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—— Abstract

Chemical reaction networks (CRNs) are an important tool for molecular programming, a field that
is rapidly expanding our ability to deploy computer programs into biological systems for a variety of
applications. However, CRNs are also difficult to work with due to their massively parallel nature,
leading to the need for higher-level languages that allow for easier computation with CRNs. Recently,
research has been conducted into a variety of higher-level languages for deterministic CRNs but
modeling CRN parallelism, managing error accumulation, and finding natural CRN representations
are ongoing challenges.

We introduce REACTAMOLE, a higher-level language for deterministic CRNs that utilizes the
functional reactive programming (FRP) paradigm to represent CRNs as a reactive dataflow network.
REACTAMOLE equates a CRN with a functional reactive program, implementing the key primitives
of the FRP paradigm directly as CRNs. The functional nature of REACTAMOLE makes reasoning
about molecular programs easier, and its strong static typing allows us to ensure that a CRN is
well-formed by virtue of being well-typed. In this paper, we describe the design of REACTAMOLE
and how we use CRNs to represent the common datatypes and operations found in FRP. We also
demonstrate the potential of this functional reactive approach to molecular programming by giving
an extended example where a CRN is constructed using FRP to modulate and demodulate an
amplitude modulated signal.
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1 Introduction

Molecular programming harnesses computer science towards designing programmable struc-
tures at the nanoscale, unlocking the potential to execute programs in biological systems.
This emerging arena holds significant potential for innovations in medicine, nanofabrication,
and synthetic biology. One prominent molecular programming language is chemical reaction
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networks (CRNs), abstractions of chemical reactions [8, 5, 10]. CRNs are Turing-complete
and act as an unstructured assembly language for molecular programming, which can then
be assembled into DNA to perform computation at the nanoscale [9, 1].

However, the characteristics of CRNs create substantial challenges for general programma-
bility. Due to the nature of chemical reactions, CRNs are massively parallel, with all reactions
active at the same time depending on the availability of the reactants. This creates race
conditions that can make coding in this framework more difficult and error-prone [22]. CRNs
are also unstructured and not easily composed; adding a single reaction can easily have
global side effects to its behavior. This is strong motivation for the creation of a high-level
programming language to abstract away these barriers.

Consequently, recent research has been conducted into high-level languages for molecular
programming such as CRN++ [22] and Kaemika [4]. CRN++ enables programming in
a familiar, imperative style that compiles to deterministic CRNs (DCRNs), marking a
significant advancement in this realm but also leaving room for continued improvement.
Vasic et al. say that CRN++ could be improved by addressing inefficiencies caused by
careful avoidance of the inherent parallelism of CRNs, as well as reducing errors accumulated
over time [22]. Kaemika supports specifying CRNs in a functional style, including support
for high-order functions and recursion [4]. Both CRN++ and Kaemika allow side effects,
with Kaemika depending on these side effects for the generation of new species within
functions. Additionally, these implementations leave room to improve the synchronicity
between language structure and CRN behavior.

We address these downsides by exploring the use of functional reactive programming
(FRP) for developing CRNs. Functional reactive programming is a paradigm primarily
characterized by its reactive nature, responding to stimuli through continuous and discrete
time-dependent inputs [2]. In FRP, systems are modeled as graphs where nodes are operations
and edges indicate how data flows between these operations, with a particular focus on
how change is propagated through this graph. We observe a close correspondence between
CRNs and functional reactive programs. The chemical concentrations of a CRN react to
changes in their environment similarly and can thus be thought of as signals, time-varying
data streams, in a functional reactive program. Consequently, CRNs themselves transform
these concentrations and can, therefore, be thought of as functions over signals, i.e., signal
functions. These correspondences make FRP a natural choice to express computation within
a CRN.

We use this correspondence to design a functional reactive molecular programming
(FRMP) language for deterministic CRNs. The heart of this language is the expression
of the core constructs of FRP directly in terms of CRNs, gaining the benefits of program
composability afforded by the functional reactive paradigm. We explore this approach
to molecular programming with REACTAMOLE, an embedded domain specific language
(eDSL) for FRMP modeled after Yampa, a prominent functional reactive programming
DSL [14]. Furthermore, by combining FRP and CRNs, we open the door for applying recent
advancements in programming language theory towards the development of CRNs. For
example, in this FRMP paradigm, we can now consider integrating type systems that verify
safety properties of functional reactive programs [18] or program synthesizers for functional
reactive programs [11].

In Section 2, we review the basic definitions of chemical reaction networks as well as
introduce the necessary components of the Haskell programming language and functional
reactive programming needed to understand REACTAMOLE. We introduce REACTAMOLE by
way of example in Section 3 and describe the design and implementation of REACTAMOLE in
Section 4. Finally, we demonstrate the potential of REACTAMOLE by way of a case study —
implementing amplitude modulation over real-valued signals — in Section 5.
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2 Background

In this section, we review the two main topics that we combine in REACTAMOLE: chemical
reactions networks (Subsection 2.1) and functional reactive programming (Subsection 2.2).
Throughout the remaining sections, we assume familiarity with the basic syntax and semantics
of the Haskell programming language. We provide a walkthrough of the parts of Haskell
necessary to understand our presentation in Appendix A.

2.1 Chemical Reaction Networks

Scientists and researchers often utilize models to describe the complex interactions of molecules
and matter. These models simplify molecular interactions in order to allow algorithms and
software to simulate the outcomes of chemical systems. Even though these models make
simplifying assumptions, they are still a powerful tool for designing and testing these systems.
A chemical reaction network (CRN) is one such model that is often used to model molecule
interactions in a well-mixed solution. Even though assumptions are made in each of the
many variants of the CRN model, almost all of them retain the power to facilitate general
computing.

