
Inference and Test Generation Using Program Invariants in
Chemical Reaction Networks

Michael C. Gerten
Iowa State University

Ames, Iowa, USA

mcgerten@iastate.edu

Alexis L. Marsh
Iowa State University

Ames, Iowa, USA

almarsh@iastate.edu

James I. Lathrop
Iowa State University

Ames, Iowa, USA

jil@iastate.edu

Myra B. Cohen
Iowa State University

Ames, Iowa, USA

mcohen@iastate.edu

Andrew S. Miner
Iowa State University

Ames, Iowa, USA

asminer@iastate.edu

Titus H. Klinge
Iowa State University

Ames, Iowa, USA

tklinge@iastate.edu

ABSTRACT

Chemical reaction networks (CRNs) are an emerging distributed

computational paradigm where programs are encoded as a set of ab-

stract chemical reactions. CRNs can be compiled into DNA strands

which perform the computations in vitro, creating a foundation for

intelligent nanodevices. Recent research proposed a software test-

ing framework for stochastic CRN programs in simulation, however,

it relies on existing program specifications. In practice, specifica-

tions are often lacking and when they do exist, transforming them

into test cases is time-intensive and can be error prone. In this work,

we propose an inference technique called ChemFlowwhich extracts

3 types of invariants from an existing CRN model. The extracted

invariants can then be used for test generation or model validation

against program implementations. We applied ChemFlow to 13

CRN programs ranging from toy examples to real biological models

with hundreds of reactions. We find that the invariants provide

strong fault detection and often exhibit less flakiness than specifica-

tion derived tests. In the biological models we showed invariants to

developers and they confirmed that some of these point to parts of

the model that are biologically incorrect or incomplete suggesting

we may be able to use ChemFlow to improve model quality.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging.

KEYWORDS

chemical reaction networks, test generation, invariants, Petri nets

ACM Reference Format:

Michael C. Gerten, Alexis L. Marsh, James I. Lathrop, Myra B. Cohen,

Andrew S. Miner, and Titus H. Klinge. 2022. Inference and Test Gener-

ation Using Program Invariants in Chemical Reaction Networks. In 44th

International Conference on Software Engineering (ICSE ’22), May 21–29,

2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 13 pages. https:

//doi.org/10.1145/3510003.3510176

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9221-1/22/05.
https://doi.org/10.1145/3510003.3510176

1 INTRODUCTION

Many non-traditional programming paradigms have recently emerged,

including techniques to leverage physical processes to embed com-

putations in nanodevices (called molecular programming) [13, 45,

49, 53]. Chemical reaction networks (CRNs) are one such paradigm

where programs are encoded as a set of abstract chemical reac-

tions [9, 10, 15, 54]. CRNs are of special interest because they can

be compiled into a program using DNA strands and then executed

in vitro [4, 51]. As a result, CRNs help catalyze the development

of intelligent nanodevices; devices that could be leveraged for pur-

poses such as intelligent drug delivery [1, 17, 26].

Since CRNs form the foundation of living organisms, these are

also of interest to biochemists and synthetic biologists (engineers

of new biological functions), who build models to describe the

physical program implementations (both synthesized and natural).

There are now numerous repositories of reusable biological parts

available online, many of which can be represented as CRNs [8, 45].

Some of these repositories have even been likened to the Github

for synthetic biology [8, 11, 23]. Several recent advances include

higher level programming languages that compile into CRNs [48,

54]. Recently CRNs have even been formulated to represent neural

networks and these have been shown to be effective and efficient

at common classification tasks [49, 53] suggesting a potential for

nanolearning. If we examine recent publications promoting novel

uses/programming approaches for CRNs we find that as many as

half of the papers in the recent (2020/21) DNA conferences [24] are

on this topic. And if we examine the ACM digital library we find

recent papers crossing domains such as software engineering (in

venues such as TOSEM, TSE, ICSE, ASE, RE) and computational

biology, networking and chemistry domains.

While the science of programming CRNs is exploding, validating

their correctness lags. Much of the state of the art in validating CRNs

uses model checking or other formal approaches such as theorem

proving [18, 33, 36]. However, scalability of model checking is

often an issue, in particular in CRNs that have faults [20, 32, 36].

Users have instead started to ask about testing on forums such as

MATLAB help forum [39].

The CRN community uses two primary semantics for CRNs

(which differ in how the CRNs are simulated/evaluated). In this

work we focus on one type, stochastic CRNs. In recent work we

proposed an automated software testing framework for stochastic

CRNs, ChemTest [20]. However, ChemTest relies on the existence

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Gerten, Marsh et al.

of program specifications. These specifications define both the

program inputs and the oracles using a temporal logic.

As we demonstrate in our motivating examples, writing manual

specifications for stochastic CRNs is time consuming and poten-

tially error prone. And as in traditional software, CRNs may have

ambiguous specifications, may be autogenerated, or may comewith-

out any specifications (such as biological organisms). All of these

issues suggest the need for automated inference and generation

techniques. Since CRNs are known to be equivalent to a common

structure in distributed software testing, Petri nets [9], and there is

a large body of literature on ways to analyze these networks [41],

we ask if we can leverage that research to analyze CRNs and extract

(invariant) properties of the CRNs. If we can infer a CRNs behavior

sufficiently, we have a powerful technique that can be used for test

generation, and to validate known models.

In this paper, we explore this idea. We have created a technique

called ChemFlow. ChemFlow extracts linear invariants from stochas-

tic CRNs using a form of Gaussian elimination. It creates different

types of invariants, some which can be easily incorporated into a

testing framework. Others require more complex harnessing (reac-

tion counting). We implemented and evaluated both in this work.

ChemFlow is significant for the software engineering community;

as we move to the new nanocomputational world (as is already hap-

pening) we need to provide strong software engineering practices

that can guide and ensure program correctness.

We evaluate ChemFlow by first comparing tests created from its

invariants against manually generated test cases for a wide range of

CRN programs which have specifications. We find that the invari-

ants have good fault detection and that they tend to be less flaky.

We also see that adding reaction counting increases the quality of

the invariants. We then evaluate the use of invariant detection in

four subjects which lack manual specifications. Two of these are

based on metabolic models of a living organism Escherichia coli.

We presented the biological invariants to developers (bioinformati-

cists) who work with these types of models and write programs

to analyze them. They pointed out that some invariants represent

potential inconsistencies between the model and known behavior.

The contributions of this work are:

(1) A linear invariant inference technique for chemical reaction

networks, called ChemFlow;

(2) A large study showing invariants provide good fault detec-

tion and can indicate potential problems with model quality;

(3) An analysis of some tradeoffs between different types of

invariants and manual specifications.

In the next section we present some motivating examples and

background. We follow this with a presentation of our invariant

test generation technique (Section 3). We then present our study in

Sections 4 and 5, followed by discussion. We present related work

in Section 6. Finally, we conclude and present future work.

2 MOTIVATION AND BACKGROUND

We begin with some motivating examples to demonstrate the need

for automated invariant inference in CRNs. We then present some

background on CRNs and the state of the art in CRN testing.

2.1 Three Motivating Examples

Scenario One: Unclear SpecificationsWe begin with one of our

subject programs obtained from a tutorial on building CRNs [9]

for which we needed to write test cases. The author of this tutorial

presents a CRN that satisfies the specification Suppose we are given

a state with an unknown number of molecules of species X and Y and

we want to decide whether or not #X is equal to #Y modulo 3. They

then present a program with five reactions (see background below

for specifics of CRN program notation etc.). Our interpretation of

this specification is that the program accepts two inputs (X and

Y) and performs modulo 3 arithmetic. It then returns a Boolean

result (0 or 1) stating if these are equal. We quickly realized the

specification was unclear. We initially assumed a 0 or 1 return value,

but of course, this may also be 0 or any strictly positive value (if

true). The specification fails to state which way the program works.

In our initial (incorrect) test cases we checked for a return value of

1 as true. Many tests failed and it took hours and many iterations

to determine the exact specifications for this simple, correct CRN.

Scenario Two: Autogenerated Code. Another of our study sub-

jects (Hailstone 4), is an auto-generated CRN created by a compiler

using a high level domain specific language. This function (Hail-

stone) is a well known function. However, the particular formu-

lation of the program has 91 reactions and 50 species. Although

we know the general functional properties of Hailstone, we do not

know the exact values of the various input/outputs and we could

not extract complete specifications manually for this program.

Scenario Three: Model Quality for Existing Programs. The

last example is for evaluating conformance of a model and its im-

plementation. We again look at one of our study subjects, a CRN

extracted from the metabolic model of a living organism. The CRN

is a model, not the actual program implementation. While our or-

ganism is well studied, there are no exact specifications for a living

organism. These are learned over time using years of collective

experimentation. In addition, the organisms evolve. We, therefore,

want to extract specifications from the existing model and com-

pare with the organism’s known behaviors. The biological CRN

has almost 500 reactions and as many species.

2.2 Chemical Reaction Network Programs

Chemical reaction networks (CRNs) and its many variants are

widely used to model the interactions of molecules [15, 19]. Here,

we use the stochastic mass-action variant which models the state

of the network with integral count of molecules rather than real-

valued concentrations. CRNs are now commonly used to develop

chemical algorithms by carefully specifying the interactions be-

tween abstract molecules. Recently, researchers have developed

methods to synthesize abstract chemical networks into strands of

DNA molecules [4, 13, 51].

