CRN computes parity, i.e., whether the number of input molecules
X is even or odd. The output is a single molecule: PO (odd number
in X) or PE (even number in X), and preserves the initial number
of X in the species Y. To see how this works, we initialize X to 5
and PE, PO, and Y to zero, noting that the number of molecules
in X is an odd number. At the end of the computation, the species
PE should be 0 and PO should contain a single molecule that indi-
cates the initial input in X was odd. We can examine the behavior
more clearly by looking at a trace of the CRN over time. Table 1
shows the trace and enumerates the molecule counts of the CRN
after each reaction occurs. It represents only one of many different
orderings the reactions may occur. Note that if not all orders lead to
the correct results, the failure is probabilistic, which leads to flaky
CRN s and flaky CRN testing. Flaky tests can also occur when they
are evaluated before the CRN stabilizes.

Table 1: Example of a CRN execution

Time Reaction X PO PE Y
0 Initial Values 5 0 0 0
0.0410 X—> PO+Y 4 1 0 1
0.1556 X—> PO+Y 3 2 0 %
0.1773 PO +PO— PE 3 0 1 2
03567 X—> PO+Y 2 1 1 3
07181 X —> PO+Y 1 2 1 4
0.7622 PO +PO— PE 1 0 2 4
0.7828 PE + PE— PE 1 0 1 4
15815 X — PO+Y 0 1 1 5
1.9690 PE + PO — PO 0 1 0 5
10 End of simulation 0 1 0 5

As we see in Table 1, at time 0.0410 reaction (R1) fires, which
converts a molecule of X into a molecule of PO. Since there is only
a single PO molecule present, no other reactions can fire, and so
reaction (R1) must fire again. This occurs at time 0.1156 where
another X is converted and we now have two PO molecules. At
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this point, both reactions (R1) and (R2) are enabled, and one is
chosen probabilistically proportional to the reaction’s propensity.
On our example, reaction (R2) is chosen at time 0.1773. As more
reactions are enabled, the state of the molecules changes according
to the rules of the reactions that fire, eventually leaving a single
molecule of PE or PO. In this state, no reaction can fire and the
system remains stable.

2.3 Testing CRNs

In prior work we proposed a stochastic CRN testing framework,
ChemTest, which uses a multi-step process[20]. In that work we
compared scalability with model checking and demonstrated the
need for an alternative approach to CRN verification. We summarize
ChemTest here. First, tests are formulated from specifications (as
stated in our first motivating example) using a linear temporal logic
(LTL). Both the program inputs and the properties which must hold
(the oracles) are defined by the LTL. These become abstract test
cases. Four types of test cases are designed. Functional test cases, are
properties on the program output. Equation (1) shows a functional
abstract test for subtraction from the ChemTest artifact website.
It is subtracting X2 from X1 and the result goes into species Y. Y
can never be negative, hence any negative values become 0. The
property states if X2 is greater than X1 then future globally Y (at
evaluation time t) will be equal to zero.

Metamorphic tests are also used. These are compared against
two program executions. Equation (2) states if X1’ (the second
execution) is greater than X1 and X2 is held constant, then future
globally at evaluation time t, Y’ is greater than Y.

[X2[0] > X1[0]] — FG[Y[t] = 0] (1)
[X1[0] > X1[0]] — FG[Y'[t] > Y[t]] )

Two other tests types are defined. Internal tests can be either
functional or metamorphic, but test properties of an internal species
rather than a program output. Hypertests are sets of test cases across
which a property holds. They are used for probabilistic programs
which are not guaranteed to give the same answer each run. We do
not use either of these test types in this paper.

As can be seen by the examples writing LTL test cases may
be cumbersome and can require significant manual effort. It also
requires a full set of program specifications.

Once abstract tests are created, ChemTest uses category partition
to define sets of inputs which generate concrete test cases. The test
specification language (TSL) [44] is a standard way to implement
the category partition method on a program input space. TSL first
partitions a program by its parameters and for each parameter it de-
fines choices or equivalence classes of values. The set of parameters
and choices for the program becomes the TSL model. In stochastic
CRN's species are parameters and choices are the species concentra-
tion equivalence classes (e.g. we might use odd number of species,
zero species, large number of species). Constraints between inputs
can also be specified using temporal logic to help restrict invalid
test inputs (some of the specifications require that X1 > X2 for in-
stance). Using the concrete tests, ChemTest then runs the test cases
on a CRN simulator (in the MATLAB Simbiology package [52]).
The properties of each test run are checked for correctness at a
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Figure 1: ChemFlow Overview. In #1 it pre-processes the data, performs Gaussian elimination and flow analysis. Once invari-
ants are extracted they can be used either for (#2) Model comparison and quality and/or (#3) Test Generation and Testing,.

specified time during simulation. Because tests can be flaky, each
simulation is run a number of times.

3 CHEMFLOW

We now present ChemFlow. Figure 1 shows an overview of Chem-
Flow. We begin with a stochastic CRN. We then pre-process and
use our tool we call chem_flows (Step #1) to extract invariants.
The invariants can be of three types. These can then be compared
against an implementation for model quality (#2) or they can be
automatically translated (#3) into abstract test cases. The abstract
test cases are then concretized and used for testing (#4) by assigning
sets of inputs (and associated oracles) using category partition. We
discuss the key aspects of invariant extraction next, followed by an
example of test generation.

3.1 Invariant Extraction

Chemical reaction networks are known to be equivalent to Petri
nets [9]; in fact, Petri nets were originally conceived to describe
chemical processes [47], where molecules, species and reactions
in CRNs become tokens, places and transitions in Petri nets. Thus,
CRNs inherit most of the theoretical results originally derived for
Petri nets [41] and Vector Addition Systems [29]. In particular, we
utilize the well-known Petri net concept of linear invariants, or
“P-flows” [50]. Each P-flow is a weighted sum of numbers of tokens
in places, that is guaranteed to remain constant. For example, in
the CRN specified by reactions (R1)-(R4), we see that the number
of X molecules plus the number of Y molecules is a constant that
depends on the initial value of X. In the trace shown in Table 1, we
see that X + Y = 5 holds at all times during the CRN execution and
that1-X +1-Y is a P-flow.

