
Training OOD Detectors in their Natural Habitats

Julian Katz-Samuels * 1 Julia Nakhleh * 2 Robert Nowak 3 Yixuan Li 2

Abstract
Out-of-distribution (OOD) detection is important
for machine learning models deployed in the wild.
Recent methods use auxiliary outlier data to reg-
ularize the model for improved OOD detection.
However, these approaches make a strong distribu-
tional assumption that the auxiliary outlier data is
completely separable from the in-distribution (ID)
data. In this paper, we propose a novel framework
that leverages wild mixture data—that naturally
consists of both ID and OOD samples. Such wild
data is abundant and arises freely upon deploying
a machine learning classifier in their natural habi-
tats. Our key idea is to formulate a constrained op-
timization problem and to show how to tractably
solve it. Our learning objective maximizes the
OOD detection rate, subject to constraints on the
classification error of ID data and on the OOD er-
ror rate of ID examples. We extensively evaluate
our approach on common OOD detection tasks
and demonstrate superior performance.

1. Introduction
Out-of-distribution (OOD) detection has become a central
challenge in safely deploying machine learning models in
the wild, where test-time data can naturally arise from a mix-
ture distribution of both knowns and unknowns (Bendale &
Boult, 2015). Concerningly, modern neural networks are
shown to produce overconfident and therefore untrustworthy
predictions for unknown OOD inputs (Nguyen et al., 2015).
To mitigate the issue, recent works have explored training
with a large auxiliary outlier dataset, where the model is
regularized to produce lower confidence (Hendrycks et al.,
2019) or higher energy (Liu et al., 2020) on the outlier data.
These methods have demonstrated encouraging OOD detec-
tion performance over their counterpart (without auxiliary
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data).

Despite this promise, methods utilizing outlier data impose a
strong distributional assumption—the auxiliary outlier data
has to be completely separable from the in-distribution (ID)
data. This in practice can be restrictive and inflexible, as one
needs to perform careful data collection and cleaning. On
the other hand, unlabeled in-the-wild data can be collected
almost for free upon deploying a machine learning classifier
in the open world, and has been largely overlooked for OOD
learning purposes. Such data is available in abundance, does
not require any human annotation, and is often a much better
match to the true test time distribution than data collected
offline. While this setting naturally suits many real-world
applications, it also poses unique challenges since the wild
data distribution is noisy and consists of both ID data and
OOD data.

In this paper, we propose a novel framework that enables
effectively exploiting unlabeled data in the wild for OOD
detection. Unlike the auxiliary outlier data in (Hendrycks
et al., 2019), we make use of unlabeled “wild data” that
is naturally encountered upon deploying an existing clas-
sifier. This can be viewed as training OOD detectors in
their natural habitats. Our learning framework revolves
around building the OOD classifier using only labeled ID
data from Pin and unlabeled wild data from Pwild, which
can be considered to be a mixture of Pin and an unknown
(OOD) distribution. To deal with the lack of a “clean” set of
OOD examples, our key idea is to formulate a constrained
optimization problem. In a nutshell, our learning objective
aims to minimize the error of classifying data from Pwild as
ID, subject to two constraints: (i) the error of declaring an
ID data from Pin as OOD must be low, and (ii) the multi-
class classification model must maintain the best-achievable
accuracy (or close to it) of a baseline classifier designed
without an OOD detection requirement. Even though our
framework does not have access to a “clean” OOD dataset,
we show both empirically and theoretically that it can learn
to accurately detect OOD examples.

Beyond the mathematical framework, a key contribution
of our paper is a constrained optimization implementation
of the framework for deep neural networks. We propose
a novel training procedure based on the augmented La-
grangian method, or ALM (Hestenes, 1969). While ALM
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is an established approach to optimization with functional
constraints, its adaptation to modern deep learning is not
straightforward or common. In particular, we adapt ALM to
our problem setting with inequality constraints, obtaining an
end-to-end training algorithm using stochastic gradient de-
scent. Unlike methods that add a regularization term to the
training objective, our method via constrained optimization
offers strong guarantees (c.f. Section 3.1).

We extensively evaluate our approach on common OOD de-
tection tasks and establish state-of-the-art performance. For
completeness, we compare with two groups of approaches:
(1) trained with only Pin data and (2) trained with both
Pin and an auxiliary dataset. Compared to a strong base-
line using only Pin, our method outperforms by 6.98% on
FPR95, averaged across all test datasets. The performance
gain precisely demonstrates the advantage of incorporating
unlabeled wild data. Our method also outperforms Outlier
Exposure (OE) (Hendrycks et al., 2019) by 8.80% in FPR95.
Our key contributions are summarized as follows:

• We propose a novel OOD detection framework via
constrained optimization (dubbed WOODS, Wild OOD
detection sans-Supervision), capable of exploiting un-
labeled wild data. We show how to integrate con-
strained optimization into modern deep nets and solve
it tractably.

• We provide novel theoretical insights that support
WOODS, in particular for the choice of loss functions.

• We perform extensive ablations and comparisons un-
der: (1) a diverse range of datasets, (2) different mix-
ture ratios π of ID and OOD in Pwild, and (3) different
assumptions on the relationship between the wild distri-
bution Pwild and the test-time distribution. Our method
establishes state-of-the-art results, significantly outper-
forming existing methods.

2. Problem Setup
Labeled In-distribution Data Let X = Rd denote the
input space and Y = {1, . . . ,K} denote the label space.
We assume access to the labeled training set Dtrain

in =
{(xi, yi)}ni=1, drawn i.i.d. from the joint data distribu-
tion PXY . Let Pin denote the marginal distribution on X ,
which is also referred to as the in-distribution (ID). Let
fθ : X 7→ R|Y| denote a function for the classification task,
which predicts the label of an input sample.

Out-of-distribution Detection When deploying machine
learning models in the real world, a reliable classifier should
not only accurately classify known ID samples, but also iden-
tify as “unknown” any out-of-distribution (OOD) input—
samples from a different distribution Ptest

out that the model has

not been exposed to during training. This can be achieved
through having an OOD classifier, in addition to the multi-
class classifier fθ. Samples detected as OOD will be re-
jected; samples detected as ID will be classified by fθ.

OOD detection can be formulated as a binary classification
problem. At test time, the goal is to decide whether a test-
time input x ∈ X is from the in-distribution Pin (ID) or
not (OOD). We denote gθ : X 7→ {in, out} as the function
mapping for OOD detection.

Unlabeled in-the-wild Data A major challenge in OOD
detection is the lack of labeled examples of OOD. In partic-
ular, the sample space for potential OOD data can be pro-
hibitively large, making it expensive to collect labeled OOD
data. In this paper, we incorporate unlabeled in-the-wild
samples x̃1, . . . , x̃m into OOD detection. These samples
consist of potentially both ID and OOD data, and can be col-
lected almost for free upon deploying an existing classifier
(say fθ) in its natural habitats. We use the Huber contamina-
tion model (Huber, 1964) to model the marginal distribution
of the wild data:

Pwild := (1− π)Pin + πPout,

where π ∈ (0, 1].

Goal: Our learning framework revolves around building
the OOD classifier gθ and multi-class classifier fθ by lever-
aging data from both Pin and Pwild. We use the shared pa-
rameters θ to indicate the fact that they may share the neural
network parameters. In testing, we measure the following
errors:

↓ FPR(gθ) := Ex∼Ptest
out

(1{gθ(x) = in}),
↑ TPR(gθ) := Ex∼Pin(1{gθ(x) = in}),
↑ Acc(fθ) := E(x,y)∼PXY (1{fθ(x) = y}),

where 1{·} is the indicator function and the arrows indicate
higher/lower is better. In reality, the test-time OOD distribu-
tion Ptest

out may or may not be identical to Pout, and we will
consider both cases later in Sections 5 and A.2.