We adopt much of the notation used by Klinge, Lathrop, and Lutz [20] to formalize the
CRN model used here. A CRN is a pair N = (5, R), where S is a set of species (molecules)
and R is a set of reactions that operate over those species. Reactions are a triple p = (r, p, k),
where r € N°, p € N¥ and k € (0,00). Note that N is the set of functions mapping
species to non-negative integers, and we do not allow r = p. The constant k represents the
rate constant for the reaction. In this paper we usually represent CRNs simply as a set of
reactions that implicitly define a set of species. For example, the reaction

X4+U -5 ox

can be interpreted as the CRN N = (S, R) with S = {X,U} and R consisting of only the
given reaction.

In this paper, we focus on the deterministic mass-action model of chemical reaction
networks, where species are represented by concentrations of molecules. This is in contrast
to the stochastic mass-action model, which uses the number of molecules for this purpose.
The deterministic mass-action model describes interactions with molecules using polynomial
autonomous differential equations, and the semantics relate concentrations of species through
the reactants, products, and rate constants of all reactions in the system. The single reaction
above yields the set of ordinary differential equations (ODEs):

dx—xu du
dt

i =—xz-u-k.

Intuitively, since an X and a U react together to produce an additional X in the system, the
instantaneous rate of X gained is proportional to the product of the instantaneous amounts

of the reactants and the rate constant. Simultaneously, the loss of U occurs at the same rate.

Note that we use z(t) or = to denote the concentration of species X.

Similar to Klinge, Lathrop, and Lutz [20], we define an input/output CRN (I/O CRN)
as a tuple N = (S, R, I,0), where S is a set of species, R is a set of reactions, I C S is the
set of input species, and O C S is the set of output species. I/O CRNs require that the
input species are only used as a catalyst in any reaction, a critical feature that allows us to
compose CRNs in REACTAMOLE safely.
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2.2 Functional Reactive Programming

Many classes of computation can be expressed as programs that propagate change in response
to external stimuli. For example, with:

Graphical user interfaces (GUIs), interface elements update in response to user input,

e.g., mouse movement.

Spreadsheets, cells that are related via (potential cyclic) references update whenever the

user modifies their contents.

Circuits, input signals propagate through interconnected electrical components.
We could model these phenomena with mutable state. The resulting program would then
bear the responsibility of orchestrating how the different pieces of state change in response
to the outside world. However, by doing so, we would lose the benefits of composability, a
hallmark of the functional style of programming [17].

Functional Reactive Programming (FRP) [6] purifies this stateful situation by modeling
values that react with the outside world as signals:

type Signal a = Time -> a

That is, a signal of some arbitrary type a is a time-varying value, i.e., a function from time
to a. For example, an electrical pulse that we might measure using two states, on and off,
could be represented as a Bool. In an FRP setting, this pulse would be represented as a type,
Signal Bool, a function describing how the pulse changes over time.

Within FRP, there are a multitude of approaches and variations to address implementation
concerns such as space efficiency or design constraints such as modeling discrete versus
continuous time and static versus dynamic dependencies between components. In this work,
we focus on arrowized FRP, which uses the arrow abstraction of Hughes [16], a generalization
of composable computation. These arrows take the form of signal functions in arrowized
FRP, i.e., transformers over signals:

type SF a b = Signal a -> Signal b

For example, a function not that inverts an electrical pulse would have the type SF Bool Bool,
a signal function that takes a Boolean signal as input and produces a Boolean signal as
output.

Some of these signal functions, like not, transform our time-varying values directly. Other
signal functions are higher-order signal functions which take other signal functions as input
and produce them as output. These signal function combinators allow us to build up
more complex signal functions from simpler ones. The most common of these is function
composition, traditionally written in the arrow style as the binary operator (>>>):

(>>>) :: SFab->SF bc->S8Fac

£ >>> g is the composition of signal functions £ and g where the output of £ (of type b) is fed
into g as input. The resulting signal function takes an input for £ (of type a) and produces
an output from g (of type c) as its result. Other common signal function combinators that
we will use in the subsequent sections include:
The split operator (¥**) :: SF a b -> SF ¢ d -> SF (a, c) (b, d) which takes two in-
put signal functions f and g and creates a signal function whose inputs and outputs are
pairs drawn from f and g.
The fanout operator (&&&) :: SF a b -> SF a ¢ -> SF a (b, c¢) which takes two input
signal functions f and g that take a common input type a and creates a new signal
function that pipes its input independently through both f and g and produces their
outputs as a pair.
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3 Introducing Reactamole

In this section, we give a brief summary of REACTAMOLE and its uses. Note that many of the
REACTAMOLE primitives discussed in this section are further explained later in the paper.

Klinge, Lathrop, and Lutz [20] regarded a chemical reaction network as a device that
transforms an input signal into an output signal. The authors defined an input/output
chemical reaction network (I/0 CRN) to be a CRN with some species reserved as “inputs”
that can only be used catalytically and some species labeled “outputs.” These I/O CRNs
are literally signal functions in the functional reactive programming sense. As a result, I/O
CRNs are specified using the arrow combinators that we introduced in Subsection 2.2. Below,
we demonstrate the expressive power of these arrowized I/O CRNs.

We begin with I/O CRNs that produce real numbers. Since species concentrations are
non-negative, we encode a real number as the difference between two species. (This is a
common technique and was used to show that CRNs are equivalent to the general purpose
analog computer (GPAC) [13]). Thus, a real-valued signal z(t) is encoded as z " (t) — =™ (¢)
where X and X~ are two species.

