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ABSTRACT

In this paper, we present an approach to obtain a desired leading-edge vortex (LEV) shedding pattern from unsteady airfoils through the exe-
cution of suitable motion kinematics. Previous research revealed that LEV shedding is associated with the leading-edge suction parameter
(LESP) exceeding a maximum threshold. A low-order method called LESP-modulated discrete vortex method (LDVM) was also developed
to predict the onset and termination of LEV shedding from an airfoil undergoing prescribed motion kinematics. In the current work, we pre-
sent an inverse-aerodynamic formulation based on the LDVM to generate the appropriate motion kinematics to achieve a prescribed LESP
variation, and thus, the desired LEV shedding characteristics from the airfoil. The algorithm identifies the kinematic state of the airfoil
required to attain the target LESP value through an iterative procedure performed inside the LDVM simulation at each time step. Several
case studies are presented to demonstrate design scenarios such as tailoring the duration and intensity of LEV shedding, inducing LEV shed-
ding from the chosen surface of the airfoil, promoting or suppressing LEV shedding during an unsteady motion on demand, and achieving
similar LEV shedding patterns using different maneuvers. The kinematic profiles generated by the low-order formulation are also simulated
using a high-fidelity unsteady Reynolds-averaged Navier–Stokes method to confirm the accuracy of the low-order model.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0090328

I. INTRODUCTION

Leading-edge vortex (LEV) shedding is a characteristic flow fea-
ture in many airfoil and wing unsteady flows, often contributing sig-
nificantly to the forces and moments1 and causing dynamic stall.2

Unsteady flows dominated by LEV formation are observed in nature
on swimming and flying animals and seeds,3–5 where the LEV helps
achieve higher lift. In engineering, while there is usually an emphasis
on avoiding LEV formation such as on rotorcraft,6,7 wind turbines,8

and micro-air vehicles,3 there are also devices like flapping-wing
energy harvesters9 that are designed to harness the beneficial effects of
LEVs on the forces and moments.9–11 Because unsteady flows with
attendant LEV formation are a result of motion kinematics12–18 and/
or gust encounters,19–22 research efforts have explored the design of
suitable motion kinematics to achieve desired force or flow behaviors.
Although various efforts have been made to combine pitch, heave, and
surge motions to either achieve desired force histories,23,24 to cancel
gust effects,25 or for gust generation using oscillating foils,26 most of
the analytical approaches suitable for designing a motion to achieve

desired flow/force behaviors work only for nominally attached-flow
conditions where the motion and gust effects can be superposed. In
situations where LEV effects are dominant, the flow nonlinearity pre-
cludes the use of linear superposition approaches. Rival et al.27 con-
ducted a detailed study of the effect of various kinematics on the LEV
formation on unsteady airfoils and suggested the possibility of regulat-
ing the LEV characteristics by carefully tuning the airfoil motion. It
may be argued that tailoring the LEV characteristics by designing
appropriate motion kinematics may be a good first step toward regu-
lating force and moment behaviors in LEV-dominated airfoil flows. In
this work, we present an approach for tailoring the LEV formation by
appropriate design of pitch/heave kinematics. This approach, which
relies on a new inverse formulation of a low-order prediction method
for unsteady airfoils that can handle intermittent LEV shedding,
avoids the limitations of earlier approaches which were mostly con-
fined to attached-flow situations.

The growth of interest in flapping wings along with the advance-
ment of experimental techniques and computational capabilities in the
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past few decades have facilitated a detailed understanding of the mech-
anisms and phenomena associated with dynamic stall and LEV forma-
tion.28–33 Reynolds-averaged Navier–Stokes (RANS) computations are
currently widely used by researchers to explore LEV formation and
dynamics in unsteady airfoils and wings.32,34–36 The RANS-based
studies by Ramesh et al.37 and Narsipur et al.38 reveal the connection
between the onset of LEV shedding and the criticality of the suction at
the airfoil leading edge. Large-eddy simulation (LES) studies help to
unravel the fine features in turbulent regimes such as leading-edge
shear-layer instabilities39 and the bursting of laminar separation bub-
bles40 associated with LEV formation. Although expensive, direct-
numerical simulations (DNS) provide invaluable information about
the finest details of complex flows such as how a Kelvin–Helmholtz
instability generated at the leading edge influences the formation and
dynamics of the LEV.41 Modern experimental surface and flowfield
diagnostics techniques have helped to identify the role of various fac-
tors such as effective angle of attack,42 forward movement of the trail-
ing separation point,43 external flow disturbances,44 leading-edge
shear-layer angle,45 shear-layer curvature,46 characteristic feeding
shear-layer velocity,47 leading-edge flow unsteadiness,48 and secondary
vortical structures45 affecting the formation and evolution of the LEV.
They have also helped quantify the spatial and temporal evolution of
the LEV and its strength.8,27,47,49,50

Theoretical approaches to model and predict the flow phenom-
ena on unsteady wings complement the experimental and computa-
tional studies. While some of the earlier works focused on predicting
only the loads,51,52 later works have attempted to model the flowfield
features, in particular the formation and dynamics of the LEV and its
contribution to the flowfield evolution and unsteady loads.37,53–57 In
previous research, Ramesh et al.37 demonstrated that the onset and
termination of LEV shedding from unsteady airfoils is connected with
the criticality of the leading-edge suction parameter (LESP), which is a
non-dimensional measure of the suction at the leading edge. A low-
order method, called the LESP-modulated discrete vortex method
(LDVM) was also developed by combining a large-angle unsteady thin
airfoil theory with a discrete-vortex method to predict the LEV shed-
ding patterns and the associated transient loads. LDVM was validated
extensively for unsteady airfoils in uniform flow at low to moderate Re
(Re � 10 000–100 000) by Ramesh et al.37 using experimental and
computational results. Some recent works have closely examined
LESP, furthering the insight into the behavior and application in dif-
ferent scenarios such as various Re regimes, unsteady finite wings, and
unsteady airfoils encountering external disturbances.38,43,44,58–60

Recent analytical and numerical formulations have also helped gain an
understanding of the effects of LEV and free vortices in the flow on
the airfoil forces and leading-edge suction through the use of various

vortex maps44,61,62 and force partitioning.63 These contributions have
resulted in greater insight into the flow physics of LEVs and their
effects of airfoil forces.

In this work, we present an inverse-aerodynamic approach based
on the LDVM to design pitch/heave motion kinematics to tailor the
duration and severity of LEV shedding from an unsteady airfoil as well
as to induce or suppress LEV shedding on-demand. The desired LEV
shedding pattern is transcribed into a corresponding time-variation of
the LESP, and the inverse approach is used to obtain the required
motion kinematics that results in the given LESP variation and thus the
desired LEV shedding pattern. The theory behind the LDVM method
is outlined and the use of LESP to predict LEV shedding from unsteady
airfoils is demonstrated in Sec. II. The inverse-aerodynamic approach
based on LDVM is formulated in Sec. III. A simplified approach based
on quasi-steady thin-airfoil theory (QSTAT) is also presented. Several
case studies are presented in Sec. IV to demonstrate the application of
the inverse formulation to various scenarios. The predicted motion
kinematics are simulated using an unsteady RANS computational fluid
dynamics (CFD) method, and results are presented to validate the low-
order results from the inverse-aerodynamic formulation. The predic-
tions of the QSTAT-based approach are evaluated in Sec. V. Finally,
the concluding remarks are presented in Sec. VI.

II. BACKGROUND

We use the low-order two-dimensional unsteady aerodynamic
model developed in previous research by Ramesh et al.37 as the foun-
dation for developing the current LEV-tailoring algorithm. This model
combines a large angle unsteady thin airfoil theory with a discrete-
vortex method to model the unsteady flowfield around airfoils under-
going arbitrary motion kinematics and compute the time-varying
loads. The most important feature of this method is its capability to
predict the initiation and termination of LEV shedding from airfoils
with rounded leading edges for a wide range of operating conditions.
This prediction is made based on a quantity called the leading-edge
suction parameter (LESP) and hence is called LESP-modulated dis-
crete-vortex method (LDVM). Below, we present the basic theoretical
and numerical aspects of this method.

