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Abstract
This paper develops nonasymptotic growth and concentration bounds for a product
of independent random matrices. These results sharpen and generalize recent work
of Henriksen–Ward, and they are similar in spirit to the results of Ahlswede–Winter
and of Tropp for a sum of independent random matrices. The argument relies on the
uniform smoothness properties of the Schatten trace classes.
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Foundations of Computational Mathematics

1 Motivation

Products of random matrices arise in many contemporary applications in the mathe-
matics of data science. For instance, they describe the evolution of stochastic linear
dynamical systems, which include popular stochastic algorithms for optimization such
asOja’s algorithm for streaming principal component analysis [31] and the randomized
Kaczmarz method for solving linear systems [39]. To understand the detailed behavior
of these algorithms, such as the rate of convergence, we may seek out methods for
studying a product of random matrices.

Unfortunately, the tools currently available in the literature are poorly adapted to
these circumstances. Indeed, an instantiation of a stochastic optimization algorithm
involves afinite product of finite-dimensionalmatrices, oftenwith a particular structure
(e.g., low-rank perturbations of the identity). But most existing theoretical results are
limit laws that require the number of factors in the product or the dimension of the
factors to tend to infinity. Furthermore, strong assumptions on the random matrices
(e.g., independent and identically distributed entries) are usually required.

This paper offers some new tools for studying random matrix products that arise
from stochastic optimization algorithms and related problems. The research is inspired
by the recent paper [21] of Henriksen andWard. Our hope is to replicate the successful
program for studying sums of random matrices, implemented in the works [1,32,41–
45]. In particular, we seek to develop methods that are flexible, easy to use, and
powerful. We also aspire to use transparent theoretical arguments that can be adapted
to new situations.

2 Contributions

To motivate our work, we start with an elementary concentration inequality for a
product of independent random numbers. We will generalize this bound, and others,
to the matrix setting.

2.1 Context: A Product of RandomNumbers Near 1

Consider an independent family {X1, X2, . . .} ⊂ R of bounded random variables that
satisfy

EXi = μ and |Xi − μ|2 ≤ b2 almost surely.

Form a product of random perturbations of 1, and compute its mean:

Zn :=
n∏

i=1

(
1 + Xi

n

)
and EZn =

(
1 + μ

n

)n = eμ · (1 − O(n−1)).

We anticipate that the random product Zn concentrates around its expectation EZn ≈
eμ.
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To check this surmise, we can use standard methods from scalar concentration
theory. For s > 0,

P
{
Zn ≥ (1 + s) eμ

} = P

{
n∏

i=1

(
1 + Xi

n

)
≥ (1 + s) eμ

}

≤ P

{
exp

(
1

n

n∑

i=1

Xi

)
≥ (1 + s) eμ

}

= P

{
1

n

n∑

i=1

(Xi − EXi ) ≥ log(1 + s)

}
.

The inequality follows from the numerical fact 1+a ≤ ea , valid for a ∈ R. Hoeffding’s
inequality furnishes the bound

P
{
Zn ≥ (1 + s) eμ

} ≤ exp

(−n log2(1 + s)

2b2

)
. (2.1)

At the small scale s ≤ e, in which case log(1 + s) ≥ s/e, the growth bound (2.1)
implies a subgaussian tail behavior:

P
{
Zn − EZn ≥ t eμ

} ≤ P
{
Zn − eμ ≥ t eμ

} ≤ exp

( −nt2

2e2b2

)
for t ≤ e. (2.2)

A similar inequality holds for the lower tail.

2.2 A Product of Random Perturbations of the Identity

We might hope that products of random matrices exhibit a similar behavior. Consider
an independent family {X1, . . . , Xn} ⊂ Md of d × d matrices that satisfy

EX i = A and ‖X i − EX i‖2 ≤ b2 almost surely. (2.3)

Here are elsewhere, ‖·‖ is the spectral norm, that is, the �2 operator norm. Form a
product of random perturbations of the identity and compute its mean:

Zn =
(
I + Xn

n

)
· · ·

(
I + X1

n

)
and EZn =

(
I + A

n

)n

≈ eA. (2.4)

Is it true that the spectral norm ‖Zn‖ is proportional to eμ, where μ = ‖A‖? Does the
random product Zn concentrate near its mean EZn?

These speculations are correct. Moreover, we can obtain bounds that parallel the
scalar inequalities announced in the last subsection. Here is one particular result that
follows from our analysis.
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Theorem 2.1 (Products of Perturbations of the Identity—Special Case) Consider an
independent family
{X1, . . . , Xn} ⊂ Md of random matrices that satisfy the hypotheses (2.3). Define
μ := ‖A‖. The matrix product Zn introduced in (2.4) satisfies the bounds

P
{‖Zn‖ ≥ (1 + s) eμ

} ≤ d · exp
(−n log2(1 + s)

2b2

)
when log(1 + s) ≥ 2b2/n;

P
{‖Zn − EZn‖ ≥ teμ

} ≤ max{d, e} · exp
( −nt2

2e2b2

)
when t ≤ e.

Theorem 2.1 follows from Corollary 6.1.
As compared with the scalar bounds (2.1) and (2.2), the results in Theorem 2.1

feature an additional dimensional factor d in front of the exponential. This term leads
to a dependency of log d in the bounds for products of random matrices. Otherwise,
everything is the same, including the constants.

2.3 Proof Strategy

Howmight one establish a result like Theorem 2.1? The derivation in Sect. 2.1 is valid
only for products of random scalars. We cannot even begin to make this argument for
matrices because the exponential of a sum of matrices generally does not equal the
product of the exponentials.

In this paper, we take a completely different approach. The key is to observe that
multiplying a random product Z ∈ Md by a statistically independent factor Y ∈ Md

creates a predictable change plus a random perturbation:

Y Z = (EY)Z + (Y − EY)Z.

Since the second term has zero mean, conditional on Z, we can exploit this orthogo-
nality property to estimate the size of the product:

E ‖Y Z‖22 = E ‖(EY)Z‖22 + E ‖(Y − EY)Z‖22
≤ ( ‖EY‖2 + E ‖Y − EY‖2 )(

E ‖Z‖22
) =: (1 + v)m2 · (E ‖Z‖22

)

The notation ‖·‖2 refers to the Schatten 2-norm, also known as the Frobenius norm.
The last step introduces data about the random matrix Y : the mean m = ‖EY‖ and
the relative variance v = E ‖Y − EY‖2 / ‖EY‖2. We can apply the same argument
recursively to decompose the matrix Z into its own factors.

The approach in the last paragraph depends on the fact that ‖·‖2 is the norm induced
by the trace inner product. To undertake the same action for the spectral norm ‖·‖, we
first need to approximate the spectral norm by the Schatten p-norm for p ≈ log d.
Then, we can invoke a remarkable geometric property of the Schatten p-norm, called
uniform smoothness, as a substitute for the orthogonality law. See the paper [29] for
an introduction to this circle of ideas. Section 4 executes this method.
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2.4 Additional Results

We establish a family of norm inequalities for products of random matrices. The main
result, Theorem 5.1, gives a bound for the moments of a Schatten p-norm of a random
product and a centered random product. From this fact, we derive expectation bounds,
tail bounds, and matrix concentration inequalities. Many of these results hold under
weaker assumptions than Theorem 2.1, addressing cases where the random matrices
have different means, are unbounded, or form an adapted sequence.

To give a better indication of what we can prove, let us give an informal presentation
of one of our main results, Corollary 5.1. The statement concerns a general product
Zn = Yn · · ·Y1 of independent random matrices of dimension d. Abbreviating p =
1 + 2 log d, we have the inequality

E ‖Zn − EZn‖ ≤ e
√
pv

n∏

i=1

‖EY i‖ when v :=
n∑

i=1

E ‖Y i − EY i‖2
‖EY i‖2

≤ 1

p
.

We can interpret v as the accumulated relative variance in the product.
For example, in the setting of Theorem 2.1, the quantity v = O(b2/n). It follows

that

E ‖Zn − EZn‖ = O

⎛

⎝
√
b2 log d

n
‖EZn‖

⎞

⎠ .

In particular, ‖Zn‖ is much closer to eμ than to the worst-case bound eb.

2.5 Roadmap

Wecontinuewith an overviewof relatedwork in Sect. 3. Section 4 presents background
results from matrix theory and high-dimensional probability. We establish our main
results for general matrix products in Sect. 5. Afterward, Sect. 6 draws corollaries for
a product of perturbations of the identity. Finally, we describe some refinements and
extensions in Sect. 7.