One of the simplest I/O CRN operations is the integrator. An integrator takes a real-
valued signal z(t) and produces the real-valued output signal y(t) = fot z(s)ds + yo. In
REACTAMOLE, we provide an integrator as an I/O CRN primitive:

integrate :: Double -> CRN Double Double

integrate is a function that takes a real-valued parameter yo and returns a signal function
that performs integration. The parameter yo corresponds to the constant y(0) in the solution
to y(t). We implement the integrate function, with parameter yo, using an I/O CRN
consisting of the three reactions:

xt L xt 4yt X s X4y~ Yty —50

The third reaction is an annihilation reaction that has no effect on the encoded value of
y(t) but ensures that concentrations of Y+ and Y~ remain close to zero. We can verify the
correctness of the above CRN by examining the induced ODEs according to the law of mass
action:
dy™
dt

dy~
T Wty
4 vy, dt €z )
Since the functions are dual-rail, we know that x(t) = 2*(t) — 2~ (¢t) and y(t) =y (t) —y~ (t).
Thus, we can rewrite the above ODEs in terms of = and y directly:
dy dyt  dy” L

—_ - = = — =x.

dt — dt dt

By integrating both sides, we obtain the solution y(t) = fg x(s)ds + yo.
Other primitives we implement in REACTAMOLE include the following.
neg :: CRN Double Double performs numerical negation by reversing the roles of X+ and
X~. Note that this primitive does not generate additional reactions. Instead, it simply
reinterprets the output species of the CRN.
id :: CRN a a, the identity signal function, produces its inputs as outputs without
modification.
projl :: CRN (a, b) a and proj2 :: CRN (a, b) b take pairs of signals as inputs and
project out the individual components of those pairs as output.

DNA 27
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Figure 1 Visual representation of the arrowized sin implementation.

dup :: CRN a (a, a) produces a pair where each component is a “copy” of the input.
However, in reality, we don’t make a copy of the input species. Multiple consuming CRNs
can use the components of the resulting pair because I/O CRNs are catalytic in their
inputs.

loop :: CRN (a, c) (b, c) -> CRN a b creates a feedback loop where the second compo-
nent of the output of the CRN is given to itself as input.

Using these primitives, it is already possible to specify complex signals such as sine and
cosine. We can define sin in the following way which is also illustrated in Figure 1:

sin :: CRN a Double
sin = loop (proj2 >>> neg >>> integrate 1 >>> integrate 0 >>> dup)

This definition exploits the fact that the sine function satisfies the second-order differential
equation x”(t) = —xz(t). Since the output of sin does not depend on its input, the type
signature of sin has an abstract input type a, meaning that it can receive any input. The
loop combinator creates a feedback loop that allows the signal z(t) to depend on itself. Since
sin uses two applications of integrate, REACTAMOLE generates the following six reactions:

Xi s X+ X5 X5 X+ X X4+ X7 =50
X7 —— X, + X} Xy —— X5 + X1 Xi+X; ——0

We can verify the correctness of the sin definition by observing that the ODEs associated
with the reactions satisfy

dey dei  deoy _ dre dri dry

T @ a S = T a a S
and therefore 1 (t) = sin(t) and za(t) = cos(t).

We now turn our attention to I/O CRNs that produce Booleans. Similar to real numbers,
we encode a Boolean signal using a pair of species (X, X) while maintaining the invariant
that x(t) + T(t) = 1. When species X is high, the Boolean is interpreted as true; similarly,
when X is high, the Boolean is interpreted as false.

The elementary Boolean signal functions in REACTAMOLE are not :: CRN Bool Bool and
nand :: CRN (Bool, Bool) Bool. Similar to neg, the not signal function “crosses the wires”
of X and X without adding any additional species or reactions. The nand signal function
consists of five reactions, using the implementation provided by Ellis, Klinge, and Lathrop [7]
and visualized in Figure 2.

Using these two primitives, we can define the other elementary gates as follows.
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2y+7 — 3y Q
X1 ———— y+2y — 3y
x1+x2+y > x1+x2+7 [—y
X2 —— X1+§ —>x1+y . 0
o L - - R —
X2+y—> x2+y —]

Figure 2 REACTAMOLE nand and srLatch implementations.

or, and, nor, xor, xnor :: CRN (Bool, Bool) Bool
or = (not *** not) >>> nand

and = nand >>> not

nor = or >>> not

xor = (nand &&& or) >>> and

Xnor = xXor >>> not

Note that not does not introduce additional overhead, so the signal functions or, and and
nor are no more complex than nand.

We can also use the loop combinator to create sequential logic gates such as a set-reset
latch which is visualized in Figure 2.

srLatch :: CRN (Bool, Bool) (Bool, Bool)
srLatch = loop (crossWires >>> (nand *** nand) >>> dup)

Here, crossWires is a simple signal function that “rearranges the wires” so that the outputs
are looped back into the appropriate nand gates. Since srLatch has two Boolean inputs and
is implemented with two nand gates, the resulting I/O CRN consists of eight species and nine

reactions!.

Finally, we can create signal functions that employ both real-valued signals and Boolean
signals. For example, we include a primitive isPos :: CRN Double Bool that tests if a real-
valued input is positive. Note that isPos is a continuous approximation of a discontinuous
function, so its Boolean output is undefined if the input signal is close to zero.

Using isPos and the previously defined sin signal, we can easily create a clock signal
that could be employed in clocked sequential circuits.

clock :: CRN a Bool
clock = sin >>> isPos

! REACTAMOLE automatically optimizes the final I/O CRN by combining reactions together when possible.
Thus, srLatch consists of nine reactions instead of ten because two reactions can be safely combined
into one without affecting the underlying ODEs of the CRN.

10:7
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-- Algebraic structures

(>>>) :: CRNab->CRNbc->CRN ac -- Switching

(*%%x) :: CRN a b -> CRN ¢ d -> CRN (a, c) (b, d) (+++) :: CRN a b -> CRN ¢ d
(&&&) :: CRN a b -> CRN a ¢ -> CRN a (b, c) -> CRN (Either a c)
first :: CRN a b -> CRN (a, c) (b, c) (Either b d)
second :: CRN a b -> CRN (c, a) (c, b) (I1l) :: CRNac ->CRN b ¢
-- Booleans -> CRN (Either a b) c
not :: CRN Bool Bool left :: CRN a b

nand :: CRN (Bool, Bool) Bool -> CRN (Either a c)
arriBl :: (Bool -> Bool) -> CRN Bool Bool (Either b c)

-- Reals right :: CRN a b

integrate :: Double -> CRN Double Double -> CRN (Either c a)
neg :: CRN Double Double (Either c b)
add :: CRN (Double, Double) Double entangle :: CRN (Bool, (a,b))
mult :: CRN (Double, Double) Double (Either a b)
isPos :: CRN Double Bool

Figure 3 Functional reactive molecular programming core combinators.