A. The unsteady thin airfoil theory

Figure 1 shows an airfoil of chord c at time t undergoing arbitrary
pitching and heaving kinematics while translating leftward with a
speed U. The pitch and heave positions are denoted by the variables h
and h in the inertial coordinate system OXZ. The variables _h and _h
indicate the corresponding velocities. xp represents the pivot point
about which the airfoil executes the pitching motion. Also shown is a

FIG. 1. A schematic showing the different
variables used in the theoretical formulation.
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body-fixed frame of reference Bxz with the origin at the leading edge,
the x axis pointing in the chordwise direction, and the z axis pointing
in the chord-normal direction. Both the frames coincide at t¼ 0.

Following the lines of thin-airfoil theory, the airfoil is represented
by a continuous bound circulation distribution cðx; tÞ. Using the
Glauert transformation x ¼ c

2 ð1� cos �Þ, we get

cð�; tÞ ¼ 2Uref A0ðtÞ
1þ cos �
sin �

þ
X1
n¼1

AnðtÞ sin ðn�Þ
" #

; (1)

where Uref is an arbitrary reference velocity, typically set equal to U.
The Fourier coefficients, AnðtÞ, are to be obtained such that zero-nor-
mal-flow boundary condition is satisfied at every time instant t. This
condition yields the following expressions for An:

A0ðtÞ ¼ � 1
p

ðp
0

Wð�; tÞ
Uref

d�; (2)

AnðtÞ ¼
2
p

ðp
0

Wð�; tÞ
Uref

cos ðn�Þd�; n � 1: (3)

Here, W, referred to as the downwash, is the velocity induced along
the airfoil in the direction opposite to the normal to the camber line,
and can be expressed as follows:

Wðx; tÞ ¼ @g
@x

ðU cos hþ _h sin hþ uindðxÞÞ

�U sin h� _hðx � xpÞ þ _h cos h� windðxÞ: (4)

The term @g
@x represents the slope of the camber line. The terms uindðxÞ

and windðxÞ denote the velocity induced on the airfoil by all the free
vortices in the flowfield in the x and z directions, respectively. The
expression for downwash in Eq. (4) takes into account large pitch
angle regimes at which the traditional small-angle approximations are
not valid.

B. The discrete vortex method

The vorticity shed from the airfoil is modeled using discrete vor-
tices (DVs) released at every time step from the airfoil edges.
Clockwise vorticity is considered positive. The components of velocity
induced at a point (x, z) by a DV of strength Ck located at (xk, zk) are
given by the Biot–Savart law with regularization using a vortex core,
rcore, following the model proposed by Vatistas et al.64

ðu;wÞ ¼ Ck

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxk � xÞ2 þ ðzk � zÞ2
� �2 þ r4core

q ðz � zk; xk � xÞ; (5)

where rcore ¼ 0:02c is used following the implementation of Ramesh
et al.37 The vortices are convected using the local velocity induced at
their locations due to all the other free vortices and the bound vorticity.

The prescribed motion of the airfoil and the resulting flowfield
evolution are simulated in a series of discrete time steps. The flow chart
in Fig. 2 shows the time-stepping procedure in the LDVM simulation.

1. TEV shedding

A discrete trailing-edge vortex (TEV) is shed from the airfoil
at every time step in accordance with Kelvin condition. The TEV

is placed at one-third of the distance between the trailing edge
and the previously shed TEV. In the absence of LEV shedding, a
discrete TEV of strength Cj

TEV is released at the jth time step such
that

FIG. 2. Flowchart for the LDVM algorithm.
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Cj
B þ Cj

TEV ¼ Cj�1
B ; (6)

where CB ¼
Ð p
0 cð�Þd� ¼ pcUref ½A0ðtÞ þ A1ðtÞ=2� is the bound cir-

culation around the airfoil. The strength of the latest TEV can be
obtained after some manipulation of Eq. (6) as

Cj
TEV ¼

Cj�1
B þ c

ðp
0
W0ð1� cos �Þd�

1� c
ðp
0
W 0

TEV ð1� cos �Þd�
: (7)

Here,W 0
TEV is the downwash induced by a DV with unit-strength

placed at the location of the latest TEV. W0 is the downwash due to all
other factors excluding the latest TEV, obtained using Eq. (4).

2. LEV shedding

In previous research, Ramesh et al.37 observed that flow separation
and initiation of LEV formation occurs when the chordwise suction force
at the leading edge exceeds a maximum threshold that can be supported
by the leading-edge shape. A non-dimensional measure of this force,
called the leading-edge suction parameter (LESP, denoted henceforth by
l) is used to predict the onset and termination of LEV shedding. If the
flowfield and the kinematic state of the airfoil are known at any given
time instant,l can be obtained using the resulting downwash as

lðtÞ ¼ � 1
p

ðp
0

Wðx; tÞ
UnetðtÞ

d�; (8)

where UnetðtÞ is the time-dependent net-velocity magnitude due to the
motion kinematics, including the forward speed and the instantaneous
pitch and heave rates. As shown in greater detail in Narsipur et al.,38

an appropriate UnetðtÞ is the magnitude of the vector sum of the for-
ward speed, heave speed, and the velocity of the half-chord point due
to the pitch rate, resulting in a UnetðtÞ=U is given by

UnetðtÞ
U

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

_hðtÞc
U

1
2
� xp

c

� �
sin hðtÞ

" #2

þ
_hðtÞ
U

�
_hðtÞc
U

1
2
�
xp
c

� �
cos hðtÞ

" #2

vuuuuuuuut : (9)

It is often convenient to define the kinematics using convective
time defined as t� ¼ tU=c. Then, UnetðtÞ=U can be rewritten in terms

of non-dimensional pitch rate, h
�
¼ @h=@t� ¼ _hc=U , and non-

dimensional heave rate, h
�
¼ @ðh=cÞ=@t� ¼ _h=U , as

UnetðtÞ
U

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h

�
ðtÞ 1

2
�
xp
c

� �
sin hðtÞ

� �2

þ h
�
ðtÞ � h

�
ðtÞ 1

2
�
xp
c

� �
cos hðtÞ

� �2
:

vuuuuuut (10)

In LDVM, LEV shedding is incorporated based on the hypothesis
that l cannot exceed a predetermined critical value, lcrit . If, at any
time step,l tends to exceedlcrit , a discrete LEV is released from the
leading edge to ensure thatl is maintained atlcrit .

At every time step, a discrete TEV is initially shed according to
Eq. (7) assuming no LEV shedding. This gives a valid solution of the

flowfield that satisfies the Kelvin condition. This solution corresponds
to an intermediate value of l, denoted by l

�. If the magnitude of
l

�; jl�j, does not exceed lcrit , the current solution without LEV
shedding is acceptable. The intermediate values of the TEV strength
and l

� are set as the respective final values at the current time step
and the simulation proceeds to the next time step. If jl�j exceeds
lcrit , the intermediate solution is not acceptable and LEV shedding
needs to be accounted for. If l� is positive, then a clockwise DV is
released, which automatically is convected to the upper surface, simu-
lating LEV shedding from the upper surface. A negativel� will result
in the shedding of a counterclockwise DV from the lower surface. A
more acceptable solution is now obtained by simultaneously solving
for the strengths of the latest LEV and the latest TEV so as to satisfy
the Kelvin condition and to maintainl atlcrit . This problem can be
formulated as a system of two linear equations where the unknowns
are the strengths of the latest LEV and TEV:

A
� � CTEV

CLEV

	 

¼ B

� �
; (11)

where

A
� �

¼
1� c

ðp
0
W 0

TEVð1� cos�Þd� 1� c
ðp
0
W 0

LEVð1� cos�Þd�ðp
0
W 0

TEVd�
ðp
0
W 0

LEVd�

2
6664

3
7775

(12)

and

B
� �

¼
Cj�1
B þ c

ðp
0
W0ð1� cos �Þd�

�pUnetlcrit �
ðp
0
W0d�

8>><
>>:

9>>=
>>;; (13)

and W 0
LEVðxÞ is the downwash due to a unit-strength DV placed at

the location of the latest LEV. From the above discussion, it can be
deduced that

l ¼
l

�; if jl�j < lcrit ;

lcrit ; otherwise:

(
(14)

The value of lcrit for a given airfoil at a given Reynolds number can
be predetermined using experimental or CFD data. This parameter
has been observed to be largely independent of motion kinematics and
hence can be used to predict the LEV shedding characteristics of the
given airfoil at the given Reynolds number for a range of arbitrary
motion kinematics.