We can also derive relationships from inequalities. For example,
PO - Y + 2 PE < 0is an invariant of the CRN. Moreover, we
can utilize relationships found in the CRN by counting the number
of times a reaction fires in the CRN. This information gives us
additional equality invariants. For example, in the above example
R1 +Y = 5 says that the number of times R1 has fired plus the
number of Y molecules is 5 at any time during the execution of
the CRN. A more interesting invariant for this system is 2 - R2 +
PO - Y = 0, which is also true for all time the CRN is executing.
This inequality can only be evaluated with special counting harness
which evaluates how often a reaction has occurred.

We now give a more detailed description of how these relation-
ships are derived. We start with an equation for the number of
molecules for each species, as the initial number of molecules mod-
ified by the number of firings of each reaction multiplied by the
net change for that species when that reaction fires. For our CRN
shown above, we would obtain the linear equations:

X = Xinitial —R1

Y = Yinitia + R1
PO = PO+ Rl—2-R2
PE = PEj.+R2—R3 R4,

These hold for any non-negative number of firings for each reaction,
i.e., for all time after the initial configuration. Next, we rearrange
each equation, keeping the initial values on the right hand side, and
moving everything else to the left hand side. We now obtain

X+Rl = Xpijtial

Y-Rl = Ypal
PO-R1+2-R2 = POimiial
PE—R2+R3+R4 = PEjitia

We can then use a series of elementary operations, namely multiply-
ing equations on both sides by a constant or adding one equation to
another, with the goal of eliminating the reaction counting terms.
For our example, adding the first equation to the second eliminates
R1, giving us

X+Y = Xpitigl + Yinitial
This is the linear invariant discussed above, X + Y = 5, for the
inputs Xjpitiar = 5 and Yjpipiq; = 0. Similarly, subtracting the second

equation from the third gives the linear invariant

PO-Y+2-R2 = POuisial — Yinitial

An important observation is now in order. For any linear invariant
obtained from these equations, its right-hand side, which is a con-
stant, can be obtained from its left-hand side, by substituting the
initial count for each species and zero for each reaction count. To
see that this property is true, note that it holds in the starting equa-
tions, and remains true after performing any elementary operation.
It therefore suffices to manipulate the left sides of the equations
only, keeping in mind that the right side is always a constant that
can be recovered from the initial configuration.
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Based on the above discussion, we implemented a standalone
tool, chem_f1lows, that reads a CRN model, and derives its linear
invariants. Prior to its use, we pre-process the CRNs to a standard
format and eliminate any non-integer coefficients using a multi-
plicative factor. We also split bi-directional reactions. chem_flows
first indexes the CRN species and reactions, and then builds the
stoichiometry matrix M of the CRN [9], known also as the incidence
matrix in Petri net literature [50]. This matrix has a row for each
species and a column for each reaction, and element M[s, r] is the
net change in species s when reaction r occurs. The left side of the
initial set of equations is given by the matrix M augmented with
—I, denoted as [M : —I], where I is the identity matrix of dimension
number of species. The augmented matrix is then reduced using
Gaussian elimination with integer arithmetic. After reduction, the
rows contain the linear invariants, each true at all times and for
any sequence of reactions that may occur.

Our chem_f1lows tool then classifies each linear invariant into
one of three categories. The first category, labeled Flows, contains
relationships between species only, without reaction counts. These
are obtained from rows whose reaction count coeflicients are all
zero. The second category, labeled Inequalities, are used to derive
the inequalities used in this study, but may also be used in test
harnesses that utilize reaction counting. These are obtained from
rows containing at least one non-zero reaction count coefficient, and
whose reaction count coefficients all have the same sign. The third
category, labeled Irreducible, requires reaction counting to evaluate.
These are obtained from rows containing reaction count coefficients
of different signs, which prevent derivation of an inequality in terms
of species counts.

3.2 Test Generation

We now summarize the procedure for generating test cases, using
a CRN program from our study: Hailstone (H1). Step one creates
invariants using the chem_flows tool. The Hailstone input file for
the chem_flows program and its output is shown below:

X1 => PO + H + M;
PO + PO -> PE;

PE + PO -> PO;

PE + PE -> PE;
H+ H ->D;

M -> 3B + 6A;

2B + 2A ->;

D -> PE + CE
A -> PO + CO
PO + Y -> PO
PE + Y -> PE

+ o+ 4+ o+

Flows (== constant):

+3 X1 #3 M -1 B +1 A +1 CO
+3H-3M+6D+1B-1A+6Y -7 CO
+1 CE -1 Y +1 CO

Inequalities (remove reactions, <= constant):

+3 (reaction 1) -3 M +1 B -1 A -1 CO

+6 (reaction 2) +3 PO -3 M +1 B -1 A -1 CO

+6 (reaction 3) +6 (reaction 4) +3 PO -3 M +6 PE +1 B -1 A -1 CO
+1 (reaction 5) -1 D -1 Y +1 CO

+3 (reaction 6) +1 B =1 A -1 CO

+2 (reaction 7) +2 B -1 A -1 CO

Irreducible:
+1 (reaction 8) -1 (reaction 10) -1 Y +1 CO
+1 (reaction 9) -1 (reaction 11) -1 CO
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The output from the chem_flows program is used to generate an
abstract test (inputs and an oracle) and subsequent concrete tests.
We begin by describing how we transform an expression in the
Flows section of the output into an LTL formula.