4  Functional Reactive Molecular Programming

The following equivalences form the heart of the functional reactive molecular programming
(FRMP) style epitomized by REACTAMOLE:

Signals, time-varying values, are interpretations of collections of species’ concentrations
as values.

Signal functions are typed chemical reaction networks, a CRN equipped with extra
information identifying the species that serve as the inputs and outputs to the function.

Higher-order signal functions, i.e., signal functions that take other signal functions as
input, are CRN transformers which produce new CRNs from old ones.

Furthermore, we take inspiration from the arrowized FRP approach of Hughes and thus
specify the constructs of FRMP as a collection of combinators, higher-order signal functions
that users combine to build more complex CRNs from smaller ones.

The heart of FRMP is a compilation pass that transforms these FRP combinators into
a CRN that realizes the computation in (abstract) chemistry. We augment the output
CRN with species tags, additional static information necessary for interpreting the relevant
species of the CRN as inputs and outputs to the computation. We call the combination of
a CRN with its species tags a typed chemical reaction network, formally, a tuple of a CRN
N and species tags describing how to interpret its inputs and outputs, written (N, p™, p°ut).
We represent the compilation process as an interpretation function over signal functions
[f] = (N, p™, p°'t) which denotes that signal function f compiles to typed CRN (N, p™", p°Ut).

In the following section, we describe this translation for our core combinators. We
organize the various combinators by the types that they operate over, recalling that the type
CRN a b represents a CRN (dually, a signal function) that takes a signal of type a as input
and produces a signal of type b as output. Figure 3 gives an overview of these combinators
by category.?

2 'We approximate real values using finite-sized Haskell Double values.
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Species Tags and Signals

We provide one tag for each possible type that we can represent in our implementation. The
tags identify the type of signal that the CRN outputs as well as the relevant species that
encode that signal.
The unit signal tag, (), represents a signal that generates the unit value. This is an
arbitrary, unique value of that type (written as () in Haskell) that acts effectively as a
constant that carries no information. Because of this, a unit signal will not be acted on
by any reactions and thus does not need an explicit runtime representation in a CRN.
A Boolean signal tag, (X, X), denotes a Boolean value represented by a pair of species X
and X in a dual-rail construction based on Ellis et al.’s method [7]. These species exhibit
an inverse relationship maintained by the constructed CRN as an invariant — when one
species has a high concentration, the other has a low concentration. The two species in
this dual-rail construction represent True and False, respectively.
A real number tag, (X, X ™), denotes a real value represented by a pair of molecules
Xt and X, where we take the value of the real to be the difference between the
concentrations of X+ and X .
A pair signal tag, (p1,p2), denotes the “gluing” together of two signals that operate
independently of each other. The components of the tag pair are the tags of the individual
signals.
An either signal tag, (X, X, p1,p2), represents a time-varying discriminated union used
in FRMP to achieve dynamic switching. Such a signal is made up of a Boolean signal
indicated by species X and X as well as two component signals with tags p; and pa. The
Boolean species indicates which of the two signals is currently active.

4.1 Algebraic Structures

The core of FRP is composing signal functions together. Suppose that we compose together
two signal functions, written £1 >>> £2. In FRMP, this amounts to composing the two I/0
CRNSs representing £1 and £2, call them N7 and Ns, respectively, by feeding the outputs of
N as inputs to No. Because the input species of I/O CRNs are catalytic, i.e., the net rate of
the input species to Ny and N, is zero, we achieve composition by simply taking the union
of the species and reactions of each CRN (L) and then substituting all the input species of
fo with all the output species of f; in the resulting CRN, written [pSUt — pif].

[AD = (N1, o, 52
[f2] = (N2, p}', p3).
This is safe because N2 has no observable effect on the outputs of V.

The only caveat we must consider is that the species of the two CRNs are disjoint.
Otherwise, unioning their reactions might cause unintended side-effects to their rates. We

[f1>>> fo] = ([p3"F = pI](Ny U Ny), piM, pstt) where

guarantee this by ensuring that species names are disjoint between CRNs via renaming
whenever combining CRNs in this fashion. This is analogous to the notion of a-equivalence
in programming languages, where programs are considered equivalent up to renaming of
their bound variables.

As a simple example of composition, consider f; = (N1, (X, X7), (YT, Y 7)) and fo =
(N3, (AT, A7), (B*, B™)) where Ny is the network:

xtyxtyyt X x4y vrtay 50,

and Ns is the network:

10:9
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At LAty Bt A- A4 4+B BY+B —0.

Ni and Ny each independently perform an integration of their arguments. The composition
of these two CRNs f; >>> fo = (N3, (X, X ™), (B*, B™)) where Nj is the network:

Xt xtyyt X a x4y viay 50

vt syttt vy vy +B-  Bt+B 0.

N3 is precisely the union of the reactions of N; and Ns but with the input species of Ns,
A' and A~ replaced by the output species of N1, Y+ and Y. Observe that, by virtue of
composing two integration functions together, N3 performs two integrations on its input.

Aggregate data types are represented in REACTAMOLE through product types, i.e., tuples.
The elements of tuples are, by definition, independent values. Because we maintain disjointness
of species names between CRNs, we form tuples by taking the union of these CRNs directly.
The split operator between two CRNs, written £1 *x* f£2, unions the species and reactions of
the two input CRNs together and creates a new output species tag that identifies the output
of the CRN as a tuple.

[[flﬂ = (Nlﬁp_ilnvpcl)m)
[[fQ]] - (NQapl2nvpC2)Ut)'

For our examplev Hfl Hkx fZ]] = (N47 ((X+7 X7)7 (AJrv Ai))a ((YJF, Y7)7 (BJra Bi))) where Ny
is simply the union of the unmodified reactions from Ny and Ns.

[f1 %%+ fo] = (N1 U No, (piln’pi2n)7 (p(l)mapgm)) where

In contrast, the fanout operator between two CRNs, written £1 &&& £2, transforms two
CRNs that expect the same input type into a single CRN that sends a single input to the
two CRNs. The operator has type (&&&) :: CRN a b -> CRN a ¢ -> CRN a (b, c). We can
implement the fanout operator in terms of composition, split, and a dup combinator that
produces a signal pair where each component is simply the input species.