Roughly, the stochastic model of a CRN is defined as a pair

N = (S,R) where S is a finite set of species (abstract molecule

types) and R is a finite set of reactions that operate over the species.

A reaction is composed of reactants and products, which are vectors

of species, and are often denoted using the format

A + B
2.43
−−−→ C + D.

Program Invariants in Chemical Reaction Networks ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

The reaction above depicts the interaction of two molecules, A and

B, that come together in solution, interact, and produce moleculesC
and D. The rate of the reaction is proportional to the rate constant

2.43 and the product of the number ofA and B molecules in solution.

In the stochastic model, this overall rate determines a probability

that the reaction will occur and how long it will remain in the new

state (sojourn time). Thus, if the number of Amolecules is 10 and

the numbers of B molecules is 2, then the propensity of this reaction

firing at a specific time is determined by the quantity 10 · 2 · 2.43/V
where V is the volume of the solution. The probability that the

reaction fires is determined by its propensity and the propensity of

all the other reactions in the system. When the volume is constant

we can write the above reaction as A + B −−−→ C + D.
We give an example CRN to illustrate the semantics of a sto-

chastic CRN. Consider the CRN N = (S,R) with species S =
{X ,Y , PE, PO} and R consisting of the following four reactions.

X −−−→ PO + Y (R1)

PO + PO −−−→ PE (R2)

PE + PO −−−→ PO (R3)

PE + PE −−−→ PE (R4)

This CRN computes parity, i.e., whether the number of inputmolecules

X is even or odd. The output is a single molecule: PO (odd number

in X) or PE (even number in X), and preserves the initial number

of X in the species Y . To see how this works, we initialize X to 5

and PE, PO , and Y to zero, noting that the number of molecules

in X is an odd number. At the end of the computation, the species

PE should be 0 and PO should contain a single molecule that indi-

cates the initial input in X was odd. We can examine the behavior

more clearly by looking at a trace of the CRN over time. Table 1

shows the trace and enumerates the molecule counts of the CRN

after each reaction occurs. It represents only one of many different

orderings the reactions may occur. Note that if not all orders lead to

the correct results, the failure is probabilistic, which leads to flaky

CRNs and flaky CRN testing. Flaky tests can also occur when they

are evaluated before the CRN stabilizes.

Table 1: Example of a CRN execution

Time Reaction X PO PE Y

0 Initial Values 5 0 0 0
0.0410 X −→ PO + Y 4 1 0 1
0.1556 X −→ PO + Y 3 2 0 2
0.1773 PO + PO −→ PE 3 0 1 2
0.3567 X −→ PO + Y 2 1 1 3
0.7181 X −→ PO + Y 1 2 1 4
0.7622 PO + PO −→ PE 1 0 2 4
0.7828 PE + PE −→ PE 1 0 1 4
1.5815 X −→ PO + Y 0 1 1 5
1.9690 PE + PO −→ PO 0 1 0 5
10 End of simulation 0 1 0 5

As we see in Table 1, at time 0.0410 reaction (R1) fires, which

converts a molecule of X into a molecule of PO . Since there is only

a single PO molecule present, no other reactions can fire, and so

reaction (R1) must fire again. This occurs at time 0.1156 where

another X is converted and we now have two PO molecules. At

this point, both reactions (R1) and (R2) are enabled, and one is

chosen probabilistically proportional to the reaction’s propensity.

On our example, reaction (R2) is chosen at time 0.1773. As more

reactions are enabled, the state of the molecules changes according

to the rules of the reactions that fire, eventually leaving a single

molecule of PE or PO . In this state, no reaction can fire and the

system remains stable.

2.3 Testing CRNs

In prior work we proposed a stochastic CRN testing framework,

ChemTest, which uses a multi-step process[20]. In that work we

compared scalability with model checking and demonstrated the

need for an alternative approach to CRN verification.We summarize

ChemTest here. First, tests are formulated from specifications (as

stated in our first motivating example) using a linear temporal logic

(LTL). Both the program inputs and the properties which must hold

(the oracles) are defined by the LTL. These become abstract test

cases. Four types of test cases are designed. Functional test cases, are

properties on the program output. Equation (1) shows a functional

abstract test for subtraction from the ChemTest artifact website.

It is subtracting X2 from X1 and the result goes into species Y . Y
can never be negative, hence any negative values become 0. The

property states if X2 is greater than X1 then future globally Y (at

evaluation time t) will be equal to zero.

Metamorphic tests are also used. These are compared against

two program executions. Equation (2) states if X1′ (the second

execution) is greater than X1 and X2 is held constant, then future

globally at evaluation time t , Y ′ is greater than Y .

[X2[0] > X1[0]] → FG[Y [t] = 0] (1)

[X1′[0] > X1[0]] → FG[Y ′[t] > Y [t]] (2)

Two other tests types are defined. Internal tests can be either

functional or metamorphic, but test properties of an internal species

rather than a program output. Hypertests are sets of test cases across

which a property holds. They are used for probabilistic programs

which are not guaranteed to give the same answer each run. We do

not use either of these test types in this paper.

As can be seen by the examples writing LTL test cases may

be cumbersome and can require significant manual effort. It also

requires a full set of program specifications.

Once abstract tests are created, ChemTest uses category partition

to define sets of inputs which generate concrete test cases. The test

specification language (TSL) [44] is a standard way to implement

the category partition method on a program input space. TSL first

partitions a program by its parameters and for each parameter it de-

fines choices or equivalence classes of values. The set of parameters

and choices for the program becomes the TSL model. In stochastic

CRNs species are parameters and choices are the species concentra-

tion equivalence classes (e.g. we might use odd number of species,

zero species, large number of species). Constraints between inputs

can also be specified using temporal logic to help restrict invalid

test inputs (some of the specifications require that X1 > X2 for in-

stance). Using the concrete tests, ChemTest then runs the test cases

on a CRN simulator (in the MATLAB Simbiology package [52]).

The properties of each test run are checked for correctness at a

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Gerten, Marsh et al.

Figure 1: ChemFlow Overview. In #1 it pre-processes the data, performs Gaussian elimination and flow analysis. Once invari-

ants are extracted they can be used either for (#2) Model comparison and quality and/or (#3) Test Generation and Testing.

specified time during simulation. Because tests can be flaky, each

simulation is run a number of times.

3 CHEMFLOW

We now present ChemFlow. Figure 1 shows an overview of Chem-

Flow. We begin with a stochastic CRN. We then pre-process and

use our tool we call chem_flows (Step #1) to extract invariants.

The invariants can be of three types. These can then be compared

against an implementation for model quality (#2) or they can be

automatically translated (#3) into abstract test cases. The abstract

test cases are then concretized and used for testing (#4) by assigning

sets of inputs (and associated oracles) using category partition. We

discuss the key aspects of invariant extraction next, followed by an

example of test generation.

3.1 Invariant Extraction

Chemical reaction networks are known to be equivalent to Petri

nets [9]; in fact, Petri nets were originally conceived to describe

chemical processes [47], where molecules, species and reactions

in CRNs become tokens, places and transitions in Petri nets. Thus,

CRNs inherit most of the theoretical results originally derived for

Petri nets [41] and Vector Addition Systems [29]. In particular, we

utilize the well-known Petri net concept of linear invariants, or

“P–flows” [50]. Each P–flow is a weighted sum of numbers of tokens

in places, that is guaranteed to remain constant. For example, in

the CRN specified by reactions (R1)–(R4), we see that the number

of X molecules plus the number of Y molecules is a constant that

depends on the initial value of X . In the trace shown in Table 1, we

see that X +Y = 5 holds at all times during the CRN execution and

that 1 · X + 1 · Y is a P–flow.

We can also derive relationships from inequalities. For example,

PO − Y + 2 · PE ≤ 0 is an invariant of the CRN. Moreover, we

can utilize relationships found in the CRN by counting the number

of times a reaction fires in the CRN. This information gives us

additional equality invariants. For example, in the above example

R1 + Y = 5 says that the number of times R1 has fired plus the

number of Y molecules is 5 at any time during the execution of

the CRN. A more interesting invariant for this system is 2 · R2 +
PO − Y = 0, which is also true for all time the CRN is executing.

This inequality can only be evaluated with special counting harness

which evaluates how often a reaction has occurred.

We now give a more detailed description of how these relation-

ships are derived. We start with an equation for the number of

molecules for each species, as the initial number of molecules mod-

ified by the number of firings of each reaction multiplied by the

net change for that species when that reaction fires. For our CRN

shown above, we would obtain the linear equations:

X = Xinitial − R1

Y = Yinitial + R1

PO = POinitial + R1 − 2 · R2

PE = PEinitial + R2 − R3 − R4.

These hold for any non-negative number of firings for each reaction,

i.e., for all time after the initial configuration. Next, we rearrange

each equation, keeping the initial values on the right hand side, and

moving everything else to the left hand side. We now obtain

X + R1 = Xinitial

Y − R1 = Yinitial

PO − R1 + 2 · R2 = POinitial

PE − R2 + R3 + R4 = PEinitial

We can then use a series of elementary operations, namely multiply-

ing equations on both sides by a constant or adding one equation to

another, with the goal of eliminating the reaction counting terms.