Each expression in the flows section is transformed by setting it
equal to some constant ( G[expression = consant]) which must be
true at all evaluation times of the simulation ¢ >= 0. For example,
in the output shown above, the first flow, +3 X1 +3 M -1 B +1 A
+1 CO, transforms to the to LTL formula

+3X1+3M — 1B + 1A + 1CO = constant

To generate a concrete test we need values for the species in the
formula. For the input species we use a TSL model. Once the initial
values are generated, the concrete test is created by setting each of
the species involved in the abstract test to its initial value. We then
evaluate the expression to calculate the constant. This constant is
placed within the LTL global operator G, and forms a concrete test.
In the case when the species are not input species, we set them to
zero. In the above example, the function has only one input species
X1. The TSL follows ChemTest which has categories for X1 such
as even, odd, zero or maximum and an environment which controls
the maximum values (to ensure we have combinations which are
small, medium and large). All the other species are set to 0. If X1 is
set to 50, then the the concrete test

+3X1+3M —-1B+ 1A+ 1CO = 150

is used to test the output trace of the CRN. Many of our CRNs have
multiple input species.

Each expression in the Inequalities section can be transformed
into an abstract test and concrete test using a nearly identical proce-
dure. For these expressions, any terms in the expression that refers
to a reaction firing is ignored and the same procedure for flows
is performed. However, the invariant is no longer an equality, but
rather a less than inequality. The constant is again found by setting
the species involved to their initial values and using equality to
determine the constant. For example, the first expression in the
inequalities section becomes

—-3-M+ B—-A-CO < 0. (initial values of M, B, A, CO = 0)

The Irreducible section has expressions that contain reaction fir-
ing but cannot be used as an inequality. As such, reaction counting
must be used to utilize these expressions. The Inequalities section
also contains expressions with reaction firing, hence both sections
can be used with reaction counting for creating abstract and con-
crete tests. Since reaction counting expressions are equalities, the
invariant they represent are treated the same as in the Flows section.
However abstract tests from these expressions must utilize reaction
counting to evaluate the property of the CRN.

3.3 Implementation

We first run the CRN models through a script that scales any reac-
tions to eliminate non-integer coefficients. This model is then fed
into the chem_flows tool, which extracts and classifies the invari-
ants. A MATLAB script then processes and translates each invariant
into a set of abstract test cases, based on the invariant type. The
concrete inputs are generated from a TSL program. Since the in-
variant abstract tests have no constraints on the input values we
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end up with a set of tests containing the Cartesian product of the
TSL categories for all input species.

We use the ChemTest framework using MATLAB SimBiology [52]
to run tests. It accepts the CRN, the set of concrete inputs and the
abstract test cases. It then executes the test cases, and process the
traces to extract passing or failing test cases.

4 EVALUATION

We evaluate the quality of ChemFlow by asking three research

questions. Artifacts for this study are available online:!

RQ1: How effective are the flow invariants created by Chem-
Flow? We answer this question using fault detection compared with

specification based test suites.

RQ2: What is the impact on effectiveness and efficiency when
we add inequality and irreducible invariants? We evaluate the

change in fault detection and the time to execute.

RQ3: Does ChemFlow provide useful information when we

lack specifications? We examine if the invariants can find faults

in the mutants and if they indicate potential model quality issues.

4.1 Study Subjects

We gathered a set of 13 benchmark CRN programs from (a) prior
work on CRN testing, (b) the literature, (c) a CRN simulation tool,
and (d) a metabolic model from an online database. They range in
size and complexity from a single reaction to almost 500 reactions.
All of the CRNs can be found on our supplementary data website.
For 9 of of these CRNs, we either have existing manual test suites
from ChemTest, or we followed Gerten et al’s [20] approach to
build our own test suites based on specifications. We examine the
other four CRNs in a regression environment, where no manual
tests are available. Table 2 summarizes the characteristics of the
CRNs ordered by the number of species, followed by the number
of reactions. The first column gives the CRN name and its acronym
used throughout the rest of this paper. The second column refer-
ences the source of the CRN and is followed by the number of
species (# Species) and reactions (# React). The next two columns
are the number of specifications for abstract test cases (# ATests)
and the number concrete tests (# CTests). A dash indicates a lack
of specifications for this subject. The next column (# Mutants) lists
the number of mutant programs we used for testing (see below for
details on mutants). The last column (# Unstable) indicates (with
an x) which programs are considered unstable, meaning they do
not have a single terminating state and are therefore likely to be
either probabilistic or flaky on the correct CRNs. We summarize our
programs next. The first four subjects were either obtained directly
from the ChemTest artifacts [20] or are derivatives of them.

(1) Subtraction (S). This CRN computes the value X1 — X2 and
places the result in species Y.

(2) Hailstone One (H1). The Hailstone function [34] has a
single input species X1 and outputs a species Y that is X1/2
if X1is even, and 3 - X1 + 1 if X1 is odd. It is composed of
four separate units that compute (1) if X1 is even or odd, (2)
a divider that computes X1/2, (3) a multiplier that computes
3:X1+1, and (4) a multiplexer that selects between the output
of two components based on the results of the multiplier.

! Artifact Website:https://doi.org/10.5281/zenodo.5915597
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(3) Hailstone Two (H2). This CRN is similar to Hailstone One
except it differs in the computation of 3 - X1 + 1, requiring
two more reactions.

(4) Approximate Majority (AM). Using four reactions, this
CRN probabilistically determines whether inputs X1 or X2
has an initial majority. If X1 > X2, then with high probability
the execution will terminate with X1+ X2 molecules residing
in X1 and none in X2. Similarly, if X2 > X1, then with high
probability all of the molecules reside in X2 at termination.
The probability of correct output is a function of the initial
difference between X1 and X2.

The next set of subjects comes from a tutorial on CRNs [9].