[aup f] = (N,p", (p°**, p°)) where [f] = (N, p", p°*).

We can then define fanout directly as f &&& g = dup >>> (f **x g). Again, this is all safe
because CRNs are catalytic in their inputs. Thus, the duplication of the input signal will
not lead to interfering behavior between f and g.

Finally, we can also create CRNs that involve feedback, i.e., the CRN depends on its own
output, with the loop combinator. To understand how loop is implemented, it is useful to
first analyze its type:

loop :: CRN (a, c) (b, c) -=> CRN a b
loop takes in a CRN that expects a pair signal and produces a pair signal. The result is a new
CRN where the second component of the input pair is “patched” by the second component

of the output pair, both of type c. This leaves behind a CRN that expects an a as input and
produces a b as output.

[1o0p f] = ([p2"* + PIN, pi, p2™) where [f] = (N, (2, pI), (p9™, p2"))
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4.2 Booleans

Booleans in FRMP are represented by a dual-rail encoding, where one species indicates the
True value and the other False. These species exhibit a strictly inverse relationship (i.e.,
when one has a low concentration the other has a high concentration) and the value of
the Boolean is given by the high species. This dual-rail construction is based on Ellis et
al.’s method [7] and is necessary for the result to be measurable by reporter molecules in a
biological system, since it is difficult to detect the absence of a species.

Boolean Negation

FRMP supports negation through a reinterpretation of this Boolean encoding. Negation is
achieved by swapping the Boolean value that each dual-rail chemical species represents. This
allows for efficient negation in a manner that does not require creating an additional CRN.

[not b] = (N, p", (X, X)) where [b] = (N,p", (X, X))

NAND and Other Logic Gates

The foundation for FRMP’s support of Boolean circuits and functions is the robust NAND
gate introduced by Ellis et al. [7], as shown in Figure 2. This gate is included as the signal
function nand :: CRN (Bool, Bool) Bool. All other basic logic gates are implemented using
nand along with neg as described in Section 3.

Lifting

We can also lift (i.e., translate) arbitrary pure Boolean functions into CRNs, which allows
us to write Boolean functions in a more natural style, e.g., with variables and conditionals.
This is possible because any Boolean function can be represented by a finite number of gates.
For example, consider the following Haskell function which determines if a decision between
three parties is unanimous:

unanimous :: Bool -> Bool -> Bool -> Bool
unanimous x y z = if x then (y && z) else not (y || z)

We can lift this function into a CRN using the three-input lifting function:3

arr3Bl :: (Bool -> Bool -> Bool -> Bool) -> CRN (Bool, Bool, Bool) Bool

arr3Bl unanimous produces a CRN that computes unanimous. This CRN is constructed using
a series of signal function gates that mirror the given Haskell function’s sum of products. The
sum of products is found by first constructing a matrix of all possible combinations of inputs
to the Haskell function and the resulting outputs. All instances with output value False are
then filtered out, and the signal function is then constructed using the corresponding series
of AND, OR, and NOT gates that represent the sum of products given by the matrix. This
lifting process is a useful mechanism to quickly create a complex CRN directly from Haskell
code.

3 The name arr comes from the Haskell Arrow typeclass that defines arr as its own lifting function.
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4.3 Real Numbers

We have already demonstrated our ability to compute over real numbers with CRNs in Sec-
tion 3. For example, the integrate and sin signal functions correspond to straightforward
CRN implementations. The neg combinator is a simple reinterpretation of the input CRN’s
species tag because X — Y = —(Y — X):

[neg £] = (N, p", (X~, X)) where [£] = (N,p", (X*,X7))

What about other operations, for example, adding together two real signals? It turns out
that we cannot craft a CRN that captures the addition of two abstract real signals. But, in
our deterministic context, we know that a CRN can be interpreted as an ODE describing
the rates of change of each of the species in the system. Under this interpretation, addition
of real signals is precisely addition of their respective ODEs.

However, this implementation strategy is fundamentally different than the other CRN
operations we have discussed so far. Unlike integrate, which treats its input signal as a black
box, performing addition and multiplication requires knowing the input signal’s ODEs in order
to be exact. To prevent unnecessary dependencies, the add :: CRN (Double, Double) Double
and mult :: CRN (Double, Double) Double signal functions in REACTAMOLE are implemented
lazily. This means that the creation of new species and reactions is delayed until absolutely
necessary. In fact, when adding or multiplying real-valued signals, the intermediate sum or
product species may be optimized away entirely. For example, in Section 5, we construct a
CRN using one application of add, two applications of mult, and one application of integrate,
which only generates one pair of species and five reactions. (See Figure 4 for more details.)

Currently, our approach to FRMP does not support lifting real-valued functions to CRNs.
However, a large class of functions are known to be produced by analog computers [3], and
new techniques are emerging for lifting various real-valued functions to CRNs [12]. We hope
to incorporate these ideas into FRMP in the future.

4.4 Switching

An important capability of a functional reactive program is changing the topology of its
components at runtime, i.e., dynamically switching between different signals. A simple way
to encode the behavior is through a conditional, if ¢ then s; else so, where s; and sy are
arbitrary signals and ¢ is a Boolean signal. As ¢ transitions between truth values, the overall
conditional signal transitions between s; and s. From Subsection 4.1, we know that we can
carry t, s1, and sg as a triple of signals. We give this aggregate signal the type Either a b,
where a and b are the types of s; and so, respectively. This choice of type comes from the
Either type in Haskell which encodes a discriminated union — a pair of potential values with
a tag that says which of the two values are present.