For our example, adding the first equation to the second eliminates

R1, giving us

X + Y = Xinitial + Yinitial

This is the linear invariant discussed above, X + Y = 5, for the

inputs Xinitial = 5 and Yinitial = 0. Similarly, subtracting the second

equation from the third gives the linear invariant

PO − Y + 2 · R2 = POinitial − Yinitial

An important observation is now in order. For any linear invariant

obtained from these equations, its right-hand side, which is a con-

stant, can be obtained from its left-hand side, by substituting the

initial count for each species and zero for each reaction count. To

see that this property is true, note that it holds in the starting equa-

tions, and remains true after performing any elementary operation.

It therefore suffices to manipulate the left sides of the equations

only, keeping in mind that the right side is always a constant that

can be recovered from the initial configuration.

Program Invariants in Chemical Reaction Networks ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Based on the above discussion, we implemented a standalone

tool, chem_flows, that reads a CRN model, and derives its linear

invariants. Prior to its use, we pre-process the CRNs to a standard

format and eliminate any non-integer coefficients using a multi-

plicative factor. We also split bi-directional reactions. chem_flows
first indexes the CRN species and reactions, and then builds the

stoichiometry matrixM of the CRN [9], known also as the incidence

matrix in Petri net literature [50]. This matrix has a row for each

species and a column for each reaction, and element M[s, r] is the
net change in species s when reaction r occurs. The left side of the
initial set of equations is given by the matrix M augmented with

−I, denoted as [M : −I], where I is the identity matrix of dimension

number of species. The augmented matrix is then reduced using

Gaussian elimination with integer arithmetic. After reduction, the

rows contain the linear invariants, each true at all times and for

any sequence of reactions that may occur.

Our chem_flows tool then classifies each linear invariant into

one of three categories. The first category, labeled Flows, contains

relationships between species only, without reaction counts. These

are obtained from rows whose reaction count coefficients are all

zero. The second category, labeled Inequalities, are used to derive

the inequalities used in this study, but may also be used in test

harnesses that utilize reaction counting. These are obtained from

rows containing at least one non-zero reaction count coefficient, and

whose reaction count coefficients all have the same sign. The third

category, labeled Irreducible, requires reaction counting to evaluate.

These are obtained from rows containing reaction count coefficients

of different signs, which prevent derivation of an inequality in terms

of species counts.

3.2 Test Generation

We now summarize the procedure for generating test cases, using

a CRN program from our study: Hailstone (H1). Step one creates

invariants using the chem_flows tool. The Hailstone input file for

the chem_flows program and its output is shown below:

X1 -> PO + H + M;
PO + PO -> PE;
PE + PO -> PO;
PE + PE -> PE;
H + H -> D;
M -> 3B + 6A;
2B + 2A ->;
PE + D -> PE + CE + Y;
PO + A -> PO + CO + Y;
CE + PO + Y -> PO + D;
CO + PE + Y -> PE + A;

Flows (== constant):
+3 X1 +3 M -1 B +1 A +1 CO
+3 H -3 M +6 D +1 B -1 A +6 Y -7 CO
+1 CE -1 Y +1 CO

Inequalities (remove reactions, <= constant):
+3 (reaction 1) -3 M +1 B -1 A -1 CO
+6 (reaction 2) +3 PO -3 M +1 B -1 A -1 CO
+6 (reaction 3) +6 (reaction 4) +3 PO -3 M +6 PE +1 B -1 A -1 CO
+1 (reaction 5) -1 D -1 Y +1 CO
+3 (reaction 6) +1 B -1 A -1 CO
+2 (reaction 7) +2 B -1 A -1 CO

Irreducible:
+1 (reaction 8) -1 (reaction 10) -1 Y +1 CO
+1 (reaction 9) -1 (reaction 11) -1 CO

The output from the chem_flows program is used to generate an

abstract test (inputs and an oracle) and subsequent concrete tests.

We begin by describing how we transform an expression in the

Flows section of the output into an LTL formula.

Each expression in the flows section is transformed by setting it

equal to some constant (G[expression = consant]) which must be

true at all evaluation times of the simulation t >= 0. For example,

in the output shown above, the first flow, +3 X1 +3 M -1 B +1 A
+1 CO, transforms to the to LTL formula

+3X1 + 3M − 1B + 1A + 1CO = constant

To generate a concrete test we need values for the species in the

formula. For the input species we use a TSL model. Once the initial

values are generated, the concrete test is created by setting each of

the species involved in the abstract test to its initial value. We then

evaluate the expression to calculate the constant. This constant is

placed within the LTL global operator G, and forms a concrete test.

In the case when the species are not input species, we set them to

zero. In the above example, the function has only one input species

X1. The TSL follows ChemTest which has categories for X1 such
as even, odd, zero or maximum and an environment which controls

the maximum values (to ensure we have combinations which are

small, medium and large). All the other species are set to 0. If X1 is

set to 50, then the the concrete test

+3X1 + 3M − 1B + 1A + 1CO = 150

is used to test the output trace of the CRN. Many of our CRNs have

multiple input species.

Each expression in the Inequalities section can be transformed

into an abstract test and concrete test using a nearly identical proce-

dure. For these expressions, any terms in the expression that refers

to a reaction firing is ignored and the same procedure for flows

is performed. However, the invariant is no longer an equality, but

rather a less than inequality. The constant is again found by setting

the species involved to their initial values and using equality to

determine the constant. For example, the first expression in the

inequalities section becomes

−3 ·M + B −A −CO ≤ 0. (initial values ofM , B, A, CO = 0)

The Irreducible section has expressions that contain reaction fir-

ing but cannot be used as an inequality. As such, reaction counting

must be used to utilize these expressions. The Inequalities section

also contains expressions with reaction firing, hence both sections

can be used with reaction counting for creating abstract and con-

crete tests. Since reaction counting expressions are equalities, the

invariant they represent are treated the same as in the Flows section.

However abstract tests from these expressions must utilize reaction

counting to evaluate the property of the CRN.

3.3 Implementation

We first run the CRN models through a script that scales any reac-

tions to eliminate non-integer coefficients. This model is then fed

into the chem_flows tool, which extracts and classifies the invari-

ants. AMATLAB script then processes and translates each invariant

into a set of abstract test cases, based on the invariant type. The

concrete inputs are generated from a TSL program. Since the in-

variant abstract tests have no constraints on the input values we

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Gerten, Marsh et al.

end up with a set of tests containing the Cartesian product of the

TSL categories for all input species.

We use the ChemTest framework usingMATLAB SimBiology [52]

to run tests. It accepts the CRN, the set of concrete inputs and the

abstract test cases. It then executes the test cases, and process the

traces to extract passing or failing test cases.

4 EVALUATION

We evaluate the quality of ChemFlow by asking three research

questions. Artifacts for this study are available online:1

RQ1: How effective are the flow invariants created by Chem-

Flow?We answer this question using fault detection comparedwith

specification based test suites.

RQ2:What is the impact on effectiveness and efficiencywhen

we add inequality and irreducible invariants?We evaluate the

change in fault detection and the time to execute.

RQ3: Does ChemFlow provide useful information when we

lack specifications? We examine if the invariants can find faults

in the mutants and if they indicate potential model quality issues.

4.1 Study Subjects

We gathered a set of 13 benchmark CRN programs from (a) prior

work on CRN testing, (b) the literature, (c) a CRN simulation tool,

and (d) a metabolic model from an online database. They range in

size and complexity from a single reaction to almost 500 reactions.

All of the CRNs can be found on our supplementary data website.

For 9 of of these CRNs, we either have existing manual test suites

from ChemTest, or we followed Gerten et al.’s [20] approach to

build our own test suites based on specifications. We examine the

other four CRNs in a regression environment, where no manual

tests are available. Table 2 summarizes the characteristics of the

CRNs ordered by the number of species, followed by the number

of reactions. The first column gives the CRN name and its acronym

used throughout the rest of this paper. The second column refer-

ences the source of the CRN and is followed by the number of

species (# Species) and reactions (# React). The next two columns

are the number of specifications for abstract test cases (# ATests)

and the number concrete tests (# CTests). A dash indicates a lack

of specifications for this subject. The next column (# Mutants) lists

the number of mutant programs we used for testing (see below for

details on mutants). The last column (# Unstable) indicates (with

an x) which programs are considered unstable, meaning they do

not have a single terminating state and are therefore likely to be

either probabilistic or flaky on the correct CRNs. We summarize our

programs next. The first four subjects were either obtained directly

from the ChemTest artifacts [20] or are derivatives of them.

(1) Subtraction (S). This CRN computes the value X1−X2 and

places the result in species Y .
(2) Hailstone One (H1). The Hailstone function [34] has a

single input species X1 and outputs a species Y that is X1/2

if X1 is even, and 3 · X1 + 1 if X1 is odd. It is composed of

four separate units that compute (1) if X1 is even or odd, (2)

a divider that computes X1/2, (3) a multiplier that computes

3·X1+1, and (4) a multiplexer that selects between the output

of two components based on the results of the multiplier.