(5) Min. This CRN computes the minimum of two input species
X and Y and places the result in species Z.

(6) Max. This CRN computes that maximum of two input species
X and Y and places the result in species Z.

(7) XYMod3 (Mod). This CRN determines if two input species
X and Y are congruent modulo 3. If X = Y mod 3, then
the output species V contains at least one molecule, and
otherwise it contains no molecules.

Our next subject was taken from Chen et al. [12] which contains a
series of CRNs that the authors designed for optimal parallelization.

(8) At Least One (AL1). This program determines if there is at
least one molecule of species Al and at least one molecule of
A2 and if true, the output Y contains at least one molecule.

Our next subject is a safety critical mechanism designed for use
in nanodevices, (a heartbeat detector). It has probabilistic model
checking results which verify its correctness on up to 5 molecules.

(9) Molecular Watchdog Timer (MWT). This program deter-
mines if a heartbeat molecule H is detected within a specified
time interval (specified when designing the system). We fol-
lowed Gerten et al. techniques to generate LTL properties
from the original goal diagrams [18]. We then did a parame-
ter search to find inputs for the concrete tests.

The next two programs lack specifications.

(10) Hailstone Four (H4). This subject was written by some
of the co-authors for a different project in a high-level, do-
main specific language and automatically compiled into the
concrete CRN consisting of 50 species and 91 reactions[35].
Mapping the inputs and outputs from another variant of
Hailstone is non-trivial.

(11) Predator Prey Model (PP). This is a predator prey model
taken from the online GEC CRN simulator [45] which gen-
erates CRNs that are compilable into physical systems. It
follows a common predator prey model, but given the varia-
tion in how this can be implemented the lack of specifications
means it is difficult to develop a sufficient set of tests.

The last two CRNs are derived from metabolic networks of well-
studied living organisms. Cellular metabolism can be viewed as a
distributed network of chemical reactions [22]. For this study we
used the Department of Energy Systems Biology Knowledge base
(KBase) [3, 30], an open science platform for biologists.

(12) Escherichia coli (EC).
(13) Escherichia coli Glucose Pathway (ECG).
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Table 2: Study Subjects. We show the subject name (and acronym), its source, the number of species (# Species), the number of
reactions # React, followed by the number of manually created abstract (ATests) and concrete (CTests) tests. Last we provide
the number of mutant programs and indicate if the program is unstable. Starred subjects are used in Figure 3.

Name(abbrev) Source # Species | # React | # ATests | # CTests | # Mutants | Unstable
Min* Brijder[9] 3 1 12 430 23
Subtraction (S)* Gerten et al.[20] 3 2 9 354 32
Approximate Majority (AM)* Gerten et al.[20] 3 4 3 279 29 X
XYMod3 (Mod)* Brijder [9] 3 5 5 74 24

Max* Brijder [9] 5 3 10 160 24

At Least One var d. (AL1)* Chen et al.[12] 7 5 14 262 22 X
Hailstone One (H1)* Gerten et al.[20] 11 11 13 70 34

Hailstone Two (H2) Variant of Gerten et al. [20] 12 13 8 22 25

Molecular Watchdog Timer (MWT)* TOSEM[18] 16 22 9 27 22 X
Predator Prey (PP) GEC[45] 27 47 — — 23 X
E. coli Glucose Pathway (ECG) KBase [30] 23 12 — — 25 X
Hailstone Four (H4) paper authors [35] 50 91 — — 25 X
E. coli (EC) KBase [30] 496 484 — — 25 X

For the EC subject, we built a genome scale metabolic model
of Escherichia coli str. K-12 substr. MG1655 on Carbon-D-Glucose
using the KBase [3] Build Metabolic Model app (Version: 2.0.0). The
genome was retrieved through KBase [3] from National Center
for Biotechnology Information (NCBI) RefSeq Genomes [43]. Since
genome annotations are incomplete, the metabolic models built
from them have missing reactions which make the model unable
to produce biomass (grow) using typical media. Gap-filling adds
the minimal set of reactions required for the organism to produce
biomass on the selected media. We used the KBase [30]’s Gapfill
Metabolic Model (Version: 2.0.0) on Carbon-D-Glucose.

The ECG subject was derived from KBase model of E. coli glycol-
ysis pathway. We extracted just the glycolysis pathway from the
E. coli model. These was done by hand by one of the authors (with
biological knowledge) from the complete metabolic network based
on its KEGG map [28].

Once we extract the sets of invariants for the E. coli CRNs, we
need valid input species values so the simulation is not static (i.e.
the organism simulates growth). We did not attempt to add in full
kinetics, which means that the growth results may not be realistic,
however, we did ensure that the CRN was dynamic and compounds
were being consumed throughout the simulation.

4.2 Mutations

The three subjects from ChemTest [20] include a set of mutant
representing faulty CRNs. Since there is no database of faulty CRNs
we follow their method to create mutant programs for the others. In
other experimental settings for testing, mutants have been shown
to be representative of real faults [2, 42]. Mutants are created by
randomly adding or removing a reactant, product or reaction. Dele-
tions are selected 10% of the time, while changes and additions each
have a probability of 45%. Species and reactions are selected with
equal probability. In the ChemTest subjects there were at most 10
mutants. We added up to 25 more in each of those subjects and up
to 25 in the new subjects. Mutants which ran out of memory during
our experiments (more than 32 GB) were removed.

4.3 Method

For each CRN we extract the invariants and split these into the
flows, inequalities and irreducibles. For reaction counting we add in-
strumentation to capture reaction counts during execution. For the

invariant tests, the invariants produced by running the chem_flows
program are transformed into oracles that contain the abstract tests
as described earlier. For the specification tests, the abstract tests are
obtained either from existing tests (i.e. ChemTest) or hand written
using expected program behavior.