3. Method: Out-of-distribution Learning via
Constrained Optimization

In this section, we present a novel framework that performs
out-of-distribution learning with the unlabeled data in the
wild. Our framework offers substantial advantages over the
counterpart approaches that relies only on the ID data, and
naturally suits many applications where machine learning
models are deployed in the open world.

To exploit the in-the-wild data, our key idea is to formulate a
constrained optimization problem (Section 3.1). Moreover,
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we show how to integrate this constrained optimization
problem into modern neural networks and solve it tractably
using the Augmented Lagrangian Method (Section 3.2).

3.1. Learning Objective

In a nutshell, we formulate the learning objective by aiming
to minimize the error of classifying data from Pout as ID,
subject to (i) the error of declaring an ID as OOD is at most
α, and (ii) the multi-class classification model meets some
error threshold τ . Mathematically, this can be formalized as
a constrained optimization problem:

Objective Overview Given α, τ ∈ [0, 1], we aim to opti-
mize:

inf
θ

Ex∼Pout(1{gθ(x) = in}) (1)

s.t. Ex∼Pin(1{gθ(x) = out}) ≤ α
E(x,y)∼PXY (1{fθ(x) 6= y}) ≤ τ.

However, we never observe a clean dataset from Pout, mak-
ing it difficult to directly solve (1). To sidestep this issue,
we reformulate the learning objective as follows:

inf
θ

Ex∼Pwild(1{gθ(x) = in}) (2)

s.t. Ex∼Pin(1{gθ(x) = out}) ≤ α
E(x,y)∼PXY (1{fθ(x) 6= y}) ≤ τ.

where we replaced the OOD distribution Pout in the objective
with Pwild, a distribution that we observe an i.i.d. dataset
from. As we explain in more detail shortly, optimizing
(2) is sufficient under mild conditions to solve the original
optimization problem (1).

Empirically, we can solve the optimization problem (2) by
minimizing the number of samples x̃1, . . . , x̃m from the
wild distribution Pwild that are labeled as ID, subject to (i)
labeling at least 1−α of the ID samples x1 . . . ,xn correctly,
and (ii) achieving the classification performance threshold.
Equivalently, we consider solving:

inf
θ

1

m

m∑
i=1

1{gθ(x̃i) = in} (3)

s.t.
1

n

n∑
i=1

1{gθ(xi) = out} ≤ α

1

n

n∑
i=1

1{fθ(xi) 6= yi)} ≤ τ.

Surrogate Problem Note that the above objective in (3)
is intractable due to the 0/1 loss and here we propose a
tractable relaxation, replacing the 0/1 loss with a surrogate

loss as follows:

inf
θ

1

m

m∑
i=1

Lood(gθ(x̃i), in) (4)

s.t.
1

n

n∑
j=1

Lood(gθ(xj), out) ≤ α

1

n

n∑
j=1

Lcls(fθ(xj), yj) ≤ τ

where Lood denotes the loss of the binary OOD classifier and
Lcls denotes a loss for the classification task. Our framework
is general and can be instantiated by different forms of loss
functions, for which we describe details later in Section 4.

Here, we state a theoretical result justifying the optimization
problem (4) where we use tractable losses, specifically using
the sigmoid loss σ(t) = 1

1+e−t for Lood and the hinge loss
for Lcls.1 We suppose that the weights are p-dimensional
and belong to a subset θ ∈ Θ ⊂ Rp. Let opt denote
the value to the population-level optimization problem of
interest:

inf
θ∈Θ

Ex∼PoutLood(gθ(x̃i), in) (5)

s.t. Ex∼PinLood(gθ(xj), out) ≤ α
E(x,y)∼PXYLcls(fθ(xj), yj) ≤ τ.

Proposition 3.1. Suppose K = 2. Suppose
Lood(t, in) = σ(−t), Lood(t, out) = σ(t), and

Lcls(t, y) = max(1 − ty). Define εk :=
√

2 ln(6/δ)
k +

2 max
h∈{f,g}

max
P∈{P1,Pwild}

E
x̃1,...,x̃m∼P

E
η1,...,ηm

sup
θ∈Θ

1
k

∑k
i=1 ηihθ(x̃i)

where η1, . . . , ηk are i.i.d. and P(ηi = 1) = P(ηi =

−1) = 1/2. Let θ̂ε solve (4) with some tolerance ε (see
the Appendix for a formal statement). Then, there exist
universal positive constants c1, c2, c3 such that under a
mild condition (see the appendix), with probability at least
1− δ

1. Eoutσ(−ĝθ̂ε(x)) ≤ opt + c1π
−1(εn + εm),

2. Einσ(gθ̂ε(x)) ≤ α+ c2εn, and

3. EXYLcls(fθ̂ε(x), y) ≤ τ + c3εn.

The above Proposition shows that as long as the Rademacher
complexities of the function classes {gθ : θ ∈ Θ} and
{fθ : θ ∈ Θ} decay at a suitable rate, then solving (4)
gives a solution that approaches feasibility and optimality
for (5), the optimization problem of interest. Due to space

1In the experiments, we replace the hinge loss for classification
with the cross-entropy loss as is standard in deep learning.
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constraints, we defer a full Proposition statement with ad-
ditional details and a proof to the Appendix. The above
Proposition extends Theorem 1 of (Blanchard et al., 2010)
from the computationally intractable 0/1 loss to the sigmoid
loss, a tractable, differentiable loss that we use in our exper-
iments. In addition, we replace the VC dimension in their
Theorem with the Rademacher complexity of the function
class, a much more fine-grained measure of the function
class complexity. We note that it is also possible to prove
an analogue of Proposition 3.1 for the 0/1 loss.

Having theoretically justified the optimization problem (4),
we next show how to optimize it.

3.2. Solving the Constrained Optimization

In this subsection, we first provide background on the Aug-
mented Lagrangian method, and then discuss how it can
solve our constrained optimization problem.

Augmented Lagrangian Method (ALM) Augmented
Lagrangian method (Hestenes, 1969) is an established ap-
proach to optimization with functional constraints. ALM
improves over two other related methods for constrained
optimization: the penalty method and the method of La-
grangian multipliers. While the penalty method suffers from
ill-conditioning (Nocedal & Wright, 2006), the method of
Lagrangian multipliers is specific to the convex case (Rock-
afellar, 1973). In this paper, we adapt ALM to our setting
with inequality constraints, and later show that it can be
optimized end-to-end with modern neural networks.

To provide some background, we consider the following
constrained optimization problem as an example:

min
θ∈Rp

f(θ) (6)

s.t. ci(θ) ≤ 0 ∀i ∈ [q],

where f and c1, . . . , cq are convex. ALM solves the con-
strained optimization problem in (6) by converting it into a
sequence of unconstrained optimization problems.

Define the the classical augmented Lagrangian (AL) func-
tion

Lβ(θ, λ) = f(θ) +

q∑
i=1

ψβ(ci(θ), λi)

where

ψβ(u, v) =

{
uv + β

2u
2 βu+ v ≥ 0

− v2

2β o/w
,

λ = (λ1, . . . , λq)
>, and β > 0. At iteration k, ALM

minimizes the augmented Lagrangian function with respect
to θ and then performs a gradient ascent update step on λ
(Xu, 2017; 2021):

Algorithm 1 WOODS (Wild OOD detection sans-
Supervision)

1: Input: θ(1)
(1) , λ(1)

(1) β1, β2, epoch length T , batch size B,
learning rate µ1, learning rate µ2, penalty multiplier γ,
tol

2: for epoch = 1, 2, . . . do
3: for t = 1, 2, . . . , T − 1 do
4: Sample a batch of data, calculate Lbatch

β (θ, λ)

5: θ
(t+1)
(epoch) ←− θ

(t)
(epoch) − µ1∇θLbatch

β (θ, λ)

6: end for
7: λ(epoch+1) ← λ(epoch) +µ2∇θLβ(θ

(T )
(epoch), λ

(epoch))

8: if 1
n

∑n
i=1 Lood(g

θ
(T )

(epoch)
(xi), out) > α+ tol then

9: β1 ←− γβ1

10: end if
11: if 1

n

∑n
i=1 Lcls(fθ(T )

(epoch)
(xi), yi) > τ + tol then

12: β2 ←− γβ2

13: end if
14: θ

(1)
(epoch+1) ←− θ

(T )
(epoch)

15: end for

1. θ(k+1) ←− argminθLβk(θ, λ(k))

2. λ(k+1) ←− λ(k) + ρ∇λLβk(θ(k+1), λ)

where ρ is a learning rate for the dual variable λ and {βk}k is
a sequence of penalty parameters. The sequence of penalty
parameters {βk}k may be chosen beforehand or adapted
based on the optimization process.