3 RelatedWork

Products of randommatrices have been studied for decades, primarily within the fields
of ergodic theory, control theory, random matrix theory, and free probability. More
recently, applied mathematicians have developed results that are tailored to problems
arising in data science. Almost all prior work is either asymptotic in the length of
the product or asymptotic in the dimension of the matrices. This section contains an
overview of these inquiries.
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3.1 Direct Connections

The most immediate precedent for our research is the recent paper of Henriksen and
Ward [21]. Theyweremotivated by the problemof understanding streaming algorithms
for covariance estimation. Their work gives, perhaps, the first explicit nonasymptotic
bounds for a somewhat general product of randommatrices with fixed dimension. The
argument is based on the matrix Bernstein inequality and a combinatorial fact about
set partitions.

Henriksen andWard focus on the setting of Theorem 2.1, and they establish a bound
of the form

‖Zn − EZn‖ ≤ beb√
n

· polylog(n, d, 1/δ) with probability at least 1 − δ. (3.1)

In contrast, our new result reported in Theorem 2.1 implies that for d ≥ 3 and δ ∈
(0, 1), with probability at least 1 − δ,

‖Zn − EZn‖ ≤ beμ

√
n

·
√
2e2 log(d/δ) when 2b2 log(d/δ) ≤ n. (3.2)

Furthermore, if we assume that ‖X i‖ ≤ b almost surely for each i , then (5.20) implies
that (3.2) holdswithout restriction. Comparedwith previouswork, the salient improve-
ment in (3.2) stems from the reduction of the factor eb to eμ. This difference is most
pronounced when EX i = 0 for each i , in which case the bound (3.2) removes the
exponential factor entirely. Even under the assumption that X i � 0 for all each i , it
can happen that b ≥ dμ, so this refinement can make a big difference.

Also in the setting of Theorem 2.1, several works obtain results on the asymptotic
behavior of Zn . Berger [9] establishes, via a semigroup argument based on theChernoff
product formula, that Zn → eA in probability as n → ∞. Emme and Hubert [14]
recently obtained a refinement of this result: motivated by a problem in ergodic theory,
they show that Zn → eA as n → ∞ under the sole assumptions that

∑n
i=1 X i/n → A

and
∑n

i=1 ‖X i‖/n < ∞. Their argument expands the product and computes the limit
of the kth order term using an induction. We can recover a special case of their results
by applying (3.2): given a triangular array {X(n)

i : i ≤ nandn ∈ N} of independent
random matrices, form the products

Z(n) = (
I + X (n)

n

) · · · (I + X(n)
1

)
.

The bound (3.2), combined with the first Borel–Cantelli Lemma, guarantees that

Z(n) → eA as n → ∞, almost surely.

While Emme and Hubert do not require independence, their approach does not readily
yield nonasymptotic bounds. Our analysis gives a rate of convergence that matches
the corresponding bound (2.2) for scalar random variables.
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After the first version of our work appeared, Kathuria et al. [23] released a preprint
containing an independent proof of a weaker version of Theorem 2.1. Though their
bound removes several logarithmic factors from the bound (3.1) proved by Henriksen
and Ward, their results still depend on eb rather than on eμ. Like us, they use a mar-
tingale decomposition of Zn −EZn , but they employ the matrix Freedman inequality
[41] to analyze the martingale.

3.2 Other Recent Applications

Some applied work on random matrix products has been driven by the empirical
observation that stochastic gradient descent converges fasterwhen the gradient approx-
imations are sampled without replacement, rather than sampled with replacement.
Some papers that investigate this question from the point of view of (nonasymp-
totic) matrix inequalities include [2,22,35]. This specific problem has been solved by
Gürbüzbalaban et al. [18] using optimization theory. However, none of these results
directly address the questions at hand.

Researchers studying randomly initialized deep neural networks have also devel-
oped theoretical analysis for products of random matrices; see [19,49]. These results
involve operations on matrices with independent entries, and they focus on the large-
matrix limit.

3.3 Ergodic Theory and Control Theory

Products of random matrices describe the evolution of a linear stochastic dynamical
system. For this reason, they have been a subject of perennial interest within the studies
on ergodic theory and on control theory. For the most part, this research is concerned
with properties of the asymptotics of infinite products of matrices (of fixed size). Let
us give a few more details.

Consider a finite family A = {A1, . . . , As} ⊂ Md of fixed matrices. Construct a
random matrix X ∈ Md with the distribution

P {X = Ai } = 1

s
for each i = 1, . . . , s.

The Lyapunov exponent of the set A is the quantity

λ(A) := lim
n→∞

1

n
log ‖Xn · · · X1‖ where X i ∼ X iid.

The Furstenberg–Kesten theorem [16] establishes that λ(A) exists almost surely, but
approximating λ(A) is algorithmically undecidable [46, Thm. 2]. As a consequence,
we must be pessimistic about finding a completely satisfactory solution to the matrix
concentration problem for products.

To learn more about Lyapunov exponents and to find additional references, see the
paper [3] for work in control theory and the paper [48] for work in ergodic theory.
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Another major application of random products is to study the asymptotic behavior of
a random walk on a group; we refer the reader to [8,15,26] for more information.

3.4 RandomMatrix Theory and Free Probability

Products of random matrices have also been considered within random matrix theory
and free probability. This connection is natural, but matrix products have received
somewhat less attention than other kinds of random matrix models. In these contexts,
it is common to study a product of a small number of matrices (two or three, say) in
the limit as the dimension of the matrices grows.

Bai and Silverstein [5, Chap. 4] present a limit law for the sequence of products of a
random matrix with iid entries and a random matrix whose spectral distribution has a
deterministic limit. This theorem is motivated by a statistical application, multivariate
analysis of variance. Note, however, that convergence of the spectral distribution does
not determine the limit of the spectral norm.

Free probability gives a complete description of the spectral distribution of a prod-
uct of two freely independent elements as the “multiplicative free convolution” of the
spectral distributions of the factors. The connection to random matrix theory stems
from the fact that a family of “adequately random” matrices becomes freely indepen-
dent in the limit as the dimension of the matrices tends to infinity. See the book of
Nica&Speicher [30] for a digestible introduction; some other good treatments include
[34,37,38]. Free probability has significant applications in wireless communications
[47].

For highly structured random matrices (invariant ensembles), it may be possible to
obtainmore detailed formulas for products. See [13,24] for somework in this direction.
Recently, Hanin and Paouris [20] developed a nonasymptotic version of the argument
of Furstenberg and Kesten [16] to prove concentration bounds for the singular values
of products matrices with independent Gaussian entries, though they conjecture that
their results continue to hold under weaker assumptions.

4 RandomMatrix Inequalities via Uniform Smoothness

To analyze products of random matrices, we exploit classic methods that were devel-
oped to study the evolution of amartingale taking values in a uniformly smoothBanach
space. These ideas are relevant for us because the matrix Schatten classes (with power
2 ≤ p < ∞) enjoy a remarkable uniform smoothness property.

In this section, we outline the required background from matrix analysis and
high-dimensional probability. Naor’s tutorial paper [29] serves as a model for our
presentation; it contains a more general treatment but does not give the sharp con-
stants. See Sect. 4.6 for additional discussion about the history of these ideas.
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4.1 Notation and Background

We work in the complex field C; identical results hold for the real field R. We often
use the infix notation for the minimum (∧) and the maximum (∨) of two real numbers.

The operator P computes the probability on an event. The operator E computes the
expectation of a random variable. Nonlinear functions, such as powers, bind before
the expectation.

The linear space Cd×r contains all d × r matrices with complex entries. The alge-
bra Md consists of all d × d matrices with complex entries. We use the standard
definitions of scalar multiplication, matrix addition, matrix multiplication, and the
adjoint (i.e., conjugate transpose). Any statement about matrices that is not qualified
with specific dimensions holds for all matrices with compatible dimensions. Non-
linear functions, such as matrix powers, bind before the trace. The matrix absolute
value |A| := (A∗A)1/2, where (·)1/2 is the positive-semidefinite square root of a
positive-semidefinite matrix.

We write ‖·‖ for the spectral norm on matrices; the spectral norm coincides with
the maximum singular value, and it is also known as the �2 operator norm. For each
p ≥ 1, the symbol ‖·‖p refers to the Schatten p-norm, which returns the �p norm of
the singular values of its argument. The symbol Sp refers to a linear space of matrices
(of fixed dimension), equipped with the Schatten p-norm.

