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STREAMING k-PCA: EFFICIENT GUARANTEES FOR OJA'S ALGORITHM, BEYOND RANK-ONE
UPDATES

DE HUANG, JONATHAN NILES-WEED, AND RACHEL WARD

ABsTrRACT. We analyze Oja’s algorithm for streaming k-PCA, and prove that it achieves performance
nearly matching that of an optimal offline algorithm. Given access to a sequence of i.i.d. d X d symmetric
matrices, we show that Oja’s algorithm can obtain an accurate approximation to the subspace of the
top k eigenvectors of their expectation using a number of samples that scales polylogarithmically with d.
Previously, such a result was only known in the case where the updates have rank one.

Our analysis is based on recently developed matrix concentration tools, which allow us to prove strong
bounds on the tails of the random matrices which arise in the course of the algorithm’s execution.

1. INTRODUCTION

Principal component analysis is one of the foundational algorithms of statistics and machine learn-
ing. From a practical perspective, perhaps no optimization problem is more widely used in data
analysis [18]. From a theoretical perspective, it is one of the simplest examples of a non-convex
optimization problem that can nevertheless be solved in polynomial time; as such, it has been an
important proving ground for understanding the fundamental limits of efficient optimization [[30].

In the basic setting, the practitioner has access to a sequence of independent symmetric random
matrices A1, Ay, . .. with expectation M € R%?. The goal is to approximate the leading eigenspace
of M or, more generally, to approximate the subspace spanned by its leading k eigenvectors. While
it is natural to attempt to solve this problem by performing an eigen-decomposition of the empirical
average A = % iT=1 A;, the amount of space required by this approach can be prohibitive when d is
large. In particular, if the matrices A; are sparse or low-rank, performing incremental updates with the
matrices A; may be significantly cheaper than storing all the iterates or their average. A tremendous
amount of attention has therefore been paid to designing algorithms which can cheaply and provably
estimate the subspace spanned by the top k eigenvectors of M using limited memory and a single pass
over the data, a problem known as streaming PCA [17].

The simplest and most natural approach to this problem was proposed nearly 40 years ago by
Oja [z}, 261 :

(1) Randomly choose an initial guess Z, € R™¥, and set Qy < QR[Z,]
(2) Fort > 1, set Q; «— QR[(I+ n:A:)Q;_1].

Here, QR[Q,] returns an orthogonal R matrix obtained by performing the Gram—Schmidt process

to the columns of Q;. It is easy to see [1, Lemma 2.2] that the Gram—Schmidt step commutes with the
multiplicative update, so that we can equivalently consider a version of the algorithm which performs
a single orthonormalization at the end, and outputs

Q: = OR[Zt] , Zi=Y...Y1Zy,
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where Y; := (I +n;A;).

Oja’s algorithm can be viewed as a noisy version of the classic orthogonal iteration algorithm for
computing invariant subspaces of a symmetric matrix [12, Section 7.3.2]; alternatively, it corresponds to
projected stochastic gradient descent on the Stiefel manifold of matrices with orthonormal columns [[9]].
Despite its simplicity and practical effectiveness, Oja’s algorithm has proven challenging to analyze
because of its inherent non-convexity.

As a benchmark against which to compare Qja’s algorithm, we may consider the performance of the
simple offline algorithm which computes the leading k eigenvectors of A. We write V € R for the
orthogonal matrix whose columns are the leading k eigenvectors of M and V € R%* for the matrix
containing the leading k eigenvectors of A, and measure the quality of V by the following standard
measure of distance between subspaces:

dist(V,V) := ||[vv* = vV ||
If ||A; — M|| < M almost surely and the gap between the kth and (k + 1)th eigenvalues is py, then
the Matrix Bernstein inequality [[31, Theorem 1.4] combined with Wedin’s Theorem [33] implies that
there exists a positive constant C such that

. M [log(d/é
dist(V, V) < C—JM . (1.1)
Pk T
with probability at least 1 — 6.

The key question is whether Oja’s algorithm is able to achieve similar performance. However, except
in the special rank-one case where either k = 1 or rank(A;) = 1 almost surely, no such bound is known.

1.1. Our contribution. We give the first results for Oja’s algorithm nearly matching (T1), for any k > 1
and updates of any rank. Our main result (Theorem [2:3) establishes that, after a burn-in period of

To=0 (kM2 ) steps, the output of Oja’s algorithm satisfies

82p7
M |log(kM/&
dist(Qr,V) < C'— M
Pk T-To

with probability at least 1 — § for a universal positive constant C’. Ours is the first work to show that
Oja’s algorithm can achieve a guarantee similar to (1) beyond the rank-one case.

The assumption that k = 1 or rank(A;) = 1 is fundamental to the proof strategies used in prior works.
To show that the error decays sufficiently quickly, prior work focuses on the quantity | U*Z,(V*Z;)7}||,,
where the columns of U are the last d — k eigenvectors of M, which is an upper bound on dist(Q,, V).
(See Lemma 2.6, below.) The key challenge is to control the inverse (V*Z;)™!. When k = 1, as in
[17], this quantity is a scalar, so it can be pulled out of the norm and bounded separately. This is
no longer possible when k > 1, but if rank(A;) = 1, as in [1], then V*Z, can be written as a rank-
one perturbation of V*Z,_;. The Sherman-Morrison formula then implies that U*Z,(V*Z,)~! can be
written as U*Z,_1(V*Z,_1)~" plus the sum of explicit, rank-one correction terms. However, if neither
k = 1 nor rank(A;) = 1, this approach quickly becomes infeasible, since the correction terms now
involve a product of rank-k matrices whose norm is difficult to bound.

A more subtle difficulty implicit in prior work is that proofs must be carried out entirely in expected
(squared) Frobenius norm. This requirement is necessitated by the fact that the Frobenius norm is
Hilbertian, so it is possible to employ the crucial Pythagorean identity

E|Y|3 = [|EY|3 + IY - EY||3 (1.2)
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for any random matrix Y. It is this identity that makes it possible to control the evolution of
IE||U*Zt(V*Zt)_1||§. However, as our proofs reveal, it is of significant utility to be able to recur-
sively control the operator norm ||[U*Z,(V*Z,)~!|| with high probability instead. Unfortunately, (T.2)
is of no help in proving statements of this kind.

Our argument handles both challenges and represents a significant conceptual simplification over
earlier proofs. Our crucial insight is that, rather than using the squared Frobenius norm, it is possible
to prove a stronger recursion in a different norm, which implies high-probability bounds. Using
techniques recently developed by [16] to prove concentration inequalities for products of random
matrices, we show that conditioned on ||[U*Z,_;(V*Z,_1)~!|| being well behaved, the probability that
lU*Z.(V*Z,)~!|| deviates significantly from its expectation is exponentially small.

In other words, good concentration properties for ||[U*Z,_1(V*Z,_1)~!|| imply good concentration
properties for the next iterate, ||[U*Z,(V*Z;)™!||. These high-probability bounds significantly simplify
the calculations, since they allow us to guarantee that the problematic error terms appearing in prior
work are small.

If we knew that ||[U*Z,(V*Z,)™!|| = O(1) with high probability, then the above induction argument
would allow us to conclude that || U*Z,(V*Z,)"|| = O(1) for all t. Unfortunately, this is not the case:
if Z is randomly initialized with i.i.d. Gaussian entries, then typically

|U*Zo(V*Zo)7H|| = Vdk.

We therefore adopt a two-phase approach: in the first, short phase, of length approximately logd, we
show that the operator norm decays from O(Vdk) to O(1), and in the second phase we use the above
recursive argument to establish that the operator norm decays to zero at a O(1/VT) rate. To simplify
the analysis of the first phase, we develop a coupling argument that allows us reduce without loss of
generality to the case where the law P, of the random matrices A, Ao, ... has finite support and
obtain almost-sure guarantees by a simple union bound. This weak control is enough to guarantee
that | U*Z,(V*Z,)!|| decays exponentially fast, so that it is of constant order after approximately log d
iterations.