C. The unsteady loads

Once the solution of the flowfield at a given time step is known,
the normal force per unit span can be obtained as

FN ¼ qpcUref U cos hþ _h sin h
 �

A0ðtÞ þ
1
2
A1ðtÞ

� �

þqpc2Uref
3
4

_A0ðtÞ þ
1
4

_A1ðtÞ þ
1
8

_A2ðtÞ
� �

þq
ðc
0
uindðxÞcðx; tÞdx þ qc _C lev; (15)
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where _C lev is the rate of vorticity shedding from the leading edge. The
suction force per unit span of the airfoil is given by

FS ¼ qpcU2
ref A

2
0: (16)

The normal-force coefficient Cn and the suction-force coefficient Cs

can be obtained by non-dimensionalizing using the quantity 1
2qU

2
ref c.

Then, the lift and drag coefficients are given by

Cl ¼ Cn cos hþ Cs sin h; (17)

Cd ¼ Cn sin h� Cs cos h: (18)

The moment per unit span about an arbitrary reference point xref on
the airfoil can be obtained as

M¼xref FN�qpc2U

�
U coshþ _h sinh
 � 1

4
A0ðtÞþ

1
4
A1ðtÞ�

1
8
A2ðtÞ

� �

þc
7
16

_A0ðtÞþ
11
64

_A1ðtÞþ
1
16

_A2ðtÞ�
1
64

_A3ðtÞ
� ��

�q
ðc
0

@/lev

@x

� �
þ @/tev

@x

� �� �
cðx;tÞxdx�q

c2 _C lev

2
: (19)

D. Validation of the LDVM

The LDVM has been validated extensively against high-fidelity
CFD and experimental results for various cases involving different
geometries, Reynolds numbers and motion kinematics.37,38,44,58 Here,

we present a validation of LDVM against unsteady Reynolds-
Averaged Navier–Stokes (uRANS) results of a NACA0012 airfoil piv-
oted at the quarter-chord and undergoing a prescribed 0�–90�–0�

pitch-up–return motion at a non-dimensional pitch rate, K ¼ _hc=
2Uref , of 0.4 at Re¼ 30 000. The value of lcrit for this airfoil-Re com-
bination is set as 0.17 based on results from Narsipur et al.38

The results of the validation study is shown in Fig. 3. Figure 3(a)
shows l increasing toward the positive critical value as the airfoil
starts pitching up. During this phase of motion before the LEV initia-
tion, l and l

� overlap. LEV initiation occurs at t� ¼ 3:6 when l
�

exceeds the critical value of lcrit ¼ 0:17. The co-plotted l
� value

continues to be greater than lcrit until t� ¼ 7:4, indicating uninter-
rupted LEV shedding during this time period. Discrete LEVs are shed
from the leading edge during this time interval, and their strengths are
determined to maintain l at lcrit . LEV shedding terminates when
l

� falls below the critical value. After this event, l and l
� overlap

once again.
Observations of Figs. 3(b)–3(d) show that the lift, drag, and

moment coefficient predictions by the LDVM compare very well with
CFD data with a slight underprediction in Cd during the shedding pro-
cess and in peak Cl and Cm by the LDVM. To further explore the
details of LDVM and discussions on the accuracy of its predictions,
refer to the previous works on LDVM.37,44,65,66

Figure 4 overlays the leading- and trailing-edge vortex flow pattern
predictions from the LDVM on top of the vorticity contours from the
CFD solutions at six time instants from just after LEV initiation to
slightly after the LEV convects past the trailing edge. Results show the

FIG. 3. Time variations of (a) l, (b) Cl,
(c) Cd, and (e) Cm for the validation case.
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LDVM-predicted LEV flow patterns compare excellently with CFD
data while the TEV flow patterns show small discrepancies for t� > 7:3.

III. METHODOLOGY: THE INVERSE-AERODYNAMIC
FORMULATION FOR LEV TAILORING

Here, we present a strategy to tailor the features of an LEV shed
from an unsteady airfoil through the execution of a suitable kinematic
profile. This method can be employed, for instance, to start and stop
LEV shedding from an airfoil at prescribed instants of time, to induce
LEV shedding from the upper or lower surface of the airfoil on
demand, and to tailor the strength of an LEV shed during an unsteady
motion. In LDVM, the initiation and termination as well as the inten-
sity of LEV shedding is determined by the intermediate value of LESP,
l

�, at every time step. Thus, these aspects of LEV shedding can be
customized by achieving an appropriatel� variation. In other words,
the problem translates to designing a suitable maneuver that will

generate a given l
� variation. Below, we first formulate a “full”

inverse-aerodynamic approach based on LDVM to identify a motion
kinematics that will result in a prescribed l

� variation and thus in a
desired LEV shedding pattern from an unsteady airfoil. This full
inverse approach uses the LDVM code, which takes into consideration
the effects of the DVs in the flowfield, for the inverse solution. We also
present a simplified inverse approach using quasi-steady thin airfoil
theory (QSTAT), which does not take the effects of the DVs into con-
sideration, and is therefore approximate. The advantage of the simpli-
fied QSTAT is that it solves a simple expression, does not require the
LDVM formulation and code, and provides insight. The result of the
simplification, however, is that it leads to inaccurate results when used
in situations dominated by vortex shedding, as shown in Sec. IV.

A. Full inverse formulation using LDVM

The idea behind the inverse formulation is that once a flow solu-
tion is obtained at time step j, a commanded value of l�, denoted by
l

�
c , can be achieved at the next time step, ðjþ 1Þ, by solving for the

kinematic state of the airfoil ½h h _h _h�Tðjþ1Þ for ðjþ 1Þ that satis-
fies the following nonlinear equation:

l
�
c �l

�� �
ðjþ1Þ ¼ 0; (20)

where,l�, given by Eq. (8), depends on the chordwise distribution of
downwash,W(x, t), at time jþ 1, which in turn depends on the values
of the state variables ½h h _h _h�T at time ðjþ 1Þ, as given by Eq.
(4). Starting from some initial state, this procedure can be carried out
for all the time steps to calculate a desired motion that will achieve the
prescribedl�

c ðtÞ.
In a general scenario where the airfoil has both pitch and heave

degrees of freedom, multiple solutions exist for Eq. (20). In other
words, a prescribedl

�
c variation can be generated using a pure heave

motion or a pure pitch motion or using different combinations of
combined pitch–heave profiles. In this work, we only consider the
cases where one degree of freedom of the airfoil is prescribed or
restrained, and the other can be obtained uniquely from Eq. (20).

It is useful to have a closer look at the contributions tol�. From
Eqs. (4) and (8), we can see thatl� can be interpreted as a sum of the
following contributions from various factors:

l
� ¼ l

�
h þl

�
_h
þl

�
_h
þl

�
DV ; (21)

where, for a symmetric airfoil,

l
�
h ¼

1
pUnet

ðp
0
U sin hd� ¼ 1

Unet=U
sin h; (22)

l
�
_h
¼ 1

pUnet

ðp
0
ð _hðxð�Þ � xpÞÞd�

¼
_hc
Unet

1
2
� xp

c

� �
¼ h

�

Unet=U
1
2
� xp

c

� �
; (23)

l
�
_h
¼ 1

pUnet

ðp
0
� _h cos hd�

¼ �
_h

Unet
cos h ¼ � h

�

Unet=U
cos h; (24)

and

FIG. 4. Flow visualization for the validation case. The respective time instants are
shown in panels (a)–(f). Color contours are vorticity contours from CFD. Markers
are DVs from LDVM: filled markers are LEVs and open markers are TEVs.
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l
�
DV ¼ 1

pUnet

ðp
0
windð�Þd�: (25)

Figure 5 shows the flow chart of the inverse-aerodynamic formu-
lation algorithm. The algorithm receives a prescribed l

� variation as

the input and generates a kinematic profile that the airfoil needs to
execute in order to achieve that l� variation. It is similar to the flow
chart of the original LDVM algorithm. The new components are
marked in a different color to highlight the differences. At each time
step j, Eq. (20) is solved using an iterative procedure to determine the

FIG. 5. Flowchart for the inverse LDVM
algorithm. Modifications to the LDVM algo-
rithm are shown in a different color.
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motion-parameter value at time ðjþ 1Þ: either the pitch angle, hðjþ1Þ,
or the heave displacement, hðjþ1Þ. Based on the guess values for these
variables, the corresponding velocities _hðjþ1Þ and _hðjþ1Þ are calculated
using a first-order backward-difference scheme. The nascent TEV is
placed relative to the guessed position of the airfoil. The strengths and
positions of all other DVs in the flowfield are available. Using this
information, and the guess value of the kinematic state, the strength of
the new TEV is determined using Eq. (7). The downwash,W, obtained
using Eq. (4), along with Unet, obtained using Eq. (9), can be used to
calculate the l

� using Eq. (8). For any guess value of hðjþ1Þ and/or
hðjþ1Þ, the left-hand side of Eq. (20) can thus be calculated. In the itera-
tive procedure, the guess values are updated until Eq. (20) is satisfied
to within a specified tolerance. In this work, MATLAB’s fsolve function
is used to solve Eq. (20). Once the kinematic state is obtained, the sim-
ulation proceeds similar to the LDVM algorithm.