For parameters p, q ≥ 1, we define the Lq(Sp) norm of a random matrix X as

|||X|||p,q := ‖X‖Lq (Sp) := (
E ‖X‖qp

)1/q
.

The Lq(Sp) norm is an operator ideal norm, in the sense that

|||AX|||p,q ≤ ‖A‖ · |||X|||p,q for fixed A and random X . (4.1)

This statement follows instantly from the analogous property of the Schatten p-norm.
We sometimes use the following simple inequalities for the moments of a random

matrix X :

E‖X‖ ≤ inf
p≥1

E‖X‖p = inf
p,q≥1

|||X|||p,q . (4.2)

The equality follows from Lyapunov’s inequality, combined with the fact that
|||X|||p,1 = E‖X‖p for all p ≥ 1.

4.2 Uniform Smoothness for Matrices

Uniform smoothness1 is a property of a normed space that describes how much the
norm of a point changes under symmetric perturbation. Since the Schatten-2 space
S2 is an inner-product space, the parallelogram law gives an exact description of this

1 More precisely, we are considering uniformly smooth spaces whose modulus of smoothness has power
type 2.
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phenomenon:

1

2

[
‖X + Y‖22 + ‖X − Y‖22

]
= ‖X‖22 + ‖Y‖22 .

Remarkably, in other Schatten classes, the parallelogram law is replaced by an inequal-
ity.

Fact 4.1 (Uniform Smoothness for Schatten Classes) Let A, B be matrices of the
same size. For p ≥ 2,

[
1

2

(‖A + B‖p
p + ‖A − B‖p

p
)]2/p ≤ ‖A‖2p + Cp ‖B‖2p . (4.3)

The optimal constant Cp := p − 1. The inequality is reversed when 1 ≤ p ≤ 2.

Fact 4.1 was first established by Tomczak-Jaegermann [40]; she obtained the sharp
constant Cp when p is an even number. Ball, Carlen, and Lieb [6, Thm. 1] determined
that Cp is the optimal constant for all values of p. Throughout the paper, we will
continue to write Cp = p − 1.

4.3 Uniform Smoothness for RandomMatrices

Much as the Schatten class Sp of matrices enjoys a uniform smoothness property, the
normed space Lq(Sp) of randommatrices is also uniformly smooth.When 2 ≤ q ≤ p,
this statement follows as an easy consequence of Fact 4.1.

Corollary 4.1 (UniformSmoothness forRandomMatrices) Let X,Y be randommatri-
ces of the same size. When 2 ≤ q ≤ p,

[
1

2

(|||X + Y |||qp,q + |||X − Y |||qp,q
)]2/q ≤ |||X|||2p,q + Cp|||Y |||2p,q .

Proof Apply Lyapunov’s inequality to the left-hand side of (4.3) to pass from the pth
power to the qth power, and then transfer the exponent to the right-hand side to obtain
the pointwise bound

1

2

(‖X + Y‖qp + ‖X − Y‖qp
) ≤

[
‖X‖2p + Cp ‖Y‖2p

]q/2
.

Take the expectation, and use the triangle inequality for the Lq/2 norm:

1

2

(
E ‖X + Y‖qp + E ‖X − Y‖qp

) ≤
[(
E ‖X‖qp

)2/q + Cp
(
E ‖Y‖qp

)2/q]q/2
.

Reinterpret the latter display using the Lq(Sp) norm |||·|||p,q . ��
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4.4 Subquadratic Averages for RandomMatrices

Corollary 4.1 admits a powerful extension that controls how the norm of a matrix
changes if we add a random matrix that has zero mean. This result is the main tool
that we employ in our study of random products.

Proposition 4.1 (SubquadraticAverages) Consider randommatrices X,Y of the same
size that satisfy E[Y |X] = 0. When 2 ≤ q ≤ p,

|||X + Y |||2p,q ≤ |||X|||2p,q + Cp|||Y |||2p,q .

The constant Cp = p − 1 is the best possible.

Ricard and Xu [36] obtained a version of Proposition 4.1 in the more general setting
of a von Neumann algebra. In their work, the expectation implicit in the Lq norm is
replaced by the projection onto a subalgebra. They emphasize that the key feature of
their work is the determination of the sharp constant.

Here, we offer a very short proof of Proposition 4.1 with a suboptimal constant. The
method is drawn from Naor’s paper [29]. Lemma A.1, in the “Appendix,” unspools an
elementary argument that delivers the sharp constant.

Proof By Jensen’s inequality, applied conditionally on X ,

1

2

(
|||X + Y |||2p,q + |||X|||2p,q

)
≤ 1

2

(
|||X + Y |||2p,q + |||X − Y |||2p,q

)

≤
[
1

2

(|||X + Y |||qp,q + |||X − Y |||qp,q
)]2/q ≤ |||X|||2p,q + Cp|||Y |||2p,q .

The second inequality is Lyapunov’s; the third is Corollary 4.1. Upon rearranging, we
find that

|||X + Y |||2p,q ≤ |||X|||2p,q + 2Cp|||Y |||2p,q . (4.4)

This is the stated result, with a spurious factor of 2. ��

4.5 Matrix-ValuedMartingales

To demonstrate the value of Proposition 4.1, let us explain how it leads to moment
bounds for a matrix-valued martingale sequence. Consider a null matrix martingale
{X1, . . . , Xn} ⊂ Md with difference sequence {�1, . . . ,�n} ⊂ Md . That is,

X0 = 0 and X i = X i−1 + �i where E[�i |X0, . . . , X i−1] = 0

for i = 1, . . . , n.
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Applying Proposition 4.1 repeatedly, we arrive at the bound

|||Xn|||2p,q ≤ Cp

n∑

i=1

|||�i |||2p,q . (4.5)

In words, the squared norm of the martingale is controlled by the sum of the squares of
the norms of themartingale differences. The inequality (4.5) is a powerful extension of
the orthogonality of the increments of a martingale taking values in an inner-product
space, say S2. The uniform smoothness constant Cp shows how the geometry of the
matrix space intermediates.

In this work, we will develop bounds for random matrix products by applying a
similar technique to appropriately chosen decompositions of the product.

4.6 History

The approach in this section has a long history. Let us summarize the contributions
that are most relevant to our development.

For real numbers, the (sharp) uniform smoothness property in Fact 4.1 is known as
the two-point inequality; it was established independently by Leonard Gross [17] and
Aline Bonami [11] in the early 1970s, with later contributions byWilliamBeckner [7].
In 1974, the uniform smoothness property for the Schatten classes was obtained by
Nicole Tomczak-Jaegermann [40]. It took another 20 years before Ball, Carlen, and
Lieb [6] obtained the sharp uniform smoothness constants for all Schatten classes.
The property dual to uniform smoothness is called uniform convexity. See [6] for a
detailed exposition.

Tomczak-Jaegermann [40, Thm. 3.1] also demonstrated that Rademacher averages
are subquadratic in each Schatten space Sp with p ≥ 2; that is, the Banach space Sp
has the type 2 property [25, Chap. 9]. This fact is a prototype for themore general result
stated in Proposition 4.1. Tropp [42, Sec. 4.8] points out that parts of the Ahlswede–
Winter [1, App.] theory of sums of independent random matrices already follow from
Tomczak-Jaegermann’s work. (In contrast, Tropp’s matrix concentration inequalities
[42] are more closely related to a fact from operator theory, the noncommutative
Khintchine inequality of Françoise Lust-Piquard [28]; Tropp’s results are derived
using a theorem [27, Thm. 6] of Elliot Lieb.)

Assaf Naor [29] traces the application of uniform convexity inequalities in the study
of martingales to a 1975 paper of Gilles Pisier [33]. Naor [29] gives a nice introduction
to this circle of ideas, which he uses to derive a general version of theAzuma inequality
that holds in any uniformly smooth Banach space.

At least as early as 1988, Donald Burkholder [12] applied closely related convexity
inequalities to derive sharp inequalities for martingales taking values in a Hilbert
space. The paper [36] of Éric Ricard and Quanhua Xu is a recent entry in this line of
research.
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5 A Product of Independent RandomMatrices

In this section, we obtain our main results on the growth and concentration of a
product of independent random matrices. Section 5.1 shows how to decompose a
random product into pieces that we can control using a recursive argument. Based
on these ideas, we derive Theorem 5.1, a general bound on the moments of the norm
of the matrix product. The moment estimate leads to a family of expectation bounds
(Corollary 5.1) and probability bounds (Corollary 5.2).