Our Algorithm Algorithm 1 presents our approach to us-
ing ALM to solve (4). We define the augmented Lagrangian
function as:

Lβ(θ, λ) =
1

m

m∑
i=1

Lood(gθ(x̃i), in)

+ ψβ1(
1

n

n∑
j=1

Lood(gθ(xj), out)− α, λ1)

+ ψβ2
(

1

n

n∑
j=1

Lcls(fθ(xj), yj)− τ, λ2),

where β = (β1, β2)>.

Adaptation to Stochastic Gradient Descent We show
that our framework can be adapted to the stochastic case,
which is more amenable for training with modern neural
networks. We outline the full process in Algorithm 1. In
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each iteration, we calculate the per-batch loss as follows:

Lbatch
β (θ, λ) =

1

B

∑
i∈I
Lood(gθ(x̃i), in) (7)

+ ψβ1(
1

B

∑
j∈J
Lood(gθ(xj), out)− α, λ(epoch)

1 )

+ ψβ2(
1

B

∑
j∈J
Lcls(fθ(xj), yj)− τ, λ(epoch)

2 )],

where I and J denote the set of mini-batch of size B, ran-
domly sampled from the wild data and ID data respectively.
Since ψ(u, v) is convex in u, by Jensen’s inequality, the ob-
jective function in (7) is an upper bound on Lβ(θ, λ(epoch)).
This step therefore approximates ALM; indeed, it is not
straightforward to adapt ALM to the stochastic case (Yan &
Xu, 2020). At the end of the epoch, it performs a gradient
ascent update on λ (see line 7). Finally, in lines 9 and 12,
it increases the constraints weight penalties β1 and β2 by a
penalty multiplier γ > 1.

4. Loss Functions with Neural Networks
In this section, we discuss how to realize our learning frame-
work in the context of modern neural networks. Concretely,
we address how to define the loss functions Lcls and Lood.

Classification Loss Lcls We consider a neural network
parameterized by θ, which encodes an input x ∈ Rd to a
feature space with dimension r. We denote by hθ(x) ∈ Rr
the feature vector from the penultimate layer of the network.
A weight matrix W ∈ Rr×K connects the feature hθ(x)
to the output fθ(x) = W>hθ(x) ∈ RK . The per-sample
classification lossLcls can be defined using the cross-entropy
(CE) loss:

Lcls(fθ(x), y) = − log
ef

(y)
θ (x)∑K

j=1 e
f
(j)
θ (x)

, (8)

where f (y)
θ (x) denotes the y-th element of fθ(x) corre-

sponding to the label y.

Binary Loss Lood The loss function Lood should ideally
optimize for the separability between the ID vs. OOD
data under some function that captures the data density.
However, directly estimating log p(x) can be computa-
tionally intractable as it requires sampling from the en-
tire space X . We note that the log partition function
Eθ(x) := log

∑K
j=1 e

f
(j)
θ (x) is proportional to log p(x)

with some unknown factor, which can be seen from the
following:

p(y|x) =
p(x, y)

p(x)
=

ef
(y)
θ (x)∑K

j=1 e
f
(j)
θ (x)

.

The negative log partition function is also known as the
free energy, which was shown to be an effective uncertainty
measurement for OOD detection (Liu et al., 2020).

Our idea is to explicitly optimize for a level-set estimation
based on the energy function (threshold at 0), where the ID
data has negative energy values and vice versa.

argminθ
1

m

m∑
i=1

1{Eθ(x̃i) ≤ 0}

s.t.
1

n

n∑
j=1

1{Eθ(xj) ≥ 0} ≤ α

1

n

n∑
j=1

Lcls(fθ(xj), yj) ≤ τ

Since the 0/1 loss is intractable, we replace it with the
binary sigmoid loss, a smooth approximation of the 0/1
loss, yielding the following optimization problem:

argminθ,w∈R
1

n

m∑
i=1

1

1 + exp(−w · Eθ(x̃i))
(9)

s.t.
1

n

n∑
j=1

1

1 + exp(w · Eθ(xi))
≤ α

1

n

n∑
j=1

Lcls(fθ(xj), yj) ≤ τ.

Here w is a learnable parameter modulating the slope of the
sigmoid function. Now we may apply the same approach as
in section 3 to solve the constrained optimization problem
(9). In effect, we have

Lood(gθ(x̃i), in) =
1

1 + exp(−w · Eθ(x̃i))

This loss function is originally developed in (Du et al., 2022)
for model regularization. Our approach has three notable
advancements over energy-regularized learning (ERL) (Liu
et al., 2020): (1) The loss function of ERL is based on the
squared hinge loss and requires tuning two margin hyper-
parameters. In contrast, our loss with the binary logistic
loss is hyperparameter-free, and is easier to use in practice.
(2) We consider a more general unsupervised setting where
the wild data distribution Pwild contains both ID and OOD
data, whereas ERL assumes having access to an auxiliary
outlier dataset that is completely separable from the ID data.
Methods including OE (Hendrycks et al., 2019) require per-
forming manual data collection and cleaning, which is more
restrictive and inconvenient. (3) We formalize the learn-
ing objective as a constrained optimization, which offers
strong guarantees. In contrast, ERL added an energy-based
regularization term to the training objective.
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Method
OOD Dataset Average Acc.SVHN LSUN-R LSUN-C iSUN Texture Places365

FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑
With Pin only

MSP 48.49 91.89 52.15 91.37 30.80 95.65 56.03 89.83 59.28 88.50 59.48 88.20 51.04 90.90 94.84
ODIN 33.35 91.96 26.62 94.57 15.52 97.04 32.05 93.50 49.12 84.97 57.40 84.49 35.71 91.09 94.84
Energy 35.59 90.96 27.58 94.24 8.26 98.35 33.68 92.62 52.79 85.22 40.14 89.89 33.01 91.88 94.84
Mahalanobis 12.89 97.62 42.62 93.23 39.22 94.15 44.18 92.66 15.00 97.33 68.57 84.61 37.08 93.27 94.84
GODIN 13.55 97.61 17.93 96.86 17.68 96.93 22.94 96.05 29.43 94.87 41.27 91.49 17.67 96.37 94.48
CSI 17.30 97.40 12.15 98.01 1.95 99.55 8.30 98.61 20.45 95.93 34.95 93.64 15.85 97.19 94.17

With Pin and Pwild
OE 12.40 97.39 14.35 97.40 6.13 98.81 17.54 96.97 25.35 94.35 30.27 93.28 17.67 96.36 94.19
Energy (w/ OE) 6.49 98.48 9.58 98.03 2.85 99.35 11.19 97.78 22.68 94.72 23.35 94.32 12.69 97.11 94.67
WOODS (ours) 5.23 98.63 4.41 99.01 1.38 99.65 4.82 98.93 17.84 96.44 19.50 95.71 8.87 98.06 94.78

Table 1. Main results. Comparison with competitive OOD detection methods on CIFAR-10. For methods using Pwild, we train under
the same dataset and same π = 0.1. ↑ indicates larger values are better and vice versa.