Equation. (20) that is solved at each time step in this full inverse
method is especially nonlinear because of the influence of the DVs
through the l

�
DV term, which is the cumulative effect of the incre-

mental contribution from each DV in the flowfield to thel� and can
be expressed as follows:

l
�
DV ¼

X 1
pUnet

ðp
0
wk
indð�Þd�; (26)

where the summation is taken over all the DVs in the flowfield, and
wk
ind is the normal velocity induced along the airfoil chord by the kth

DV. From Eq. (5), we can see that

l
�
DV ¼

X
Ck

1
pUnet

ðp
0
ŵk

indð�Þd�; (27)

where ŵ is the velocity induced by a unit-strength clockwise vortex
placed at the location of the kth DV. Thus, the effect of the vortices on
l

� can be expressed in the following form:

l
�
DV ¼

X
Ckl̂

�
DV ;k; (28)

where l̂
�
DV ;k is the contribution tol� from a unit-strength clockwise

vortex placed at the location of the kth DV and is a function of the
position of the vortex relative to the airfoil. Suresh Babu et al.44 pre-
sented a graphical approach using LESP maps to visualize the contri-
bution from the DVs to l

� and thus their role in suppressing or
enhancing the LEV shedding from an airfoil. Figure 6 shows the LESP
map, which is a contour plot of the incremental l� due to a unit-
strength clockwise DV placed at different locations around the airfoil.
A clockwise vortex causes a negative l� if it is located in the leading
half of the LESP map, and results in a positivel� if it is located in the
trailing half. The trends are opposite for a counterclockwise vortex.
Irrespective of the sense, the magnitude increases as the vortex moves
closer to either edge of the airfoil. Also, the zero contour line is normal
to the airfoil passing through the midchord location. The contribution
to l

� from each DV can be evaluated by multiplying its strength by
the value of l̂

�
DV;k value due to its location on the LESP map. More

details of the LESP map can be found in Suresh Babu et al.44 The use
of LESP maps and the decomposition of l� is demonstrated in Sec.
IVA. Although the LESP map provides a way to visualize the effect of
any DV on the l

�, the calculations of l�
DV necessary for the full

inverse method at every time step are carried out by adapting the
LDVM code which already has the functions for these calculations, as
illustrated in the flow chart in Fig. 5.

B. Simplified inverse formulation using QSTAT

It is of interest to explore a simplified, quasi-steady inverse
approach in which the contributions of the DVs are ignored. The l�

from this QSTAT approach can be written as follows:

l
� ¼ l

�
h þl

�
_h
þl

�
_h

¼ 1
Unet=Uref

sin hþ h
� 1

2
�
xp
c

� �
� h

�
cos h

� �
: (29)

This decomposition not only provides insight into the role played
by various motion parameters in the LEV shedding phenomena from
the airfoil but also aids us in estimating the required motion kinemat-
ics. For example, we can see that a pitch-up motion about a pivot loca-
tion that is forward of the half-chord location and starting from zero
pitch angle results in an increase in the l

� due to both the pitch-
angle and pitch-rate terms. On the other hand, when the pivot location
is aft of the half-chord location, the same pitch-up motion will result
in an initial decrease in the l�, due to the pitch-rate effect, that then
transitions to an increase in the l� due to the pitch-angle contribu-
tion. In contrast, the effect of heave on the l

� is relatively more
straightforward: a heave-up motion results in a decrease in the l

�

and a heave-down motion does the opposite. As another example, we
can consider if a heave motion can be used to cancel thel� variation
resulting from a pitch-up motion. If the pivot is forward of the half-
chord location, the l

� increases during the pitch-up motion. It is
plausible that a heave-down motion can be found that exactly cancels
thisl� decrease.

The QSTAT formulation for l
� can thus be used to quickly

design motion kinematics that will achieve a desired l
�. Such a solu-

tion will be approximate because the effects of the DVs are ignored.
However, such a solution may have acceptable accuracy in situations
where the effects of the DVs are small compared to the contributions
from the motion parameters. For the QSTAT-based inverse design, in
a manner similar to the full inverse approach, at each time step j, Eq.
(20) is solved using an iterative procedure to determine either the pitch
angle, hðjþ1Þ, or the heave displacement, hðjþ1Þ. However, rather than
calculate the full flow solution using LDVM for each guess of the
motion-parameter value at time ðjþ 1Þ, the simplified analytical
expression for l

� from QSTAT, given in Eq. (29), is used. This
QSTAT inverse calculation procedure is much faster than the full

FIG. 6. LESP map for a symmetric airfoil.
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inverse calculation and can be performed without the need for the
LDVM code. Since QSTAT does not take into account the effect of the
vortices in the flowfield, the QSTAT approach can be expected to
work reasonably well in cases where the effect of vortices onl

� is not
significant. As we will demonstrate later in Sec. V, the predictions
using QSTAT is not reliable in cases with vortex-dominated flowfields.

IV. LEV TAILORING USING FULL INVERSE
AERODYNAMIC FORMULATION

Several case studies are presented in this section to demonstrate
various capabilities of the LEV tailoring algorithm and to validate its
predictions using high-fidelity CFD results. In Sec. IVA, we present
examples to demonstrate the capability to precisely affect the timing of
the LEV formation. Section IVB has examples to illustrate the capabil-
ity to generate LEVs of desired strengths. In Sec. IVC, we present the
capability to generate similar LEVs using very different motion kine-
matics. Section IVD is used to show that it is possible to suppress LEV
formation by suitable superposition of motions. In all the case studies
presented here, we use a NACA0012 airfoil at a chord-based Reynolds
number of 30 000 and a pivot point at the leading edge. For this air-
foil-Re combination, a value of 0.17 is used for lcrit in the inverse-
aerodynamic formulation.

A. LEV initiation and termination at prescribed time
instants

Here, we demonstrate how the inverse-aerodynamic formulation
can be used to initiate and terminate LEV shedding from an unsteady
airfoil at prescribed time instants and thereby tailor the duration of
LEV shedding from an unsteady airfoil. We first present a case with
LEV shedding from only the upper surface of the airfoil and then dis-
cuss a situation with LEV shedding from both the surfaces.

1. LEV shedding from one surface

Consider the commandedl
� profile (red curve, left axis) shown

in Fig. 7. It exhibits a top-hat profile with a maximum value of 0.20.

Various time instants marked on the curve will be used later in the dis-
cussion of the flowfield evolution. The commandedl� profile exceeds
the critical value of lcrit ¼ 0:17 for a finite duration of time between
the two instants marked by (b) at t� ¼ 2:7 and (e) at t� ¼ 4:4. Thus,
the commanded l

� profile is one that enforces the initiation of LEV
shedding from the upper surface of the airfoil at t� ¼ 2:7, and the
LEV termination at t� ¼ 4:4 and thus prescribes a duration of 1:7t�

between these two time instants.
Any maneuver that can achieve the commanded l

� variation
will result in LEV initiation and termination, respectively, at the two
prescribed time instants. Here, we consider a pure pitch motion to
achieve the commanded l

�. Based on Eqs. (22) and (23), we can see
that this can be achieved by an initial pitching-up motion followed by
a pitch down motion. The pitching kinematics required to be executed
by the airfoil in order to track the commanded l

�, as predicted by
the inverse-aerodynamic formulation, is shown using the purple curve
(right axis) in Fig. 7. The resulting variation of the LESP of the airfoil,
lðtÞ, is shown using the green curve (left axis). The airfoil remains at
zero pitch angle in the beginning, resulting in lðtÞ ¼ 0, until the
commanded l

� starts increasing at t� ¼ 1:0. The airfoil then adopts
a pitch-up motion such that l increases in the positive direction. As
is evident from Fig. 7, the value of the pitch angle is chosen at every
time step such that the resulting l equals the commanded l