1Artifact Website:https://doi.org/10.5281/zenodo.5915597

(3) Hailstone Two (H2). This CRN is similar to Hailstone One

except it differs in the computation of 3 · X1 + 1, requiring
two more reactions.

(4) Approximate Majority (AM). Using four reactions, this

CRN probabilistically determines whether inputs X1 or X2
has an initial majority. IfX1 > X2, thenwith high probability

the execution will terminate withX1+X2 molecules residing

in X1 and none in X2. Similarly, if X2 > X1, then with high

probability all of the molecules reside in X2 at termination.

The probability of correct output is a function of the initial

difference between X1 and X2.

The next set of subjects comes from a tutorial on CRNs [9].

(5) Min. This CRN computes the minimum of two input species

X and Y and places the result in species Z .
(6) Max. This CRN computes thatmaximumof two input species

X and Y and places the result in species Z .
(7) XYMod3 (Mod). This CRN determines if two input species

X and Y are congruent modulo 3. If X ≡ Y mod 3, then

the output species V contains at least one molecule, and

otherwise it contains no molecules.

Our next subject was taken fromChen et al. [12] which contains a

series of CRNs that the authors designed for optimal parallelization.

(8) At Least One (AL1). This program determines if there is at

least one molecule of speciesA1 and at least one molecule of

A2 and if true, the output Y contains at least one molecule.

Our next subject is a safety critical mechanism designed for use

in nanodevices, (a heartbeat detector). It has probabilistic model

checking results which verify its correctness on up to 5 molecules.

(9) MolecularWatchdog Timer (MWT). This program deter-

mines if a heartbeat moleculeH is detected within a specified

time interval (specified when designing the system). We fol-

lowed Gerten et al. techniques to generate LTL properties

from the original goal diagrams [18]. We then did a parame-

ter search to find inputs for the concrete tests.

The next two programs lack specifications.

(10) Hailstone Four (H4). This subject was written by some

of the co-authors for a different project in a high-level, do-

main specific language and automatically compiled into the

concrete CRN consisting of 50 species and 91 reactions[35].

Mapping the inputs and outputs from another variant of

Hailstone is non-trivial.

(11) Predator Prey Model (PP). This is a predator prey model

taken from the online GEC CRN simulator [45] which gen-

erates CRNs that are compilable into physical systems. It

follows a common predator prey model, but given the varia-

tion in how this can be implemented the lack of specifications

means it is difficult to develop a sufficient set of tests.

The last two CRNs are derived from metabolic networks of well-

studied living organisms. Cellular metabolism can be viewed as a

distributed network of chemical reactions [22]. For this study we

used the Department of Energy Systems Biology Knowledge base

(KBase) [3, 30], an open science platform for biologists.

(12) Escherichia coli (EC).

(13) Escherichia coli Glucose Pathway (ECG).

Program Invariants in Chemical Reaction Networks ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 2: Study Subjects. We show the subject name (and acronym), its source, the number of species (# Species), the number of

reactions # React, followed by the number of manually created abstract (ATests) and concrete (CTests) tests. Last we provide

the number of mutant programs and indicate if the program is unstable. Starred subjects are used in Figure 3.

Name(abbrev) Source # Species # React # ATests # CTests # Mutants Unstable

Min* Brijder[9] 3 1 12 430 23

Subtraction (S)* Gerten et al.[20] 3 2 9 354 32

Approximate Majority (AM)* Gerten et al.[20] 3 4 3 279 29 x

XYMod3 (Mod)* Brijder [9] 3 5 5 74 24

Max* Brijder [9] 5 3 10 160 24

At Least One var d. (AL1)* Chen et al.[12] 7 5 14 262 22 x

Hailstone One (H1)* Gerten et al.[20] 11 11 13 70 34

Hailstone Two (H2) Variant of Gerten et al. [20] 12 13 8 22 25

Molecular Watchdog Timer (MWT)* TOSEM[18] 16 22 9 27 22 x

Predator Prey (PP) GEC[45] 27 47 — — 23 x

E. coli Glucose Pathway (ECG) KBase [30] 23 12 — — 25 x

Hailstone Four (H4) paper authors [35] 50 91 — — 25 x

E. coli (EC) KBase [30] 496 484 — — 25 x

For the EC subject, we built a genome scale metabolic model

of Escherichia coli str. K-12 substr. MG1655 on Carbon-D-Glucose

using the KBase [3] Build Metabolic Model app (Version: 2.0.0). The

genome was retrieved through KBase [3] from National Center

for Biotechnology Information (NCBI) RefSeq Genomes [43]. Since

genome annotations are incomplete, the metabolic models built

from them have missing reactions which make the model unable

to produce biomass (grow) using typical media. Gap-filling adds

the minimal set of reactions required for the organism to produce

biomass on the selected media. We used the KBase [30]’s Gapfill

Metabolic Model (Version: 2.0.0) on Carbon-D-Glucose.

The ECG subject was derived from KBase model of E. coli glycol-

ysis pathway. We extracted just the glycolysis pathway from the

E. coli model. These was done by hand by one of the authors (with

biological knowledge) from the complete metabolic network based

on its KEGG map [28].

Once we extract the sets of invariants for the E. coli CRNs, we

need valid input species values so the simulation is not static (i.e.

the organism simulates growth). We did not attempt to add in full

kinetics, which means that the growth results may not be realistic,

however, we did ensure that the CRN was dynamic and compounds

were being consumed throughout the simulation.

4.2 Mutations

The three subjects from ChemTest [20] include a set of mutant

representing faulty CRNs. Since there is no database of faulty CRNs

we follow their method to create mutant programs for the others. In

other experimental settings for testing, mutants have been shown

to be representative of real faults [2, 42]. Mutants are created by

randomly adding or removing a reactant, product or reaction. Dele-

tions are selected 10% of the time, while changes and additions each

have a probability of 45%. Species and reactions are selected with

equal probability. In the ChemTest subjects there were at most 10

mutants. We added up to 25 more in each of those subjects and up

to 25 in the new subjects. Mutants which ran out of memory during

our experiments (more than 32 GB) were removed.

4.3 Method

For each CRN we extract the invariants and split these into the

flows, inequalities and irreducibles. For reaction counting we add in-

strumentation to capture reaction counts during execution. For the

invariant tests, the invariants produced by running the chem_flows
program are transformed into oracles that contain the abstract tests

as described earlier. For the specification tests, the abstract tests are

obtained either from existing tests (i.e. ChemTest) or hand written

using expected program behavior.

For the abstract tests we use a TSL to generate concrete inputs.

For specification tests we often have constraints between inputs

(e.g. input one has to be greater than input two). For invariant based

tests, we used the same set of TSL but remove constraints. We run

each concrete test 100 times using the Simbiology simulator in

MATLAB [52]. We run the original CRNs (without faults) for each

subject as a baseline to confirm that the test cases are valid. For all

test types, we then evaluate each of the mutant programs. We run

all experiments on a server, using a homogeneous set of Intel(R)

Xeon(R) Gold 6244 CPUs @ 3.60GHz with 32 gb of RAM. The E.

coli model required additional resources, with 64 GB of RAM for

the larger model. We used MATLAB R2021a-io4754x running on

RedHat Enterprise Linux 7.

4.4 Independent Variables

We have two independent variables: the type of invariant (or test

suite), and the testing technique. Flows are the basic invariants

which represent equalities.We use these in RQ1 as a base evaluation,

since they do not need any special instrumentation or translation.

For RQ2 we examine if additional types of invariants (inequalities

and irreducibles) impact fault detection and efficiency. For the in-

equalities we can evaluate these both with and without our second

variable (reaction counting). For the irreducibles, we can only eval-

uate these using reaction counting. The instrumentation in our

test harness works by adding a new species for each reaction and

counting the number of times this is fired. The last type of test suite

we use are the specification tests suites.

4.5 Metrics

We examine the fault detection rate (number of mutants detected

over the total number of mutants) and percent of mutants which are

flaky (at least one concrete test exhibits flaky behavior by passing

and/or failing on at least one run and doing the opposite on another.)

We measure efficiency using testing time (simulation plus oracle

evaluation).

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Gerten, Marsh et al.

4.6 Threats to Validity

While we used a variety of CRN programs, we cannot guarantee

that the results generalize beyond these programs. To lessen this

threat we selected a variety of programs (stable and probabilistic)

in a variety of sizes. We also provide these on our external website.

A second threat is that we wrote the specification tests for subjects

other than those in Gerten et al. This could bias the data, however,

we tried to use an approach similar to the one they described, and

used programs whose specifications could be easily understood.

We also may not have a ground truth CRN, but assume the ones we

use to start are working properly; we did confirm that there were

no faults detected in the stable CRNs.

Third, we removed mutants that ran out of memory. We removed

these from all of our analysis meaning there could be some bias

against test suites which generate more data. It is possible that

some of our errors were faults which could be detected by some

test suites and not others.

Last, we wrote our own programs to generate invariants, run

the tests, analyze the results and merge our data. There could be

faults in these programs, but we have done some validation on these

programs and have manually checked data across/between paper

authors. We also showed invariants generated by our program to

external users/developers of bioinformatics tools and obtained their

feedback as a sanity check. We provide our data artifacts for the

community to inspect and re-validate.

5 RESULTS

We now present the results of our three research questions.