The balance of the paper contains applications of these results (Sect. 6) and exten-
sions of the method to other settings (Sect. 7).

5.1 Decomposition of Random Products

Our approach is based on a recursive argument that describes how the product evolves
as we include more factors. At each step, we decompose the product into a nonran-
dom term and a random term with mean zero. This formulation allows us to apply
Proposition 4.1 on subquadratic averages.

Consider a fixed matrix Z0 ∈ Md and an independent family {Y1,Y2, . . . ,Yn} ⊂
Md of randommatrices. We can recursively construct products of these randommatri-
ces:

Zi = Y i Zi−1 for i = 1, . . . , n.

Evidently, the last element of the sequence takes the form Zn = Yn · · ·Y1Z0. By
independence, EZn = (EYn) · · · (EY1)Z0.

The random product Zi admits a simple decomposition into a mean term and a
fluctuation term:

Zi = Y i Zi−1 = (EY i )Zi−1 + (Y i − EY i )Zi−1 for each i = 1, . . . , n. (5.1)

Since Y i is independent from Zi−1, the second term is conditionally zero mean:

E[(Y i − EY i )Zi−1|Zi−1] = 0. (5.2)

The property (5.2) supports the use of Proposition 4.1, which gives a bound on the
squared norm of Zi as a sum of the squared norms of the mean and fluctuation terms.
The norm of the mean term admits a simple bound:

|||(EY i )Zi−1|||p,q ≤ ‖EY i‖ · |||Zi−1|||p,q . (5.3)

The inequality follows from the operator ideal property of the Schatten p-norm. We
likewise have an explicit bound on the norm of the random fluctuation term:

|||(Y i − EY i )Zi−1|||p,q ≤ (
E ‖Y i − EY i‖q · E ‖Zi−1‖qp

)1/q

= (
E ‖Y i − EY i‖q

)1/q |||Zi−1|||p,q . (5.4)
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The first relation follows from the operator ideal property and the statistical indepen-
dence of the randommatricesY i and Zi−1. Combining (5.3) and (5.4) gives a recursive
bound on |||Zi |||p,q in terms of |||Zi−1|||p,q .

We can study the concentration properties of the product Zi using a related decom-
position:

Zi − EZi = Y i Zi−1 − (EY i )(EZi−1) = (EY i )(Zi−1 − EZi−1)

+(Y i − EY i )Zi−1. (5.5)

As in (5.2), the second term is a fluctuation that is conditionally zero mean, and
applying Proposition 4.1 once again gives a suitable recursive bound.

We carry out the details of these arguments in Theorem 5.1.

5.2 Growth and Concentration

Our main result controls the growth of the moments of a product of independent
random matrices. It also describes how well the random product concentrates around
its expectation.

Theorem 5.1 (Growth and Concentration of Random Products) Consider a fixed
matrix Z0 ∈ C

d×r and an independent family {Y1,Y2, . . . ,Yn} ⊂ Md of random
matrices. Form the product

Zn = YnYn−1 · · ·Y2Y1Z0 ∈ C
d×r .

For parameters 2 ≤ q ≤ p, assume that

‖EY i‖ ≤ mi and
(
E ‖Y i − EY i‖q

)1/q ≤ σimi for i = 1, . . . , n.

Define the product of means and the accumulated relative fluctuation

M =
n∏

i=1

mi and v =
n∑

i=1

σ 2
i .

Then, the random product Zn satisfies the growth bound and the concentration bound

|||Zn|||p,q ≤ eCpv/2 ‖Z0‖p · M; (5.6)

|||Zn − EZn|||p,q ≤
(
eCpv − 1

)1/2 ‖Z0‖p · M . (5.7)

Proof (Proof of Theorem 5.1, relation (5.6)) By the homogeneity of (5.6), we may
assume that mi = 1 for each index i , so that also M = 1. As in (5.1), we have the
decomposition

Zi := Y i Zi−1 = (EY i )Zi−1 + (Y i − EY i )Zi−1 for each i = 1, . . . , n.
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Now, Proposition 4.1 implies that

|||Zi |||2p,q ≤ |||(EY i )Zi−1|||2p,q + Cp · |||(Y i − EY i )Zi−1|||2p,q
≤ ‖EY i‖2 · |||Zi−1|||2p,q + Cp

(
E ‖Y i − EY i‖q

)2/q · |||Zi−1|||2p,q
≤ (1 + Cpσ

2
i ) · |||Zi−1|||2p,q

≤ exp(Cpσ
2
i ) · |||Zi−1|||2p,q .

The second line follows from (5.4), and the third depends on our hypotheses about
the factors Y i . The last relation requires the numerical inequality 1 + a ≤ ea , valid
for all a ∈ R. By iteration,

|||Zi |||2p,q ≤ exp

(
Cp

i∑

k=1

σ 2
k

)
· ‖Z0‖2p . (5.8)

In the final step, we use the assumption that Z0 is not random to see that |||Z0|||p,q =
‖Z0‖p. For i = n, formula (5.8) is the advertised result. ��
Proof (Proof of Theorem 5.1, relation (5.7)) The pattern of argument is similar with
the proof of (5.6). By the homogeneity of (5.7), we may assume that all mi = 1 and
that M = 1. As in (5.7), we have the decomposition

Zi −EZi =Y i Zi−1 − (EY i )(EZi−1) = (EY i )(Zi−1 − EZi−1) + (Y i − EY i )Zi−1.

Again, we invoke Proposition 4.1 to ascertain that

|||Zi − EZi |||2p,q ≤ |||(EY i )(Zi−1 − EZi−1)|||2p,q + Cp · |||(Y i − EY i )Zi−1|||2p,q
≤ |||Zi−1 − EZi−1|||2p,q + Cpσ

2
i · |||Zi−1|||2p,q

≤ |||Zi−1 − EZi−1|||2p,q + Cpσ
2
i exp

(
i−1∑

k=1

Cpσ
2
i

)
· ‖Z0‖2p .

The last inequality is our growth bound (5.8). This recurrence relation delivers

|||Zn − EZn|||2p,q ≤ |||Z0 − EZ0|||2p,q +
[

n∑

i=1

Cpσ
2
i exp

(
i−1∑

k=1

Cpσ
2
k

)]
· ‖Z0‖2p

=
[

n∑

i=1

Cpσ
2
i exp

(
i−1∑

k=1

Cpσ
2
k

)]
· ‖Z0‖2p

≤
[
exp

(
n∑

i=1

Cpσ
2
i

)
− 1

]
· ‖Z0‖2p .

The equality holds because Z0 is not random.The last relation is a numerical inequality,
whose proof appears in Lemma A.2. ��
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Observe that the difference between the bounds (5.6) and (5.7) is only visible when
Cpv is small, in which case

eCpv/2 ≈ 1 and
(
eCpv − 1

)1/2 ≈ √
Cpv.

This is the setting where the concentration result may be nontrivial.
In applications of Theorem 5.1, we often take p large enough that the term ‖Z0‖p is

a constant. For instance, when Z0 = I, it suffices to take p ≈ log d. The most natural
choices for q are q = 2 and q = p. The former is appropriate when only bounds on
the variance E ‖Y i − EY i‖2 are available, whereas the latter applies when we assume
an almost-sure bound on the fluctuations of Y i .

The next remark contains a minor extension of Theorem 5.1. Similar extensions are
possible at other points in this paper. For the most part, we omit these developments.

Remark 5.1 (Growth from Concentration) In some instances, we can improve over the
growth bound (5.6) by applying the triangle inequality to the decomposition Zn =
(EZn) + (Zn − EZn) and invoking the concentration bound (5.7):

|||Zn|||p,q ≤ ‖EZn‖p +
(
eCpv − 1

)1/2 ‖Z0‖p · M .

Similarly, we can apply Proposition 4.1 together with (5.7) to obtain

|||Zn|||2p,q ≤ ‖EZn‖2p + Cp

(
eCpv − 1

)
‖Z0‖2p · M2.

Neither of these bounds represents a strict improvement over the other or over the
growth bound (5.6).

5.3 Expectation Bounds for the Spectral Norm

In many cases, we just need to know the expected value of the product ‖Zn‖ or
the expected value of the fluctuation ‖Zn − EZn‖. We can obtain bounds for these
quantities as an easy consequence of Theorem 5.1.

Corollary 5.1 (ExpectationBounds) Consider an independent sequence {Y 1, . . . ,Yn}
⊂ Md of random matrices, and form the product Zn = Yn · · ·Y1. Assume that

‖EY i‖ ≤ mi and
(
E ‖Y i − EY i‖2

)1/2 ≤ σimi for i = 1, . . . , n.

