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Abstract

Developing robust cell recognition strategies is important in biochemical research, but

the lack of well-defined target molecules creates a bottleneck in some applications. In this



paper, a carbon nanotube sensor array was constructed for the label-free discrimination of live
and dead mammal cells. Three types of carbon nanotube field-effect transistors (NTFET)
were fabricated, and different features were extracted from the transfer characteristic curves
for model training with linear discriminant analysis (LDA) and support-vector machine
(SVM). Live and dead cells were accurately classified in more than 90% of samples in each
sensor group using LDA as the algorithm. The recursive feature elimination with cross-
validation (RFECV) method was applied to handle the overfitting and optimize the model,
and cells could be successfully classified with as few as four features and higher validation
accuracy (up to 97.9%) after model optimization. The RFECV method also revealed the
crucial features in the classification, indicating the participation of different sensing
mechanisms in the classification. Finally, the optimized LDA model was applied for the
prediction of unknown samples with accuracy of 87.5% to 93.8%, indicating that live and

dead cell samples could be well recognized with the constructed model.

Introduction

Carbon nanotubes (CNTs) have been widely used for the detection of biomolecules at
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trace levels and for whole-cell sensing by electrochemical ™ and optical’>® techniques.
However, the extra labeling steps are needed for those cell recognition strategies which are
primarily based on detection of specific target biomolecules. In addition, the cell recognition
could also be hindered by the complexity of biological matrix and lack of well-defined target
biomolecule. The introduction of machine learning methods provides new opportunities for
the cell recognition applications.” Specifically, CNT-based electronic noses/tongues, which
are based on sensor arrays fabricated from chemically functionalized CNTs, have shown the
great potential in sensing applications with the help of machine learning.'"'* By analyzing the

changes in electronic properties of different CNT sensors in the array, the fingerprints of

target analytes can be drawn, which are classified by statistical analysis using machine



learning algorithms such as linear discriminant analysis (LDA)* '*'> and support-vector
machine (SVM).'*'!7 Because of the high sensitivities, rapid responses and high integrations,
the CNT-based electronic noses/tongues have been applied to the label-free detection of many
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analytes such as volatile organic compounds (VOCs),
items,"” and metal ions.”® Liu et al.'' developed the method for the classification of different
VOCs with principal component analysis (PCA) and LDA. Different metalloporphyrin—CNT
hybrid materials were selected for the fabrication of chemiresistor array. Schroeder et al.'
constructed the chemiresistor sensor array for the classification of cheese, liquor, and edible
oil based on their odor using a k-nearest neighbors model and a random forest model. The
accuracy of prediction can be well improved by model training process. However, the loss of
useful information in data collection may be a challenge for cell sensing applications using
CNT-based electronic noses/tongues. Large amount of useful information was discarded in
the feature extraction process as only few electronic properties, such as resistance and
capacitance changes, were extracted as features in model training. We contend that using
more features could potentially increase accuracy in whole cell recognition and provide
invaluable information about the sensing mechanism when considering the feature importance,
which in turn could provide a guidance for the design of new sensors for other applications.
Sensor arrays comprised carbon nanotube-based field-effect transistors (NTFET) have
shown advantages in the number of features, when compared to other CNT device
configurations. By measuring the transfer characteristics of NTFET, many parameters, such
as source-drain current values at different voltages, transconductance, on/off-current ratio,
and threshold voltage, can be extracted as features in model training, thus providing more
useful information compared with chemiresistor- or capacitor-based methods. Moreover, the
changes of transfer characteristics can provide useful information about the sensing
mechanism, especially the interactions between the CNTs and biomolecules. In our previous
works, we identified 11 different features from the NTFET characteristics for model training
and realized the classification of nonmalignant and malignant cells with LDA.?' The same

strategy was also applied for the classification of different purine compounds.” From the



feature elimination process in model training, we evaluated dominant mechanisms in purine
compounds sensing, which was further collaborated by DFT calculations.

In this work, we aim to develop the label-free strategy for the discrimination of live and
dead cells. Although classic methods, such as cell staining with different dyes, have been
widely used for dead cell recognition in routine biological tasks, it is still essential to develop
non-optical methods for the discrimination of live and dead cells. Compared with live cells,
dead cells exhibit changes in morphology, permeability, and metabolism, which we expect to
affect their interactions with CNTs, resulting in different NTFET characteristics. For the
construction of sensor array in this work, we chose three types of functional single-walled
carbon nanotubes (SWCNTSs). Commercial semiconductor enriched SWCNTs were decorated
with gold nanoparticles, and gold nanoparticles were functionalized with self-assembled
monolayers (SAM) of dodecanethiol (DD) and 11-mercaptoundecanoic acid (MUA) because
of their respective hydrophobic and hydrophilic properties. We have collected 15 features for
the model training with LDA and linear SVM for each sensor group. Our training model
showed good validation accuracy (up to 91.7%) for the classification. Then, recursive feature
elimination with cross-validation method was applied for the evaluation of different features.
The optimized model showed that live and dead cells could be classified with only 4 to 5
features and higher validation accuracy (up to 97.9%). The optimized LDA model was also
applied for the prediction of unknown samples with accuracy of 87.5% to 93.8%. Finally, we
could conclude that the classification highly relied on several key features, and the several

sensing mechanisms dominated in the classification.