1.2. Prior work. Obtaining non-asymptotic rates of convergence for Oja’s algorithm and its variants
has been an area of active recent interest [28| 29} 27} 21, 20, 2, 4, 13} 17, 23]. Apart from the results
of [1] and [17], none of these works proves bounds matching (T1).

A breakthrough in the project of obtaining optimal guarantees was due to [28]], who gave an analysis
of Oja’s algorithm that works when provided with a warm start: he showed that, when k = 1 and
rank(A;) = 1 almost surely, Oja’s algorithm converges in a number of steps logarithmic in d if it is
initialized in a neighborhood of the optimum, but his result does not extend to random initialization
and it is unclear how to find a warm start in practice. This restriction was lifted by [17], who were
the first to show a global, efficient guarantee for Oja’s algorithm when k = 1. Subsequently, [1]
gave a global, efficient guarantee for Oja’s algorithm in the k > 1 case, but under the restriction that
rank(A;) = 1 almost surely.

The idea of analyzing Oja’s algorithm by developing concentration bounds for products of random
matrices was suggested by [i5]], who also proved such non-asymptotic concentration bounds in a
simplified setting. Those bounds were later improved by [16] who developed a different technique
based on martingale inequalities for Schatten norms, following a strategy pursued by [[19] and [[24]
for other Banach space norms. The concentration inequalities of [[16]] are not sharp enough to recover
optimal rates for Oja’s algorithm on their own; in this work, we use a similar proof techniques to
establish tailor-made concentration results for the Oja setting.
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1.3. Organization of the remainder of the paper. In Section B, we give our main results and an
overview of our techniques. Our main tool is a recursive inequality which proves a concentration
result for the iterates of Oja’s algorithm, which we state and prove in Section[3}

Our analysis of Oja’s algorithm involves two distinct phases, which we analyze separately. Since the
argument for the second phase is simpler, we present it first in Section[4}, and present the slightly more
complicated argument for the first phase in Section[5} We conclude in Section [6l with open questions
and directions for future work. The appendices contain omitted proofs and supplementary results for
each section.

1.4. Notation. We write A1 > --- > A4 for the eigenvalues of the symmetric matrix M, and we write
Pk = Ax — Arsq for the gap between the kth and (k + 1)th eigenvalue. We write V. € R for
the orthogonal matrix whose columns are the k leading eigenvectors of M, and U € R¥(47%) for
the orthogonal matrix whose columns are the remaining eigenvectors. Given an orthogonal matrix
W e Rk we write [7]
dist(W,V) = [[VV' —WW'| = [U'W]|,

The symbol ||-|| denotes the spectral norm (i.e., £, operator norm) of a matrix, which is equal to its
maximum singular value. For p > 1, the symbol ||-||, denotes the Schatten p-norm, which is the ¢,
norm of the singular values of its argument. We also define the L, norm of a random matrix X as

1
111, 2= (B 1X115)" .
We employ standard asymptotic notation a = O(b) to indicate that a < Cb for a universal positive
constant C, and write a = @(b) if a = O(b) and b = O(a). The notations O(-) and @(-) suppress
polylogarithmic factors in the problem parameters. When t is a positive integer, we write [t] :=

{1,...,t}.

2. TECHNIQUES AND MAIN RESULTS

We focus throughout on the following setup:

Assumption 2.1. The matrices A; are symmetric, independent, identically distributed samples from a
distribution P,, with expectation M.

Note that while we require that each A; is symmetric, we do not require that A; > O.

The requirement that A; is symmetric is not as restrictive as it may seem, since we can replace A;
by its Hermitian dilation:

0 A 2dx2d
D(A;) = ‘leR .

Estimating the leading eigenvectors of @ (M) is equivalent to estimating the leading singular vectors
of M. Our results therefore extend to the non-symmetric streaming SVD problem as well. We refer
the reader to [32] for more details about this standard reduction.

The second requirement establishes that the random errors are bounded in a suitable norm. We
write Sy i for the Stiefel manifold of d X k matrices with orthonormal columns.

Assumption 2.2. If A ~ Py, then suppg,, [|[P*(A — M)||2 < M almost surely.
Note that for any matrix X € R4,

k 1/2
sup ||P*X =( , O"Xz) , 1<k<d,
sup [IP° X1l > o)
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where 01(X) > 02(X) > - -+ > 04(X) are the singular values of X. This norm, sometimes known as
the (2, k) norm [22] or the Ky Fan 2-k norm [8], satisfies
IX)| < sup [IP*Xll> < VKIXI| < [IX]l2-
PeSy i
This choice of norm generalizes the error assumptions in the literature. In the k = 1 case, it agrees
with the operator norm, which is the condition used by [17]; and it weakens the requirement of [f]
that ||A;||2 < 1 almost surely.
The following theorem summarizes our main results for Oja’s algorithm.

Theorem 2.3 (Main, informal). Adopt Assumptions 21 and 22 Let A1 > ... A4 be the eigenvalues of
M, and let py = Ak — Agy1.
For every § € (0, 1), define learning rates

kM2 - [ M? (:)(L), t<Ty
wali) o-of) wo{oi
p? p? G(pkwﬂ—n)))’ £>To.

Let V. € R be the orthogonal matrix whose columns are the k leading eigenvectors of M. Then for
any T > Ty, the output Qt of Oja’s algorithm satisfies

M |log(Mk/pi6
dist(Qr,V) < ¢'— M
Pk T -To

with probability at least 1 — 8, where C’ is a universal positive constant.

To prove Theorem 2.3, we adopt a two-phase analysis. Our first result shows that after T, iterations,
the output of Oja’s algorithm satisfies ||[U*Qy, (V*Qr,)!|| < 1 with high probability.

Theorem 2.4 (Phase I, informal). Adopt the same setting as Theorem and let Zy € R™* have
i.i.d. Gaussian entries. Let

kM?

To=0 (52[)2 (log(dM/Spk))4) .
k

log(d/6)

Then after Ty iterations of Oja’s algorithm with constant step size n = © ( oTo

) and initialization Z,
the output Qr, satisfies

U Qq, (V' Qz) Il < 1
with probability at least 1 — 8.

Our analysis of the second phase shows that, if Oja’s algorithm is initialized with any matrix
satisfying ||[U*Qq(V*Qo)~!|| < 1, then the output of Oja’s algorithm decays at the rate O(1/VT).

Theorem 2.5 (Phase II, informal). Adopt the same setting as Theorem 2.3 and suppose that Zy € Rk
satisfies ||{U*Zo(V*Zy) || < 1. Then after T iterations of Oja’s algorithm with step size ; = ﬁ with

p=6 (A/;I_; log (pMTlg)) and initialization Q, the output Qr satisfies
k
p+1

diSt(QT,V) < 2e m

with probability at least 1 — 8.

This error guarantee is completely dimension free, and depends only logarithmically on k and the
failure probability §.
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Theorem 23] follows directly from Theorems 2.4] and 2.5} Theorem [Z.4] guarantees that with proba-
bility 1 — &, the output of Phase I is a suitable initialization for Phase II, and, conditioned on this good
event, Theorem2:5|guarantees that the output of the second phase has error O(W ) with probability
1 — 8. By concatenating the analysis of the two phases and using the union bound, we obtain that the
resulting two-phase algorithm succeeds with probability at least 1 — 26, yielding Theorem 23]

In the remainder of this section, we describe the main technical tools we employ in our argument.

2.1. A recursive expression. To simplify the argument, we recall the following result of [1, Lemma
2.2]:

Lemma 2.6. Forallt > 0,
dist(Q., V) = U Q.|| < IU"Q.(V'Q) ! || = IU"Z(V*Z) | .
We therefore focus on bounding the norm of the matrix
W, :=UZ,(V*Z,) L. (2.1)

Under the assumption that 7, is small, we might expect that we can write W, as a sum of the
dominant term

H, = U (1+nM)Ze_y (V*(L+0.M)Z_1) !

plus lower order terms.