However, because the reactions of a CRN are fixed at compilation time, we don’t have
a built-in mechanism by which a consuming signal can “change” its reactions to go from
consuming s; to consuming s» during runtime. To solve this problem, we then entangle the
components of the Either signal, ¢, s1, and sz, to produce a single signal with our desired
conditional semantics. The entangle :: CRN (Bool, (a,b)) (Either a b) signal function
creates these entanglements and the fanin operator creates a signal function that merges two
entangled values into one. The fanin operator has the following type signature:

(Ill) :: CRN a ¢ => CRN b ¢ -> CRN (Either a b) c
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£1 |11 £2 takes two signal functions that take arbitrary types a and b as input and produce
a common output type c. Fanin will join the signal functions f; and f5 into an Either signal
and then merge their outputs to produce a unified signal of type c. The Boolean component
of the Either signal then controls whether the output signal is generated from f; or fs.

This is necessarily a type-directed process; how we combine s; and s5 depends on their
encodings and thus their types. For example, consider the case where s; and s9 are both
Boolean signals. We can now combine our Either signal by observing that:

if ¢ then sy else 55 = (t A sy) V (T A s2).

We can also entangle Either signals when s; and so are real signals. To do so, we observe a
similar equation for reals, recalling that the Boolean signal ¢ is really a pair of species, b and
b, interpreted in a dual-rail style:

if (b,b) then s, else so ~ b- 51 + b - so.

Note that because b and b only approximate 0 and 1, the resulting signal is an approximation
of the appropriate output of either s; or so. Such an approximation is necessary because a
CRN cannot have a discontinuity in its solution. Finally, with primitives defined, we can
entangle aggregate signals such as pairs by simply entangling their components and then
pairing together the resulting signals.

Below is a definition of a rectify, a signal function that passes through only the positive
component of a signal.

rectify :: CRN Double Double
rectify = isPos &&& dup >>> entangle >>> (id ||| constRl 0)

Here, the sub-expression id ||| constR1l 0 defines a signal function that is either the identity
function or the constant zero. Thus, rectify is a signal function that behaves like the identity
function if the input is positive and otherwise behaves like the constant zero.

The Reactamole Implementation

REACTAMOLE is an implementation of this approach to functional reactive molecular pro-
gramming as an embedded domain-specific language (eDSL) within Haskell.* By embedding
REACTAMOLE in Haskell, we can take direct advantage of Haskell’s existing facilities —
language constructs, the type system, and its tooling support — in developing CRNs. To
maximize the benefits of this embedding, we choose a different, yet equivalent, adaption of
FRP into CRNs. We define signal functions to be genuine Haskell functions between signal
values, i.e., data SF a b = SF (Signal a -> Signal b), where the Signal type corresponds
to a CRN. This change in encoding allows us to use Haskell’s rich higher-order programming
facilities to be able to express combinators more concisely. For example, consider the com-
position of two CRNs with the composition operator £1 >>> £2. In REACTAMOLE, because
£1 and £2 are now Haskell functions, the composition operator between CRNs is simply the
composition operator between Haskell functions, (.).

(>>>) :: SFab->SF bc->S8Fac
(SF £) >>> (SF g) = SF (g . f) -- N.B., (.) composes right-to-left

Other combinators enjoy simpler implementations than what was presented in this section
due to the embedded nature of REACTAMOLE.

4 REACTAMOLE is available at https://github.com/digMP/haskell-reactamole.
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Figure 4 Visualization of the low-pass (left) and band-pass (right) filters in REACTAMOLE. The
boxes containing constants a, b, and ¢ correspond to constant multiplier signal functions.

5 Case Study: Amplitude Modulation

We now demonstrate REACTAMOLE’s expressiveness via a case study: implementing chemical
reaction networks to perform amplitude modulation [19]. Amplitude modulation (AM) is a
common technique for sending multiple signals through a shared medium. Intuitively, an AM
modulator combines a signal u(t) with a sinusoidal carrier signal s(t) via multiplication. Many
signals w1 (t), us(t), ... can then be simultaneously transmitted through a shared medium
m(t) by superimposing the modulated signals. In CRNs, modulated signals need only be
added into a single signal, represented by a pair of species (M ™, M ™). This is analogous to
radio stations transmitting modulated signals at specified frequencies, which all combine in
the atmosphere.

We previously saw how to specify a sine wave in REACTAMOLE. It is not difficult to
extend this example in order to generate a carrier signal with a given frequency. We first
define a helper signal function called constMult that multiplies a signal by a constant.

constMult :: Double -> CRN Double Double
constMult d = (constRl d &&& id) >>> mult

Here, constR1l d produces a signal function CRN a Double that ignores its input and emits a
signal with the constant d. Using constMult, we can now specify a CRN that generates a
sine wave with a given frequency.

carrier :: Double -> CRN a Double

carrier w = loop (proj2 >>> constMult (-w) >>> integrate 1
>>> constMult w >>> integrate 0
>>> dup)

Note that this implementation is nearly identical to that of sin, defined in Section 3.
However, by adding the constant multipliers, carrier 5 will produce a signal s(t) = sin(5t¢).
The constant w is incorporated into the rate constants of the reactions, so carrier w also
consists of four species and six reactions.

One common component used to implement AM modulation and demodulation is the
low-pass filter. A simple first-order low-pass filter is realized by integrating the sum of the
input and output multiplied by specific parameters a and b, as shown in Figure 4. By
choosing the appropriate parameters, we can generate a low-pass filter with a specific cut-off
frequency. For example, if we choose a to be 0.0001, then the cut-off frequency will be 0.01
radians per second. The low-pass filter presented in [19] can be specified as follows:

lowPass :: Double -> Double -> CRN Double Double
lowPass a b = loop (constMult a *** constMult (-b) >>> add >>> integrate 0 >>> dup)
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The I/O CRN generated by lowPass a b consists of the following five reactions:

Xty Xt gyt vt syt vy

X~ -5 X 4+Y~ y- Ly 4yt Yt4+Yy™ —50

where (X+, X ™) comprise the input signal. The CRN satisfies the ODE % = ax — by where
y(t) =y () -y~ (1) and a(t) = (1) — 2 (¢).