Table 3: Fault Detection for invariant flows vs. specification

based tests. Columns show the number of concrete test cases

and the percent of mutants detected by at least one test. The

last two columns indicate mutants detected by the invariant

only (Inv.) or specification only (Spec.) tests. A star indicates

a small positive value. Org is the non-faulty program.

Flows Specification

Org # % Org # % # Inv. # Spec.
CRN % Tests Detected % Tests Detected Only Only

Min 0 92 95.7 0 430 43.5 12 0

S 0 46 87.5 0 354 90.6 2 0

AM 0 93 62.1 0* 279 100.0 0 3

Mod 0 0 — 0 74 87.5 1 0

Max 0 92 87.5 0 160 95.8 1 1

AL1 0 56 59.1 0 262 86.4 2 2

H1 0 30 85.3 0 70 97.1 1 1

H2 0 30 76.0 0 22 92.0 2 3

MWT 0 15 72.7 0* 27 100.0 0 4

5.1 RQ1: Effectiveness of Flow Invariants

To answer this question, we examine Table 3. The table comprises

test data using the flow invariants. It compares this with the speci-

fication derived tests. The last two columns show the number of

mutants detected by invariant tests only, followed by those detected

by specification tests only. Within the Flows and Specifications test

columns, we show the number of concrete tests performed, the

percent of mutants detected, and the percent of mutants that are

detected flakily. The first column (Org) is the percent of test failures

in the non-faulty program. In all but two subjects (AM and MWT)

all concrete test cases pass on all iterations for both techniques. In

AM and MWT we saw a very small percentage (less than .5) tests

failing flakily on the specification based tests which is expected

behavior. A test is flaky if at least one test differs in its detection

on one of the 100 runs. The specification based tests find a higher

percentage of faults on all subjects but the Min subject. For instance,

the invariant tests for H1 detect 85.3% of the mutants while the

specification tests detect 97.1%. We see similar data for other sub-

jects such as AM and MWT. However, the invariant tests still find

a high percentage of faults (except for Mod). They also have fewer

concrete test cases (46 vs. 354 in subtraction and 92 vs. 160 in Max).

We examine the implications for tests execution time in RQ2. Mod

is interesting since it has no Flow invariants. In order to test this

program, we need either inequalities or reaction counting.

If we examine the last two columns we see that in some subjects

such as AM and MWT the invariant tests do not find faults that the

specification based tests find. We examined some of those mutants

(see discussion) and determined that these are mutations which

cause all reactions to stop firing. The invariant tests will always

hold, but the functional specifications will fail.

Summary of RQ1. We conclude that the flow invariants

are effective at fault detection. They also pass on the origi-

nal programs providing evidence that they accurately de-

scribe program behavior. However, they do not perform

as well as the specification based test cases in most cases.

5.2 RQ2: Impact of Other Invariants and
Reaction Counting

We now examine how adding inequality (with and without reac-

tion counting) and irreducible tests impacts the effectiveness and

efficiency of fault detection. Table 4 shows results of the various

invariants and the different techniques (with and without reac-

tion counting). The columns for each of these techniques show

the percent of faults detected deterministically and flakily, and the

number of invariants of that type. For the Subtraction CRN the de-

tection rate improves from 87.5% to 90.6% when we add inequalities,

however inequalities on their own are not that effective. If we add

reaction counting, the inequalities alone jumps to 75%, and can be

combined with the irreducibles which then detects 96.9% of faults.

This improves over the specification tests. The trend is consistent

across most subjects. The Mod CRN which generated no flows at

all, improves to 91.7% fault detection with reaction counting, and is

better than the specification tests. For the last four subjects (to be

examined further in RQ3), we see both H4 and ECG improve with

the additional techniques. In general we find that the invariant tests

exhibit slightly lower percentage of flakiness. This is not entirely

unexpected since they lack timing information.

We examine efficiency (Table 5) using testing runtime which

generally increases for the larger test suite as we add new invari-

ants, but not significantly. However, we do see a jump in time

between techniques when we use reaction counting on the larger

subjects. Running the chem_flows tool takes less than a second for

all subjects.

Program Invariants in Chemical Reaction Networks ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 4: Fault Detection by Invariant Type (Flows, Inequality, Irreducible) and Technique (With/Without Reaction Counting).

Percents shown for Detect (Det) and Flaky only (flky) detection. Number of invariants (No. Inv). A dash means the type of test

is not present for the subject.

Without Reaction Counting With Reaction Counting

Flows Ineq Flows+Ineq Ineq Irred Ineq+Irred Flow+Ineq+Irred Specification

% % No. % %. No. % % No. % % No. % %. No. % % No. % % No. % %
CRN Det Fkly Inv Det Flky Inv Det Flky Inv Det Flky Inv Det Flky Inv Det Flky Inv Det Flky Inv Det Flky

Min 95.7 0.0 2 8.7 0.0 1 95.7 0.0 3 30.4 0.0 1 — — 0 30.4 0.0 1 95.7 0.0 3 43.5 0.0

S 87.5 0.0 1 25.0 6.3 2 90.6 3.1 3 75.0 0.0 2 — — 0 75.0 0.0 2 96.9 0.0 3 90.6 3.1

AM 62.1 3.4 1 — — 0 62.1 3.4 1 — — 0 82.1 7.1 2 82.1 7.1 2 96.6 6.9 3 100.0 10.3

Mod — — 0 20.8 4.2 2 20.8 4.2 2 87.5 4.2 2 83.3 4.2 1 91.7 4.2 3 91.7 4.2 3 87.5 62.5

Max 87.5 0.0 2 45.8 8.3 3 87.5 0.0 5 83.3 0.0 3 — — 0 83.3 0.0 3 95.8 0.0 5 95.8 13.0

AL1 59.1 4.5 2 63.6 4.5 5 86.4 4.5 7 77.3 9.1 5 — — 0 77.3 9.1 5 86.4 4.5 7 86.4 31.8

H1 85.3 0.0 3 23.5 11.8 6 85.3 0.0 9 88.2 0.0 6 38.2 0.0 2 91.2 0.0 8 100.0 0.0 11 97.1 8.6

H2 76.0 0.0 3 28.0 4.0 6 76.0 0.0 9 84.0 0.0 6 44.0 0.0 3 84.0 0.0 9 88.0 0.0 12 92.0 0.0

MWT 72.7 0.0 5 — — 0 72.7 0.0 5 — — 0 71.4 0.0 11 71.4 0.0 11 86.4 0.0 16 100.0 9.1

PP 45.8 4.2 5 — — 0 45.8 4.2 5 — — 0 91.3 8.7 22 91.3 8.7 22 95.8 8.7 27 — —

ECG 24.0 0.0 11 0.0 0.0 12 24.0 0.0 23 20.0 0.0 12 — — 0 20.0 0.0 12 28.0 0.0 23 — —

H4 64.0 44.0 11 28.0 24.0 16 64.0 44.0 27 52.0 48.0 16 60.0 52.0 23 60.0 52.0 39 64.0 44.0 50 — —

EC 12.0 0.0 70 4.0 0.0 368 12.0 0.0 438 8.0 0.0 368 8.0 0.0 58 12.0 0.0 426 20.0 0.0 496 — —

Table 5: Time Required to Run Tests. The table shows the

total runtime for all tests across all mutants (Time) in min-

utes(m) or hours(h).

Without Reac. Count With Reac. Count

CRN Flows Flows + Ineq Flows + Ineq + Irred Specification

Min 13m 25m 31m 34m

S 32m 1.0h 59m 56

AM 34m 34m 1.3h 1.2h

Mod — 33m 1.1h 18m

Max 15m 29m 31m 41m

AL1 21m 48m 51m 56m

H1 57m 1.4h 1.8h 47m

H2 12m 28m 46m 50m

MWT 51m 51m 1.7h 1.1h

PP 30m 41m 58m —

ECG 8m 16m 22m —

H4 37m 1.1h 2.5h —

EC 5.0h 18.2h 54.3h —

Figure 2: Fault Detection by Type of Test Case. All contains

all subjects with specification based tests. Stable includes

subjects Min, S, Mod, Max, H1, H2. Unstable includes AM,

AL1, MWT.

We also examined the overall fault detection by invariant type

for the programs with specification tests (from top half of Table 4).

Figure 2 shows this data for all subjects (first bar in each group),

followed by stable program (second bar) and unstable programs.

Stable programs are guaranteed to return the same result every time.

Unstable programs have a probabilistic element. Flow invariants

alone (leftmost set of bars) perform pretty well, but detect fewer

faults than specification tests (right most group). We do see a slight

increase when adding inequalities (third group of bars). When we

add reaction counting and all invariants (Flows+Ineq+Irred) next to

last group, we see higher fault detection for the All and stable CRNs

over the specification tests. However, the invariants perform worse

on the unstable CRNs. This is likely due to the fact that unstable

CRNs contain a probabilistic component and extracted invariants

are weak since any invariant must account for the probabilistic

nature. We explore this issue as future work.

To analyze coverage of the CRNs we examine Figure 3. This

shows coverage of individual invariants for the starred subjects in

Table 2. For each we show the the normalized reaction coverage

(out of the total reactions for that CRN) annotated with an R (e.g.