For the abstract tests we use a TSL to generate concrete inputs.
For specification tests we often have constraints between inputs
(e.g. input one has to be greater than input two). For invariant based
tests, we used the same set of TSL but remove constraints. We run
each concrete test 100 times using the Simbiology simulator in
MATLARB [52]. We run the original CRNs (without faults) for each
subject as a baseline to confirm that the test cases are valid. For all
test types, we then evaluate each of the mutant programs. We run
all experiments on a server, using a homogeneous set of Intel(R)
Xeon(R) Gold 6244 CPUs @ 3.60GHz with 32 gb of RAM. The E.
coli model required additional resources, with 64 GB of RAM for
the larger model. We used MATLAB R2021a-104754x running on
RedHat Enterprise Linux 7.

4.4 Independent Variables

We have two independent variables: the type of invariant (or test
suite), and the testing technique. Flows are the basic invariants
which represent equalities. We use these in RQ1 as a base evaluation,
since they do not need any special instrumentation or translation.
For RQ2 we examine if additional types of invariants (inequalities
and irreducibles) impact fault detection and efficiency. For the in-
equalities we can evaluate these both with and without our second
variable (reaction counting). For the irreducibles, we can only eval-
uate these using reaction counting. The instrumentation in our
test harness works by adding a new species for each reaction and
counting the number of times this is fired. The last type of test suite
we use are the specification tests suites.

4.5 Metrics

We examine the fault detection rate (number of mutants detected
over the total number of mutants) and percent of mutants which are
flaky (at least one concrete test exhibits flaky behavior by passing
and/or failing on at least one run and doing the opposite on another.)
We measure efficiency using testing time (simulation plus oracle
evaluation).
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4.6 Threats to Validity

While we used a variety of CRN programs, we cannot guarantee
that the results generalize beyond these programs. To lessen this
threat we selected a variety of programs (stable and probabilistic)
in a variety of sizes. We also provide these on our external website.
A second threat is that we wrote the specification tests for subjects
other than those in Gerten et al. This could bias the data, however,
we tried to use an approach similar to the one they described, and
used programs whose specifications could be easily understood.
We also may not have a ground truth CRN, but assume the ones we
use to start are working properly; we did confirm that there were
no faults detected in the stable CRN.

Third, we removed mutants that ran out of memory. We removed
these from all of our analysis meaning there could be some bias
against test suites which generate more data. It is possible that
some of our errors were faults which could be detected by some
test suites and not others.

Last, we wrote our own programs to generate invariants, run
the tests, analyze the results and merge our data. There could be
faults in these programs, but we have done some validation on these
programs and have manually checked data across/between paper
authors. We also showed invariants generated by our program to
external users/developers of bioinformatics tools and obtained their
feedback as a sanity check. We provide our data artifacts for the
community to inspect and re-validate.

5 RESULTS

We now present the results of our three research questions.

Table 3: Fault Detection for invariant flows vs. specification
based tests. Columns show the number of concrete test cases
and the percent of mutants detected by at least one test. The
last two columns indicate mutants detected by the invariant
only (Inv.) or specification only (Spec.) tests. A star indicates
a small positive value. Org is the non-faulty program.

Flows Specification
Org # % Org # % #Inv. | # Spec.
CRN | % | Tests | Detected | % | Tests | Detected || Only | Only
Min 0 92 95.7 0 430 43.5 12 0
S 0 46 87.5 0 354 90.6 2 0
AM 0 93 62.1 0* 279 100.0 0 3
Mod 0 0 — 0 74 87.5 1 0
Max 0 92 87.5 0 160 95.8 1 1
AL1 0 56 59.1 0 262 86.4 2 2
Hi1 0 30 85.3 0 70 97.1 1 1
H2 0 30 76.0 0 22 92.0 2 3
MWT | 0 15 72.7 0* 27 100.0 0 4

5.1 RQ1: Effectiveness of Flow Invariants

To answer this question, we examine Table 3. The table comprises
test data using the flow invariants. It compares this with the speci-
fication derived tests. The last two columns show the number of
mutants detected by invariant tests only, followed by those detected
by specification tests only. Within the Flows and Specifications test
columns, we show the number of concrete tests performed, the
percent of mutants detected, and the percent of mutants that are
detected flakily. The first column (Org) is the percent of test failures
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in the non-faulty program. In all but two subjects (AM and MWT)
all concrete test cases pass on all iterations for both techniques. In
AM and MWT we saw a very small percentage (less than .5) tests
failing flakily on the specification based tests which is expected
behavior. A test is flaky if at least one test differs in its detection
on one of the 100 runs. The specification based tests find a higher
percentage of faults on all subjects but the Min subject. For instance,
the invariant tests for H1 detect 85.3% of the mutants while the
specification tests detect 97.1%. We see similar data for other sub-
jects such as AM and MWT. However, the invariant tests still find
a high percentage of faults (except for Mod). They also have fewer
concrete test cases (46 vs. 354 in subtraction and 92 vs. 160 in Max).
We examine the implications for tests execution time in RQ2. Mod
is interesting since it has no Flow invariants. In order to test this
program, we need either inequalities or reaction counting.

If we examine the last two columns we see that in some subjects
such as AM and MWT the invariant tests do not find faults that the
specification based tests find. We examined some of those mutants
(see discussion) and determined that these are mutations which
cause all reactions to stop firing. The invariant tests will always
hold, but the functional specifications will fail.

Summary of RQ1. We conclude that the flow invariants
are effective at fault detection. They also pass on the origi-
nal programs providing evidence that they accurately de-
scribe program behavior. However, they do not perform
as well as the specification based test cases in most cases.