Another common AM component is the band-pass filter, which can be used to select a
specific carrier frequency from the medium species and attenuate all other carrier signals
present in the medium species. Below is the implementation of the band-pass filter presented
in [19], which is also included visually in Figure 4.
bandPass :: Double -> Double -> Double -> CRN Double Double
bandPass a b ¢ = loop (first (constMult a)

>>> second (constMult (-c) &&& (integrate O >>> constMult (-b)) >>> add)
>>> add >>> integrate 0 >>> dup)

The I/O CRN generated by bandPass a b c consists of the reactions

Xt xt4yt Zt szt vy
X5 X +Y"™ 7- b gyt
y+t Loyt gt Yyt s ytay- Zt+ 77 150
vy sy 42z Yo sy 4yt Yty —50

and satisfies the ODEs % = ar — bz — cy and % = y. Note that the species (ZT,Z7) are
internal species to the I/O CRN that are not communicated in its output.

We now show how to modulate and demodulate signals using a carrier frequency. We
use the technique in [19] that has the medium species M+ and M~ and can be specified in
REACTAMOLE with:

modulate :: Double -> CRN Double Double
modulate w = loop (first (id &&& carrier w >>> mult)
>>> second neg >>> add >>> integrate 0 >>> dup)

Here, modulate f produces a pair of species representing the medium m(t) that satisfies
dm — w(t) - sin(ft) — m(t) where u(t) is the input signal. Klinge and Lathrop [19] also
proposed a method to superimpose multiple modulated signals through a single medium
m(t), which can be easily accomplished in REACTAMOLE with add :: CRN Double Double.

Given a signal m(t) that may carry several modulated signals, we now use the same
methods in [19] to retrieve a signal. A simple AM demodulator is realized with a band-pass
filter to select the desired carrier frequency followed by a function to pass only the positive
parts of the signal. A low-pass filter may then be used to remove the carrier frequency to
recover an approximation to the original signal.

We can use the bandPass and lowPass filters, along with rectify defined in Subsection 4.4,
to extract a signal from a desired carrier frequency.

demodulate :: Double -> Double -> CRN Double Double
demodulate w q = bandPass (w/q) (w/q) (w*w) >>> rectify >>> lowPass w w

Here, demodulate w q generates a CRN that demodulates a signal that has been modulated
on a carrier signal at frequency w. The parameter ¢ is used to determine the bandwidth of
the band-pass filter, which determines how close two different carriers may be in frequency.
Also note that low-pass and band-pass filters may be cascaded to create higher order filters
by composing them with the >>> combinator.
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6 Conclusion

REACTAMOLE unveils new possibilities for the future of molecular programming through
exploration of a novel paradigm for the field: functional reactive programming. The language
uses typed CRNs — CRNs with extra information about how their chemical species map to
Haskell types — to enable complex computation. In particular, REACTAMOLE introduces
combinators that allow for computation over basic primitives types as well as the safe
manipulation and composition of CRNs.

The representation of CRNs as signal functions in FRP allows for efficient construction
of a variety of CRNs using a minimal numbers of species. For example, the NOT gate
for Booleans and negation for real values are both achieved through “rewiring” of a signal
function (reinterpreting the species’ types) and do not require any additional chemical species.
This results in OR and AND gates that use the same number of species as the NAND gate
they are built from. Additionally, the use of ODEs to represent CRNs enables addition for
some CRNs. We also provide a formal construction of the representations of various Haskell
types as CRNs, including Booleans, Reals, Pairs, and Eithers. All of these features make
REACTAMOLE a useful tool for safe, robust and automated construction and composition of
CRNSs for a variety of uses.

Future Work

There are four main areas for further improvement that we hope to pursue for REACTAMOLE.
First, there is potential for expanding REACTAMOLE’s lifting support, including optimizing
the construction of lifted Boolean functions, enabling lift for multi-output Boolean functions,
and adding support for lifting certain real functions using Either. Lifting for reals will require
some constraints, as it is not possible to lift real functions whose input signals are not known.

We would also like to improve the handling of approximations and delays. Currently,
nand and Either are approximations because there is some unavoidable delay when working
with chemical reactions. In the future, it would be helpful to build out support for tracking
approximation margins and specifying additional guarantees. Similarly, composing NAND
gates propagates delay and this is currently not controllable by the user because the rate
constants are hard-coded. Ellis et al. specify a method for converting a 7 value to a rate
constant [7] which could be leveraged to allow the user to specify a rate constant for the
NAND gates in REACTAMOLE.

It would also be useful to expand the back-end options for REACTAMOLE. Currently, the
language interacts directly with MATLAB to simulate CRNs, but this could be expanded
by allowing options to export to other tools, such as SimBiology, or through building an
embedded ODE solver.

Finally, REACTAMOLE may be a good candidate for a standalone language. In particular,
we can move beyond the limitations of Haskell and specialize the language features to
the molecular programming setting. With this change, we can consider adding a strong,
linear temporal logic-based type system to REACTAMOLE to capture fine-grained correctness
properties of our CRNs [18]. Such a type system can, in turn, enable the efficient automatic
generation of CRNs from specification, i.e., program synthesis [11].
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A Haskell

Haskell is a statically-typed, lazy, pure functional programming language [21] used both in
industry for its strong correctness guarantees and in academia as a testbed for programming
languages research. REACTAMOLE is an embedded domain-specific language [15] within
Haskell and as such, writing programs in REACTAMOLE is equivalent to writing Haskell
programs. Through this embedding, REACTAMOLE enjoys the benefits of Haskell’s strong
static type system to ensure the well-formedness of chemical reaction networks. Here we review
the salient features of Haskell necessary to understand our presentation of REACTAMOLE.

A.1 Bindings and Type Signatures

Like other languages, a Haskell program is composed of a collection of top-level bindings,
usually function declarations. For example, here is a function that computes a simple numeric
result:

cToF :: Double -> Double
cToF ¢ = ¢ * 9.0/5.0 + 32

A binding typically possesses a type signature associated with it that describes the static
type of the value bound to that name. In this example, the binding cToF has a function type
Double —-> Double. The type of value that cToF takes as input is given to the left of the arrow
(->) and the type of its output is given to the right of the arrow. Here, cToF is a function
that takes a Double as input and produces a Double as output. If a function takes multiple
inputs, we separate each input type by an arrow. For example, the less-than comparison
operator has the (simplified) type (<) :: Int -> Int -> Bool. In other words, less than is a
function that takes two arguments, both Ints, and produces a Bool as output.