�. This
holds true until t� ¼ 2:7 at which point l� exceeds lcrit , marking
the initiation of LEV shedding. The flow images for this case at the
eight time instants marked in Fig. 7 are shown in Fig. 8. It is seen that
a shear layer starts to emanate from the leading edge in the CFD
results and DVs are being released in the LDVM results when the air-
foil is at a pitch angle of about 11�. During this time, thel� continues
to exceed lcrit , and consequently, the l is held at lcrit through the
release of discrete LEVs. The subsequent flow images show a concen-
trated region of vorticity developing near the leading edge while the
airfoil continues to pitch up to larger pitch angles. The flow image at
t� ¼ 4:0 shows the airfoil at a large angle of 38� with an LEV structure
that is starting to dominate the upper surface of the airfoil. As the LEV
structure grows stronger it starts to lift off the airfoil surface while
the feeding shear layer continues to add vorticity. The flow image at
t� ¼ 4:4 shows a mature LEV structure tethered to the leading edge
via a thin shear layer. Following this time instant, the airfoil enters the
pitch-down phase in order to track the decreasing l�. Soon after the
airfoil starts pitching down, the discrete-LEV shedding is seen to ter-
minate in the LDVM exactly at the predetermined time instant when
l

� falls below the critical value. In the CFD results, the concentrated
LEV structure can be seen to get detached from the shear layer and
convect downstream. Toward the end of the motion, the remnants of
the feeding shear layer can be seen to reattach to the airfoil surface in
the CFD images while the DV cluster from LDVM overlaps with the
detached LEV structure. During this phase, a strong interaction
between the clockwise LEV and the counterclockwise vorticity from
the airfoil boundary layer can be seen to take place. Such viscous
effects, which are impossible to model in LDVM, lead to small differ-
ences between the two methods. Nevertheless, the LEV termination
event occurs in CFD at approximately the desired time instant of
t� ¼ 4:4 with reasonable accuracy.

Even though the overall nature of the pitch angle profile is a
pitch-up and return motion, it can be noticed that the profile has
highly nonlinear variations in pitch rate that are not intuitive. For

FIG. 7. Case A.1: Commanded l
� curve and the resulting pitch motion and l

variation.
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example, once the LEV shedding starts, the airfoil pitches up faster.
Also, after starts decreasing from the maximum value, there is a small
delay before the start of the pitch-down motion. Moreover, it can be
noticed that the airfoil holds a small negative pitch angle at the end of
the motion. These events result from the interplay between various

factors influencingl�, among which the interaction between the LEV
and the airfoil is a significant one.

The interplay can be visualized by performing a decomposition
of l� into various contributions, as mentioned in Eq. (21), and by
using the LESP maps. The left axis of Fig. 9(a) shows the evolution of
the various terms in Eq. (21) during the motion. The various terms are
re-organized in Fig. 9(b) (left axis) into kinematic components and
flowfield components to show how they add up to give the required
l

� variation. The pitch-angle variation of the airfoil is also shown on
the right axis of these two figures. The LESP maps can be employed to
get a better understanding of the effects of the flowfield evolution on
the l

� and thus the pitch angle profile determined by the inverse
method. Figure 10 shows the DV distributions from LDVM at various
time instants on the left column. Clockwise vortices are colored
green while the counterclockwise vortices are colored magenta.
Corresponding to each DV plot, a colorized LESP map is shown on
the right column in which the DVs are colored according to their con-
tribution tol�. Note that the sum of values at all points in a colorized
map at any time instant is equal to the value of the blue curve in
Fig. 9(b) at that time instant.

The airfoil initially sheds counterclockwise TEVs when it starts
pitching up to track the increasing l

�. These TEVs, located in the
trailing half of the LESP map, make a small negative contribution to
l

� [red curve in Fig. 9(a)]. During this phase, the pitch angle

FIG. 8. Case A.1: DV plots from LDVM overlaid on vorticity contours from CFD.
The respective time instants are shown in panels (a)–(h).

FIG. 9. The role of various factors governing the LEV shedding dynamics for case
A.1. (a) Contribution tol� from each factor. (b) Totall� history split into contribu-
tions from kinematic factors and flowfield elements.
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variation is chosen such that the positive pitch and pitch-rate compo-
nents overcome the negative contribution from the TEVs to yield the
desired positivel� in Fig. 9(b). This gradual pitching motion contin-
ues until the start of LEV shedding. After LEV initiation, the discrete
LEVs start strongly affecting the flowfield contributions to the l

�.
The clockwise LEV, evolving in the leading half of the LESP map,
causes an increasingly negative contribution. The contribution
becomes strongly negative as the LEV grows in size and dominates the
leading half of the LESP map. Meanwhile the contribution from the
TEVs also becomes increasingly negative. The combined flowfield
contribution grows to large negative values, as shown by the blue curve
in Fig. 9(b). Consequently, the airfoil exhibits a somewhat aggressive

pitch-up motion during this time period so as to counteract the large
negative contribution from the flowfield factors. As the LEV starts
crossing into the trailing half of the LESP map, some discrete LEVs
start resulting in a positive contribution, as can be seen from the color-
ized maps. Thus, the LEV contribution starts becoming less negative
in Fig. 9(a). Meanwhile, the required l

� also starts decreasing.
Consequently, the airfoil adopts smaller values of pitch angle and
enters the return phase. It can be seen in the colorized maps that as
the LEV passes into the trailing half of the LESP map, it creates a
strong positive contribution which is reflected in both Figs. 9(a) and
9(b). Thus, in terminal phase of the motion for t� > 6, the airfoil has
to adopt a slight pitch-down orientation to counteract this positive
contribution from the flowfield and maintain the overalll� at zero.

It should be noted that the current pitch motion can be uniquely
determined for the given commanded l

�. By using a different com-
manded l

� curve that crosses the critical value of LESP at t� ¼ 2:7
and t� ¼ 4:4, LEV shedding can be achieved between these two time
instants using a different pitching maneuver, which, as will be shown
later in case study B.2, will result in an LEV with a different strength.

2. LEV shedding from both surfaces

In this case study, we demonstrate that on-demand LEV shed-
ding can be achieved from both surfaces of the airfoil by commanding
an appropriate l

� profile. We demonstrate this using a pure pitch
motion. The commandedl

� variation for this case study is shown in
Fig. 11. The pitching kinematics adopted by the airfoil to track the
commanded l

� profile is shown on the right axis of Fig. 11. The l�

starts from zero at t� ¼ 0 and has an increasing trend initially. It
exceeds the positive critical value for a finite period of time between
t� ¼ 1:5 and t� ¼ 3:5. This prescription indicates that LEV shedding
should occur on the upper surface of the airfoil if it adopts a kinemat-
ics to track the commanded l

�. For t� > 5; l� continues to
decrease toward negative values. Its magnitude again exceeds the criti-
cal value between t� ¼ 6:5 and t� ¼ 8:5, indicating that the shedding
of leading-edge vorticity should occur from the lower surface of the
airfoil during this period of time. The commanded l

� is in fact a

FIG. 10. LESP maps and colorized maps for case A.1 at various time instants. The
colorized maps show the contribution tol� from individual DVs in the flowfield.

FIG. 11. Case A.2: Commanded l
� curve and the resulting pitch motion and l

variation.
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sinusoidal profile, and thus, the second temporal half is the mirror
image of the first half. Thus, the upper- and lower-surface LEVs can
be expected to be similar to each other.

The flow images for this case are shown in Fig. 12 for the ten
time instants marked in Fig. 11. These images confirm that the LEV
formation occurs from the two surfaces of the airfoil during the
desired time periods. The flow images are selected such that the left
column is from the first half of the motion and the right column is
from the second half. The value of the pitch angle is also shown along
with each flow image. Also, each row shows the flow images at two
time instants corresponding to the same magnitude of l�, but with
opposite sign. It can indeed be noticed that the flow images in Fig. 12
at the corresponding phases of l� in the two halves are qualitatively
similar.