Let M = ∏n
i=1 mi and v = ∑n

i=1 σ 2
i . Then

E ‖Zn‖ ≤ exp
(√

2v (2v ∨ log d)
)

· M . (5.9)
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Provided that v (1 + 2 log d) ≤ 1, then also

E ‖Zn − EZn‖ ≤
√
e2v (1 + 2 log d) · M . (5.10)

Proof To apply Theorem 5.1, we set Z0 = I and choose the power q = 2.
To obtain the growth bound (5.9), consider the Schatten norm of order p =√
2(2v ∨ log d)/v. Note that p ≥ 2 and that ‖Z0‖p ≤ d1/p ≤ epv/2. Invoke Theo-

rem 5.1, relation (5.6), to see that

E ‖Zn‖ ≤ |||Zn|||p,2 ≤ eCpv/2 ‖Z0‖p · M ≤ epv/2 · epv/2 · M = epv · M .

We used the fact that Cp = p − 1 < p. This is the stated result.
To obtain the concentration bound (5.10), consider the Schatten norm p = 2(1 +

log d). Note that p ≥ 2 and that ‖Z0‖p ≤ d1/p ≤ √
e. Now, we use Theorem 5.1,

relation (5.7), in a similar fashion. Assuming that Cpv ≤ 1,

E ‖Zn − EZn‖ ≤ |||Zn − EZn|||p,2 ≤ (
eCpv − 1

)1/2 ‖Z0‖p · M ≤ e
√
Cpv · M .

The last bound is the numerical inequality ea −1 ≤ ea, valid when a ∈ [0, 1]. Finally,
note that Cp = p − 1 = 1 + 2 log d. ��

The inequality (5.9) shows its power when each σi is small. Assume that each
mi = 1 and σi ≤ b/n for a constant b. If we assume that ‖Y i − EY i‖ ≤ σimi almost
surely, then it is not hard to check that

‖EZn‖ ≤ 1 while ‖Zn‖ ≤ (1 + (b/n))n ≤ eb almost surely.

If b
√

(2 log d)/n is close to zero, then (5.9) implies

E ‖Zn‖ ≤ eb
√

(2 log d)/n ≈ 1.

That is, E ‖Zn‖ is much closer to ‖EZn‖ than to the worst-case value eb.

5.4 Tail Bounds for the Spectral Norm

The moment bounds in Theorem 5.1 can also be upgraded to obtain tail bounds for
‖Zn‖ and ‖Zn − EZn‖.

Corollary 5.2 (Tail Bounds) Consider an independent sequence {Y1, . . . ,Yn} ⊂ Md

of random matrices, and form the product Zn = Yn · · ·Y1. Assume that

‖EY i‖ ≤ mi and ‖Y i − EY i‖ ≤ σimi almost surely for i = 1, . . . , n.
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Let M = ∏n
i=1 mi and v = ∑n

i=1 σ 2
i . Then,

P {‖Zn‖ ≥ tM} ≤ d · exp
(− log2 t

2v

)
when log t ≥ 2v. (5.11)

Furthermore,

P {‖Zn − EZn‖ ≥ tM} ≤ (d ∨ e) · exp
( −t2

2e2v

)
when t ≤ e. (5.12)

Proof Webeginwith the proof of (5.11). By homogeneity, wemay assume thatmi = 1
for each i , so also M = 1. Apply Markov’s inequality and (4.2) to obtain

P {‖Zn‖ ≥ t} ≤ inf
p≥2

t−p · E ‖Zn‖p ≤ inf
p≥2

t−p · |||Zn|||pp,p.

To bound the L p(Sp) norm, we will use Theorem 5.1 with Z0 = I and with q = p.
Relation (5.6) gives

t−p · |||Zn|||pp,p ≤ t−p · epCpv/2 ‖Z0‖p
p = d · (t−2eCpv

)p/2
.

We have used the fact that ‖Z0‖p
p = ‖I‖p

p = d. Under the assumption that log t ≥ 2v,
we may select p = (log t)/v ≥ 2. This choice yields

d · (t−2epv
)p/2 = d · exp

(− log2 t

2v

)
.

Sequence the last three displays to arrive at the bound (5.11).
We establish (5.12) in an analogous fashion. The same argument, using rela-

tion (5.7), implies that

P {‖Zn − EZn‖ ≥ t} ≤ inf
p≥2

d ·
[
t−2(eCpv − 1

)]p/2
.

Supposing that t2/(e2v) < 2, the bound (5.12) holds trivially because e ·
exp(−t2/(2e2v)) ≥ 1. Otherwise, we may select the parameter p = t2/(e2v) ≥ 2.
Under the assumption that t ≤ e, Cpv ≤ pv ≤ (t/e)2 ≤ 1, so that eCpv − 1 ≤
eCpv ≤ t2/e. Therefore,

d · [t−2(eCpv − 1
)]p/2 ≤ d · e−p/2 = d · exp

( −t2

2e2v

)
.

The last two displays imply (5.12). ��

123



Foundations of Computational Mathematics

Let us demonstrate the optimality of our tail bounds in Corollary 5.2 by showing
that they are tight in the commutative case. Consider a simple scenario where all the
factors of the product Zn are diagonal matrices:

Y i = diag(y(1)
i , y(2)

i , . . . , y(d)
i ), i = 1, 2, . . . , n .

The scalar random variables y( j)
i , 1 ≤ i ≤ n, 1 ≤ j ≤ d are independent of each

other and satisfy

Ey( j)
i = mi ≥ 0 and |y( j)

i − mi | ≤ σimi almost surely for 1 ≤ i ≤ n, 1 ≤ j ≤ d.

Fix Z0 = I. It follows that

Zn = Yn · · ·Y1 = diag

(
n∏

i=1

y(1)
i , . . . ,

n∏

i=1

y(d)
i

)
.

For each diagonal entry of Zn , a calculation similar to that in Sect. 2.1 gives

P

{
n∏

i=1

y( j)
i ≥ (1 + s)M

}
= P

{
n∏

i=1

(
1 + y( j)

i − mi

mi

)
≥ 1 + s

}

≤ P

{
exp

(
n∑

i=1

y( j)
i − mi

mi

)
≥ 1 + s

}
= P

{
n∑

i=1

y( j)
i − mi

mi
≥ log(1 + s)

}
.

As usual, M = ∏n
i=1 mi . The inequality follows from the numerical fact 1 + a ≤ ea

for all a ∈ R. We then use Hoeffding’s inequality to obtain

P

{
n∏

i=1

y( j)
i ≥ (1 + s)M

}
≤ exp

(− log2(1 + s)

2v

)
,

where v = ∑n
i=1 σ 2

i . At the small scale s ≤ e, in which case log(1 + s) ≥ s/e, the
above bound implies

P

{
n∏

i=1

y( j)
i −

n∏

i=1

Ey( j)
i ≥ tM

}
≤ exp

( −t2

2e2v

)
,

Taking a uniform bound over the d diagonal entries of Zn yields

P {λmax(Zn) ≥ (1 + s)M} = P

{
∃ i :

n∏

i=1

y( j)
i ≥ (1 + s)M

}
≤ d · exp

(− log2(1 + s)

2v

)
;

(5.13)
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P {λmax(Zn − EZn) ≥ tM} = P

{
∃ i :

n∏

i=1

y( j)
i − M ≥ tM

}
n ≤ d · exp

( −t2

2e2v

)
for t ≤ e.

(5.14)

Moreover, these bounds are easily seen to be essentially tight.
To assess our results, we apply Corollary 5.2 to see what it predicts for this model.

The assumptions translate to the matrix bounds

‖EY i‖ = ‖mi I‖ = mi and ‖Y i − EY i‖ ≤ σimi almost surely for 1 ≤ i ≤ n.

Therefore, Corollary 5.2 implies that

P {λmax(Zn) ≥ (1 + s)M} ≤ d · exp
(− log2(1 + s)

2v

)
for log(1 + s) ≥ 2v;

(5.15)

P {λmax(Zn − EZn) ≥ tM} ≤ d · exp
( −t2

2e2v

)
for t ≤ e. (5.16)

By comparing (5.15) and (5.16) with (5.13) and (5.14), we see that our estimates
obtained from the uniform smoothness argument are tight in the commutative scenario,
except that we require log(1 + s) ≥ 2v for the growth bound (5.15).