To argue that W, is close to H;, we need to argue that the inverse (V*Z;)~! does not blow up,
which will be the case so long as the fluctuation term n,V*(A; — M)Z,_; is smaller than the main term
V*(I1+n:M)Z,_;. In order to make this requirement precise, we write

A =0V (A= M)Ze oy (VF (T4 M)Z 1) 7" (2.2)

So long as this matrix has small norm, the inverse term will be well behaved. As we discuss in the
following section, we will be able to guarantee that this is the case by conditioning on an appropriate
good event.

The following lemma shows that, modulo a term involving A, we can indeed express W, as H; plus
a small correction.

Lemma 2.7. Let W, H;, and A; be defined as in @1)-(@Z2). Then we can write
Wi (1-A7) =H +Ji1+Ji2, (2.3)
for matrices J. 1 and J; 5 of norm O(n;) and O(n?), respectively.

Below, in Propositions[A.1land [A.2] we use Lemma 7] to develop an explicit recursive bound on the
norm of W;.

2.2. Matrix concentration via smoothness. In order to exploit the expression (Z-3), we need concen-
tration inequalities that allow us to conclude that W, is near H; with high probability. [16] recently
developed new tools to control the norms of products of independent random matrices, in an attempt
to extend the mature toolset for bounding sums of random matrices to the product setting. Their tech-
niques are based on a simple but deep property of the Schatten p-norms known as uniform smoothness.
The most elementary expression of this fact is the following inequality, which is the analogue of (T:2)
for the L, norm.

Proposition 2.8 ([16, Proposition 4.3]). Let X and Y be random matrices of the same size, with
E[Y : X] = 0. Then for any p > 2,

IX+Y +Z|I; , < IXI5,+ (p = DIYI, -
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We will employ the following corollary of Proposition 2.8, which extends the inequality to non-
centered random matrices.

Proposition 2.9. Let X, Y, and Z be random matrices of the same size, with E[Y : X| = 0. Then for
any p > 2and A > 0,

IX+Y+2Z|2, < @+DXI5,+ (- DIV, +27Z]3,)

The benefit of working in the L, norm is that bounding this norm for p large yields good tail
bounds on the operator norm, which are not available if the argument is carried out solely in expected
Frobenius norm. We will rely heavily on this fact heavily in our argument.

2.3. Conditioning on good events. Obtaining control on W, via (2:3) requires ensuring that the
matrix I — A? is invertible, with inverse of bounded norm. To accomplish this, we define a sequence
of good events §y D G; D ..., where each ; is measurable with respect to the o-algebra %; :=
0(Zy,Y1,...,Y;). We write 1; for the indicator of the event §;, and we will define €; in such a way
that (I — A%1,_;) is invertible almost surely.

During Phase II, the good events are defined by

%o == {l[Woll <1}
G ={lWill <y} NG, Viz1

for some y > 1 to be specified. Since Assumption 22 implies that ||A; — M|| < M almost surely, this
definition guarantees that for all i > 1,

lV*(A; — M)UW;_11;_1|| < My almost surely. (2.4)

As we show in Proposition below, if the step size is sufficiently small, then (Z:7) implies that
I- Af is almost surely invertible on 6;_1, which allows us to employ (2-3) to bound the norm of W,1,_;.

During Phase I, we condition on a slightly more complicated set of events, which we describe
explicitly in Section[5l However, these events are constructed so that still holds for all i > 1.

Our matrix concentration results described in Section 2 allow us to show that, during both Phase
I and Phase II, ||W,1,_1]| is small with high probability, for all t > 1. Using this fact, we show that,
conditioned on §;_1, the probability that 6, holds is also large. Bounding the failure probability at
each step, we are able to conclude that, conditioned on the initialization event §,, the good events &,
hold for all t > 1 with high probability.

3. MAIN RECURSIVE BOUND

In this section, we state our main recursive bound, which we use in both Phase I and Phase II. A
proof appears in Section [Bl

Theorem 3.1. Let t be a positive integer, and for all i € [t], let &; = 2n;M (1 + y). Let 1+, ..., 1, be the
indicator functions of a sequence of good events satisfying forallice [t].

Assume that for all i € [t],
&

1 )
g<=, nM|<=, et L (3.1)
2 €i-1

N

with the convention that the last requirement is vacuous when i = 1. Then for any p > 2,
2 2 - 2 2 (! 2 2/p .2
WLy, < Wl ll2, < e P [[Wololl5 , + C1pe; Zizo IWiLil|% , + Copk*/Pelt, (3-2)

where s; = Zle ni, C1 = 21, and Cy = 5. Moreover; if in addition for all i € [t],

2 _ MNiPk
e < , .
DE; 50 (3.3)
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then
WLl , < IWeleoall?, < eP?[Wolo|2 , + Copk®Pet .

Theorem [3:1] shows that, up to small error, ||W, 1,_1]|| 12), p decays exponentially fast. We will use this
fact to prove high probability bounds on ||W,1,_;||, which then imply bounds on ||W,]||.

4. PHASE II

In this section, we use Theorem [3:1] to prove a formal version of Theorem [2:5]
For this phase, recall that we define the good events ; by

G ={lWoll <1}, G={IWill <y}nGi1, Viz1. (4.1)
For Phase II, we set y = V/2e.

We first show that, with a specific step-size schedule, we obtain good bounds on the norm of the
last iterate.

Proposition 4.1. Define the good events as in ([@-1). Setn; = m, for positive quantities a and 3, and
define the normalized gap
_ . )Pk Pk
= =1y 2
o mm{M ] } “
If
4(1 + V2e)a
a>8, Bz(ﬁ—k), (4.3)
then forany t > 1,
B+1\* Csa\? t
W2, < k¥P|E—| +pk?P. ~ , .

where C3 is a numerical constant less than 175.

Proof. Since the good events defined in satisfy (2-4), we can apply Theorem[3:1 In the appendix,
we show (Lemma that implies that the assumptions in (3-1) hold. Theorem [3:1] then yields
_ t-1
||Wt11r||f),p <e stpk”Wo]lon),p +C1pe} Zi:l ||Wi]li||f),p + Copk*/Pelt
< e SPRE2IP 4 (Cry? + Cz)pkz/pstzt,

since (@-1) implies ||W010||12,,p < k?/P and ||Wi]ll-||12,)p < y2k2/P forall i > 1.

The definition of n; implies
t 1 B+t
PkSt = aZi:l B > alog (m) .

We obtain )
B+1\" Csa t
WL, < kP [E—| +pk?P. ~ ,
” t t”p’p (,B +t p p—k (,B +t)2
where
Cs = (C1y? + Cy)Y?C, < 175,
as desired. O

Finally, we remove the conditioning and prove the full version of Theorem 2:5}
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Theorem 4.2. Assume |Wy|| < 1, and adopt the step size n; = m, with
2
C30( C30(
Pk Pk
where Py is as in and Cs is as in ([@-4). Then

B+1
B+T

[Wr]| < 2e

with probability at least 1 — 8.
Proof. For any s > 0, it holds P {||W7|| = s} < P{||Wrlr| = s} + P {"ﬁf} First, we have
C c T c
P{of} <P{g}+ ), P{ofng|.

Since we have assumed that the initialization satisfies |Wy|| < 1, the event 6y holds with probability
1, so it suffices to bound the second term. By Markov’s inequality, we have

P {Cgf n ng_l} =P Wil = v} < inf y PIW;1a 7.

=2
Py

2 2"
C3a

p/2
+1\¢ 1 Cla? '
ﬁ_) + Lo B )

For fixed j > 1, we choose p = (8 +j) - It follows from that,

_ 1
Y PIW;T4llp, < (ﬁkz/p(

B+i) vy pr (B+))?
1 1 . p/2
IEIEN
2e2  2e2pB+]

52
<keP=kexp|-(B+ij) —|.
p( (B+1J) c§a2)

Therefore, forany T > 1,
52 2.2 e
! ¢ T . Py C30( —B~m
ZJ':l]P {Cgf |<gj_1} = ijzl exp [—(B+]) - Céaz) <k—-e 7.