5. Experiments
5.1. Experimental Setup

Datasets Following the common benchmarks in literature,
we use CIFAR-10 and CIFAR-100 (Krizhevsky et al.,
2009) as ID datasets (Pin). For OOD test datasets Ptest

out , we
use a suite of natural image datasets including SVHN (Netzer
et al., 2011), Textures (Cimpoi et al., 2014), Places
365 (Zhou et al., 2018), LSUN-Crop (Yu et al., 2016),
LSUN-Resize (Yu et al., 2016), and iSUN (Xu et al.,
2015).

To simulate the wild data Pwild, we mix a subset of ID
data (as Pin) with the auxiliary outlier dataset (as Pout) un-
der various π ∈ {0.05, 0.1, 0.2, 0.5, 1.0}. For Pout, we use
the publicly available 300K Random Images (Hendrycks
et al., 2019), a subset of the original 80 Million Tiny Images
dataset (Torralba et al., 2008). Note that we split CIFAR
datasets into two halves: 25,000 images as ID training data,
and remainder 25,000 used to create the mixture data.

Evaluation Metrics To evaluate the methods, we use the
standard measures in the literature: the false positive rate of
declaring OOD examples as ID when 95% of ID datapoints
are declared as ID (FPR95) and the area under the receiver
operating characteristic curve (AUROC).

Training Details For all experiments and methods, we
use the Wide ResNet (Zagoruyko & Komodakis, 2016) ar-
chitecture with 40 layers and widen factor of 2. The model
is optimized using stochastic gradient descent with Nesterov
momentum (Duchi et al., 2011). We set the weight decay
coefficient to be 0.0005, and momentum to be 0.09. Models
are initialized with a model pre-trained on the CIFAR data
and trained for 50 epochs. Our initialization scheme from a
pre-trained model naturally suits our setting (c.f. Section 2),
where an existing classifier in deployment is available.

The initial learning rate is set to be 0.001 and decayed
by a factor of 2 after 50%, 75%, and 90% of the epochs.

We use a batch size of 128 and a dropout rate 0.3. All
training is performed in PyTorch using NVIDIA GeForce
RTX 2080 Ti GPUs. Code will be made publicly available
online. For optimization in WOODS, we vary the penalty
multiplier γ ∈ {1.1, 1.5} and the dual update learning rate
µ2 ∈ {0.1, 1, 2}. We set tol = 0.05, α = 0.05, and set τ
to be twice the loss of the pre-trained model. For validation,
we use subsets of the ID data and of the 300K Random
Images data. Further details are included in Appendix A.3.

5.2. Results

WOODS Achieves Superior Performance We present re-
sults in Table 1, where WOODS outperforms the state-of-the-
art results. Our comparison covers an extensive collection of
competitive OOD detection methods. For clarity, we divide
the baseline methods into two categories: trained with and
without in-the-wild data. For methods using ID data Pin only,
we compare with methods such as MSP (Hendrycks & Gim-
pel, 2017), ODIN (Liang et al., 2018), Mahalanobis (Lee
et al., 2018), and Energy (Liu et al., 2020), the model
is trained with softmax CE loss, same as in Equation 8.
GODIN (Hsu et al., 2020) is trained using a DeConf-C loss,
which does not involve auxiliary data loss either. We also in-
clude the latest development based on self-supervised losses,
namely CSI (Tack et al., 2020).

Closest to ours are Outlier Exposure (OE) (Hendrycks et al.,
2019) and energy-based OOD learning method (Liu et al.,
2020). These are among the strongest OOD detection base-
lines, which regularize the classification model by producing
lower confidence or higher energy on the auxiliary outlier
data. For a fair comparison, all the methods in this group
are trained using the same ID and in-the-wild data, under
the same mixture π.

We highlight several observations: (1) Methods using wild
data Pwild, in general, show strong OOD detection perfor-
mance over the counterpart (without Pwild). Compared to
the strongest baseline CSI in the first group, our method
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Method
OOD Dataset Average Acc.SVHN LSUN-R LSUN-C iSUN Texture Places365

FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑
π = 0.05

OE 16.62 96.81 19.42 96.63 7.62 98.56 23.31 96.05 28.18 93.90 35.04 92.22 21.70 95.69 94.43
Energy (w/ OE) 13.72 97.07 12.53 97.43 3.82 99.17 15.54 96.95 28.95 92.87 27.39 93.16 16.99 96.11 94.76
WOODS (ours) 8.98 97.98 6.81 98.56 1.79 99.56 8.52 98.32 22.84 94.95 21.80 95.03 11.79 97.40 94.90

π = 0.1
OE 12.40 97.39 14.35 97.40 6.13 98.81 17.54 96.97 25.35 94.35 30.27 93.28 17.67 96.36 94.19
Energy (w/ OE) 6.49 98.48 9.58 98.03 2.85 99.35 11.19 97.78 22.68 94.72 23.35 94.32 12.69 97.11 94.67
WOODS (ours) 5.23 98.63 4.41 99.01 1.38 99.65 4.82 98.93 17.84 96.44 19.50 95.71 8.87 98.06 94.78

π = 0.2
OE 9.09 98.12 10.69 98.02 5.22 99.01 12.42 97.80 20.14 95.66 27.14 93.89 14.12 97.09 94.05
Energy (w/ OE) 4.32 98.73 5.96 98.67 2.32 99.46 6.64 98.54 17.25 96.21 20.91 95.01 9.57 97.77 94.49
WOODS (ours) 3.27 98.86 3.92 99.14 1.41 99.62 3.81 99.12 13.36 97.45 17.95 96.08 7.29 98.38 94.77

π = 0.5
OE 4.03 98.86 6.14 98.73 3.16 99.31 6.49 98.68 11.53 97.58 19.82 95.40 8.53 98.09 94.13
Energy (w/ OE) 2.00 99.26 4.84 98.93 1.55 99.59 5.20 98.85 12.58 97.37 17.02 96.02 7.20 98.34 94.54
WOODS (ours) 2.00 99.00 3.10 99.16 1.52 99.54 2.99 99.16 9.16 98.11 15.33 96.45 5.68 98.57 94.73

π = 1.0
OE 1.60 99.33 3.02 99.16 1.78 99.49 2.79 99.21 6.48 98.54 12.42 96.97 4.68 98.78 94.62
Energy (w/ OE) 7.07 98.10 2.83 99.02 1.62 99.37 2.85 99.08 5.88 98.50 11.28 97.10 5.26 98.53 94.16
WOODS (ours) 1.68 98.61 2.29 99.11 1.35 99.47 2.05 99.16 6.02 98.43 12.43 96.79 4.30 98.59 94.83

Table 2. Effect of π. A larger π indicates more OOD data in the mixture distribution Pwild. ID dataset is CIFAR-10. ↑ indicates larger
values are better and vice versa.

Figure 1: Left and middle: Ablation on π for the OOD setting, using CIFAR-10 (left) and CIFAR-100 (middle) as the
ID dataset and Places365 as the OOD dataset. Our method WOODS is more reliable as π decreases. Right: Value of
the ID constraint term 1

m

∑m
j=1

1
1+exp(w·Eθ(xi))

− α from (9) over different training epochs. Our method is effective in
satisfying this constraint, reducing it to zero (within a tolerance of 0.05).

outperforms by 6.98% in FPR95, averaged across all test
datasets. The performance gain precisely demonstrates the
advantage of our setting, which incorporates in-the-wild
data for effective OOD learning. (2) Compared to methods
using Pwild, WOODS outperforms OE by 8.80% in FPR95. In
particular, OE makes a strong distributional assumption that
the auxiliary outlier data does not overlap with the ID data.
This in practice requires carefully curating and cleaning the
auxiliary outlier data. In contrast, our method does not im-
pose such an assumption on Pwild, which can be inherently
mixed with ID and outliers. (3) Lastly, the ID accuracy of
the model trained with our method is comparable to that
using the CE loss alone. Due to space constraints, we pro-
vide results on CIFAR-100 in the Appendix A.1, where
our method’s strong performance holds.