5.5 Uniform Bounds on Factors

In some circumstances, it is reasonable to assume that the factors are bounded in
norm almost surely. For example, the randomized Kaczmarz algorithm [39] can be
expressed as the repeated application of random contractions, that is, matrices whose
singular values are bounded by one. Other randomized linear fixed-point iterations
take a similar form.

A modification of the proof of Theorem 5.1 offers some potential improvements in
this setting. Fix parameters 2 ≤ q ≤ p. Suppose that ‖Y i‖ ≤ bi almost surely and
|||Y i − EY i |||p,q ≤ σi bi for each index i . Define B = ∏n

i=1 bi and v = ∑n
i=1 σ 2

i .
Then,

|||Zn|||p,q ≤ ‖Z0‖p · B; (5.17)

|||Zn − EZn|||p,q ≤ √
Cpv ‖Z0‖p · B. (5.18)

The growth bound (5.5) is an immediate consequence of the definition Zn =
Yn · · ·Y1Z0. The concentration result (5.5) follows if we repeat the proof of (5.7),
using homogeneity to assume that bi = 1 for each i and employing the growth
bound (5.5) in place of (5.5).

These bounds yield strengthenings of Corollaries 5.1 and 5.2. If we assume
|||Y i − EY i |||p,2 ≤ σi bi for each i , then applying the argument of Sect. 5.5 with (5.5)
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implies that

E ‖Zn − EZn‖ ≤ √
ev (1 + 2 log d)B. (5.19)

This improves the constant in (5.10) by a factor of
√
e, and it removes the condition

that v (1 + 2 log d) ≤ 1.
Similarly, if we assume ‖Y i − EY i‖ ≤ σi bi almost surely, then we obtain an

unconditional variant of the concentration bound (5.12):

P {‖Zn − EZn‖ ≥ t · B} ≤ (d ∨ e) · exp
(−t2

2ev

)
for all t > 0. (5.20)

Both (5.19) and (5.20) scale with B = ∏n
i=1 bi . In the important special case where

each factor in the product is a random contraction, we may take bi = 1 for each i , so
that B = 1. This bound may be pessimistic, as the next theorem shows.

Theorem 5.2 (Product of Random Contractions) Consider an independent family
{Y1, . . . ,Yn} ⊂ Md of random contractions; that is, ‖Y i‖ ≤ 1. Form the random
product Zn = Yn · · ·Y1. For a parameter p ≥ 2, assume that

∥∥E |Y i |p
∥∥1/p ≤ mi ≤ 1 and

∥∥E |Y i − EY i |p
∥∥1/p ≤ σimi for i = 1, . . . , n.

Define M := ∏n
i=1 mi and v := ∑n

i=1 σ 2
i . Then

E ‖Zn‖ ≤ 1 ∧ (d1/p · M); (5.21)

E ‖Zn − EZn‖ ≤ √
Cpv d

1/p · M . (5.22)

Unlike (5.5), (5.19) and (5.20), the bounds of Theorem 5.2 scale with M . This
quantity can be substantially smaller than B, particularly if each factor has low rank.
For example, if Y i is a projection to a uniformly random rank-one subspace, then
‖Y i‖ = 1 but

∥∥E |Y i |2
∥∥ = 1/d.

It is also possible to prove a tail bound, assuming an almost-sure bound on the
spectral normof thefluctuations;weomit the details. For convenience,wehave focused
on products of random contractions, but a homogeneity argument implies that similar
inequalities hold for any product of uniformly bounded random matrices.

To prove Theorem 5.2, we require a lemma that isolates the influence of each factor
in the product. This result gives an improvement in the setting where the factor is a
contraction, but it may give inferior results in other settings.

Lemma 5.1 (Random Product: Absolute Values) Let Y ∈ Md be a random matrix,
and let Z ∈ Md be a random matrix that is independent from Y . For 2 ≤ q ≤ p,

|||Y Z|||p,q ≤ ∥∥E |Y |p∥∥1/p · |||Z|||p,q .
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Proof Write out the Lq(Sp) norm, and introduce matrix absolute values:

|||Y Z|||qp,q = E ‖Y Z‖qp = E

[
tr

(
Z∗Y∗Y Z

)p/2]q/p

= E

[
tr

( ∣∣Z∗∣∣ · |Y |2 · ∣∣Z∗∣∣
)p/2

]q/p

.

The last relation can be verified using polar factorizations. Apply the Araki–Lieb–
Thirring inequality [10, Thm. IX.2.20] to distribute the power onto the factors in the
trace. Conditioning on the random matrix Z, we obtain

|||Y Z|||qp,q ≤ EE

[[
tr

( ∣∣Z∗∣∣p/2 · |Y |p · ∣∣Z∗∣∣p/2
)]q/p

∣∣∣∣ Z
]

≤ E

[
tr

( ∣∣Z∗∣∣p/2 · (E |Y |p ) · ∣∣Z∗∣∣p/2
)]q/p

.

The inequality is Jensen’s, which is justified because q/p ≤ 1. Bounding the matrix
in the center by its norm,

|||Y Z|||qp,q ≤ ∥∥E |Y |p∥∥q/p · E [
tr

∣∣Z∗∣∣p]q/p = ∥∥E |Y |p∥∥q/p · |||Z|||qp,q .

Take the qth root to complete the proof. ��
With this result at hand, Theorem 5.2 follows from familiar arguments.

Proof (Proof of Theorem 5.2) Define Z0 = I and Zi = Y i Zi−1 for each index
i = 1, . . . , n. We begin with the proof of (5.21). Since each factor is a contraction, it
is clear that

E ‖Zn‖ ≤ E

n∏

k=1

‖Y k‖ ≤ 1.

To obtain a less trivial bound on the expectation, we apply Lemma 5.1 repeatedly. For
p ≥ 2,

E ‖Zi‖ ≤ |||Zi |||p,p ≤
i∏

k=1

∥∥E |Y k |p
∥∥1/p · |||I|||p,p = d1/p

i∏

k=1

mk . (5.23)

The statement (5.21) combines these two observations for the choice i = n.
Let us continue with the proof of (5.22), which is analogous to the argument in

Theorem 5.1(5.7). First, by expanding the inequality E |Y i − EY i |2 � 0, we see that
0 � |EY i |2 � E |Y i |2. As a consequence, for p ≥ 2,

‖EY i‖2 ≤
∥∥∥E |Y i |2

∥∥∥ ≤ ∥∥E |Y i |p
∥∥2/p ≤ m2

i .
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The second inequality follows from a matrix extension of Lyapunov’s inequality [4,
Cor. 4.2(i)]. Now, we may calculate that

|||Zi − EZi |||2p,p ≤ |||(EY i )(Zi−1 − EZi−1)|||2p,p + Cp · |||(Y i − EY i )Zi−1|||2p,p
≤ m2

i · |||Zi−1 − EZi−1|||2p,p + Cpσ
2
i m

2
i · |||Zi−1|||2p,p

≤ m2
i · |||Zi−1 − EZi−1|||2p,p + Cpσ

2
i · d2/p

i∏

k=1

m2
k .

The second inequality uses (5.4), Lemma 5.1, and the last display. The third inequality
requires the preliminary bound (5.23). Unrolling the recursion,

|||Zn − EZn|||2p,p ≤ Cpd
2/p

(
n∏

i=1

m2
i

)(
n∑

i=1

σ 2
i

)
= Cpd

2/pM
2
v.

This result implies the advertised bound (5.22). ��

6 Application: Random Perturbations of the Identity

This section treats the fundamental case where the factors Y i in the product are inde-
pendent, randomperturbations of the identity. That is,Y i = I+X i where {X i } ⊂ Md is
an independent family. Applying our main theorems in this setting yields the promised
improvements to the tail bounds developed by Henriksen–Ward [21].

6.1 Iterative Algorithms

To motivate this development, observe that random perturbations of the identity arise
from the analysis of the iterative scheme

u(i+1) = u(i) + X iu(i) for i = 1, 2, 3 . . . . (6.1)

where X iu(i) is a linear update to the current iterate u(i). In this application, the norm
of each X i is proportional to the step size of the scheme, so it is typically small and
it is controlled by the user. For example, the updates in Oja’s algorithm [31] take the
form (6.1).

For now, we do not permit the random matrix X i to depend on the sequence {u(i)}
of iterates. Later, in Sect. 7.2, we describe an extension of our approach to the setting
where {X i } is an adapted sequence. This variant allows for the study of a wider class
of iterative algorithms.
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6.2 Bounds for the Product

First, we develop bounds for the growth and concentration of a product of perturbations
of the identity. In Sect. 6.3, we develop results for the inverse of the product.