Materials and Methods

Commercial semiconductor-enriched single-walled carbon nanotubes (IsoSol-S100,
Nanolntegris) with 0.1% metallic and 99.9% semiconducting composition were used for the
fabrication of sensors in this work. 1 mM chloroauric acid (HAuCls-3H,O, Alfa Aesar) was

prepared in 0.1 M HCI solution for the gold nanoparticles decorations. 10 mM dodecanethiol



(Sigma-Aldrich) and 10 mM 11-mercaptoundecanoic acid (Sigma-Aldrich) were prepared in
water/ethanol mixture for the functionalization of carbon nanotubes. Doxorubicin (Sigma-
Aldrich) was used for the induction of cell death in the experiment.

Field-Effect Transistor Fabrication. The interdigitated gold electrodes were
patterned on the 2 x 2 mm? Si/SiO, wafers using photolithography. The chips were then wire-
bonded into standard 40-pin ceramic dual inline packages and secured with
polydimethylsiloxane (PDMS) by heating at 80 °C for 1 h. Subsequently, 3 pL of IsoSol-
SWCNTs (0.02 g mL™, dispersed in toluene) were deposited between the gold electrodes
through dielectrophoresis (DEP) using a Keithley 3390 Arbitrary Waveform (10 Vpp, 100 kHz
for 2 min), then annealed at 120 °C for 24 h in the oven to evaporate the organic solvent.

The gold nanoparticles were deposited on the carbon nanotubes by bulk electrolysis of
HAuCls solution using a 3-electrodes system. Ag/AgCl electrode/Pt electrode/carbon
nanotubes were employed as reference/counter/working electrode, respectively. The
electrolysis was finished at —0.2 V for 30 s. The gold nanoparticles were characterized by a
scanning electron microscopy (ZEISS sigma500 VP) with an accelerating voltage of 3 kV.
Dodecanethiol and 11-mercaptoundecanoic acid were decorated on gold nanoparticles as self-
assembled monolayers of thiols. 200 puL of dodecanethiol solution (10 mM, Vemanol/Vwater =
1:1) was incubated on the gold nanoparticles for 2 h. 11-mercaptoundecanoic acid solution
(10 mM, Vethanol/Vwater = 7:3) was incubated on the gold nanoparticles for 24 h (protected by
ethanol bath). After the functionalization, the devices were rinsed with ethanol and deionized
water consecutively. The devices decorated with 11-mercaptoundecanoic acid decoration
were kept in the vacuum for another 1 h to remove the ethanol remained on the surface.

Electrical measurements. Two different Keithley SourceMeter units, 2400 and
2602B, were employed for electrical measurements. NTFET characteristics were measured in
phosphorate buffer (pH = 7.4) with an Ag/AgCl electrode as the liquid gate electrode, and the
gate voltage (V) was swept from +0.6 V to —0.6 V with a source-drain voltage (Vi) of 0.05

V.



Cell Sensing on Sensor Array. The scheme of whole-cell detection on the fabricated
liquid gated NTFET is shown in Figure 1. Mouse B16 melanoma cells were prepared for cell
sensing. The apoptosis was induced with the addition of 10 uM of doxorubicin for 24 h. Both
cell culture conditions and the procedure for induction of apoptosis are described in
supporting information. MTT tests was also employed for the evaluation of cell death
(Supporting Information). Before the cell sensing test, the devices were immersed in 0.01 M
PBS to obtain constant NTFET characteristics. Then the devices were immersed in 400 pL of
PBS for 1 h and NTFET characteristics were measured as the control group. Subsequently,
the devices were incubated with 400 uL of cell suspension (10° cells mL™") for another 1 h.
After the incubation, the cell suspension was discarded, and NTFET characteristics were
measured as the test group. For each measurement, the device was rinsed with deionized
water and immersed in another 400 pL of PBS for 2 min before data collection. The same
protocol was employed for both live/dead cell sensing on the devices with different
decorations.