This quantity is smaller than §/2 if

2,2 CoalM
p =2 3_2 log 3?( -2k/6) .
pk Pk

It remains to bound P {||Wr17|| > s}. A simple argument (Lemma based on (7-2) shows that
this probability is at least §/2 for

B+1
s =2e .
B+T
The claim follows. m]
5. PHASE I

In this section, we describe the slightly more delicate proof of the formal version of Theorem
As in Section [, we will employ Theorem [3.1 However, we will also need to develop an auxiliary
recurrence to bound the growth of an additional matrix sequence.
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Before we analyze Phase I, we first show that we can reduce to the case that that P, has finite
support. We prove the following result in Appendix [EL

Proposition 5.1. Fix p > 0. Suppose that there exists a choice of constant step size n and Ty >
9p_1g log(d /&) such that for any finitely-supported distribution with support size at most Tg satisfying

Assumptions 21 and 22 and with px > p/2, we have

IU"Qq, (V' Qq) Il < (5.1)

[N

with probability at least 1 — §/3.
Then for this same n and Ty it in fact holds that for any distribution satisfying Assumptions 21 and 22
and with pyx > p, we have

IU" Qg (V' Qq,) M < 1
with probability at least 1 — 6.

Proposition 5.1 implies that it suffices to prove the error guarantee (5.1I) in the special case when
P4 has finite support of cardinality at most Tg.

Let us fix a time horizon Ty and assume in what follows that m := |supp(P4)| < T3.We begin by
defining the good events for Phase I. We adopt a constant step size 1, to be specified. Denote

€ := {M'(A-M)UU" : A € supp(P,)}.
Fori > 1, we will set
i = {max IVEUW|| <y} NGy
€

Note that this choice satisfies foralli > 1.
To define the initial good event €j, we need to define a larger set of matrices to condition on. For
allr,€ > 1, set

€. ¢ := {V'Fy---F,U :F; € € for at most ¢ distinct indices i € [r],
and F; = (1 + nAks1) L (I + nM)UU" otherwise}

The set €, ¢ has cardinality less than (r(m + 1))¢, and ||E||, < 1 for any E € é.¢, and any r, £ > 1.

We have defined 6, ¢ so that control over maxgey ||[EW_1|| gives control over maxgeg, , ||EW¢||.
Finally, we define

To+1 Ve
€o = ﬂ ° {glelgrxe IEWoll2 < \/__2)/} N {Woll> < Vdy}. (5.2)

r,{=1 e

r+1,0+1

Since V*(A; — M)U € €;; almost surely, this choice satisfies fori=1.

Our strategy will be similar to the one used in Sectiong However, in order to show that the good
events G; hold with high probability, we will also need a second recurrence that allows us to control
the norm of matrices of the form EW,, for E € 6, ;. The details appear in Section Dl

6. CONCLUSION

This work gives the first nearly optimal analysis of Oja’s algorithm for streaming PCA beyond the
rank one case. Our analysis is conceptually simple: we show that the spectral norm of the matrix W,
concentrates well around its expectation, once we condition on W,_; having the same behavior. And
our concentration results are strong enough that we can pay to union bound over the entire course of
the algorithm, to show that W, is well behaved for all t > 1.

The matrix concentration techniques we have applied here could be useful in analyzing other PCA-
like algorithms, or, more generally, other stochastic algorithms for simple non-convex optimization
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problems. An interesting question is whether these techniques can prove gap-free rates for Oja’s
algorithm outside the rank-one setting. This would extend the results of [1] to the general case.
Finally, we stress that the algorithm we have described here requires a priori knowledge of the
problem parameters (including the gap pi) to set the step sizes, which is a serious limitation in
practice. Recently, [14] developed a data-driven procedure to adaptively select the optimal step sizes.
Obtaining theoretical guarantees for this or similar algorithms is an important open problem.
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APPENDIX A. ADDITIONAL RESULTS FOR SECTION [3]

The following proposition develops the expansion described in Lemma[2-7/and gives explicit bounds
on the norms of the error matrices J; ; and J; 5.
We recall the following definitions

W, =UZ,(V*Z,)"
H, =U*(1+nM)Z;1(V*(I+nM)Z;_1)""
Ac = 0V (Ac = M)Zeea (V (T4 M) Z1) ™
Proposition A.1. Let t > 1. Assume that n; is small enough that M > —2%7[1, and assume that
holds for i =t. Let
Ee= (KYP +2[Weer Liallp,p)
g =2nM(1+y).
Then ||A¢1,1|| < & almost surely, and
W (1—A%) = H, +J 1 +Jp
for Ji 1 and J; 5 satisfying
e 11e-1llp,p < Ecee

[ Te2Le—1]l < Etgz;
s p,p t

and E[J¢1 @ F1] = 0.

Proof. We employ the notation of the proof of Lemma[Z7, (See Appendix[Gl) First, we show the bound
on A;. Since n:M > —%I, we have |V*(I+n,M)~1V|| < 2. Moreover, since ||[V*(A; — M)UW,_+|| < My
almost surely, we have that

18Tl < 200V (Ac = M)(UU" +VV)Zeo1 (V' Zeo) ™ e
< 2n¢|[VF(A; - M)UU*ZH(V*Zt—l)_lﬂt—ﬂl +2n:|[V* (A, = M)V||
=2 IV*(A; = M)UW 1 1| + 20 |[VF (A, = M)V |
<2nM(1+y)=:¢&.
We can bound ||A;L,_1]| p,p Dy a similar argument. First, note that Assumption 2 implies that

||A; — M|| < M almost surely. Hence
||Ztﬂt—1||p,p < 2n|lU* (A = M)UU"Z,_4 (V*Zt—1)_1ﬂt—1||p,p + 2’It||U*(At - M)Vﬂt—lnp,p
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=20 [U"(Ac = MU [We—r Teallp,p + 20U (Ae = M)Vl p
< (IWeet Taallpp +K'/P)20M
< (IWeet Teaallpp + K /P)er,
Finally, we have
1+ 1Ak
1+ neAk
We now employ Lemma 27, The term J,; satisfies

]E[Jt,l]lt—l |9t—1] =0,

”Htﬂt—l”p,p < ”Wt—lﬂt—l”p,p < ”Wt—lﬂt—l”p,p .

and we have
e 1e-1llpp < 1AL e-1llpp + [He L1l p,pll A Le-1 |l
< (IWeerTecllpp + KP) e+ [Weoa Teoa [l pee

< Ei&.
Finally,
1e2llpp < I8 LemnllppllAcLeat ]| < (IWeer Tecallp,p + K P)el < Ece?.
O
Combining Proposition [A.1] with Proposition .9 immediately yields a recursive bound.
Proposition A.2. Adopt the setting of Proposition If & < 1/2, then
W13, < IWelealls ) < KuelWeaTeall} , + Koy, (A1)
where
1+nae \°
K1 = (1+5¢7) (#) +8pe?
1+ neArs

Ky = 5pk2/p£t2 .