FlowR) and the species coverage annotated with an S (e.g. FlowS). A

reaction is covered if a species from an invariant is in the reaction.

We see a range of coverage by invariant type suggesting that there

may be an opportunity for test selection or prioritization.

We examined one subject further to look for a correlation be-

tween coverage fault detection. Table 6 shows 11 invariant tests

generated by ChemFlow for the Hailstone 1 subject. We see some

correlation between increased species and reaction coverage but

leave a full evaluation as future work.

Summary of RQ2. We conclude that adding inequalities

slightly improves fault detection. The biggest impact is

adding reaction counting. We do see a tradeoff with respect

to fault detection and runtime in the larger subjects.

5.3 RQ3: Lack of Specifications

Our last RQ investigates the situation when we do not have speci-

fications, and evaluates the potential to use invariants for model

quality. We first examine the data from Tables 4 and 5 focusing on

the last four rows. We were able to find faults in all four of these

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Gerten, Marsh et al.

0.25

0.50

0.75

1.00

FlowR FlowS IneqR IneqS IrredR IrredS
Coverage of Reactions (R) and Species (S) by Invariant Type

N
or

m
al

iz
ed

 C
ov

er
ag

e

Type FlowR
FlowS

IneqR
IneqS

IrredR
IrredS

Figure 3: Invariant Coverage by Type

Table 6: Fault Detection by Invariant forHailstone 1. Type of

invariant and technique shown. Ineq-RC indicates inequal-

ities using reaction counting. For each we show the normal-

ized Species Coverage (SpCv) and Reaction coverage (ReCv).

Test Inv % Faults % %
ID Type Detected SpCv ReCv

1 Flow 35 45 45

2 Flow 59 64 73

3 Flow 38 27 36

4 Ineq 3 36 45

5 Ineq 3 45 73

6 Ineq 3 55 91

7 Ineq 12 27 36

8 Ineq 3 27 36

9 Ineq 3 27 36

4 Ineq-RC 35 36 45

5 Ineq-RC 41 45 73

6 Ineq-RC 53 55 91

7 Ineq-RC 29 27 36

8 Ineq-RC 18 27 36

9 Ineq-RC 18 27 36

10 Irred 29 18 36

11 Irred 18 9 18

Figure 4: Invariants in E. coli represent Islands of Species

subjects. We see similar trends that we saw in RQ2 with respect to

fault detection and time.

In addition to running the tests, we were curious if the invariants

could provide useful information to bioinfomaticists (external to

our organization) who write and use metabolic modeling applica-

tions. We met and presented our results using a subset of invariants

which we believed might be unexpected based on our understand-

ing of biology. We used the real chemical compound names that

these reactions represent. The tool authors suggested that these

were interesting and might represent places where our model was

missing information or flows and that they would be interested in

seeing a fuller set of these on an alternative model (one which they

said was more highly curated), suggesting that fewer invariants

would mean a better model.

We extracted invariants from a second (higher quality) model of

the same variant of E. coli. The original model (EC) contains 426

reactions, 497 species, 47 genes and has 70 invariants. We chose

the iML1515 model from the UCSD’s BiGG database, thought to

be the most complete genome scale metabolic model for E. coli

K-12 MG1655 [27]. It contains 2712 reactions, 1877 metabolites,

1516 genes and has only 32 invariants. When comparing invariants

between models, we noticed the refinement of some. In general,

the invariants in the iML1515 model are composed of less familiar

metabolites suggesting it fixed problems in the EC model. There

are also fewer species in the invariants. We showed these to the

developers again and they asked us (1) perform a study on hundreds

of other models and (2) help incorporate this into one of their

systems, which has over 21,000 users, to aid users in the analysis of

their models. A real (confirmed) fault in our original E. coli subject

model is the absence of an exchange flux for fluoride which means

it can never leave the cell which is not biologically accurate.

Many of the invariants found show islands of species. Figure 3

shows four invariants, denoted by the boxed reactions, from the

E. coli model. The species on the left (group A) are involved in two

reactions whereas the species on the right (group B) are only part

of one reaction in the model. The species in group A are vitamins

participating in bidirectional transport: each direction is considered

a separate reaction. In group B, the species are ions undergoing

unidirectional transport (in this case, into the cell). The species

in the middle are extracellular protons as well as protons in the

cytoplasm necessary for the species to be transported across the

cell wall. Since the species in this example are only participating in

transport, they could suggest a problem with the model. This is not

immediately clear in the network graph, suggesting the invariants

are useful.

Summary of RQ3. We conclude that invariants have po-

tential for both regression testing and model quality when

no specifications exist.

5.4 Discussion

We discuss a few interesting phenomena we saw during the experi-

ments here.

Specification Tests Find Faults, Invariants Do Not.We found

cases where none of the invariants were able to detect a fault, but

the specification tests did. An example is the mutant MIN-25. This

mutation causes Reaction 1 to add a reactant Z which changes the

first reaction (X +Y −→ Z) to:X +Y +Z −→ Z . Since Z is not an input

species, it is initially set to 0 molecules for simulation. However, Z

Program Invariants in Chemical Reaction Networks ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

is a reactant in the mutation, so at least 1 molecule is required for

the reaction to fire, thus no reactions can fire. The invariant tests

fail to detect this, because the oracle only checks if the values are

constant, not what their values are; all invariant tests are tautologies.

However, the specifications evaluate functional behavior, and those

detect the faults. This was seen in other subjects as well, forming a

class of mutations that require specifications.

Invariants Find Faults, Specifications Do Not. An example of

this situation is AL1-25, which adds the reaction F1P −→ A1 + F1P .
This mutation causes the number of A1 molecules in the system

to increase. Since at least 1 A1 has to be present initially to create

the F1P for the reactant, the functional behavior of the CRN is

maintained (at least 1 A1 is present). This fault is detected by the

invariants since they check that the number of molecules in the

affected species are constant during simulation. We would need an

internal test case in the specification suite to detect this.

Invariants Used for Model Quality. We now look at the results

from the biological models. The reduced number of the invariants

in the iML1515 model over the EC model suggests improvement,

however, some problems remain. An example we identified is the

absence of an exchange flux. In the iML1515 model the amount of

fluoride remains invariant due to the absence of an exchange flux,

so the fluoride can never leave the system. While this invariant was

not found in the original model, suggesting the presence of a (new)

regression fault, we saw similar invariants for other elements such

as Zn2+, Cu2+, Cl-, Ca2+, Co2+, and K+ in the original model.

6 RELATEDWORK

Much of the research on CRNs defines novel programs to compute

or accomplish some behavioral goal [10, 18, 56]. Another direction

of work has been to provide domain specific languages to generate

CRNs [31, 45, 54]. In this paper we focus on validation of CRNs. We

summarize key related work next.

Verification and Testing CRNs.One state of the art technique for

verification of CRNs is to use model checking or automated theorem

proving, such as PRISM [36, 55]. PRISM does have a statistical

model checker, but it does not support LTL path properties and

requires translation of the CRN model to its format. Gerten et al.

[20] demonstrated its lack of scalability in particular on faulty CRNs.

Vasic et al. [55] use Alloy [25] to model and explore a subset of

deterministic CRNs (the other CRN semantic). It is possible that they

can extend this to generate tests, however they did not perform this

step and the CRNs explored are deterministic, not stochastic CRNs.

The most closely related work to this paper is ChemTest [20] and

CRNRepair (a program repair technique) [40]. However, both use

specification-based tests which we have compared against in this

paper. ChemFlow can be applied in either of these environments,

hence it is complementary to these approaches.

Invariant Detection. Dynamic invariant detection has been used

to extract program invariants both from code [16, 37, 46, 58] and

via execution logs [6, 7, 38]. Our invariant detection technique does

not require logs or dynamic traces. Instead it uses an algebraic

representation.

Petri Net Invariants. There is a breadth of earlier work in the Petri

net community on the use of linear invariants to determine struc-

tural properties; see [50] for a survey. Generally, these structural

properties hold regardless of the initial configuration, and unlike

model checking, are determined without examining the reachable

states of the Petri net. Instead of P–flows, much work has been done

in determining and utilizing P–semiflows, which are the P–flows

where all coefficients are non-negative. However, while the set of

all P–flows can be generated from a basis of size at most equal to the

number of species, a generating set of minimal P–semiflows may

be exponentially larger. As such, there are different approaches and

heuristics to reduce the computational cost of determining the min-

imal P–semiflows. Our work on P–flows is computationally much

simpler, and can extract linear invariants that cannot be expressed

as P–semiflows. Other work has shown that Petri nets are effec-

tive for modeling metabolic pathways. Gupta et al. explored the

use of Petri nets for metabolic pathway validation by determining

the presence of inconsistency or deadlock as well as noting that

invariant analysis can identify T-invariants (reversible reactions)

and P-invariants (conserved compounds) [21].

Many tools utilize Petri nets to analyze their structure [5, 14, 57].

Since CRNs can be translated into a Petri net representation, it is

theoretically possible to convert the CRN to a Petri net representa-

tion, perform analysis, and then convert the result back to a form

corresponding to the CRN. This technique has several disadvan-

tages. (1) As noted above, most Petri net tools build generator sets

for P–semiflows, not P-flows, with potentially much higher compu-

tational cost and loss of some linear invariants. (2) ChemFlow uses

reaction counting, which most Petri net tools do not provide. (3)

The ChemFlow framework is designed for developers of CRNs who

design, simulate, and validate their systems using the CRN model.