5.2 RQ2:Impact of Other Invariants and
Reaction Counting

We now examine how adding inequality (with and without reac-
tion counting) and irreducible tests impacts the effectiveness and
efficiency of fault detection. Table 4 shows results of the various
invariants and the different techniques (with and without reac-
tion counting). The columns for each of these techniques show
the percent of faults detected deterministically and flakily, and the
number of invariants of that type. For the Subtraction CRN the de-
tection rate improves from 87.5% to 90.6% when we add inequalities,
however inequalities on their own are not that effective. If we add
reaction counting, the inequalities alone jumps to 75%, and can be
combined with the irreducibles which then detects 96.9% of faults.
This improves over the specification tests. The trend is consistent
across most subjects. The Mod CRN which generated no flows at
all, improves to 91.7% fault detection with reaction counting, and is
better than the specification tests. For the last four subjects (to be
examined further in RQ3), we see both H4 and ECG improve with
the additional techniques. In general we find that the invariant tests
exhibit slightly lower percentage of flakiness. This is not entirely
unexpected since they lack timing information.

We examine efficiency (Table 5) using testing runtime which
generally increases for the larger test suite as we add new invari-
ants, but not significantly. However, we do see a jump in time
between techniques when we use reaction counting on the larger
subjects. Running the chem_flows tool takes less than a second for
all subjects.
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Table 4: Fault Detection by Invariant Type (Flows, Inequality, Irreducible) and Technique (With/Without Reaction Counting).
Percents shown for Detect (Det) and Flaky only (flky) detection. Number of invariants (No. Inv). A dash means the type of test
is not present for the subject.

Without Reaction Counting With Reaction Counting
Flows Ineq Flows+Ineq Ineq Irred Ineq-+Irred Flow+Ineq+Irred || Specification
% % |No.| % %. |No.| % % | No.| % % |No.| % %. |No.| % % | No. % % | No. % %

CRN | Det | Fkly | Inv | Det | Flky | Inv | Det | Flky | Inv | Det | Flky | Inv | Det | Flky | Inv | Det | Flky | Inv | Det | Flky | Inv || Det | Flky

Min | 957 ] 00 | 2 | 87| 00 | 1 |957] 00 | 3 |304] 00 | 1 | — | — | 0 |304] 00 | 1 | 957 | 00 | 3 || 435 | 00

S 875| 00 | 1 |250]| 63 | 2 |906] 31 | 3 |750| 00 | 2 | — | — | 0 |750] 00 | 2 | 969 | 0.0 | 3 || 906 | 3.1

AM |621| 34 | 1 | — | — | 0 |621| 34 | 1T | — | — | 0 [821] 71 | 2 |821] 71 | 2 | 966 | 69 | 3 || 100.0| 103

Mod | — | — | 0 |208] 42 | 2 |208| 42 | 2 |875| 42 | 2 |833] 42 | 1 |91.7| 42 | 3 | 917 | 42 | 3 || 875 | 625

Max | 87.5] 00 | 2 |458| 83 | 3 |875] 00 | 5 | 83| 00 | 3 | — | — | 0 83| 00 | 3 | 958 | 00 | 5 || 958 | 13.0

ALl | 591 45 | 2 |636] 45 | 5 |864| 45 | 7 |773| 91 | 5 | — | — | 0 |773| 91 | 5 | 864 | 45 | 7 || 864 | 318

Hi [853] 00 | 3 [235] 118 | 6 |853] 00 | 9 |882] 00 | 6 [382] 00 | 2 |91.2] 00 | 8 |1000] 0.0 | 11 || 97.1 | 86

H2 |760] 00 | 3 |280] 40 | 6 |760] 00 | 9 |840| 00 | 6 |440| 00 | 3 |840| 00 | 9 | 880 | 00 | 12 || 920 | 0.0

MWT [727] 00 | 5 | — | — | 0 |727] 00 | 5 | — | — | 0 |714] 00 | 11 |71.4| 0.0 | 11 | 864 | 00 | 16 || 100.0| 9.1

PP 458 42 | 5 | — | — | 0 [458] 42 | 5 | — | — | 0 [913] 87 | 22 [913] 87 | 22 | 958 | 87 | 27 || — —

ECG | 240 00 | 11 [ 00 | 00 | 12 [240] 00 | 23 | 200] 00 | 12 | — | — | 0 |200]| 00 | 12 | 280 | 00 | 23 || — —

H4 | 64.0 | 440 | 11 |28.0 | 240 | 16 | 64.0 | 440 | 27 | 52.0 | 48.0 | 16 | 60.0 | 520 | 23 | 60.0 | 52.0 | 39 | 64.0 | 440 | 50 || — —

EC | 120] 00 | 70 | 40 | 00 | 368 | 120| 0.0 | 438 | 80 | 0.0 | 368 | 80 | 0.0 | 58 | 12.0 | 0.0 | 426 | 200 | 0.0 |49 || — —
Table 5: Time Required to Run Tests. The table shows the Stable programs are guaranteed to return the same result every time.
total runtime for all tests across all mutants (Time) in min-  Unstable programs have a probabilistic element. Flow invariants
utes(m) or hours(h). alone (leftmost set of bars) perform pretty well, but detect fewer

faults than specification tests (right most group). We do see a slight

[ Without Reac. Count | With Reac. Count | l increase when adding inequalities (third group of bars). When we
[ CRN [ Flows [ Flows + Ineq | Flows + Ineq + Irred | Specification | . . . .

add reaction counting and all invariants (Flows+Ineq+Irred) next to
Min 13m 25m 31m 34m . .
S Tom Ton “om =% last group, we see blgher fault detection fo.r the 'All and stable CRNs
AM 34m 34m 13h 12h over the specification tests. However, the invariants perform worse
Mod | — 33m L1h 18m on the unstable CRNs. This is likely due to the fact that unstable
Max 15m 29m 31m 41m s s . .
AT 2im e T em CRNs conta}ln a prob.ablhs.tlc component and extracted mvaflfm?s
=71 57m 1.4h 18h 7m are weak since any invariant must account for the probabilistic
H2 12m 28m 46m 50m nature. We explore this issue as future work.
g/;WT gém Zim ;gh L1h To analyze coverage of the CRNs we examine Figure 3. This

m m m -

G | 8m Tom 2om — shows coverage of individual invariants for the starred subjects in
H4 37m 1.1h 2.5h — Table 2. For each we show the the normalized reaction coverage
EC 5.0h 18.2h 54.3h - (out of the total reactions for that CRN) annotated with an R (e.g.