Proof. Reusing the notation of Proposition [A.1 we have
Wl (I- A?) =H ;1 +Je111 + 219,

where E[J; 11,1 : Ft_1] = 0. Since H;1;_; is F._;-measurable, Proposition [2.9] therefore yields for
any A > 0

IWeLea (1= AD)13, < L+ D) (IHe Ll , + (p ~ DEZe? + A7 Elef) .
Choosing A = &2, we obtain

W1 (T-AD)2, < (L+ &) (I Helea |, + pEZe?) -

Finally, under the assumption that ||A;1,_1|| < & < % almost surely, on the event 6;_; the matrix
I — A? is invertible and satisfies

I(T=A2) 1] < (1= AL < (1 -7t
Hence
+ €2

Wl , < (IWeLea(T- D)3 I (T— A) L]l < a2
t

(”Ht]]-t—l”?),p + pEger) .
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+€

. 1+£2
Since (1——&}5)2 < 1+5¢forall g < % and

(1+5e))E? < (1+562)(2k*P +8[|W 11,112 ,)
and 2(1 +5¢2) < 5forall g < %, this proves the claim.
APPENDIX B. PROOF OF THEOREM [3.1]
We will unroll the one-step recurrence of Proposition We first bound K ;. We have

1+ ;A
Kl,i S( Nilk
1+ niAka

1+niAk
1+ niAks

where the second inequality follows from the first assumption in (3:1). The second assumption in ([3:1)
implies that 0 < 1 +n;Ax < 2, so

2 2 2
el 0S5 I PR 72308 R PR S e
1+T]ilk 1+77i/1k 2

Since 5+ 18p < 21p for all p > 2, we obtain

2 2
) +(5+8p)ei2+40pefs( ) +(5+18p)e?,

Ky; < e Pk + Cype?.
We now proceed to prove the first claim by induction. When t = 1, we use to obtain

2 2 2
Wilall5, < W1Tloll5 , < K11l[[WoTloll; p + K21

< e P |Wololl3 , + C1pefWololl? , + Capk*/Pe?,
which is the desired bound.

Proceeding by induction, for t > 1 we have
2 2
”Wtﬂ t”p,p < ”Wtﬂ t—1 ”p,p
< Kl,tllwt—lﬂt—1||§,p + Ko

< e MWy Ll , + Crpel [Wea Tl , + Koy

< o (e_st,lpk”WO]lO”Isz +Cype? Z: [W;L]|2 , + Capk*Pe? | (t — 1))
+ C1P€t2 W11, ||12)p + Czpkz/pgtz

< e_sfp"“Wo]lo“fa,p +C1pe} ZZ; ”Wi]li“f),P + CszZ/PStzt:

where in the final inequality we have used that e tPk €t2—1 < &2 by the third assumption of (3:1). This
proves the first bound.

For the second bound, we proceed in a similar way, but with a sharper bound on K; ;. The second
assumption of (3:1) again implies

2 2

1+ niAk+1 NiPk 1 2 3
) = 1- /) <1-mipe+ —(mip)? < 1 - Znipk,
( T+ A T+ niis NiPk + 7 (Mipi) 2Pk

and therefore

Ky

IA

3
(1+ Seiz) (1 - Zmpk + 8pei2)

3
exp (‘Z’]iPk +(5+ 8p)€i2)
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< e_UiPk/Z’
where the final step uses Assumption (3-3) and the fact that 5+ 8p < £
When t = 1, we therefore have

Wr 1412, < W1 Tol2 , < Ky 1 [WoToll , + Ko

< e_mpk/ZHWo]lo“f),p + Czpkz/PE% ,

as desired, and for t > 1 the induction hypothesis yields
2 2
”Wt]] t”p’p < ”Wt]] t—1 ”p,p
< Kl,tllwt—lﬂt—1||§,p + Ko

< @ MePi/2 (e—st71pk/2||wo]lo||12),p + Czka/pth_l(t _ 1))

< e P2 Wolo |12, + Copk®/Pelt

where the final inequality again uses the third assumption in (3:1). This proves the second bound.

APPENDIX C. ADDITIONAL RESULTS FOR SECTION [

Lemma C.1. Under the conditions of Proposition the assumptions of ([3-1) hold.

Proof. First assumption. We have

g =2mM(1+y) =2(1 +\/_e) l)pk < Cgﬂpk,

where C, = 2(1 + V2e). So the first assumption is fulfilled as long as
Bla = 2Ce/pk .

Second assumption. As above, we have

P il

Bpr ﬂﬁk’
so the assumption is fulfilled if (C.1a) holds.

Third assumption. It suffices to show that

Bl 40P s o
& 4

which is equivalent to
1 al4

<
B+i—-1" B+i

This holds as long as
a=>8.

We obtain that all three assumptions hold under (C.1a) and (C.1b)), as claimed.

Lemma C.2. In the setting of Theorem|[D.5 if s = Zew/ﬁL1 then

B+T°
P {|Wr| > s} <8/2.

Proof. We have
P {[[Wrlz] > s} < ;I;gs_plleﬂTllg,p

Zpforall p > 2.

(Caa)

(C.1b)
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In particular, we choose

o o(B+1)\° NGLE
s =e T + e ) ﬁ
B+ p; (B+T)
It then follows from (7-4) that

log(2k/8), and p =log(2k/$).

p/2
) =ke? =§/2.

1(B+1\* 1 C2®> T
P{Wrlz] > s} <sP|Wrlrllh <k (_ ('B_) 3

+_ —_—
s2\B+T 2P pr (B+T)?

Combining the above bounds, we obtain that

aj2
Wil <s<e (ﬂ + 1) +ngO{M [log(2k/8) ’
B+T Pk T

with probability at least 1 — §. Since both terms are smaller than e,/ g%, the claim follows. m|

APPENDIX D. ADDITIONAL RESULTS FOR SECTION
Our main tool will be the following slight variation on Proposition

Proposition D.1. Let t > 1. Assume that 1, is small enough that M > —ziml, and assume that ([27)
holds for i = t. Consider an arbitrary deterministic matrix E € €, ;.
Let

E;=1+42 max |[E"We1leallpp

E"€%41,041
e=2nM(1+y).
Then ||A¢1i-1]|| < € almost surely, and
EW,(1-A?) = EH,+EJ, 1 + EJ
for EJ, ;1 and EJ, 5 satisfying
lEJ 11e-allp,p < Ece

”EJt,z]lt—l”p,p < Etl’fz 5

and E[EJt’l . g:t_l] = O
Proof. The proof is a slight modification on the proof of Proposition By construction,

1+l‘]lk

2
E'W,_11,.4|?
1+nlk+1) |E'We_1Te—q]|

||EHtﬂf—1||2 < ( p,p?

p,p —

where E’ = WEU*(I +nE)U € Gri1p C Granee1-

Similarly, we have
IEA T -1llp,p < 20|EU* (Ac = MYUW 1 Teallp p + 29[| EU* (Ac = M)Vl
< 2nM(||E"W ey Teallpp + [1Ellp,p)
< E(llE,,Wt—lﬂt—lllp,p +1)
where E” = %EU*(At — M)U € é,41,041, and we have used ||E||, < [|E||> < 1.
We therefore obtain
IESe1Tellpp < IEB T cllpp + IEH Dl pllAcT e
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< (”E”Wt—l]]t—lllp,p + ”E/Wt—l]]t—l”p,p + 1) €

< Ee,

and

”EJt,zﬂt—l”p,p < ||Eztﬂt—1||p,p||Atﬂt—l|| < (”ENWt—l]]t—IHp,p + 1)52 < Etfz .

The following two results are the appropriate analogues of Proposition [A.2land Theorem 3.1}

Proposition D.2. Adopt the setting of Proposition[D.4 If € < 1/2, then

max ”Ewt]lt—l“ < Kl max |[E'W 11, 1|| +I_<2 max  ||[E"W_11,1|3
EE%r,f %gr+1 ¢ e%r+1 £+1 p-p
where
- 1+nA |2
Ky = (1+5¢%) (—” £ )
1+nAka

Ky = (1 +562)8pe?
Proof. As in the proof of Proposition[A.2, we have for any E € 6, ¢,

IEIS , < (1+5e*)([EH L[5 , + pEe?) -

As in the proof of Proposition [D.1, we can write

1+I]/1k 2

IEH 1,12, < (Hm
+1

where E’ = EU* (I+nZ)U € €11 Since

1+nA
E} <8 max ||E"W,11,4]3,+8

E"€8r11,041

taking the maximum over all E € 6, and E’ € é,.1 ¢ yields the claim.