Translating the CRN to the Petri net model for testing would force

them to use a potentially unfamiliar representation. In addition, it

may be difficult to maintain traceability between invariants and the

CRN since Petri net tools that translate the analysis back to a CRN

model may change names and labels for reactions and species.

7 CONCLUSIONS AND FUTUREWORK

In this paper we presented ChemFlow, an automated invariant in-

ference technique for CRNs. We evaluated ChemFlow on a set of 13

benchmark CRNs including 4 which do not have specifications. We

show that the base type of invariant, flows, finds a large number

of faults efficiently, but is slightly less effective than specification

based test suites. As we add additional types of invariants and re-

action counting, the invariants find a similar number of faults as

specifications and more deterministically. We also find differences

in fault detection by test type when we classify programs as ei-

ther stable and unstable. Last we see a tradeoff between test case

efficiency and effectiveness of the various approaches.

For future work we plan to implement ChemFlow as a tool for

others to utilize. We plan to examine the connection between fault

detection and CRN coverage in more depth. Finally, we plan to

explore model quality more thoroughly by analyzing large set of

biological models.

8 ACKNOWLEDGMENTS

We would like to thank C. Henry, J.P. Faria and B. Cottingham for

feedback and discussions on the E. coli invariants. This work is

supported in part by NSF Grants CCF #1909688 and FET #1900716.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Gerten, Marsh et al.

REFERENCES
[1] Ebbe S. Andersen, Mingdong Dong, Morten M. Nielsen, Kasper Jahn, Ramesh

Subramani, Wael Mamdouh, Monika M. Golas, Bjoern Sander, Holger Stark,
Cristiano L. P. Oliveira, Jan Skov Pedersen, Victoria Birkedal, Flemming Besen-
bacher, Kurt V. Gothelf, and Jørgen Kjems. 2009. Self-assembly of a nanoscale
DNA box with a controllable lid. Nature 459, 7243 (01 May 2009), 73–76.
https://doi.org/10.1038/nature07971

[2] J. H. Andrews, L. C. Briand, and Y. Labiche. 2005. Is Mutation an Appropriate
Tool for Testing Experiments?. In Proceedings of the 27th International Conference
on Software Engineering. Association for Computing Machinery, New York, NY,
USA, 402–411. https://doi.org/10.1145/1062455.1062530

[3] Adam P. Arkin, Robert W. Cottingham, Christopher S. Henry, Nomi L. Harris,
Rick L Stevens, Sergei Maslov, et al. 2018. KBase: The United States Department
of Energy Systems Biology Knowledgebase. Nature Biotechnology 36, 7 (2018),
566–569. https://doi.org/10.1038/nbt.4163

[4] Stefan Badelt, Seung Woo Shin, Robert F. Johnson, Qing Dong, Chris Thachuk,
and Erik Winfree. 2017. A General-Purpose CRN-to-DSD Compiler with Formal
Verification, Optimization, and Simulation Capabilities. In International Confer-
ence on DNA Computing and Molecular Programming (Lecture Notes in Computer
Science). 232–248. https://doi.org/10.1007/978-3-319-66799-7_15

[5] B. Berthomieu, P.-O. Ribet, and F. Vernadat. 2004. The tool TINA – Construc-
tion of abstract state spaces for Petri nets and time Petri nets. International
Journal of Production Research 42, 14 (2004), 2741–2756. https://doi.org/10.1080/
00207540412331312688

[6] Ivan Beschastnikh, Yuriy Brun, Jenny Abrahamson, Michael D. Ernst, and
Arvind Krishnamurthy. 2015. Using declarative specification to improve the
understanding, extensibility, and comparison of model-inference algorithms.
IEEE Transactions on Software Engineering 41, 4 (April 2015), 408–428. https:
//doi.org/10.1109/TSE.2014.2369047

[7] Ivan Beschastnikh, Yuriy Brun, Sigurd Schneider, Michael Sloan, and Michael D.
Ernst. 2011. Leveraging Existing Instrumentation to Automatically Infer Invariant-
Constrained Models. In Proceedings of the 19th ACM SIGSOFT Symposium and
the 13th European Conference on Foundations of Software Engineering (Szeged,
Hungary) (ESEC/FSE ’11). Association for Computing Machinery, New York, NY,
USA, 267–277. https://doi.org/10.1145/2025113.2025151

[8] BioBricks Foundation 2021. BioBrick Public DNA Parts. BioBricks Foundation.
Last Accessed: August 2021.

[9] Robert Brijder. 2019. Computing with chemical reaction networks: a tutorial.
Natural Computing 18, 1 (2019), 119–137. https://doi.org/10.1007/s11047-018-
9723-9

[10] Luca Cardelli, Marta Kwiatkowska, and Luca Laurenti. 2018. Programming
discrete distributions with chemical reaction networks. Natural Computing 17, 1
(01 Mar 2018), 131–145. https://doi.org/10.1007/s11047-017-9667-5

[11] Mikaela Cashman, Justin Firestone, Myra B. Cohen, Thammasak Thianniwet, and
Wei Niu. 2021. An Empirical Investigation of Organic Software Product Lines.
Empirical Software Engineering 26, 3 (2021), 44. https://doi.org/10.1007/s10664-
021-09940-0

[12] Ho-Lin Chen, Rachel Cummings, David Doty, and David Soloveichik. 2014. Speed
Faults in Computation by Chemical Reaction Networks. In Distributed Computing,
Fabian Kuhn (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 16–30.

[13] Yuan-Jyue Chen, Neil Dalchau, Niranjan Srinivas, Andrew Phillips, Luca Cardelli,
David Soloveichik, and Georg Seelig. 2013. Programmable chemical controllers
made from DNA. Nature Nanotechnology 8, 10 (2013), 755–762.

[14] G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo. 1995. GreatSPN 1.7:
Graphical editor and analyzer for timed and stochastic Petri nets. Performance
Evaluation 24, 1 (1995), 47–68. https://doi.org/10.1016/0166-5316(95)00008-L
Performance Modeling Tools.

[15] Matthew Cook, David Soloveichik, Erik Winfree, and Jehoshua Bruck. 2009.
Programmability of Chemical Reaction Networks. Springer Berlin Heidelberg,
Berlin, Heidelberg, 543–584. https://doi.org/10.1007/978-3-540-88869-7_27

[16] Christoph Csallner, Nikolai Tillmann, and Yannis Smaragdakis. 2008. DySy:
Dynamic Symbolic Execution for Invariant Inference. In Proceedings of the 30th
International Conference on Software Engineering (Leipzig, Germany). Association
for Computing Machinery, New York, NY, USA, 281–290. https://doi.org/10.
1145/1368088.1368127

[17] Shawn M. Douglas, Ido Bachelet, and George M. Church. 2012. A Logic-Gated
Nanorobot for Targeted Transport of Molecular Payloads. Science 335, 6070
(2012), 831–834. https://doi.org/10.1126/science.1214081

[18] Samuel J. Ellis, Titus H. Klinge, James I. Lathrop, Jack H. Lutz, Robyn R. Lutz, An-
drew S. Miner, and Hugh D. Potter. 2019. Runtime Fault Detection in Programmed
Molecular Systems. ACM Transactions on Software Engineering Methodology 28,
2, Article 6 (March 2019), 20 pages. https://doi.org/10.1145/3295740

[19] Martin Feinberg. 2019. Foundations of chemical reaction network theory. Springer.
[20] Michael C. Gerten, James I. Lathrop, Myra B. Cohen, and Titus H. Klinge. 2020.

ChemTest: An Automated Software Testing Framework for an Emerging Para-
digm. In Proceedings of the 35th IEEE/ACM International Conference on Automated
Software Engineering. 548–560. https://doi.org/10.1145/3324884.3416638

[21] Sakshi Gupta, Sunita Kumawat, and Gajendra Pratap Singh. 2022. Validation and
Analysis of Metabolic Pathways Using Petri Nets. In Soft Computing: Theories
and Applications. Springer, 361–374.

[22] Christopher S Henry, Matthew DeJongh, Aaron A Best, Paul M Frybarger, Ben
Linsay, and Rick L Sevens. 2010. High-throughput generation, optimization and
analysis of genome-scale metabolic models. Nature Biotechnology 28, 9 (August
2010), 977–982.

[23] iGEM Registry 2021. Registry of Standard Biological Parts. iGEM Foundation.
Last Accessed: August 2021.

[24] International Society for Nanoscale Science 2021. International Society for
Nanoscale Science, Computation and Engineering (ISNSCE). https://isnsce.org/
Accessed on 2021-09-09.

[25] D. Jackson. 2012. D. Jackson, Software Abstractions, 2nd ed. MIT Press, 2012. (2nd
ed.). MIT Press.