Corollary 6.1 (Perturbations of the Identity) Consider an independent family
{X1, . . . , Xn} ⊂ Md of randommatrices, and form the product Zn = (I+Xn) · · · (I+
X1). Assume that

‖EX i‖ ≤ ξi and ‖X i − EX i‖ ≤ σi almost surely for i = 1, . . . , n.

Define ξ = ∑n
i=1 ξi and v = ∑n

i=1 σ 2
i . Then

E ‖Zn‖ ≤ exp
(
ξ + √

2v log d
)

when 2v ≤ log d;
E ‖Zn − EZn‖ ≤ eξ+1

√
v (1 + 2 log d) when v (1 + 2 log d) ≤ 1.

Moreover ,

P
{‖Zn‖ ≥ teξ

} ≤ d · exp
(− log2 t

2v

)
when log t ≥ 2v;

P
{‖Zn − EZn‖ ≥ teξ

} ≤ (d ∨ e) · exp
( −t2

2e2v

)
when t ≤ e.

Proof Let Y i = I + X i for each index i . Then

‖EY i‖ ≤ 1 + ‖EX i‖ ≤ eξi =: mi .

Furthermore, since mi ≥ 1,

‖Y i − EY i‖ = ‖X i − EX i‖ ≤ σi ≤ σimi .

The results follow instantly from Corollaries 5.1 and 5.2. ��

6.3 Bounds for the Inverse of a Product

In some applications, it is valuable to have a lower bound for the minimum singular
value of a random product. Equivalently, we can seek an upper bound for the spectral
norm of the inverse of the product. This section describes a situation where clean
results are possible.

Consider the casewhere the factorsY i are perturbations of the identity:Y i = I+X i ,
where X i is small enough to ensure that Y i is invertible with probability 1. In this
setting, we can easily study the inverse of the product using Corollary 6.1.
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Corollary 6.2 (Perturbations of the Identity: Inverses) Frame the same hypotheses as
in Corollary 6.1. Assume that ξi + σi < 1 for each index i , and define

ξ̄ =
n∑

i=1

[
ξi + (ξi + σi )

2

1 − (ξi + σi )

]
and v̄ =

n∑

i=1

[
σi + 2(ξi + σi )

2

1 − (ξi + σi )

]2
.

Then,

E

∥∥∥Z−1
n

∥∥∥ ≤ exp
(
ξ̄ + √

2v̄ log d
)

when 2v̄ ≤ log d;

E

∥∥∥Z−1
n − EZ−1

n

∥∥∥ ≤ eξ̄
√
e2v̄ (1 + 2 log d) when v̄ (1 + 2 log d) ≤ 1.

Proof With the same notation as in Corollary 6.1, observe that Z−1
n = (I +

X1)
−1 · · · (I+Xn)

−1. This is an independent product that can be bounded by applying
the corollary. To do so, we simply need to express (I + X i )

−1 = I + X̄ i for suitable
random matrices X̄ i . The perturbation terms X̄ i are obtained from the calculation

(I + X i )
−1 = I +

∞∑

k=1

(−1)kXk
i = I − X i + X2

i (I + X i )
−1 =: I + X̄ i .

It remains to develop estimates for the size of the perturbation.
The uniform bound ‖X i‖ ≤ ‖EX i‖ + ‖X i − EX i‖ ≤ ξi + σi < 1 implies that

∥∥∥(I + X i )
−1

∥∥∥ ≤ (
1 − ‖X i‖

)−1 ≤ 1

1 − (ξi + σi )
.

Therefore, the norm of the expected perturbation satisfies

∥∥EX̄ i
∥∥ ≤ ‖EX i‖ +

∥∥∥E
[
X2
i (I + X i )

−1]
∥∥∥ ≤ ξi + (ξi + σi )

2

1 − (ξi + σi )
=: ξ̄i .

The fluctuations of the perturbation satisfy

∥∥X̄ i − EX̄ i
∥∥ ≤ ‖X i − EX i‖ + 2

∥∥∥X2
i (I + X i )

−1
∥∥∥ ≤ σi + 2(ξi + σi )

2

1 − (ξi + σi )
=: σ̄i .

The results follow when we apply Corollary 6.1 with the random matrices X̄ i in place
of the X i . ��

7 Improvements and Extensions

The argument underlying Theorem 5.1 has several natural extensions. In Sect. 7.1, we
derive better estimates for a matrix product where the initial term is rectangular. In
Sect. 7.2, we document the changes that are necessary in case the factors in the product
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are not independent but form an adapted sequence. Last, in Sect. 7.3, we explain how
to develop a bound on the spectral radius of a product.

7.1 Low-Rank Products

So far, we have focused on the setting where the initial matrix Z0 = I. In many
applications, we are interested in the action of the random product Yn · · ·Y1 ∈ Md on
a specific matrix Z0 ∈ C

d×r with relatively few columns. In this case, the terms that
control the behavior of the product may be significantly smaller. Here is an example
of the kinds of results one can achieve.

Theorem 7.1 (Growth and Concentration of Low-Rank Random Products) Consider
a fixed matrix Z0 ∈ C

d×r and an independent sequence {Y1, . . . ,Yn} ⊂ Md of
random matrices. Form the product Zn = Yn · · ·Y1Z0. Assume that

‖EY i‖ ≤ mi and sup
P∈Pr

(
E ‖(Y i − EY i )P‖2

)1/2 ≤ σimi for i = 1, . . . , n,

where Pr ⊂ Md is the set of rank-r orthogonal projectors. Define M = ∏n
i=1 mi and

v = ∑n
i=1 σ 2

i . For each p ≥ 2,

E ‖Zn‖ ≤ eCpv/2 · ‖Z0‖p · M .

E ‖Zn − EZn‖ ≤ (
eCpv − 1

)1/2 · ‖Z0‖p · M .

Proof Define Zi = Y i Zi−1 for each index i . Since Z0 ∈ C
d×r , the rank of each

matrix Zi is at most r . Thus, we canwrite Zi = P i Zi , where P i is a rank-r orthogonal
projector that only depends on Y i , . . . ,Y1 and Z0. As a consequence,

|||(Y i − EY i )Zi−1|||p,2 = |||(Y i − EY i )P i−1Zi−1|||p,2
≤ (

E
[ ‖(Y i − EY i )P i−1‖2 · s ‖Zi−1‖2p

])1/2

≤ sup
P∈Pr

(
E ‖(Y i − EY i )P‖2 )1/2 · (E ‖Zi−1‖2p

)1/2

≤ σimi · |||Zi−1|||p,2.

We have used the fact that Y i is independent from P i−1 and from Zi−1 to pass to the
last line.

The rest of the proof runs along the same lines as the argument in Theorem 5.1,
using the last display in place of the bound (5.4). ��

Let us offer a simple example to illustrate why Theorem 7.1 can produce better
outcomes than Theorem 5.1. Consider a random matrix X ∈ Md with the distribution
P {X = e je j ∗} = d−1 for each j = 1, . . . , d. As usual, e j ∈ C

d is the j th standard
basis vector. Construct the random matrix Y = I+ εX , where ε is a Rademacher ran-
dom variable that is independent from X . Clearly, EY = I. For any rank-r orthogonal
projector P ,
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E ‖(Y − EY)P‖2 = E
∥∥PX∗X P

∥∥ = 1

d

d∑

i=1

tr[Peie∗
i P] = 1

d
tr P = r

d
.

Therefore,

sup
P∈Pr

(
E ‖(Y − EY)P‖2

)1/2 = √
r/d ≤ 1.

By contrast, E‖Y − EY‖2 = E‖X‖2 = 1. This bound hence offers a significant
improvement when r � d.

7.2 Adapted Sequences

We can easily generalize our results on a product of independent random matrices to
a product of adapted random matrices. This kind of extension is valuable for studying
iterative algorithms where the choices made by the algorithm at a given step depend
on the history of the iteration.

Let (�,F ,P) be a probability space, and let F1 ⊂ F2 ⊂ · · · ⊂ Fn ⊂ F be a
filtration. For each index i = 1, . . . , n, we write Ei for the expectation conditioned
on the σ -algebra Fi . The operator E0 := E is the unconditional expectation.

We consider an adapted sequence {Y1, . . . ,Yn} ⊂ Md of random matrices; that is,
each Y i is measurable with respect to Fi . The next result provides information about
the growth and concentration properties of the product Zn = Yn · · ·Y1. Note that the
natural concentration result compares Zn with a product of conditional expectations,
rather than the expectation of the product.