) IEW 1143,

(D.1)

O

Theorem D.3. Let t < Ty be a positive integer, and assume the following requirements hold for some

p=2
1
£ —,
2
Ml <
n =50
2 _ NPk
£ < —
PE =50
y=2.
Then foranyr,f € [Ty —t+ 1] and p > 2,
2 ty?
EIE%XZ ||Ewt]lt||p, < max ”Ewt]lt 1||pp S a2

where C4 = 6.

Proof. First, as in the proof of Theorem [3:1, Assumptions and (D.2d) imply
_ 1+nac |
Ry + Ry = (14562 {(#) + 8p€2}

1+nAka

< e PK/2

—_e P2 4 C,py2e?t .

(D.2a)

(D.2b)

(D.20)
(D.2d)
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In particular, K; + Ko < 1. Assumption (D.2a) likewise implies that Ky < 18.
We now turn to the proof of the main claim, which we prove by induction on t. For convenience,
we introduce the notation y. = y/V2e. Whent =1 andr, £ < Ty, (D.1) implies

max ||[EW;14|?
EE%MH 11all5

< max ||[EW;1,]?
Ee%ﬂ{” 1T0ll5,

e ’ 2 7 ” 2 2 7
< Ky m%ax ”E Woﬂollp’p+K - max ||E Woﬂollp’pE + K,

r+1,0 r+1,0+1
< Klg)/e +K2(€ + 1))/'3 +K2
< €Y§(I_<1 + Kz) + (1 + Yg)[zz

-
< y2ePr/2 4 gKQ

where we have used the definition of 6, and where the last step uses (D.2d)). Proceeding by induction,

we have

EHI%X ”Ewtﬂ ”p p

as claimed.

< max ||EWtﬂt 1113,
_ 2
< K; max ||E W1, 1” 2 o max ||E"Wt—1]]t—1”p)p + Ky
E'€8410 E" €€ 11,001

< Ky (Eyle VPR 4 (1 — 1))2Ky)
+ Ko (€ +1)y2e VP2 1 (¢ — 1)y%Ky) + Ry
< €Y§(I_<1 + Kz)e_(t_l)npk/z +(t—1) (K + Kp)p?Ka + (1 + Ye 5K,

-
= py2eiPi/2 4 ngt,

Proposition D.4. Fixs € (0,1), 2 <y < Cyéz, and p > 2, where C, = 144y is the constant in

LemmalH.4} Given p > 0,

and adopt the step size

If px 2 p/2 and

where

then

and

foralll <t <Tp.

define the normalized gap

- .{M M| }
p =min{— , 1
p P

_ Cylog(ed/s6)
- pTo .

Cry?log(ed/sS)?
’ §2p2

To

\%

Cy > 8+4log2C,,  Cr > 600e*C3,

2
w 2/p
” To]]-To 1||pp < 26 (1+k )

max |[EW,1,_ <
Ee%, ” tit 1||p,p

o=
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Proof. We will apply Theorems[3:1and First, note that holds by assumption. We now turn
to the other conditions.
Assumption (D.2a): Since y > 2, we have

3Cyy log(ed/s8)M
pTo .

e=2nM(1+y) <

The assumption therefore holds as long as
Cr 2 3G, . (D.3)
Assumption (D.2D): As above, we have
2C, log(ed/s8)|| M|
pTo
and the requirement implies that this quantity is also smaller than 1/2.

. . (0! d . .
Assumption (D.2d): Since npyx = w > T—lo and 36e? > 50, it suffices to prove the stronger
claim

nlMl| <

J

2
e < s—. (D.4)

PE = 36e21,

This is satisfied so long as
16C$yzlog2(ed/56)M2< 52
P p2T? T 36e2T,
which will hold if

Cr > 600eC? . (D.5)

This requirement is stronger than (D.3), so Assumptions (D.2a)-(D.2cd) hold under the sole condi-
tion (D.5).

We now turn to the two claimed bounds. First, we instantiate Theorem [3:1] with the choice ; = n
for 1 < i < Ty. The third assumption of (3:1) is trivially satisfied when when n; is constant, since

in that case ¢; = ¢;—1 for all i > 1. The remaining assumptions correspond directly to Assump-
tions (D.2a)), (D.2b), and (D.2c). The assumptions of Theorem 31 are therefore satisfied, so we obtain,

W L1 15, < € PPP/2[Wo o3, + 5pk*/Pe?Ty .
The definition of €, in and the fact that py > p/2 implies that the first term is at most
e TonP/2qy2 = (ed /s8)"n/*dy?,

and this will be less than % if
C, > 8+4log(2C)).
Since holds, the second term satisfies

5pk?/Pe’Ty < 5_52k2/p < ikZ/p
~ 36e2 2e2

We obtain 2
S
”WTolTo—llllz),p < E (1 + kz/p) ,

as claimed.
For the second claim, we rely on Theorem Assumptions (D.2a)-(D.2d) having already been
verified, we obtain forall 1 <t < Ty,

2
2 Yo _tnpi/2 2.2
max |EW: L]l , < _2e2e + 18py“e“t.

€611
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2 2
Since px > 0, the first term is at most -, and the second term is also at most 2% by (D.4). We obtain

262 5
that
2

<

2
max ||Ewt]]'t—1||p)p — ez

EE%l’l

J

as claimed.

With Proposition D.4]in hand, we can prove a full version of Theorem

Theorem D.5. Fix a p > 0 and assume |supp(P4)| = m. Let
p= max{ﬂ, L, 1} 5
M ||M]]
and set s = 1/6.

Adopt the step size
Cp log(ed/és)
n=—

pTo
where
Crk(log 12ed/8ps)*
To 2 25272 :
s284p
and

C, > 8+2log144C,,  Cr > (12000e*C2C2)>/*.

Ifm < T3 and pi > p/2, then
[Wr, |l <1/6

with probability at least 1 — §/3.

5
Proof. We first show that we can assume that log Ty < 5log(Crd/8ps). Indeed, if Ty > (%) , a

crude argument similar to the one employed in the analysis of Phase II yields the claim. We give the
full details in Appendix [El In what follows, we therefore assume

log Ty < 5log(Crd/8ps) . (D.6)
Set

) 144G, min {\/21klog(CTd/6ﬁs) d }
- 144C, at

é > 82
where Cy is as in Lemma

Recall that our goal is to show ||[Wr, || < s with probability at least 1 — §/3. The failure probability
can be bounded as

P {||Wr,ll > s} < P {|[Wr,Ip, ]l > s} +P{%5} < Ii)rzlfzs_p||WT01]To||§’p+]P {er}.

If we choose p = log(6k/§), then since log(Cr) < C;/S log(12) for any value of Cr, we have

Crk(log(12ed/8ps))*
To 2 28252
s28%p

sklog(Crd/8ps) log(ed/s8)?
52 ’ 52p2
6OOe2C,§y2 log(ed/s8)?

SZﬁZ

> log(6k/8) - C/

2p

B
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as long as
Cr > (12000e%C2(144C,)?)3/4

which verifies the assumption of Proposition
We obtain

||WT0ﬂTo||pp =~ 2 2(1 +k2/p) < k2/p

We therefore have
s Wr T, |5, < e7'08(6K/8) < §/6.

It remains to bound P {‘@fo } Clearly

C c To c
P{o} <P{g}+), P fof N} .
Since m < Tg’ and we have assumed log Ty < 51log(Crd/8ps), we have
log(emTy/8) < 41og(Ty) + log(e/8) < 20log(Crd/6ps) +1og(e/8) < 21log(Crd/8ps),

so Lemma [H.4] guarantees that 6y holds with probability at least 1 — §/12.
For the second term, we have

C —
P {fgj N fg,-_l} =P {52%51 |EW;1;4] > y} < ZEE%M P {|[EW;1;_1]| > y} .