FlowR) and the species coverage annotated with an S (e.g. FlowS). A

reaction is covered if a species from an invariant is in the reaction.
We see a range of coverage by invariant type suggesting that there
may be an opportunity for test selection or prioritization.

We examined one subject further to look for a correlation be-
tween coverage fault detection. Table 6 shows 11 invariant tests
generated by ChemFlow for the Hailstone 1 subject. We see some
correlation between increased species and reaction coverage but
leave a full evaluation as future work.

mAll ©mStable mUnstable |

Percent Fault Detectioin

Flows Ineq Flows+ineq  Ineq(wRC) Irred Ineq+Irred ~ Flow+Ineq+Irred Specification
Test Case Type

Summary of RQ2. We conclude that adding inequalities
slightly improves fault detection. The biggest impact is
adding reaction counting. We do see a tradeoff with respect

Figure 2: Fault Detection by Type of Test Case. All contains
to fault detection and runtime in the larger subjects.

all subjects with specification based tests. Stable includes
subjects Min, S, Mod, Max, H1, H2. Unstable includes AM,

AL1, MWT.
5.3 RQ3: Lack of Specifications
We also examined the overall fault detection by invariant type Our last RQ investigates the situation when we do not have speci-
for the programs with specification tests (from top half of Table 4). fications, and evaluates the potential to use invariants for model
Figure 2 shows this data for all subjects (first bar in each group), quality. We first examine the data from Tables 4 and 5 focusing on

followed by stable program (second bar) and unstable programs. the last four rows. We were able to find faults in all four of these
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Figure 3: Invariant Coverage by Type

Table 6: Fault Detection by Invariant for Hailstone 1. Type of
invariant and technique shown. Ineq-RC indicates inequal-
ities using reaction counting. For each we show the normal-
ized Species Coverage (SpCv) and Reaction coverage (ReCv).

Test | Inv % Faults % %
ID Type Detected | SpCv | ReCv
1 Flow 35 45 45
2 Flow 59 64 73
3 Flow 38 27 36
4 Ineq 3 36 45
5 Ineq 3 45 73
6 Ineq 3 55 91
7 Ineq 12 27 36
8 Ineq 3 27 36
9 Ineq 3 27 36
4 Ineq-RC 35 36 45
5 Ineq-RC 41 45 73
6 Ineq-RC 53 55 91
7 Ineq-RC 29 27 36
3 Tneq-RC 18 27 36
9 Ineq-RC 18 27 36
10 Irred 29 18 36
11 Irred 18 9 18
cpd00149_e0_
Invariants cpd00149_c0_ ) Invariants
Group A Group B
pd00063_e0_
cpd00063_c0_

Figure 4: Invariants in E. coli represent Islands of Species

subjects. We see similar trends that we saw in RQ2 with respect to
fault detection and time.

In addition to running the tests, we were curious if the invariants
could provide useful information to bioinfomaticists (external to
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our organization) who write and use metabolic modeling applica-
tions. We met and presented our results using a subset of invariants
which we believed might be unexpected based on our understand-
ing of biology. We used the real chemical compound names that
these reactions represent. The tool authors suggested that these
were interesting and might represent places where our model was
missing information or flows and that they would be interested in
seeing a fuller set of these on an alternative model (one which they
said was more highly curated), suggesting that fewer invariants
would mean a better model.

We extracted invariants from a second (higher quality) model of
the same variant of E. coli. The original model (EC) contains 426
reactions, 497 species, 47 genes and has 70 invariants. We chose
the iML1515 model from the UCSD’s BiGG database, thought to
be the most complete genome scale metabolic model for E. coli
K-12 MG1655 [27]. It contains 2712 reactions, 1877 metabolites,
1516 genes and has only 32 invariants. When comparing invariants
between models, we noticed the refinement of some. In general,
the invariants in the iML1515 model are composed of less familiar
metabolites suggesting it fixed problems in the EC model. There
are also fewer species in the invariants. We showed these to the
developers again and they asked us (1) perform a study on hundreds
of other models and (2) help incorporate this into one of their
systems, which has over 21,000 users, to aid users in the analysis of
their models. A real (confirmed) fault in our original E. coli subject
model is the absence of an exchange flux for fluoride which means
it can never leave the cell which is not biologically accurate.

Many of the invariants found show islands of species. Figure 3
shows four invariants, denoted by the boxed reactions, from the
E. coli model. The species on the left (group A) are involved in two
reactions whereas the species on the right (group B) are only part
of one reaction in the model. The species in group A are vitamins
participating in bidirectional transport: each direction is considered
a separate reaction. In group B, the species are ions undergoing
unidirectional transport (in this case, into the cell). The species
in the middle are extracellular protons as well as protons in the
cytoplasm necessary for the species to be transported across the
cell wall. Since the species in this example are only participating in
transport, they could suggest a problem with the model. This is not
immediately clear in the network graph, suggesting the invariants
are useful.

Summary of RQ3. We conclude that invariants have po-
tential for both regression testing and model quality when
no specifications exist.

5.4 Discussion

We discuss a few interesting phenomena we saw during the experi-
ments here.