Theorem 7.2 (Products of Adapted Random Matrices) Consider a fixed matrix Z0 ∈
Md and an adapted sequence {Y1, . . . ,Yn} ⊂ Md of random matrices. Form the
products

Zn = Yn · · ·Y1Z0 and Fn = (En−1Yn) · · · (E1Y2)(E0Y1)Z0.

Assume that

‖Ei−1Y i‖ ≤ mi and ‖Y i − Ei−1Y i‖ ≤ σimi almost surely for i = 1, . . . , n.

Define M = ∏n
i=1 mi and v = ∑n

i=1 σ 2
i . For 2 ≤ q ≤ p, the random product Zn

satisfies the growth and concentration bounds

|||Zn|||p,q ≤ eCpv/2 ‖Z0‖p · M; (7.1)

|||Zn − Fn|||p,q ≤ (
eCpv − 1

)1/2 ‖Z0‖p · M . (7.2)

Proof Recursively construct the products

Zi = Y i Zi−1 and Fi = (Ei−1Y i )Fi−1 for i = 1, . . . , n.
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To bound the growth of Zi and the concentration of Zi −Fi , we simply need to update
the argument from Theorem 5.1.

To obtain (7.1), decompose

Zi = (Ei−1Y i )Zi−1 + (Y i − Ei−1Y i )Zi−1.

Since Ei−1Y i and Zi−1 are both measurable with respect to Fi−1 and Ei−1(Y i −
Ei−1Y i ) = 0, the obvious variant of Proposition 4.1 implies that

|||Zi |||2p,q ≤ |||(Ei−1Y i )Zi−1|||2p,q + Cp|||(Y i − Ei−1Y i )Zi−1|||2p,q
≤ m2

i |||Zi−1|||p,q + Cpm
2
i σ

2
i |||Zi−1|||2p,q .

The second inequality follows from (4.1). This is the same recurrence we obtain in
the proof of Theorem 5.1, relation (5.6). The rest of the argument is the same.

To obtain (7.2), decompose

Zi − Fi = Y i Zi−1 − (Ei−1Y i )Fi−1 = (Ei−1Y i )(Zi−1 − Fi−1)

+(Y i − Ei−1Y i )Zi−1.

As before, Proposition 4.1 implies that

|||Zi − Fi |||2p,q ≤ |||(Ei−1Y i )(Zi−1 − Fi−1)|||2p,q + Cp|||(Y i − Ei−1Y i )Zi−1|||2p,q
≤ m2

i |||Zi−1 − Fi−1|||p,q + Cpm
2
i σ

2
i |||Zi−1|||2p,q .

This is the same recurrence that arose when we established Theorem 5.1, relation
(5.7). The balance of the argument is identical. ��

7.3 The Spectral Radius

Products of matrices are closely related to the evolution of discrete-time linear dynam-
ical systems. In this context, it may be more natural to study the spectral radius of the
matrix product, rather than its spectral norm. Bounds for the spectral radius follow as
corollary of our work, owing to the following classical fact.

Fact 7.3 (Schur) LetM ∈ Md be a squarematrix. The spectral radius 	(M) is defined
as the maximum absolute value of an eigenvalue of M. It satisfies the variational
principle

	(M) = inf
S∈Md

∥∥∥S−1MS
∥∥∥ .

The infimum takes place over all invertible matrices S. In particular 	(M) ≤ ‖M‖.
Let us give an indication of the kinds of results that are possible.
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Corollary 7.1 (Expectation Bounds for the Spectral Radius) Consider an independent
sequence {Y1, . . . ,Yn} ⊂ Md of random matrices, and form the product Zn =
Yn · · ·Y1. Let S ∈ Md be a fixed invertible matrix, and assume that

∥∥∥S−1(EY i )S
∥∥∥ ≤ mi and

(
E

∥∥∥S−1(Y i − EY i )S
∥∥∥
2 )1/2 ≤ σimi for i = 1, . . . , n.

Let M = ∏n
i=1 mi and v = ∑n

i=1 σ 2
i . Then

E	(Zn) ≤ exp
(√

2v (2v ∨ log d)
)

· M .

Proof Combine Corollary 5.1 and Fact 7.3. ��

7.4 Prospects

We have developed a collection of nonasymptotic bounds for products of random
matrices. These results hold under simple and easily verifiable conditions, and theygive
accurate predictions about the behavior of some particular instances (e.g., products of
iid random perturbations of the identity). The proofs are based on foundational results
about the geometry of the Schatten classes, and they can easily be adapted to treat
variants of the problems under consideration.

A disappointing feature of our results is that they do not account for interactions
between the matrix factors. For example, when Y i = I+ X i/n for bounded, indepen-
dent matrix perturbations X i , we have shown that

logE‖Yn · · ·Y1‖ ≤ 1

n

n∑

i=1

‖EX i‖ + O

(√
log d

n

)
.

However, when the matrices X i are Hermitian and commute almost surely, it is easy
to show the sharper bound

logE‖Yn · · ·Y1‖ ≤ 1

n

∥∥∥∥∥

n∑

i=1

EX i

∥∥∥∥∥ + O

(√
log d

n

)
.

The results of Emme and Hubert [14] establish that limn→∞ logE‖Yn · · ·Y1‖ =
limn→∞

∥∥∑n
i=1 EX i

∥∥ /n. It therefore seems reasonable to conjecture that a refined
bound of the latter type exists in more generality. The growth bounds discussed in
Remark 5.1 imply a statement of the form

logE‖Yn · · ·Y1‖ ≤ 1

n

∥∥∥∥∥

n∑

i=1

EX i

∥∥∥∥∥ + error ,

but the error term is not sharp. This type of bound would echo Tropp’s improvements
[42] to the Ahlswede–Winter results [1] for a sum of independent randommatrices. At

123



Foundations of Computational Mathematics

present, it is not clearwhether this refinement is possible, norwhat technical arguments
would lead there.

A Supplementary Proofs

This appendix collects a few additional arguments. First, we establish the sharp form
of the result on subquadratic averages, Proposition 4.1, using an elementary method.

Lemma A.1 (Sharp Subquadratic Averages) Let X,Y be randommatrices of the same
size that satisfy E[Y |X] = 0. When 2 ≤ q ≤ p,

|||X + Y |||2p,q ≤ |||X|||2p,q + Cp|||Y |||2p,q ,

where the optimal constant Cp := p − 1.

Proof Fix a natural number n, and set Z = n−1Y . Inequality (4.4) states that

D1 := |||X + Z|||2p,q − |||X|||2p,q − 2Cp|||Z|||2p,q ≤ 0.

For a parameter 2 ≤ k ≤ n, Corollary 4.1 and Lyapunov’s inequality imply that

|||X + kZ|||2p,q + |||X + (k − 2)Z|||2p,q ≤ 2|||X + (k − 1)Z|||2p,q + 2Cp|||Z|||2p,q .

Rearranging the last display, we see that

Dk := |||X + kZ|||2p,q − |||Xs + (k − 1)Z|||2p,q − 2Cpk|||Z|||2p,q
: ≤ |||X + (k − 1)Z|||2p,q − |||X + (k − 2)Z|||2p,q − 2Cp(k − 1)|||Z|||2p,q = Dk−1.

In particular, Dk ≤ D1 ≤ 0. Using a telescoping sum,

|||X + Y |||2p,q − |||X|||2p,q =
n∑

k=1

(
|||X + kZ|||2p,q − |||X + (k − 1)Z|||2p,q

)

=
n∑

k=1

(
Dk + 2Cpk|||Z|||2p,q

)
≤

n∑

k=1

2Cpk|||Z|||2p,q = Cp
n + 1

n
|||Y |||2p,q .

Take the limit as n → ∞ to arrive at the stated result. ��
Second, we present a basic numerical inequality for weighted sums of exponentials.

Lemma A.2 Let a1, a2, . . . , an be a sequence of real numbers. Then,

n∑

i=1

ai exp

(
i−1∑

k=1

ak

)
≤ exp

(
n∑

i=1

ai

)
− 1.
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Proof The elementary inequality a ≤ ea − 1, valid for a ∈ R, implies that

ai exp

(
i−1∑

k=1

ak

)
≤ exp

(
i∑

k=1

ak

)
− exp

(
i−1∑

k=1

ak

)
.

Sum the displayed equation over i = 1, . . . , n to verify the claim. ��
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