Choose p = 211og(Crd/8ps). The same argument as above yields

3/5klog(CTd/6ps) log®(ed/s8)

52 522 ’
and this will be larger than the lower bound required on T, that was assumed in Proposition as
long as

To>p- C

Cr > (12000e°C2(144C,)*)*/*
Proposition [D.4] therefore yields
P {|EW;1,_1]| > y} <y P|IEW;T;
and thus

illp, <eP=e ~2110g(Crd/6ps)  for Al E € 8,

P 6 |€ E —211log(Crd/p.
{ ]l j 1}5 c llP{llEWJﬂJ 1” >y} < me og(Crd/ S).
This yields

ZT,OIIP {C§]~C|g]‘—1} < mToe—leog(CTd/éﬁs) < e—leog(CTd/6p5)+4logTo < 5/12’
J:

where the last step uses (D.6). Finally, choosing s = 1/6, we obtain
P {||Wr,|| > 1/6} < §/3,

as claimed. O

APPENDIX E. A REDUCTION TO FINITE SUPPORT

Let Q be the space of d X d symmetric matrices. We argue that it suffices to assume that P, has
finite support of cardinality at most Tg in Phase 1. We prove this by comparing the product measure

PfTO with another distribution P,,, on Q®0. We specify this distribution by the following procedure:

drawing a Tp-tuple (A, ..., Ag,) from the distribution Py, is accomplished by

(1) Drawing m independent samples A, . . ., A, from P,.
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(2) Drawing Ay, . .., Ar, independently from the discrete distribution

1 m
PA = ; Zi:l (SAl
That is, drawing Ay, . . ., A7, independently and uniformly from the set {Ai}?i1 with replace-
ment.

We will rely on the fact that the two distributions, PE’TO and P,,, are close in total variation distance

when m is large. To see this, we first recognize that drawing (A, . .., Ar,) from P;?TO is equivalent to
the following:

(1) Draw m independent samples Ay, ..., A, from Py.
(2) Draw Ay, ..., Ay, sequentially and uniformly from the set {A;}?; without replacement. De-

note by P(ATO) the distribution of this sampling.

It is a standard result [11] that, given any {A; P

T2
dry (PETO,PETO)) < %HO
We thus have the following:
Proposition E.1. For any § € (0, 1), it holds that
dry (Pm,PfTO) <8
forallm > T02/26.
Proof. For any set S ¢ Q%70 we have

T
Pu(S) = PYP ()| = [Bj 1 cizm [P(9) - P (9)]|

T
< ]EAiNPA,lSiSm ‘PETO (S) - P[(a R (S)‘

To p(T,
< ]EA1~PA,1SiSdeV (P;? % Pﬁi 0))
T2
<10 s
2m
The claim follows from taking the maximum of |P,,(S) — PfTO (S)| over all subsets of Q®, O
Given any Ay, ..., A, define the empirical average
A 1 mo .
Wy = BapA=— > " A

Denote by ﬁl > iz > 2> id the eigenvalues of M,,, and write pj = ﬁk - j.k_‘_]. Let V € R¥k be the
orthogonal matrix whose columns are the leading k eigenvectors of M,,, and let U € R¥(4=%) be the
orthogonal matrix consisting of the remaining eigenvectors. Standard results of matrix concentration
implies that M, is close to M. In particular, we have the following:

Proposition E.2. Suppose that m > 35M log(2d/8). Let A1, . .., Ay, be drawn independently from Pp.
Then it holds with probability at least 1 — & that

IV — M| < pic/4,

and, in particular,
Pr = pr/2 and |U'V| <1/3.
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Proof. By assumption 2, we have that ||[M,, — M|| < M almost surely. Then the matrix Bernstein
inequality [31, Theorem 1.4] implies that, for any t > 0,

. -mt?/2

Pq|Mny-M| >t; <2dexp|——-—=].

(1t = 1> 1) < 20exp 2

Substituting t = py/4 yields the first claim. Using the perturbation theory of eigenvalues of symmetric
matrices, we have

Ak = A= M = M|l and  Agsr < Agar = |8, — M.

Therefore, conditioned on the first claim, it holds that

A 0 Pk
Pr = px — 2[|Mpm — M|| > >
Furthermore, it follows from Wedin’s inequality [33] that
. M, -M| 1
Ak = Agn 3

O

Proposition E.3. Let U and V be orthogonal matrices such that UU*+VV* = 1, and let U and V be matrices
of the same size satisfying the same requirement. Suppose |[U*V|| < 1/2 and ||U'S(V'$)7|| <y < 1.
Then 9+ d
+
lus(vs) || < ==X
32y

Proof. A direct calculation yields

A Ak A Ak

NUS(V*$)™|| = lU"(OT" + VvV )s(v*s)™!||
< |O°s(v*S)7|| + ||[U* VYV S(V*S) 7!
Ak Ak Ak ]- Ak
< U'sW's) W's(vs) | + 5||V S(V*S)7|

<+ IV s's) .
We also have
IV's(v*$)7| < [V UUS(V*S) 7} + [V VV*s(v*s) || < %IIU*S(V*S)_lll +1.
Sequencing the two displays above and rearrange the inequality yields the claim. O

Now let Ty be given as in Theorem [D.5]and choose m = TZ/28. As long as Ty > % log(d/§), we
have

35M2
5 log(2d/8) <m < 3.
Py
It then follows from Proposition [E.2] that, when drawing Ay, ... A, independently from P4, the event
€ := {prx > pr/2 and ||U*V| < 1/2} (E.1)
happens with probability at least 1 — §. Conditioned on %, we consider running T, steps of Oja’s
algorithm, with A, ..., Ar, drawn i.i.d from P,. Note that the discrete distribution P4 also satisfies

Assumption 1 and Assumption 2 (with M replaced by 2M). Our main theorem thus guarantees that
with appropriately chosen step size, the output Q7, = Qr, (A1, . . ., Ag,) of this algorithm after Ty steps
satisfies

Nl

”f]*QTO (V*QTO)_IH <
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with probability 1 — §. Combining and Proposition [E.3] we obtain that with probability at least
(1-8)? > 1 - 28, the output of the algorithm satisfies
IU*Qr, (V' Q) 7'l < 1,
that is,
Py (IU*Q, (V'Qp) 7'l < 1) > 1 - 26.
Finally, we obtain from Proposition [E.1] that

P (IIU* Q7 (V¥Qp) M < 1)

> P (IlU"Qr, (V' Qr) | < 1) = drv (P, PE™)
>1-36.

In other words, with the same choice of Ty, the output of Ty steps of Oja’s algorithm with A4, ..., Ar,
drawn i.i.d from the original distribution P, satisfies

IU"Qq, (V'Qp) 'l < 1
with probability at least 1 — 36.

APPENDIX F. PHASE I SUCCEEDS IF T IS LARGE

. . cad® . .
In this section, we prove Theorem when Ty > W. Note that this value of Ty is far larger

than the optimal choice (which is of order ®(k/82p%s2)), which makes the theorem much easier to
prove. Indeed, if Ty is this large, we can prove Theorem directly by using the same conditioning
argument as in Phase II.

Proposition F.1. Assume n and Ty satisfy the requirements of Theorem [D.5 and assume p > py/2.
cad®
If To > 5555557 then

Wl < s
with probability at least 1 — §/3.

144C,d

Proof. Sety = —¢

where Cy is defined in Lemma [H.4]and define the good events
o = {[Woll < y/(V2e)}
G ={[Wol <y}NGi1, Vix=1.