Effect of π In Table 2 and Figure 1, we ablate the effect
under different π, which modulates the fraction of OOD data
in the mixture distribution Pwild. Recall our definition in
Section 2, a smaller π indicates more ID data and less OOD
data—this reflects the practical scenario that the majority
of test data may remain ID. We highlight a few interesting
observations: (1) The OOD detection performance for all
methods (including OE and energy regularized learning)
generally degrades as with decreasing π. In particular, a
smaller π translates into a harder learning problem, because
Pin and Pwild become largely overlapping. For example, the
FPR95 of OE increases from 4.68% (π = 1.0) to 21.70%
(π = 0.05). (3) Our method WOODS is overall more robust
under small π settings than the baselines. In a challeng-
ing case with π = 0.05, our method outperforms OE by
9.91% in FPR95. This demonstrates the benefits of WOODS
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performing constrained optimization.

WOODS satisfies the constraint in optimization We
also perform a sanity check on whether WOODS satis-
fies the constraints of the optimization objective in (9).
As shown in Figure 1 (right), the ID constraint value
1
m

∑m
j=1

1
1+exp(w·Eθ(xi))

− α is reduced to zero, within a
specified tolerance of 0.05. This indeed verifies the efficacy
of our constrained optimization framework.

Further Analysis We also perform experiments assessing
the performance of our method in the special case where
Pout = Ptest

out (Appendix A.2), a setting that may be suitable
in some real-world deployment scenarios. Under this set-
ting, our method achieves very low false positive rate. For
example, under the mixing ratio with π = 0.1 (where the
mixture data contains only 10% of data from Pout), WOODS
obtains FPR95 of 3.13% and AUROC of 99.27%.

6. Related Work
OOD Detection OOD detection is an essential topic for
safely deploying machine learning models in the open world,
attracting much recent interest with several directions.

1) Some methods aim to design scoring functions for post-
hoc detection, including OpenMax score (Bendale & Boult,
2015), Maximum Softmax Probability (Hendrycks & Gim-
pel, 2017), ODIN score (Liang et al., 2018; Hsu et al., 2020),
Mahalanobis distance-based score (Lee et al., 2018), Energy
score (Liu et al., 2020; Wang et al., 2021), and gradient
norm (Huang et al., 2021). We show that by employing wild
data that exists naturally in model’s habitats, one can in fact
build a stronger OOD detector.

2) Another line of work addresses the OOD detection prob-
lem by training-time regularization (Lee et al., 2017; Be-
vandić et al., 2018; Hendrycks et al., 2019; Malinin & Gales,
2018; Liu et al., 2020). For example, models are encouraged
to give predictions with lower confidence (Hendrycks et al.,
2019) or higher energies (Liu et al., 2020). These methods
typically require access to auxiliary OOD data—a strong
assumption in practice. In this work, we instead explore a
more realistic setting by training OOD detectors using wild
mixtures data containing both ID and OOD data. We for-
mulate a novel constrained optimization problem and show
how to solve it tractably with modern neural networks.

Anomaly Detection Anomaly detection has received
much attention in recent years (e.g., (Ruff et al., 2018; Cha-
lapathy et al., 2018; Ergen & Kozat, 2019; Perera & Patel,
2019; Song et al., 2017)). In anomaly detection, a dataset is
drawn i.i.d. from Pin and the goal is to identify whether new
data points are anomalous in the sense that they are not real-
izations from Pin. In semi-supervised anomaly detection, an

additional clean OOD dataset drawn from Pout is observed
(e.g., (Ruff et al., 2019; Daniel et al., 2019; Hendrycks et al.,
2019)). An important difference between anomaly detec-
tion and the OOD detection literature is that OOD detection
additionally requires learning a classifier for the distribution
PXY . We refer the reader to (Ruff et al., 2021; Chalapathy
& Chawla, 2019) for detailed surveys on anomaly detection.

A closely related paper to our work is (Blanchard et al.,
2010), which studies the setting where samples from Pin
and Pwild are observed and the goal is to find a θ minimiz-
ing Ex∼Pout(1{gθ(x) = in}) subject to the constraint that
Ex∼Pin(1{gθ(x) = out}) ≤ α. This work has several im-
portant differences with ours. First, they do not consider the
out-of-distribution problem, that is, where the distribution
at test time Ptest

out differs from Pout, whereas our energy-based
approach (9) does. Second, their formulation only consid-
ers the task of distinguishing Pout and Pin, not the task of
doing classification simultaneously. Third, our work uses
and theoretically analyzes the sigmoid loss for OOD detec-
tion, a differentiable loss that can be used in deep learning,
whereas their work is mainly statistical, focusing on the
computationally intractable 0-1 loss. Finally, their work is
mainly statistical, only implementing their algorithm using a
plug-in kernel-density estimator whereas we leverage neural
networks using a computational approach based on ALM.

Constrained Optimization The augmented Lagrangian
method is a popular approach to constrained optimization.
It improves over two other related methods: the penalty
method and the method of Lagrangian multipliers. While
the penalty method suffers from ill-conditioning (Nocedal
& Wright, 2006), the method of Lagrangian multipliers is
specific to the convex case (Rockafellar, 1973). In this paper,
we adapt ALM to our setting from a recent version proposed
and analyzed for the case of nonlinear inequality constraints
(Xu, 2017). There are only a limited number of examples of
adapting ALM to modern neural networks (e.g., (Sangalli
et al., 2021) for class imbalance).

7. Conclusion
In this paper, we propose a novel framework for OOD detec-
tion using wild data. Wild data has significant promise since
it is abundant, can be collected essentially for free upon
deploying a ML system, and is often a much better match to
the test-time distribution than data collected offline. At the
same time, it is challenging to leverage because it naturally
consists of both ID and OOD examples. To overcome this
challenge, we propose a framework based on constrained op-
timization and solve it tractably by adapting the augmented
Lagrangian method to deep neural networks. We believe
that wild data has the potential to dramatically advance
OOD detection in practice, thereby helping to accelerate the
deployment of safe and reliable machine learning.
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Method
OOD Dataset Average Acc.SVHN LSUN-R LSUN-C iSUN Texture Places365

FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑
With Pin only

MSP 84.59 71.44 82.42 75.38 66.54 83.79 82.80 75.46 83.29 73.34 82.84 73.78 80.41 75.53 75.96
ODIN 84.66 67.26 71.96 81.82 55.55 87.73 68.51 82.69 79.27 73.45 87.88 71.63 74.64 77.43 75.96
Energy 85.82 73.99 79.47 79.23 35.32 93.53 81.04 78.91 79.41 76.28 80.56 75.44 73.60 79.56 75.96
Mahalanobis 57.52 86.01 21.23 96.00 91.18 69.69 26.10 94.58 39.39 90.57 88.83 67.87 54.04 84.12 75.96
GODIN 83.38 84.05 62.24 88.22 72.86 83.84 69.16 86.44 83.83 78.91 80.56 76.14 75.34 82.93 75.33
CSI 64.70 84.97 91.55 63.42 38.10 92.52 90.10 65.18 74.70 92.66 82.25 73.63 73.57 78.73 69.90

With Pin and Pwild
OE 81.04 77.20 73.87 80.32 61.26 86.56 73.61 80.98 74.20 79.42 78.76 75.68 73.79 80.03 72.93
Energy (w/ OE) 80.22 80.12 61.87 86.72 28.00 94.87 64.50 86.04 69.15 82.36 70.16 80.61 62.32 85.12 75.34
WOODS (ours) 71.74 84.17 53.10 89.80 13.72 97.51 55.84 89.22 62.02 85.51 63.86 83.35 53.38 88.26 75.92

Table 3. Main results. Comparison with competitive OOD detection methods on CIFAR-100. For methods using Pwild, we train under
the same dataset and same π = 0.1. ↑ indicates larger values are better and vice versa.