Cell Discrimination with Machine Learning. The same protocol was employed
for features extraction as previously reported.’*® The NTFET characteristics of each sample
from test group and control group were utilized for the calculation features. The 15 features
shown in Figure S1 were calculated according to the equations shown in Table 1 using Python
3.7. Linear discriminant analysis (LDA) and support-vector machine (SVM) were utilized as
algorithms for the classification of live and dead cells using Python. The Past 3 software was
utilized for the model visualization after LDA. Recursive feature elimination with cross-

validation (k=5) method was applied for the elimination of the features.

Results and Discussion
Decoration of CNTs. Carbon nanotubes were deposited between the interdigitated

gold electrodes using dielectrophoresis. Scanning electron microscopy (SEM) images

revealed that carbon nanotubes were aligned between the fingers of interdigitated gold



electrodes and formed interconnected networks (Figure 2). Due to the heterogeneity of
SWCNTSs suspension, the carbon nanotubes were not uniformly distributed among different
electrodes. In addition, we found that the amount of carbon nanotubes deposited should be
well controlled to guarantee the high on/off ratio of NTFET characteristics. Gold
nanoparticles decorated both SWCNTs and the surface of gold electrodes with a narrow size
distribution (p=73.8 nm, 0=15.3 nm, calculated using ImageJ software). The NTFET
characteristics of bare SWCNT and Au-SWCNT are depicted in Figure S2. NTFET transfer
characteristics are consistent with p-type semiconducting behavior of SWCNT. The devices
became more conductive after the gold nanoparticles deposition. The statistics of the
maximum of source-drain current in NTFET characteristics before and after gold
nanoparticles deposition are shown in Figure S3a and S3c. The data collected from 375
devices shows that the maximum of drain current increased by 151% on average after gold
nanoparticles deposition, resulting in higher transconductance. The minimum of source-drain
current also increased on average from 0.93 pA to 9.3 pA after deposition with gold
nanoparticles (Figure S3b and S3d).

Dodecanethiol (DD) and 11-mercaptoundecanoic acid (MUA) were selected because of
their similar molecular size but different surface properties of the resulting self-assembled
monolayers (SAM) on the gold surface.”*?® The terminal alkyl chain of DD yields
hydrophobic SAM, while SAM produced from MUA are hydrophilic due to the terminal
carboxyl groups. Different protocols were chosen for the decoration of these two thiol
molecules. The rapid kinetics of the self-assembled monolayers of thiols on gold substrates
have been reported,”” which was consistent with the our results in DD decoration. The
conductance of devices dramatically decreased after incubation with DD for 2 h. However,
we found the conductance only slightly decreased with the MUA incubation, indicating
longer time to form SAM. Herein, 24 h was finally employed as the time span for the MUA
decoration. The NTFET characteristics indicated the decrease of conductance after decoration.
As shown in Figure S2, the conductance values decreased by about 90% after DD decoration,

and about 60% after MUA decoration. Meanwhile, the shift of threshold voltage to the



negative direction was also observed, indicating that the carbon nanotubes were n-doped after
SAM formation on gold nanoparticles.

Induction of cell death. We chose doxorubicin, a chemotherapy drug widely used in
the induction of apoptosis, for the cell treatment in this project. The experiment started from 2

million cells, and the percentage of dead cells was evaluated by cell counting with trypan

blue staining. As shown in Tables S1 and S2, the percentage of dead cells increased with the
increase of the concentration of doxorubicin after 24 h induction. At the same time, less cells
were observed after the treatment, indicating that the cell proliferation was inhibited by
doxorubicin. After 48 h, the percentage of dead cells was around 60% in the three groups
treated with different concentration of doxorubicin, and even less cells were observed. These
results were confirmed by the data from MTT assay. As shown in Figure S4, the decrease of
adsorbance in the experimental group indicated the high apoptotic rate, indicating that at least
60% of cells were dead after 10 pM of doxorubicin treatment for 24 h in both experimental
groups. In addition, we also observed the obvious morphological changes of cells after 10 uM
treatment for 24 h. Therefore, 10 uM of doxorubicin and 24 h treatment were considered
effecitive for the cell death induction, which were employed in the following experiments.
Cell Sensing: NTFET Characteristics and Sensing Mechanisms. The NTFET
characteristics were measured both before and after incubation with live cells on three
different types of devices with gold nanoparticle-decorated SWCNTs before (i) and after
functionalization with dodecanethiol (DD) (ii) and 11-mercaptoundecanoic acid (MUA) (iii)
(Figure 3a-c, labeled as Au-NTFET, DD-NTFET and MUA-NTFET in the following
discussion). Because incubation with cells was performed in phosphate buffer saline (PBS),
the influence of PBS on the devices was also investigated. The NTFET characteristics of
these three types of devices remained constant after incubation in PBS for 1 h (Figure S5).
After cell incubation, the source-drain conductance values of the devices commonly
decreased by 10% to 40% (when measured at —0.5 V gate voltage). The differences in the