In order to apply Theorem [3:1, we verify (3-1)
First assumption. We have

3C;, log(ed/8s)My

e=2nM(1+7y) <
pTo

and this quantity is smaller than 1/2 so long as
Cy > 864C,C, . (F.1)
Second assumption. We again have
Cplog(ed/8s)||M||
pTo

and guarantees that this quantity is smaller than 1/2 as well.
Third assumption. Since ¢; = € for all i and np > 0, this requirement trivially holds.

nliMl| =

J
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Our goal is to bound
c To c
P {|Wgll > s} <P {|[Wrlgll > s} +P {€5} + Zj:l P {fgj N ‘51-1} .
Having verified (3:1), we can employ (3:2), obtaining
[Wr,1g, (12, < e 01P4k/Py? 126? + (C1y® + C2) pk*/PeTy .

p,p —
For the first term, the fact that px > p/2 implies that
T, y? Cy/2 y?
e 0Pk L — (Ss/ed)"n/=1— s
2¢? (8s/ed) 2¢?

and this is smaller than % as long as
C, = 8+ 2log(144C,) .
Letting C3 be as in Proposition -1 and choosing p = log(6k/d§), we also have
144%C3C2 log® (ed / 8s)M>y? 3 1442C3C2C2 log> (6d / 8s) 85

C1y? +Cy) €T, < <
p(Cry 2)eTo < p 22T, C; d

Since log3(6d/8s) < 9% for all positive d, 8, and s, this quantity will be less than % so long as
Cy > 2(432eC53C,C))?, (F.2)

and this requirement subsumes (E.1).
We therefore obtain, for p = log(6k/§),

P {||[Wolg, || > s} < sP|[Wolgllh, < ke™? < §/6,

In a similar way, (3-2) yields for all t € [Ty],
-2 2 K2/ 2 2/p 2
Y lIWeleally , < ez ¥ (Cry” + C2)pk™PeTy .
If we choose p = log(12kTy/8), then we have
C3C2log?(ed/8s)M?y*  2144>C3C2C2log’(To)
<

Pl ) cArils ’

p(C1y* +Cy)e*To < p

and since log>(Tp) < 169T01 /® for all To, we have that this quantity will be at most ﬁ if

Cr > (3744eC3C,Cy)°"2,

and this requirement subsumes (E.2), and it holds under the assumptions of Theorem
By Lemma the event 6, holds with probability at least 1 — §/12.
Finally, we have for any j € [Ty],

P {@f n @j—l} < P{W;1jll 2y} < inf y P IWeleallp,,

and choosing p = log(12kTy/8) we have
12
PIWLea|b, < ke < —,

Y ” tdit 1||p,p (ST()

and summing these probabilities for j € [Ty], yields that
c To { c , } r 1 1 1
P {[IWrll = s} <P {|Wr, 15|l > s} +P {5} +Zj:1]1> GG <ot =0,

as claimed. O
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APPENDIX G. OMITTED PROOFS
G.1. Proof of Lemma 2.7, We will show that
W (1-A})=H,+J;1+Ji2,
where
H, =U"(1+nM)Z,_1(V*(I1+ r]tM)Zt_l)_l, Ji1 = Zt —-H/A;, and Jio= —KtAt
and where we write
A = U (A = M)Z(VF(T+0:M)Ze_y) 7L
By the definition of Z,, we have
W, =UZ(V*Z) ' =U*Y,Z, 1 (V'Y Z,_1) L.
We have
VY. Z:_1

V' (I+nM)Zi—1 + 0V (A — M)Z; 1
(I +n V(A —M)Z (V' (I+ ntM)Zt—l)_l) V' (I+nM)Zi
I+ AV (I +nM)Z;_1,

which implies
(V*YZe ) M1 =A%) = (VT +n:M)Ze_1) T+ A) A+ A) (T - Ay)
= (V' I+ nM)Ze-1) (1= A)
We also have
U'YZ_y =U A +nM)Z_y + U (A — M)Z,_4
= U (T+0M)Ze—1 + D (VI + 0. M) Ze_1).

Therefore
Wt(l - Atz) = U*Ytzt—l(V*YtZt—l)_l
=U (1+nM)Ze 1 (V (T + M) Ze )™

+ B = U (L +0M)Ze_1 (V* (T+ 0 M)Z,1) " A

—ANA,.
That is )

Wt(I - At) = Ht +Jt,1 +Jt,2 .

Since A, and A, are both 0(n;), the claim follows. O

G.2. Proof of Proposition 2.9, By the triangle inequality, we have
IX+Y+Z,p < IX+Ylpp+Zllpp,
which implies
IX+Y + 2|2, < (IX +Ylpp +1Z]lp,p)°
<+ DX +YI3,+A7ZI2,),
where in the second step we have applied the elementary inequality
(a+b)? < 1+ 1) (a®>+171p?),

valid for all real numbers a and b and A > 0. Applying Proposition 2.8 to || X + Y||12),p then yields the
claim. O
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APPENDIX H. ADDITIONAL LEMMAS

Lemma H.1. For any deterministic matrices A, B and any standard Gaussian matrix Z of suitable sizes,
it holds that ,
P {[lAZB|)> > | All2]|Bll2 (1 + )} < e /2.

Proof. Let f(X) := ||AXB||o, then

If(X1) = f(X2)] < |A[lIBI] - |X1 — X2|2.
By Gaussian concentration, we have

)

P {f(Z) > Ef(Z) + |Al|l|Bllt} < e™"/2.

Moreover, we have
Ef(Z) < (E[|AZB|3)"/* = [|A]l2[|B]|2.
It thus follows that
)
P {f(Z) > ||All2||Bll2(1 + ©)} < P{f(Z) > Ef(Z) + |All||B||t} < e™/2,

which is the stated result. O

Lemma H.2 ([6, Theorem I1.13]). Let Q € Rk pe a standard Gaussian matrix. Then

IP{||Q|| > \/E+\/E+t} <202,

Lemma H.3 ([1, Lemmai.A.3]). Let Q € R*** be a standard Gaussian matrix. Then forevery § € (0,1),
_ 6Vk
]P{”Q "2 > T} <.
The next lemma bounds the probability of €, from below.

Lemma H.4. Let G be the event defined in (5:2). There exists a positive constant C, = 144e such that

forany § € (0,1), if y > C, min{+/klog(emTo/8)/8,d/8?}, then €y holds with probability at least
1-6.

Proof. We have Wy = U*Zo(V*Zy)~!, where Z; is a matrix with i.i.d. Gaussian entries. Since U and
V have orthonormal columns and are themselves orthogonal, the two matrices V*Z, and U*Z, are
independent matrices with i.i.d. Gaussian entries. Using Lemma and conditioning on V*Z,, we
have that with probability at least 1 — §/3(Ty + 1)2,

max | EUZo(V"Zo) ™' [l2 < [|(V"20) ||z - 2/8€ log(emTy/$), (H.1)
e

where we have taken a union bound over the fewer than ((m + 1)(Ty + 1))* elements of . ;. Taking
a uniform bound again over all r, £ € [Ty + 1] yields that, with probability at least 1 — §/3, the event
holds for all , £ € [Ty +1]. By Lemma [H.3, we also have that that ||(V*Z,) ™} ||» < 18Vk/8 with
probability at least 1 — §/3. Furthermore, Lemma implies that ||[U*Zy|| < 2+/2d log(3/8) with
probability at least 1 — §/3. Combining these bounds, we obtain that with probability at least 1 — §/,

max |EU*Zo(V*Zo) 7} ||2 < 36+/8¢log(emT,/6),
€& ¢

which is less than % as long as C, > 144e, and under this same assumption

IWoll2 < IUZol[Il(V*Zo) "l < 36v/2d log(3/8) < Vdy

as well.
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So €y holds with probability at least 1 — § if y > C,+/klog(emTy/8)/8 for C, > 144e.

On the other hand, We have E||U*Z,|| < 2Vd, so that |[U*Z,|| < 4Vd/§ with probability at least
1 — 8/2, and Lemma [H.3] implies that |[V*Zol||» < 12Vk/8 with probability at least 1 — 8/2, so with
probability at least 1 — § we have

[Wolla < IU*Zol||(V*Zo)7V|l2 < 48Vdk/8* < 50d/8>.

as claimed. On this event, we also have ||[EW,||5 < ||[Wo||2 < 50d/8%. Therefore, if y > 50V2ed /82,
then €, holds.

So €y holds with probability at least 1 — § if y > C,d/8 for C, > 50V2e. Therefore, taking
C, = 144e satisfies both requirements and proves the claim. m|
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