Method
OOD Dataset Average Acc.SVHN LSUN-R LSUN-C iSUN Texture Places365

FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑
π = 0.05

OE 81.19 78.35 74.54 81.11 62.73 86.48 72.85 82.03 77.39 78.03 80.52 74.97 74.87 80.16 73.18
Energy (w/ OE) 79.64 79.21 67.22 84.97 29.22 94.71 69.45 84.42 71.34 81.20 73.87 79.05 65.12 83.93 75.92
WOODS (ours) 74.84 82.03 60.34 87.85 17.84 96.74 62.03 87.39 65.92 83.77 69.20 81.31 58.36 86.51 75.98

π = 0.1
OE 81.04 77.20 73.87 80.32 61.26 86.56 73.61 80.98 74.20 79.42 78.76 75.68 73.79 80.03 72.93
Energy (w/ OE) 80.22 80.12 61.87 86.72 28.00 94.87 64.50 86.04 69.15 82.36 70.16 80.61 62.32 85.12 75.34
WOODS (ours) 71.74 84.17 53.10 89.80 13.72 97.51 55.84 89.22 62.02 85.51 63.86 83.35 53.38 88.26 75.92

π = 0.2
OE 72.08 81.44 60.12 84.74 48.52 89.69 59.53 85.02 64.69 82.77 70.66 79.10 62.60 83.79 72.57
Energy (w/ OE) 74.34 83.05 55.78 88.36 22.17 95.98 58.17 87.87 64.86 84.24 64.33 82.92 56.61 87.07 75.04
WOODS (ours) 71.73 85.36 47.26 91.57 11.97 97.82 51.86 90.62 60.10 86.79 58.56 85.22 50.25 89.56 75.31

π = 0.5
OE 68.58 83.21 45.78 89.81 30.99 94.01 47.18 89.56 55.95 86.44 61.52 82.96 51.67 87.67 73.13
Energy (w/ OE) 69.94 85.61 51.66 89.56 16.48 96.98 55.79 88.72 57.51 86.84 58.52 85.16 51.65 88.81 74.44
WOODS (ours) 70.36 86.63 41.32 92.69 12.57 97.75 47.55 91.59 58.37 87.57 54.81 86.94 47.50 90.53 75.76

π = 1.0
OE 42.81 92.44 48.35 89.83 20.90 96.32 52.07 88.75 51.60 88.76 55.49 87.34 45.20 90.57 74.88
Energy (w/ OE) 52.76 90.67 52.83 89.75 17.50 96.84 55.79 89.25 50.86 89.70 53.35 88.43 47.18 90.77 74.56
WOODS (ours) 59.34 89.80 46.12 91.66 13.73 97.56 50.71 90.73 56.33 88.26 54.11 87.61 46.72 90.94 75.75

Table 4. Effect of π. ID dataset is CIFAR-100. ↑ indicates larger values are better and vice versa.

A. Additional Experimental Results
A.1. Main Experiments: CIFAR-100

Table 3 shows a comparison of our method’s performance with OOD baseline methods on CIFAR-100. On average,
WOODS outperforms all of the other methods. It outperforms the fine-tuned methods by large margins, specifically, it
outperforms OE on average FPR95 by more 20% and Energy by nearly 10%. It outperforms all of the other OOD baseline
methods by about 20% except for Malananobis, which comes in a close second. Mahalanobis performs much better on
CIFAR-100 than on CIFAR-10. On CIFAR-10, WOODS beat Mahalanobis by nearly 30%, but in CIFAR-100 the difference
is small. This reflects the fact that the performance of fine-tuned methods such as WOODS depends largely on the quality of
the auxiliary dataset. As we will see in Section A.2, the performance of WOODS improves dramatically when given a better
auxiliary dataset, whereas Malananobis cannot make use of such an auxiliary dataset, limiting its potential for improvement.

Table 4 shows the results of ablation on π using CIFAR-100 as the ID dataset. In general, WOODS outperforms OE and
Energy by an even larger margin than on CIFAR-10 and across many values of π.

A.2. Special Case where Pout = Ptest
out

Existing approaches for OOD detection typically assume access to a pure auxiliary datset of OOD examples at training time,
where these samples are drawn from a different distribution (Pout) than the OOD examples encountered at test time (Ptest

out ).
However, in a real-world deployment scenario, training data is often collected under similar conditions as those in which the
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Method
OOD Dataset Average Acc.SVHN LSUN-R LSUN-C iSUN Texture Places365

FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑
π = 0.1

OE 0.85 99.82 0.33 99.93 1.84 99.65 0.41 99.89 10.42 98.01 23.27 94.67 6.19 98.66 94.10
Energy (w/ OE) 4.95 98.92 5.04 98.83 1.93 99.49 7.16 98.50 17.94 95.50 17.04 95.75 9.01 97.83 94.83
WOODS (ours) 0.15 99.97 0.03 99.99 0.22 99.94 0.06 99.98 5.93 98.72 12.39 97.00 3.13 99.27 94.86
WOODS w/ NN class (ours) 0.10 99.96 0.02 99.99 0.08 99.96 0.04 99.99 1.93 99.28 11.46 96.07 2.27 99.21 94.72

Table 5. Results when Pout = Ptest
out . ID dataset is CIFAR-10. ↑ indicates larger values are better and vice versa.

Method
OOD Dataset Average Acc.SVHN LSUN-R LSUN-C iSUN Texture Places365

FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑
π = 0.1

OE 1.57 99.63 0.93 99.79 3.83 99.26 1.98 99.53 27.53 93.49 59.44 83.52 15.88 95.87 71.55
Energy (w/ OE) 1.47 99.68 2.68 99.50 2.52 99.44 5.64 99.01 33.55 92.23 53.05 86.40 16.48 96.05 73.62
WOODS (ours) 0.52 99.88 0.38 99.92 0.93 99.77 0.60 99.86 17.27 96.57 37.33 91.07 9.50 97.84 74.79
WOODS w/ NN class (ours) 0.12 99.96 0.07 99.96 0.11 99.96 0.09 99.96 8.78 96.66 29.51 90.52 6.45 97.84 75.19

Table 6. Results when Pout = Ptest
out . ID dataset is CIFAR-100. ↑ indicates larger values are better and vice versa.

system is deployed. In this case, the “wild” auxiliary training data may consist of a mixture of OOD samples from the same
distribution as those encountered at test time (Pout/Ptest

out ) and ID samples from Pin. We perform an ablation showing that,
under this benign setting in which Pout = Ptest

out , WOODS (our method) outperforms existing baselines.

We also present results using WOODS w/ NN classifier, for which an OOD confidence score is not extracted directly from the
output of the ID classifier, but rather learned by a separate neural network attached to the ID classifier’s penultimate layer.
The additional neural network has one fully-connected hidden layer with 300 neurons, followed by a ReLU activation and a
single output logit, which provides an OOD confidence score, denoted gθ(·). With this architecture, we apply the same
WOODS algorithm to solve the following constrained optimization problem:

inf
θ

1

m

m∑
i=1

max(1− gθ(x̃i)), 0)

s.t.
1

n

n∑
j=1

max(1 + gθ(xj)), 0) ≤ α

1

n

n∑
j=1

Lcls(fθ(xj), yj) ≤ τ.

Table 5 and Table 6 show the results using CIFAR-10 and CIFAR-100 as the ID datasets, respectively. Here, we only
consider the π = 0.1 setting. WOODS and WOODS w/ NN classifier substantially outperform Energy and OE. We note that
the average FPR95 is misleading because the datasets SVHN, LSUN-Crop, LSUN-Resize, and iSUN are all fairly easy
even with only access to the mixture Pwild. Textures and Places 365 are significantly more challenging and we see a
larger gap between the methods. For example on CIFAR-100, WOODS outperforms the OE and Energy by about 10− 16%
and WOODS w/ NN classifier outperforms OE and Energy by about 20− 24%.