[26] Shuoxing Jiang, Zhilei Ge, Shan Mou, Hao Yan, and Chunhai Fan. 2021. Designer
DNA nanostructures for therapeutics. Chem 7, 5 (2021), 1156–1179. https:
//doi.org/10.1016/j.chempr.2020.10.025

[27] Monk JM, Lloyd CJ, Brunk E, and et al. 2017. iML1515, a knowledgebase that
computes Escherichia coli traits. Nat Biotechnol. 35 (2017), 904–908. https:
//doi.org/10.1038/nbt.3956

[28] Minoru Kanehisa and Susumu Goto. 2000. KEGG: kyoto encyclopedia of genes
and genomes. Nucleic acids research 28, 1 (2000), 27–30.

[29] Richard M. Karp and Raymond E. Miller. 1969. Parallel program schemata. J.
Comput. System Sci. 3, 2 (1969), 147–195. https://doi.org/10.1016/S0022-0000(69)
80011-5

[30] KBase 2021. The Department of Energy Systems Biology Knowledgebase. http:
//kbase.us.

[31] Titus H. Klinge, James I. Lathrop, Sonia Moreno, Hugh D. Potter, Narun K. Raman,
and Matthew R. Riley. 2020. ALCH: An Imperative Language for Chemical
Reaction Network-Controlled Tile Assembly. In 26th International Conference
on DNA Computing and Molecular Programming (DNA 26) (Leibniz International
Proceedings in Informatics (LIPIcs), Vol. 174), Cody Geary and Matthew J. Patitz
(Eds.). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany,
6:1–6:22. https://doi.org/10.4230/LIPIcs.DNA.2020.6

[32] Marta Kwiatkowska, Gethin Norman, and David Parker. 2010. Advances
and challenges of probabilistic model checking. In 2010 48th Annual Allerton
Conference on Communication, Control, and Computing (Allerton). 1691–1698.
https://doi.org/10.1109/ALLERTON.2010.5707120

[33] Marta Kwiatkowska and Chris Thachuk. 2014. Probabilistic model checking for
biology. In Software Systems Safety. IOS Press, 165–189.

[34] Jefferey C. Lafarias (Ed.). 2010. The ultimate challenge : the 3x + 1 problem.
American Mathematical Society.

[35] James I. Lathrop, Titus H. Klinge, and Bryce Valley. 2021. personal communica-
tion.

[36] James I. Lathrop, Jack H. Lutz, Robyn R. Lutz, Hugh D. Potter, and Matthew R.
Riley. 2020. Population-Induced Phase Transitions and the Verification of
Chemical Reaction Networks. In 26th International Conference on DNA Com-
puting and Molecular Programming (DNA 26) (Leibniz International Proceed-
ings in Informatics (LIPIcs), Vol. 174), Cody Geary and Matthew J. Patitz (Eds.).
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 5:1–5:17.
https://doi.org/10.4230/LIPIcs.DNA.2020.5

[37] Kaituo Li, Christoph Reichenbach, Yannis Smaragdakis, and Michal Young. 2013.
Second-Order Constraints in Dynamic Invariant Inference. In Proceedings of the
2013 9th Joint Meeting on Foundations of Software Engineering (Saint Petersburg,
Russia) (ESEC/FSE 2013). Association for Computing Machinery, New York, NY,
USA, 103–113. https://doi.org/10.1145/2491411.2491457

[38] David Lo and Shahar Maoz. 2009. Mining Scenario-Based Specifications with
Value-Based Invariants. In Proceedings of the 24th ACM SIGPLAN Conference
Companion on Object Oriented Programming Systems Languages and Applications
(Orlando, Florida, USA). Association for Computing Machinery, New York, NY,
USA, 755–756. https://doi.org/10.1145/1639950.1639999

[39] Matlab-Simbiology User Forum 2020. MATLAB Forum Question on Test-
ing CRNs. https://www.mathworks.com/matlabcentral/answers/593965-unit-
testing-on-simbiology-created-model?s_tid=srchtitle_simbiology_53.

[40] Ibrahim Mesecan, Michael C. Gerten, James I. Lathrop, Myra B. Cohen, and
Tomas Haddad Caldas. 2021. CRNRepair: Automated Program Repair of Chem-
ical Reaction Networks. In 2021 IEEE/ACM International Workshop on Genetic
Improvement (GI). 23–30. https://doi.org/10.1109/GI52543.2021.00014

[41] Tadao Murata. 1989. Petri Nets: Properties, Analysis and Applications. Proc. IEEE
77, 4 (April 1989), 541–580.

[42] Akbar Siami Namin and Sahitya Kakarla. 2011. The Use of Mutation in Testing
Experiments and Its Sensitivity to External Threats. In Proceedings of the 2011
International Symposium on Software Testing and Analysis (ISSTA ’11). Association
for Computing Machinery, New York, NY, USA, 342–352. https://doi.org/10.
1145/2001420.2001461

[43] NCBI 2021. National Center for Biotechnology Information (NCBI), National
Library of Medicine (US), National Center for Biotechnology Information. https:
//www.ncbi.nlm.nih.gov/.

Program Invariants in Chemical Reaction Networks ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

[44] T. J. Ostrand and M. J. Balcer. 1988. The Category-partition Method for Specifying
and Generating Functional Tests. Commun. ACM 31, 6 (June 1988), 676–686.

[45] Michael Pedersen and Andrew Phillips. 2009. Towards programming languages
for genetic engineering of living cells. Journal of the Royal Society Interface 6
(2009), S437–S450. https://doi.org/10.1098/rsif.2008.0516.focus

[46] Jeff H. Perkins and Michael D. Ernst. 2004. Efficient Incremental Algorithms
for Dynamic Detection of Likely Invariants. In Proceedings of the 12th ACM
SIGSOFT Twelfth International Symposium on Foundations of Software Engineering
(Newport Beach, CA, USA) (SIGSOFT ’04/FSE-12). Association for Computing
Machinery, New York, NY, USA, 23–32. https://doi.org/10.1145/1029894.1029901

[47] C. Adam Petri and W. Reisig. 2008. Petri net. Scholarpedia 3, 4 (2008), 6477.
https://doi.org/10.4249/scholarpedia.6477 revision #91647.

[48] William Poole, Ayush Pandey, Andrey Shur, Zoltan A. Tuza, and Richard M.
Murray. 2020. BioCRNpyler: Compiling Chemical Reaction Networks from
Biomolecular Parts in Diverse Contexts. bioRxiv (2020). https://doi.org/10.1101/
2020.08.02.233478

[49] Lulu Qian, Erik Winfree, and Jehoshua Bruck. 2011. Neural network computation
with DNA strand displacement cascades. Nature 475, 7356 (2011), 368–372.

[50] Manuel Silva, Enrique Terue, and José Manuel Colom. 1998. Linear algebraic and
linear programming techniques for the analysis of place/transition net systems.
In Lectures on Petri Nets I: Basic Models: Advances in Petri Nets, Wolfgang Reisig
and Grzegorz Rozenberg (Eds.). Springer Berlin Heidelberg, 309–373. https:
//doi.org/10.1007/3-540-65306-6_19

[51] David Soloveichik, Georg Seelig, and Erik Winfree. 2009. DNA as a Universal
Substrate for Chemical Kinetics. In DNA Computing (Lecture Notes in Computer
Science, Vol. 5347). 57–69.

[52] The Mathworks, Inc. 2021. MATLAB version 9.10.0.1613233 (R2021a). The Math-
works, Inc., Natick, Massachusetts.

[53] Marko Vasic, Cameron Chalk, Sarfraz Khurshid, and David Soloveichik. 2020.
DeepMolecular Programming: ANatural Implementation of Binary-Weight ReLU
Neural Networks. In Proceedings of the 37th International Conference on Machine
Learning (Proceedings of Machine Learning Research, Vol. 119), Hal Daumé III
and Aarti Singh (Eds.). PMLR, 9701–9711. https://proceedings.mlr.press/v119/
vasic20a.html

[54] Marko Vasic, David Soloveichik, and Sarfraz Khurshid. 2018. CRN++: Molecular
Programming Language. In DNA Computing and Molecular Programming, David
Doty and Hendrik Dietz (Eds.). Springer International Publishing, 1–18.

[55] Marko Vasic, David Soloveichik, and Sarfraz Khurshid. 2020. CRNs Exposed: A
Method for the Systematic Exploration of Chemical Reaction Networks. In 26th
International Conference on DNA Computing and Molecular Programming (DNA
26) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 174), Cody Geary
and Matthew J. Patitz (Eds.). Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
Dagstuhl, Germany, 4:1–4:25. https://doi.org/10.4230/LIPIcs.DNA.2020.4

[56] Erik Winfree. 2019. Chemical Reaction Networks and Stochastic Local Search. In
DNA Computing and Molecular Programming, Chris Thachuk and Yan Liu (Eds.).
Springer International Publishing, Cham, 1–20.

[57] Karsten Wolf. 2018. Petri Net Model Checking with LoLA 2. In Application and
Theory of Petri Nets and Concurrency, Victor Khomenko and Olivier H. Roux
(Eds.). Springer International Publishing, Cham, 351–362.

[58] Lingming Zhang, Guowei Yang, Neha Rungta, Suzette Person, and Sarfraz Khur-
shid. 2014. Feedback-Driven Dynamic Invariant Discovery. In Proceedings of the
2014 International Symposium on Software Testing and Analysis (San Jose, CA,
USA) (ISSTA 2014). Association for Computing Machinery, New York, NY, USA,
362–372. https://doi.org/10.1145/2610384.2610389