As seen from the pitch-angle variation in Fig. 11 (right axis), dur-
ing the first half, the airfoil executes a pitch-up maneuver to achieve
LEV shedding from the upper surface. Upon the termination of LEV
shedding from the upper surface at t� ¼ 3:5, the first LEV gets
detached from the leading edge and convects away into the wake.
Meanwhile, the airfoil enters a return phase to track the decreasing
l

�. This motion subsequently progresses into a pitch-down phase as
the commandedl� becomes negative. The pitch angle variations dur-
ing the two halves are slightly different from each other because of the
fact that the lingering vorticity from the first LEV affects the flowfield,
unlike the first half during which the wake was essentially clean. The
asymmetry in the pitch angle is prominent during the start of the sec-
ond half, when the influence of the first LEV is strong. This observa-
tion can be explained using the LESP map (not shown for this case).
The presence of clockwise vorticity near the trailing edge in the LESP
map causes a positive contribution to l

� in the second half of the
motion. Thus, the airfoil has to adopt a negative pitch angle that is
larger in magnitude compared to the value at the corresponding time
in the first half in order to achieve the same magnitude of l�. As the
first LEV convects further downstream, its influence reduces, and we
can see that the pitch angle magnitudes get closer to those from the
corresponding time instants in the first half. It is interesting to point
out that the required pitch angle profile may reach a “steady state” if
the simulation is repeated for a few cycles ofl�.

B. Tailoring the intensity of LEV shedding

The objective of the current case study is twofold. First, we dem-
onstrate how the inverse aerodynamic formulation can be used to
design motion kinematics that can be superimposed on a given base-
line motion which is devoid of any LEV formation in order to induce
LEV shedding. Second, we demonstrate that the inverse method can
be used to tailor not only the duration of LEV shedding but also the
strength of the LEV.

1. Inducing LEV shedding

Here, we present a case in which the current methodology is used
to design motion kinematics that can be superimposed on a given
baseline motion which is devoid of any LEV formation in order to
induce LEV shedding. The baseline motion considered here is a low-
amplitude pitch-up–return motion kinematics, shown in Fig. 13(a).
The maximum pitch angle experienced by the airfoil during this
motion is only 10�. Thus, the l

� remains below the critical value
FIG. 12. Case A.2: DV plots from LDVM overlaid on vorticity contours from CFD.
The respective time instants are shown in panels (a)–(j).
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during the entire motion. The flow images shown in the left column of
Fig. 14 confirm the absence of LEV formation during the execution of
the pure-pitch kinematics.

The objective here is to design a heave motion which, when
simultaneously performed along with the baseline pitch motion, will
cause leading-edge vorticity to be shed from the airfoil. An example of
an l

� profile that can be commanded in order achieve this objective
is shown in Fig. 13(b). This l� variation exceeds the critical value for
a finite time period between t� ¼ 2:8 and t� ¼ 4:3. Thus, if the airfoil
executes a maneuver that results in the desired l

� variation, LEV
shedding can be induced during this time period.

The heave motion that results in the desiredl
� variation can be

uniquely obtained and is shown in Fig. 13(b) (right axis). Thel varia-
tion for the combined pitch–heave motion is also shown. As the airfoil
pitches up, l� shows an increasing trend due to positive pitch-angle
and pitch-rate effects. The airfoil also simultaneously executes a heave-
down motion corresponding to a negative heaving velocity, which in
turn causes a positive contribution to the l� according to Eq. (24).
This is the main mechanism that helps the l� to be greater than its
counterpart for the baseline pure-pitch motion. Thus, with the addi-
tion of the heave motion, thel� follows the commanded profile. The
snapshots in the right column of Fig. 14 show the flowfield evolution
for the combined pitch–heave motion. LEV shedding begins at
t� ¼ 2:8 when thel� exceedslcrit . The LEV can be seen to start roll-
ing up near the leading-edge in Fig. 14(h). On continued accumulation

FIG. 14. Flow visualization for case B.1. Panels (a)–(e): flow images for the pure-
pitch motion. Panels (f)–(j): flow images for the combined pitch–heave motion.

FIG. 13. Case B.1: (a) baseline pure-pitch motion and the associated l and l
�

variations. (b) Commanded l
�, the resulting heave motion, and the l variation

from the combined pitch–heave motion.
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of vorticity, the LEV grows into a concentrated vortical structure. Figure
14(i) shows the matured LEV structure moving away from the airfoil
surface, while still connected to the leading edge via the shear layer. LEV
shedding terminates at t� ¼ 4:3 when l

� decreases below lcrit .
Following this time instant, the feeding shear layer is detached from the
leading edge, as seen in Fig. 14(j), and the LEV can be seen to start con-
vecting downstream.

2. Tailoring the LEV strength

Here, we demonstrate how the current inverse-aerodynamic
framework can be used not only to tailor the duration of the LEV
shedding but also to generate an LEV with a desired strength. It can be
shown that the strength of the latest LEV at the ith time step can be
approximated as follows:

Ci
LEV ¼ c1Dl

�i þ c2; (30)

where Dl�i ¼ l
�i �lcrit , and c1 and c2 are two constants. For conti-

nuity, the derivation of this expression is omitted here and is included in
the Appendix. This expression suggests that the strength of the latest dis-
crete LEV is proportional to the amount by which l

� exceeds lcrit at
the current time step. Thus, the total strength of an LEV is determined
by the areaa between thel� curve and thelcrit line for the period of
time between the initiation and the termination of the LEV. In other
words, the strength of the LEV can be tailored by varying this area.
Consider the three commanded l

� curves shown in Fig. 15(a). All of
them exceedlcrit at the same time instant (t� ¼ 2:8) and return below
lcrit at the same time instant (t� ¼ 4:3) and have areas
a1; a2 ¼ 1:5a1, and a3 ¼ 2a1, respectively, above the lcrit line.
The baseline curve with the lowest value ofa ¼ a1 is the same as the
commandedl

� curve of case B.1 in Fig. 13. If the threel� curves are
used to obtain heave motions to be superimposed with the baseline pitch
motion in case B.1 in order to induce LEV shedding, the duration of
LEV shedding will be the same for the three combined pitch–heave
motions. However, the strengths of the resulting three LEVs can be
expected to follow the same trend as the areas. The heaving profiles
required to achieve the threel� variations are shown in Fig. 15(b) along
with the baseline prescribed pitch motion. There are two factors affecting
the required heave motion. First, to achieve higher values ofl�, thel�

_h
term in Eq. (21) needs to be higher, resulting in a larger heave velocity,
which eventually leads to larger heave displacements. Second, for larger
values of Dl�i, the discrete LEVs released from the airfoil are stronger.
Using the LESP maps, it can be visualized that the negative contribution
from all the discrete LEVs to thel�, especially during the LEVmaturity
phase, is also higher. The heave motion needs to take into account this
effect of the LEVs on the l

�. Thus, the required heaving motion
becomes increasingly aggressive as the value of a increases as can be
noticed from Fig. 15(b). Since the commandedl� curves overlap before
LEV initiation, the required heave motions and hence the flow states are
the same for the three cases until the instant of LEV initiation.

The evolution of the LEV for the three combined pitch–heave
motions is shown in Fig. 16 for the five time instants marked in Fig.
15. The same scale has been used to plot the CFD vorticity contours
for all the three cases. Thus, the strength of the LEV roughly correlates
with its spatial extent. For the nominal case of a ¼ a1, in the first
column, we can see a small LEV structure developing near the upper
surface of the airfoil, and pinching off toward the end of the motion.

From a quick glance at the flow images, it can be noticed that this LEV
is a rather weak one compared to the other two LEVs. For the other
two motions, we can notice that at any time instant the LEV structures
are larger and that the cores are farther away from the airfoil surface.
Both these effects become more prominent with increasinga.

The non-dimensional LEV strength, Ĉ ¼ C=ðcUref Þ, from both
the low-order method and CFD are plotted against t� for the three
motions in Fig. 17. The LEV strength from LDVM at a particular time
instant is calculated as the sum of the strengths of all the discrete LEVs
present in the flowfield at that time instant. The LEV strength from
CFD results is estimated using the integration of clockwise vorticity per-
formed over the area in a box fixed in the body frame as shown in Fig.
18. As can be seen from Figs. 16 and 17, CFD results show the LEV ini-
tiation occurring in all the three motions at around the desired time
instant. A steady increase in the LEV strength is seen in the results from
both the methods after LEV initiation. The total LEV strengths for the
three motions from the low-order method are Ĉ1 ¼ 2:47; Ĉ2 ¼ 3:75,
and Ĉ3 ¼ 5:7, respectively, resulting in the ratios of Ĉ2 ¼ 1:5Ĉ1 and
Ĉ2 ¼ 2:3Ĉ1. This trend suggests that for moderate values of a, the
LEV strength can be precisely tailored using the current inverse aerody-
namic formulation. The LEV strengths from CFD follow the corre-
sponding LDVM curves very closely and level off at around the desired
LEV termination time near the desired LEV strength values.