While WOODS w/ NN classifier has strong performance in the setting where Pout = Ptest
out , we do not expect it to perform

as well as WOODS in the setting studied previously where Pout 6= Ptest
out . WOODS uses the energy score to build its classifier,

which already has reasonable performance even without any additional auxiliary dataset. On the other hand, WOODS w/ NN
classifier would do no better than random guessing without an auxiliary dataset. In this way, WOODS has a prior given by the
energy score that we believe helps in the Pout 6= Ptest

out setting. Indeed, we observed this in some experiments.

We wish to also emphasize the substantial improvement of WOODS over the baselines using only Pin data, depicted in Tables
1 and 3. This shows that given access to a good wild distribution Pwild, WOODS can use Pwild data to perform dramatically
better than methods using only Pin data. We argue that a high-quality in-the-wild dataset can be collected almost for free
upon deploying a machine learning classifier in the open world and, therefore, that this is a practically relevant setting for
OOD detection.
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A.3. Additional Experimental Details

Here we give additional experimental details, presented in Sections 5 and A.1. Energy and OE both optimize an objective of
the form

min
θ
Lclassification + λLOOD

For energy, we varied λ ∈ {0.1, 1, 5} and for OE we varied λ ∈ {0.1, 0.5, 1}.

We simulate the mixture distribution as follows. For each iteration at training, for the ID dataset we draw one batch of size
128 and for the wild dataset Pwild we draw another batch of size 128 where each example is drawn from Pout with probability
π and from Pin with probability 1− π.

For the OOD experiments in Sections 5 and A.1, we repeated each experiment 3 times with 3 separate seeds. For the
experiments on the setting where Pout = Ptest

out in Section A.2, we repeated each experiment 3 times with 3 separate seeds.

B. Proof of Proposition 3.1
In this Section, we prove Proposition 3.1. We begin by giving notation and proving an important Lemma. To ease notation,
we write Pout = P1 and Pin = P1. Define the sigmoid loss for the OOD task

Ry(gθ) := Ex∼Pout(σ(−gθ(x)) · y).

Define

R∗1 := inf
θ
R1(gθ)

s.t.R−1(gθ) ≤ α.

Define

Rwild := Ex∼Pwild(σ(−gθ(x))

= πR1(gθ) + (1− π)Ex∼P−1
(σ(−gθ(x))

= πR1(gθ) + (1− π)(1−R−1(gθ))

where we used the symmetry of the sigmoid function, that is, σ(z) + σ(−z) = 1 for z ∈ R. Now, define

R∗wild := inf
θ
Rwild(gθ)

s.t. R−1(gθ) ≤ α.

Next, we prove a key Lemma for our proof. This Lemma has a similar proof to Theorem 1 in (Blanchard et al., 2010), which
applies to the 0/1 loss. We establish an analogous result for the sigmoid loss. The key observation is that the symmetry
property of the sigmoid loss enables a similar proof.

Lemma B.1. Suppose that there exists θ∗ such that R1(gθ) = R∗1(gθ∗) and R0(gθ∗) = α. Then,

R1(gθ)−R∗1 ≤
1

π
(Rwild(gθ)−R∗1 + (1− π)(R0(gθ)− α)).

Proof. We begin by showing that for any θ,Rwild(gθ) = R∗wild andR0(gθ) ≤ α if and only ifR1(gθ) = R∗1 andR0(gθ) = α.

=⇒: First, suppose θ satisfies Rwild(gθ) = R∗wild and R0(gθ) ≤ α. Suppose that either R−1(gθ) < α or R1(gθ) > R∗1. By
the assumption in the Proposition, there exists θ∗ such that R1(gθ) = R∗1(gθ∗) and R0(gθ∗) = α. Then, we have that

R∗wild(gθ∗) = πR1(gθ∗) + (1− π)(1−R−1(gθ∗)

+ πR1(gθ∗) + (1− π)(1− α)

< πR1(gθ) + (1− π)(1−R−1(gθ)

= Rwild(gθ).
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But, this contradicts the assumption that Rwild(gθ) = R∗wild, completing this direction of the claim.

⇐=: Suppose θ satisfies R1(gθ) = R∗1 and R0(gθ) = α. By the assumption in the Lemma, there exists θ∗ such that
R1(gθ) = R∗1(gθ∗) and R0(gθ∗) = α. Towards a contradiction, suppose that Rwild(gθ∗) < Rwild(gθ). Then, using π > 0,
we have that

R1(gθ∗) =
1

π
(Rwild(gθ∗)− (1− π)(1−R−1(gθ∗))

<
1

π
(Rwild(gθ)− (1− π)(1− α)

= R1(gθ)

but this contradicts our assumption on gθ. This completes the proof of the claim.

The established claim implies that R∗wild = πR∗1 + (1− π)(1− α). The result now follows by subtracting this equality from
R∗wild(gθ) = πR1(gθ) + (1− π)(1−R−1(gθ)).

Here we restate Proposition 3.1 with all technical details included. Let Θ ⊂ Rp where we have that θ ∈ Θ. Define

θ̂ε ←− argminθ∈Θ

1

m

m∑
i=1

σ(−gθ(x̃i)) (10)

s.t.
1

n

n∑
j=1

σ(gθ(xj) ≤ α+ ε

1

n

n∑
j=1

max(1− fθ(xj)yj , 0) ≤ τ + ε

Recall the optimization problem of interest:

inf
θ∈Θ

Ex∼Poutσ(−gθ(x̃i)) (11)

s.t. Ex∼Pinσ(gθ(xj)) ≤ α
E(x,y)∼PXYmax(1− fθ(xj) · y, 0) ≤ τ.

and let opt denote its value.

We will make the following mild assumption and describe settings where it holds later.

Assumption B.2. There exists θ∗ such that R1(gθ) = R∗1(gθ∗), R0(gθ∗) = α, and E(x,y)∼PXYmax(1−fθ∗(xj) ·y, 0) ≤ τ.

Proposition B.3. Suppose K = 2. Suppose Assumption (B.2) holds. Define εk :=
√

2 ln(6/δ)
k +

2 max
h∈{f,g}

max
P∈{P1,Pwild}

E
x̃1,...,x̃m∼P

E
η1,...,ηm

sup
θ∈Θ

1
k

∑k
i=1 ηihθ(x̃i) where η1, . . . , ηk are i.i.d. and P(ηi = 1) = P(ηi = −1) =

1/2. Let θ̂ε solve (10) with tolerance ε = cεn where c is a universal positive constant. Then, with probability at least 1− δ

1. Eoutσ(−gθ̂ε(x)) ≤ opt + c1π
−1(εn + εm),

2. Einσ(gθ̂ε(x)) ≤ α+ c2εn, and

3. EXYmax(1− fθ̂ε(xj) · y, 0) ≤ τ + c3εn.
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Proof. Define the following events

Σ1 = {| 1
m

m∑
i=1

σ(−gθ(x̃i))−Rwild(gθ)| ≤ 2Ex̃1,...,x̃m∼PwildEη1,...,ηm sup
θ∈Θ

1

m

∑
i=1

ηigθ(x̃i) + c

√
2 ln(6/δ)

m
: ∀θ ∈ Θ}

Σ2 = {| 1
n

n∑
i=1

σ(gθ(xi))−R−1(gθ)| ≤ 2Ex1,...,xn∼P−1
Eη1,...,ηn sup

θ∈Θ

1

n

∑
i=1

ηigθ(xi) + c

√
2 ln(6/δ)

n
: ∀θ ∈ Θ}

Σ3 = {| 1
n

n∑
i=1

max(1− fθ(xi)yi, 0)− Ex∼P−1
max(1− fθ(x)y, 0)| ≤ 2Ex1,...,xn∼P−1

Eη1,...,ηn sup
θ∈Θ

1

n

∑
i=1

ηigθ(xi)

+ c

√
2 ln(6/δ)

n
: ∀θ ∈ Θ}

By Lemma B.4, we have that P(Σi) ≥ 1−δ/3 for all i = 1, 2, 3. Then, by the union bound, we have that Σ := Σ1∩Σ2∩Σ3

holds with probability at least 1− δ. Assume Σ holds for the remainder of the proof.