Specification Tests Find Faults, Invariants Do Not. We found
cases where none of the invariants were able to detect a fault, but
the specification tests did. An example is the mutant MIN-25. This
mutation causes Reaction 1 to add a reactant Z which changes the
first reaction (X +Y — Z) to: X+ Y +Z — Z. Since Z is not an input
species, it is initially set to 0 molecules for simulation. However, Z



Program Invariants in Chemical Reaction Networks

is a reactant in the mutation, so at least 1 molecule is required for
the reaction to fire, thus no reactions can fire. The invariant tests
fail to detect this, because the oracle only checks if the values are
constant, not what their values are; all invariant tests are tautologies.
However, the specifications evaluate functional behavior, and those
detect the faults. This was seen in other subjects as well, forming a
class of mutations that require specifications.

Invariants Find Faults, Specifications Do Not. An example of
this situation is AL1-25, which adds the reaction F1P — Al + F1P.
This mutation causes the number of A1 molecules in the system
to increase. Since at least 1 A1 has to be present initially to create
the F1P for the reactant, the functional behavior of the CRN is
maintained (at least 1 Al is present). This fault is detected by the
invariants since they check that the number of molecules in the
affected species are constant during simulation. We would need an
internal test case in the specification suite to detect this.
Invariants Used for Model Quality. We now look at the results
from the biological models. The reduced number of the invariants
in the iML1515 model over the EC model suggests improvement,
however, some problems remain. An example we identified is the
absence of an exchange flux. In the iML1515 model the amount of
fluoride remains invariant due to the absence of an exchange flux,
so the fluoride can never leave the system. While this invariant was
not found in the original model, suggesting the presence of a (new)
regression fault, we saw similar invariants for other elements such
as Zn2+, Cu2+, Cl-, Ca2+, Co2+, and K+ in the original model.

6 RELATED WORK

Much of the research on CRNs defines novel programs to compute
or accomplish some behavioral goal [10, 18, 56]. Another direction
of work has been to provide domain specific languages to generate
CRNs [31, 45, 54]. In this paper we focus on validation of CRNs. We
summarize key related work next.

Verification and Testing CRNs. One state of the art technique for
verification of CRNs is to use model checking or automated theorem
proving, such as PRISM [36, 55]. PRISM does have a statistical
model checker, but it does not support LTL path properties and
requires translation of the CRN model to its format. Gerten et al.
[20] demonstrated its lack of scalability in particular on faulty CRNs.
Vasic et al. [55] use Alloy [25] to model and explore a subset of
deterministic CRNs (the other CRN semantic). It is possible that they
can extend this to generate tests, however they did not perform this
step and the CRNs explored are deterministic, not stochastic CRNs.
The most closely related work to this paper is ChemTest [20] and
CRNRepair (a program repair technique) [40]. However, both use
specification-based tests which we have compared against in this
paper. ChemFlow can be applied in either of these environments,
hence it is complementary to these approaches.

Invariant Detection. Dynamic invariant detection has been used
to extract program invariants both from code [16, 37, 46, 58] and
via execution logs [6, 7, 38]. Our invariant detection technique does
not require logs or dynamic traces. Instead it uses an algebraic
representation.

Petri Net Invariants. There is a breadth of earlier work in the Petri
net community on the use of linear invariants to determine struc-
tural properties; see [50] for a survey. Generally, these structural
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properties hold regardless of the initial configuration, and unlike
model checking, are determined without examining the reachable
states of the Petri net. Instead of P-flows, much work has been done
in determining and utilizing P-semiflows, which are the P-flows
where all coefficients are non-negative. However, while the set of
all P-flows can be generated from a basis of size at most equal to the
number of species, a generating set of minimal P-semiflows may
be exponentially larger. As such, there are different approaches and
heuristics to reduce the computational cost of determining the min-
imal P-semiflows. Our work on P-flows is computationally much
simpler, and can extract linear invariants that cannot be expressed
as P-semiflows. Other work has shown that Petri nets are effec-
tive for modeling metabolic pathways. Gupta et al. explored the
use of Petri nets for metabolic pathway validation by determining
the presence of inconsistency or deadlock as well as noting that
invariant analysis can identify T-invariants (reversible reactions)
and P-invariants (conserved compounds) [21].

Many tools utilize Petri nets to analyze their structure [5, 14, 57].
Since CRNSs can be translated into a Petri net representation, it is
theoretically possible to convert the CRN to a Petri net representa-
tion, perform analysis, and then convert the result back to a form
corresponding to the CRN. This technique has several disadvan-
tages. (1) As noted above, most Petri net tools build generator sets
for P-semiflows, not P-flows, with potentially much higher compu-
tational cost and loss of some linear invariants. (2) ChemFlow uses
reaction counting, which most Petri net tools do not provide. (3)
The ChemFlow framework is designed for developers of CRNs who
design, simulate, and validate their systems using the CRN model.
Translating the CRN to the Petri net model for testing would force
them to use a potentially unfamiliar representation. In addition, it
may be difficult to maintain traceability between invariants and the
CRN since Petri net tools that translate the analysis back to a CRN
model may change names and labels for reactions and species.

7 CONCLUSIONS AND FUTURE WORK

In this paper we presented ChemFlow, an automated invariant in-
ference technique for CRNs. We evaluated ChemFlow on a set of 13
benchmark CRNs including 4 which do not have specifications. We
show that the base type of invariant, flows, finds a large number
of faults efficiently, but is slightly less effective than specification
based test suites. As we add additional types of invariants and re-
action counting, the invariants find a similar number of faults as
specifications and more deterministically. We also find differences
in fault detection by test type when we classify programs as ei-
ther stable and unstable. Last we see a tradeoff between test case
efficiency and effectiveness of the various approaches.

For future work we plan to implement ChemFlow as a tool for
others to utilize. We plan to examine the connection between fault
detection and CRN coverage in more depth. Finally, we plan to
explore model quality more thoroughly by analyzing large set of
biological models.
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