FIG. 15. Case B.2: (a) three commanded l� profiles along with the baseline pitch
motion and (b) the resulting heave motions.
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Note that only a qualitative comparison of the trends from CFD
is intended here using the rough estimate of the circulations from the
CFD results. While a rigorous computation of the circulations may
possibly improve the accuracy of the CFD-based circulation plots as
well as the general agreement between CFD and low-order results, it
can be expected that the trends will remain the same.

C. Achieving similar LEV shedding using different
motions

In this case study, we show that the LEV shedding pattern from
an airfoil undergoing a prescribed pure pitching motion can be

replicated using a corresponding pure heaving motion. In the baseline
motion, the airfoil undergoes a 0�–25�–0� pitch-up–hold–return
maneuver as shown in Fig. 19(a) on the right axis. The l� variation
resulting from this motion and the correspondingl variation are also
shown (left axis). l� is higher than critical value between t� ¼ 1:9
and t� ¼ 4:4, indicating uninterrupted LEV shedding from the airfoil
during this time interval. The initiation of LEV shedding takes place
during the pitch-up phase, under the combined influence of the pitch
rate and the pitch angle. During the hold phase, the high pitch angle of
25� is sufficient to sustain the LEV shedding. Soon after the airfoil
enters the return phase, the reduction in pitch angle as well as the pitch

FIG. 16. LEV evolution for the three combined pitch–heave motions of case B.2.
Rows (a)–(e) correspond to the time instants marked in Fig. 15.

FIG. 17. Case B.2: Variations of LEV strength for the three combined pitch–heave
motions.

FIG. 18. Contour used for estimating the LEV circulation from CFD results.
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velocity causes l� to drop below the critical value leading to the ter-
mination of the LEV shedding. The flow images for this motion,
shown in the left column of Fig. 20, confirm the initiation, develop-
ment, and termination of a single LEV structure during the execution
of the kinematics.

The l
� variation resulting from the pitching motion in Fig.

19(a) is now used as the commanded l
� to design a pure heave

motion that will exhibit LEV shedding pattern similar to that of the
pure-pitch motion. The heave kinematics, predicted by the inverse-
aerodynamic formulation, that achieves the same l� variation as the
pitching motion is shown in Fig. 19(b). It can be noticed that the airfoil
executes a heave-down motion, so as to emulate the pitch and pitch-
velocity effects onl

� during the pitching motion. Since thel� varia-
tion and thus the resultant l history are the same between the two
motions, the instants of LEV initiation and termination will be the
same for the two maneuvers. Moreover, continuous LEV shedding is
expected to occur from the upper surface of the heaving airfoil
between t� ¼ 1:9 and t� ¼ 4:4, resulting in a single LEV structure.
The flow images for the heave motion are shown in the right column
of Fig. 20 for the five time instants marked in Fig. 19(b). The images
are chosen such that in each row, the time instant and hence the value
of l� are the same for the two motions. A comparison of the flow-
fields reveals a qualitative similarity between the two motions in terms

FIG. 19. Case C: (a) Baseline pure-pitch motion and the resulting l and l� var-
iations. (b) Pure-heave motion that generates the samel and l� variations.

FIG. 20. LEV evolution for case C. Panels (a)–(e): flow images for the reference
pure-pitch motion. Panels (f)–(j): flow images for the equivalent pure-heave motion.
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of the topology of the vortical structures. The timings of LEV initiation
and termination for the inverse-designed heave motion are reasonably
close to the corresponding ones for the given pitch motion. At all
stages of the development of the LEV structure, the spatial extent of
the LEV can be observed to be similar between the two motions. In
addition, the features such as the downstream convection of the
matured LEV structure while being tethered to the leading edge by a
feeding shear layer [Figs. 20(d) and 20(i)] have also been closely repli-
cated by the heave motion. The flowfield evolution close to LEV termi-
nation are somewhat different, however. The shed LEV interacts with
the trailing edge and the trailing-edge vorticity differently for the two
scenarios, even in the low-order simulations. It remains to be explored
whether this interaction can be tailored using an extension of the cur-
rent inverse-design approach.

The non-dimensional LEV strength from both the CFD and the
low-order simulations is plotted against t� for the two motions in Fig.
21. In the low-order results, the LEV initiation and termination events
occur at exactly the same time instants for the two motions. While
these events have not been precisely identified for the CFD simulations
in this study, reasonable estimates can be obtained from the flow
images of Fig. 20 and the circulation plots of Fig. 21. It can be noticed
from Fig. 21 that the LEV strengths for the two motions are close dur-
ing the early phase of the motions (until about t� ¼ 3:5) and diverge
afterwards. The same trend is observed in both the methods.

D. Suppressing LEV shedding

In this case study, we seek a strategy to suppress the LEV shed-
ding from a pitching airfoil. This aim is achieved by determining a
heave motion which, when superimposed on the given prescribed
pitch profile with LEV shedding, curtails the LEV shedding from the
airfoil. The baseline pure-pitch motion, shown in Fig. 22(a), is the
same as the pure-pitch motion used in case C (0�–25�–0� pitch-
up–hold–return motion about the leading edge). For this motion, LEV
shedding is initiated at t� ¼ 1:9 and is terminated at t� ¼ 4:4. To
curb the LEV shedding, we now add a heave motion to this pitch

motion. Figure 22(b) shows the commandedl� that is to be achieved
by performing an appropriate heave kinematics simultaneously with
the pitching maneuver. This l� does not reach the critical value at
any point, and hence, the combined pitching and heaving motion
should not result in any sort of LEV formation on the airfoil. The
heave profile necessary to achieve the commanded l

�, as calculated
using the inverse formulation, is shown on the right axis of Fig. 22(b).
As the airfoil executes the pitching motion, the airfoil also heaves
upward. During the pitch-up phase, both the positive pitch angle and
the positive pitch velocity contributions tend to increase the l�. This
is counteracted by the negative contribution to the l� from the posi-
tive heave velocity. Thus, the heaving component helps to limit the
increase in l

� unlike what happens in the pure-pitching motion. It
can also be noticed that the heaving continues to slow down as the air-
foil enters the return phase. During this time period, the pitch-velocity
contribution is negative, and the pitch-angle contribution continu-
ously decreases. Both these effects cause the required counter-action
from the heave velocity to decrease as the pitch-down phase pro-
gresses. The flowfield evolutions for the pure pitch motion and the
combined pitch–heave motion are shown in the left and right col-
umns, respectively, of Fig. 23. The two images in each row correspond
to the same time instant. The flow images confirm the suppression of
the LEV formation from the pitching airfoil by the superposition of
the heaving motion.FIG. 21. Case C: LEV strength variation for the pitch motion and the heave motion.

FIG. 22. Case D: (a) Baseline pure-pitch motion and the associated l and l
�

variations. (b) Commanded l
�, the resulting heave motion, and the l variation

from the combined pitch–heave motion.
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While the heave profile executed in this case can be uniquely
determined to achieve the commanded l

�, multiple options exist for
the commanded l

� that will suppress LEV formation. Any com-
mandedl

� profile that does not exceed the critical value can be used
to design a heave motion that achieves this objective. If the heave con-
tribution is sufficiently high, an airfoil that is pitching up can even gen-
erate LEVs from the lower surface by commanding an l

� that
exceeds the critical value in the negative direction.

V. LEV TAILORING USING QSTAT

In this section, we assess the effectiveness of QSTAT (from Sec.
III B) in designing motion kinematics and compare the predicted
motion with that from the more complex full inverse approach.
Consider case study C in which thel� variation from a pitch motion
in Fig. 19(a) is used to design a heave motion that results in a similar
LEV shedding pattern. As seen earlier in Fig. 20, the full inverse
method was successful in calculating a pure-heave motion that
resulted in a large LEV structure similar to the pure-pitch motion.
Now, we use the QSTAT to predict the required heave motion to gen-
erate this l

� variation. The heave motion predicted by QSTAT is
shown in Fig. 24 along with the one predicted by the full inverse
approach [from Fig. 19(b)]. Surprisingly, even though the pitch
motion results in a large LEV and the simpler QSTAT approach does
not take the effects of DVs into account, the heave motion predicted
by QSTAT is close to that predicted by the full inverse method. In this
particular case, both the pitch and heave motions have similar evolu-
tion of LEVs (both in strength and location). The effects of the LEV
on the airfoil flow for either motion is similar, resulting in a cancel-
ation of the effects when comparing the pitch and heave motions.
Because the LEV contributions are ignored in both motions, the
QSTAT prediction is surprisingly good for this case.