The definition of the binding follows the type signature. Above, we declare cToF as a
function, specifying the parameter to the function c after the binding’s name but before the
equals sign. The function body is a single expression (¢ * 9.0/5.0 + 32) whose resulting
value is returned when the function is evaluated.

A.2 Polymorphism

Haskell’s rich type system allows the programmer to write down functions that take values
of any type, a feature called parametric polymorphism. This is commonly implemented as
generic types in other languages, such as Java or C#. In Haskell, any name that appears in
a type signature that starts with a lowercase letter is assumed to be a type variable. For
example, this binding:

id :: a -=> a
id x = x
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implements the identity function that takes a value of some arbitrary type a and returns a
value of that same type. id can be passed any value and the type variable a is instantiated
to the type of that value, e.g., id 5 instantiates the a to be Int.

Type variables also commonly appear as arguments to other types. The canonical example
of such a parameterized type is the list type, written [al, which corresponds to values that
are lists whose elements are all of type a. More commonly, you will see parameterized types
like the standard data type Maybe a, which is, conceptually, a box that potentially contains a
value of type a.

A.3 Functions as Values

Finally, an important concept when working in the abstract setting of functional reactive
programming is functions as first-class values. Functions can be passed as input to other
functions and produced as output. An example of such a higher-order function is the

composition operator (.) which operates analogously to mathematical function composition.

We can use composition to “glue” together functions, sending the outputs of one as the
inputs of another. For example, here is a simple function that defines is0dd by composing
an even-testing function and Boolean negation:

isEven :: Int -> Bool
isEven x = x ‘div’ 2 ==

isOdd :: Int -> Bool
is0dd x = (not . isEven) x

Note that the output of (.) here will be a function that takes an Int, feeds it through
isEven, then takes that resulting Bool and feeds it through not. However, because this result
is a function, it is superfluous to write the argument x in the definition of is0dd because all
we do is pass it to the result of the composition. Instead, we can define is0dd directly in
terms of the composition:

is0dd’ :: Int -> Bool
is0dd’ = not . isEven

When a function is defined directly without the need to reference its argument, we call such
a function point-free. Much of the code we write in REACTAMOLE consists of manipulating
polymorphic function-like objects in this higher-order, point-free style.

A.4 Example: Interpreting Functional Reactive Code

As an example of applying these concepts toward understanding REACTAMOLE code, let us

revisit the sin function from Section 3 and analyze how its type relate to its implementation.

sin :: CRN a Double
sin = loop (proj2 >>> neg >>> integrate 1 >>> integrate 0 >>> dup)

In doing so, we will effectively walk through the process of type checking the code, ensuring
that the implementation of sin is consistent with its stated type.

Immediately, we can see that sin is defined in terms of a call to the loop function which
has type loop :: CRN (a, c) (b, ¢) -> CRN a b. Without understanding the particulars of
loop, we can see that loop takes a CRN as input and produces a CRN as output. This is
good because sin is suppose to be a CRN! Furthermore, we can observe that the type of sin
is CRN a Double and the output type of loop is CRN a b. This means that the type variable b
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will be instantiated to Double. Consequently, this means that the output of loop has type
CRN a Double, which is consistent with the declared type of sin. Now, we must check that
the value passed to loop has type CRN (a, c) (Double, c), i.e., a CRN that takes a pair of
an a and a ¢ as input and produces a pair of a Double and a c as output.

Next, let’s look at the argument to loop and work through its type. The composition
operator (>>>) has type:

(>>>) :: CRBN a b -> CRN b ¢ -> CRN a c

Intuitively, we can think of (>>>) as chaining together the output of one CRN of type b with
a CRN expecting that same type as input. The result is a CRN that takes as input the
intended input of the first CRN and produces as output the intended output of the second

CRN.
Furthermore, (>>>) is left-associative, so the argument is really parenthesized as:

((((proj2 >>> neg) >>> integrate 1) >>> integrate 0) >>> dup)

Because of this, we first look at the type of the CRN produced by proj2 >>> neg. proj2 and
neg have the following types:

proj2 :: CRN (a, c) ¢

neg :: CRN Double Double
The composition operator feeds the output of proj2 as the input of neg, and so it must be
the case that the type variable c is instantiated to Double. Therefore, the type of the overall
subexpression is:

proj2 >>> neg :: CRN (a, Double) Double

In other words, so far, we have a CRN that takes a pair of an unknown type a and a Double
as input and produces a Double as output.
Next, we compose this CRN with the CRN produced by integrate of type

integrate :: Double -> CRN Double Double

In other words, integrate is a function that, when given a Double, produces a CRN that
takes a Double as input and produces a Double as output. Thus, the expression integrate 1
has type CRN Double Double. If we compose this CRN with proj2 >>> neg, we obtain a CRN
with type:

proj2 >>> neg >>> integrate 1 :: CRN (a, Double) Double

Furthermore, chaining the second integrate call preserves this type, yielding:

proj2 >>> neg >>> integrate 1 >>> integrate O :: CRN (a, Double) Double

Now we need to compose this whole expression with the last call in the chain, dup. The
function dup has type dup :: CRN d (d, d) for some unknown type d. When we compose
this with our result, we take the output of our built-up expression, Double, and feed it to dup.
This leads to a final type for the sub-expression of loop:

proj2 >>> neg >>> integrate 1 >>> integrate 0 >>> dup
:: CRN (a, Double) (Double, Double)

Finally, we need to reconcile this type with loop. Above, we determined that loop expects
a value of type CRN (a, c) (Double, c). Through our derivation, we have concluded that
the argument has type CRN (a, Double) (Double, Double). Consequently, we know that the
argument type matches the expected type of the function as long as we instantiate c to
Double!
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