Note that we have

R−1(gθ̂ε)−R−1(gθ∗) = R−1(gθ̂ε)−
1

n

n∑
i=1

σ(−gθ̂ε(xi))

+
1

n

n∑
i=1

σ(−gθ̂ε(xi))−
1

n

n∑
i=1

σ(−gθ∗(xi))

+
1

n

n∑
i=1

σ(−gθ∗(xi))−R−1(gθ∗)

≤ R−1(gθ̂ε)−
1

n

n∑
i=1

σ(−gθ̂ε(xi))

+
1

n

n∑
i=1

σ(−gθ∗(xi))−R−1(gθ∗) (12)

≤ 4Ex̃1,...,x̃m∼PwildEη1,...,ηm sup
θ∈Θ

1

m

∑
i=1

σigθ(x̃i) + 2c

√
2 ln(2/δ)

m
. (13)

(12) follows since θ̂ε is feasible for the optimization problem (10) because, by the choice of ε and Σ,

R−1(gθ∗) ≤ α
Ex∼P−1max(1− fθ∗(x)y, 0) ≤ τ

Therefore, by definition of θ̂ε as the minimizer of (10), we have that

1

n

n∑
i=1

σ(−gθ̂ε(xi))−
1

n

n∑
i=1

σ(−gθ∗(xi)) ≤ 0.

(13) follows by the event Σ1.

Similarly,

Einσ(gθ̂ε(x)) =
1

n

n∑
i=1

σ(gθ(xi)) + Einσ(gθ̂ε(x))− 1

n

n∑
i=1

σ(gθ(xi))

≤ α+ cεn + Einσ(gθ̂ε(x))− 1

n

n∑
i=1

σ(gθ(xi)) (14)

≤ α+ c2εn (15)
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where (14) follows from the definition of θ̂ε and (13) follows from Σ2. This establishes claim 2 in the Proposition.

Claim 3 follows by a similar argument to claim 2. Finally, claim 1 follows by (13), (15), and Lemma B.1.

Lemma B.4. Let δ ∈ (0, 1). Let x1, . . . ,xk ∼ P. Then,

• With probability at least 1− δ, for all θ ∈ Θ

|1
k

k∑
i=1

σ(−gθ(xi))− Ex∼Pσ(−gθ(x))| ≤ 2Ex1,...,xk∼PEη1,...,ηm sup
θ∈Θ

1

k

k∑
i=1

ηigθ(xi) + c

√
2 ln(2/δ)

k

• With probability at least 1− δ, for all θ ∈ Θ

|1
k

k∑
i=1

σ(gθ(xi))− Ex∼Pσ(gθ(x))| ≤ 2Ex1,...,xk∼PEη1,...,ηm sup
θ∈Θ

1

k

k∑
i=1

ηigθ(xi) + c

√
2 ln(2/δ)

k

• With probability at least 1− δ, for all θ ∈ Θ

|1
k

k∑
i=1

max(1− fθ(xi)yi, 0)− Ex∼Pmax(1− fθ(x)y, 0)| ≤ 2Ex1,...,xk∼PEη1,...,ηn sup
θ∈Θ

1

k

∑
i=1

ηigθ(xi)

+ c

√
2 ln(2/δ)

k
.

Proof. We show the first bullet point. The second and third bullet points follow by a similar argument. Using Mcdiarmid’s
inequality, we have that with probability at least 1− δ for all θ ∈ Θ

|1
k

k∑
i=1

σ(−gθ(xi))− Ex∼Pσ(−gθ(x))| ≤ 2Ex1,...,xk∼PEη1,...,ηm sup
θ∈Θ

1

k

k∑
i=1

ηiσ(gθ(xi)) + c

√
2 ln(2/δ)

k

Then, using the contraction Lemma and the fact that the sigmoid function σ is 1-Lipschitz, we have that

Ex1,...,xk∼PEη1,...,ηm sup
θ∈Θ

1

k

k∑
i=1

ηiσ(gθ(xi)) ≤ Ex1,...,xk∼PEη1,...,ηm sup
θ∈Θ

1

k

k∑
i=1

ηigθ(xi).

The result follows by combining the above two inequalities.

As an example where Assumption B.2 holds, consider for instance when θ =

(
w1

w2

)
with w1, w2 ∈ Rd and gθ(x) = w>1 x

and fθ(x) = w>2 x. Then if P−1 is absolutely continuous wrt the Lebesgue measure, Assumption B.2 holds. We could
similar replace the linear maps g and f with neural networks that share a penultimate layer. See Blanchard et al. (2010) for a
more detailed discussion and for more examples.

C. Validation using Pwild data
In this Section, we discuss how to use data from Pwild for a validation procedure and demonstrate its feasibility. For
simplicity, we focus on the OOD task since it is standard to have a clean ID validation set for classification and therefore this
captures the main difficulty. To ease notation, we write Pout = P1 and Pin = P1. Here, overloading notation, we assume
access to a holdout set from P−1 and the mixture Pwild:

• x1, . . . ,xn ∼ P−1

• x̃1, . . . , x̃m ∼ Pwild := (1− π)P−1 + πP1 (π ∈ (0, 1] unknown)
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We suppose that we have access to a small, finite set of models G ⊂ {g : Rd 7→ R}. G is typically obtained from training a
model with a set of distinct hyperparameters, generating one g ∈ G for each hyperparameter configuration. Note that G is
totally generic. As is typical in the OOD literature, we obtain from G a set of OOD predictors by thresholding each g ∈ G as
follows:

H := {sign(g(x)− τ) : g ∈ G, τ ∈ R}.

We now introduce some notation, overloading notation from Section B. Define

Ry(gθ) := Ex∼Pout(1{h(x)) 6= y}.

Define the optimization problem

R∗1 := inf
h∈H

R1(h)

s.t.R−1(h) ≤ α.

Define risk for Pwild

Rwild := Ex∼Pwild(1{h(x)) 6= 1})
= πR1(h) + (1− π)(1−R−1(h))

Now, define another similar optimization, only changing the objective:

R∗wild := inf
θ
Rwild(h)

s.t. R−1(h) ≤ α.

We choose the ĥ ∈ H that minimizes the FNR@95 on the holdout set:

ĥε ∈argminh∈H
1

m

m∑
i=1

1{h(x̃i) 6= 1}

s.t.
1

n

n∑
i=1

1{h(xi) 6= −1} ≤ α+ ε

where we write ĥ := ĥ0. We emphasize that this procedure is not only intuitive; it is also justified theoretically by applying
Theorem 2 from (Blanchard et al., 2010). Theorem 2 requires that the following condition is satisfied:

Assumption C.1. For any α ∈ (0, 1), there exists h∗ ∈ G such that R−1(h∗) = α and R1(h∗) = R∗1,α(G).

Here, we show thatH satisfies Assumption C.1 if P0 is absolutely continuous with respect to the Lebesgue measure. Fix
some g ∈ G and define hτ (x) := 1{h(x) > τ}. Notice that if τ > τ ′, then

hτ (x) ≤ hτ ′(x).

Thus, as discussed in the Remark of page 2978 in (Blanchard et al., 2010), we have that if for a given τ we have that
R−1(hτ ) < α, using the absolute continuity of P0, we can find a τ ′ such that R0(hτ ′) = α and R1(hτ ′) ≤ R1(hτ ). Since
this holds for any g ∈ G, this implies that Assumption C.1 holds. Then, as a Corollary from Theorem 2 of (Blanchard et al.,
2010), we obtain

Corollary C.2. Let εk :=
√
VC(H)−log(δ)

k where VC(H) denotes the VC dimension of H. If ε = cεn, with probability at
least 1− δ

1. R1(ĥε) ≤ R∗1 + cπ−1(εn + εm), and

2. R−1(ĥε) ≤ α+ cπ−1εn.