The use of QSTAT for motion design does not always result in
correct predictions. For instance, when QSTAT is used to generate the
motion for a prescribedl� which results in a strong LEV, the method
will yield poor predictions because ignoring the DV effects results in a

FIG. 23. Flow visualization for case D. Panels (a)–(e): flow images for the pure-
pitch motion. Panels (f)–(j): flow images for the combined pitch–heave motion.

FIG. 24. Comparison of predictions by QSTAT and the full inverse approach for
case C.
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serious omission that does not get canceled like in the previous exam-
ple. To illustrate this situation, we use QSTAT to design the kinematics
for the commanded l

� from Fig. 7 for case study A.1. The pitch
motion predicted by QSTAT is shown in Fig. 25 along with the one
from Fig. 7 predicted by the full model. The QSTAT prediction
completely deviates from the full-model prediction, pointing to the
limitation of the simpler QSTAT approach and highlighting the need
for the full inverse approach.

VI. CONCLUSIONS

This paper presents an inverse-aerodynamic algorithm to tailor
the LEV shedding from an unsteady airfoil. A suitable pitching or
heaving profile is determined for the airfoil to tailor the initiation, ter-
mination, and strength of LEVs shed from the unsteady airfoil. The
algorithm builds upon the LDVM, which combines a large-angle
unsteady theory and a discrete-vortex method, and uses the LESP to
predict LEV shedding and the resultant unsteady loads on airfoils
undergoing prescribed motion kinematics.

The LDVM ismodified in the current work to determine a suitable
motion kinematics for an airfoil in order to achieve a desired LEV shed-
ding pattern. The desired LEV shedding pattern is supplied as input to
the inverse algorithm in terms of a prescribed time variation of an inter-
mediate value of LESP, denoted by l�. The algorithm then calculates
the required pitch or heave position of the airfoil at every time step
through an iterative process using the unsteady thin-airfoil theory and
the discrete-vortex method. Excellent comparison is seen with high-
fidelity CFD simulations of the predicted maneuvers for several case
studies. Although all the case studies presented here are for symmetric
airfoils, the inverse approach can also be used for cambered airfoils to
designmotion kinematics to achieve a user-suppliedl� variation.

A given LESP variation can in fact be achieved using different
combinations of pitch and heave motions. Thus, multiple solutions
exist for the kinematics required to achieve a given commanded LESP
variation. In this work, we have considered situations where the only
one of the degrees of freedom is to be determined while the other is

known. A unique suitable kinematic profile can then be obtained for a
given LESP variation by solving a nonlinear equation in one variable.
The inverse formulation, however, has no implicit constraints on the
kinematics, allowing for the future addition of a capability in which
the problem may be posed as a two-variable minimization problem
subject to kinematic constraints for the aforementioned scenarios.
While the predicted motion profile is not guaranteed to be smooth, all
the profiles observed during this study were smooth. The motions pre-
dicted by the inverse aerodynamic algorithm were simulated using
CFD without any modifications.

The l
� profiles used in the case studies presented here were

inspired by the typical l� � t� variations that we have observed in
our previous studies involving LDVM simulations of unsteady airfoils.
We believe that the inverse algorithm will be able to generate motion
profiles to achieve complex l

� variations such as a sawtooth profile.
However, the resulting motion may possibly be non-smooth and thus
non-realizable for practical purposes. The current unsteady airfoil the-
ory assumes a flow from the leading edge to the trailing edge and is
hence not valid for pitch angles greater than 90�. Commanding l

�

values that are too high in magnitude (perhaps in an attempt to gener-
ate extremely strong LEVs) for designing a pitching motion may cause
the resulting pitch-angle magnitude predicted by the inverse formula-
tion to exceed 90�. This issue can be overcome by implementing an
aerodynamic model that is valid for airfoils in reversed flows. Both the
above concerns can be addressed by posing the inverse design as a
minimization problem instead of a root finding problem, and adding
constraints on maximum allowable position, velocity, or acceleration
as desired. Regardless of the problem formulation, the LDVM or
QSTAT can used as a guide to decide reasonable l� profiles for the
inverse algorithm.

In this work, the strength of a discrete LEV is determined
using the hypothesis (Ramesh et al.37) that LESP remains constant
at a critical value during LEV shedding. This assumption works
well for low Reynolds numbers (Re � 30 000). Recent research has
shown that a noticeable drop in LESP occurs during LEV shedding
at higher Reynolds numbers (Re > 1� 106). Future extensions of
the inverse formulation to these higher Reynolds numbers will
need to account for this LESP drop using CFD/experimental infor-
mation. For the Reynolds numbers considered in this work, as
demonstrated by the case studies presented here, the predictions of
the inverse algorithm shows excellent agreement with CFD
simulations.
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APPENDIX: STRENGTH OF THE LEV

Consider a time step i during which LEV shedding is active
and l

�i > lcrit . The strengths of the latest LEV and TEV, denoted
by Ci

LEV and Ci
TEV , respectively, can be determined using the Kelvin

condition and the condition that LESP, l, is maintained at its criti-
cal value, lcrit . This results in the simultaneous solution of the fol-
lowing system equations

1þ Ĉ
i
B;TEV 1þ Ĉ

i
B;LEV

l̂
i
TEV l̂

i
LEV

2
4

3
5 Ci

TEV

Ci
LEV

( )
¼

Ci�1
B � Ci

B;o

lcrit �l
i
o

( )
; (A1)

where the bound circulation Ci
B and l

i at the current time step
have been decomposed into the contributions from the various

sources. Ĉ
i
B;TEV and Ĉ

i
B;LEV are the contributions to the bound cir-

culation from clockwise unit-strength DVs placed at the locations
of the latest TEV and LEV, respectively, while Ci

B;o is the combined
contribution from all the other sources such as the airfoil kinemat-
ics and the other DVs (previously shed from the airfoil) in the flow-

field. The quantities l̂
i
TEV ; l̂

i
LEV , and l

i
o are similarly defined for

the contributions to l
i. Note that all the quantities with a^depend

only on the locations of the latest shed vortices. The solution yields

Ci
LEV ¼ pðlcrit �l

i
oÞ � qðCi�1

B � Ci
B;oÞ; (A2)

where p and q are functions of only the locations of the latest shed
vortices. Now, l� at the current time step can be obtained as
follows:

l
�i ¼ l

i
o þl

i
TEV� ¼ l

i
o þ Ci

TEV�l̂
i
TEV ; (A3)

where li
TEV� is the contribution from the latest TEV, based on its

intermediate strength, Ci
TEV�, which is initially calculated (by

assuming that LEV shedding is absent) using the Kelvin condition
as

Ci
TEV� ¼

Ci�1
B � Ci

B;o

1þ Ĉ
i
B;TEV

: (A4)

Using Eqs. (A3) and (A4) in Eq. (A2), we get

Ci
LEV ¼ pDl�i þ rðCi

B;o � Ci�1
B Þ; (A5)

where Dl�i ¼ l
�i �lcrit and r is a function of the locations of

the latest LEV and TEV. By decomposing Ci
B;o, and applying Kelvin

condition to Ci�1
B , the quantity inside the parenthesis can be easily

shown to result from the airfoil kinematics and all the DVs in the
flowfield at the current time step.

The above equation shows that the strength of the latest LEV
is proportional to the amount by which l

� exceeds lcrit at the
current time step. All the other quantities on the right side are influ-
enced by the flowfield evolution and hence indirectly by the values
of Dl� in the previous timesteps. Hence, strictly speaking, the rela-
tionship between Ci

LEV and Dl�i is nonlinear. The quantities p and

r depend only on the location of the latest LEV and TEV, which do
not vary much between timesteps. However, based on several
LDVM simulations, it is observed that Eq. (A5) can be approxi-
mated by a straight-line fit:

Ci
LEV ¼ c1Dl

�i þ c2; (A6)

where c1 and c2 are constants. This implies that the total strength of
an LEV, which is the cumulative sum of all the discrete LEVs shed
during a time period when LEV shedding is active, can now be tai-
lored by varying the area under the Dl� curve.
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