conductance decrease might be related to the batch-to-batch variations in different cell



suspensions. Meanwhile, the negative shift of threshold voltage could be observed on all the
three types of sensors, indicating that the SWCNTSs were n-doped after cell incubation. The
permanent conductance decreases, and threshold voltage shifts after cell incubation showed
that the irreversible non-specific cell adhesion might play a key role in the cell sensing. The
cells could be adsorbed on the devices after incubation, which has been demonstrated by
fluorescence microscopy in previous work.”' The cell adsorption might change the NTFET
characteristics in different ways. Firstly, the cell adhesion on the device might change the
channel resistance, leading to the conductance changes. Secondly, the ions/biomolecules
released from the absorbed live/dead cells might interact with CNT hybrids, which was
shown as the doping behavior in the NTFET characteristics. In addition, the transconductance,
which is defined by the slope value of the linear region in the transfer NTFET characteristic
curve, also decreased, indicating that the change of NTFET characteristics might also be
related to other mechanisms such as Schottky barrier modulation and carrier mobility
changes.”®

Similar NTFET characteristics were observed after dead cells incubation (Figure 3d-f).
Since doxorubicin was applied for the induction of cell death, we also addressed the influence
of doxorubicin residue. The NTFET characteristics of all three types of devices were
measured after incubation with different concentrations of doxorubicin (10° M to 107 M).
The results shown in Figure S6 indicated that doxorubicin almost had not influence on the
NTFET characteristics of MUA-NTFET even at high concentrations. For Au-NTFET and
DD-NTFET, the signal change could be obviously observed from 10® M and reached a
plateau at 10° M, which might be because of the saturation of doxorubicin adsorption on the
surface of chip. The signal changes indicated that rinsing step was essential to eliminate the
influence of doxorubicin by diluting doxorubicin to 10® M. Since rinsing steps were repeated
for several times in our protocol, the doxorubicin could be effectively removed from the cell
suspension. The assumption was well supported by the NTFET characteristics after
incubation with dead cells (Figure 3d-f), which didn’t show an extra conductance decrease

compared with the NTFET characteristics after incubation with live cells (Figure 3a-c). In



conclusion, the doxorubicin could be effectively removed after rinsing steps and is not
associated with the change of NTFET characteristics.

The choice of cell concentration was also investigated in the protocol. The NTFET
characteristics after incubation with different concentrations of cells (10° to 10° mL™") were
measured, and conductance change at —0.5 V gate voltage was applied for the discussion of
signal changes. The results in Figure S7 showed that conductance decrease could be observed
even with 10* mL™" of cells, which is consistent with our previous results where we found that
the adsorption of several hundred cells might lead to the change of NTFET characteristics.?'
However, the signal changes were not uniform across all device types with cell suspensions at
low concentrations (for example, 10* mL™"' of dead cells in DD-NTFET in Figure S7¢ and 10°
mL™" of live cells in MUA-NTFET in Figure S7c). To guarantee that enough cells could be
adsorbed on the chip surface for the interaction with carbon nanotubes, we selected 10° mL"!
as the concentration for the cell incubation. The influence of different percentages of dead
cells was also investigated by obtaining different percentages of dead cells after treating with
different concentrations of doxorubicin. Features F1, F2, and F15 were selected for the
comparison of NTFET characteristics due to their significance in the classification (vide
infra). As shown in Figure S8, there is no trend for the change of these three features with the
increase of percentage of dead cells. These similarities showed that the discrimination of
live/dead cells could not be achieved by a single feature in the NTFET characteristics,
indicating the necessity of machine learning method.

Classification of live/dead cells. To construct the data matrix, we have picked 15
different features from the transfer NTFET characteristic curves, which are summarized in

22 another 4 features related to the

Figure S1. Compared with our previous studies,
conductance changes at +£ 0.5 V and £+ 0.55 V were included because of the rapid conductance
change in the characteristic curves. The choice of features was based on the changes of

physical properties of transistors, such as the changes of conductance values at different

voltages, shift of threshold voltage and transconductance change in the linear region, which



were related to different sensing mechanisms such as doping mechanism and Schottky barrier
modulation.”®* The data range of each feature value is given in the Figure S9-S11 and the
feature values of each sample in different models are provided in Supporting Material 2.
Firstly, the classification of live and dead cells with each type of sensor was investigated
based on all the 15 features. Both linear discriminant analysis (LDA) and linear support-
vector machine (SVM) were applied as the algorithms for the classification with 15 features
in each sensor group (Au-NTFET: 30 dead cell samples and 30 live cell samples; DD-NTFET:
24 dead cell samples and 24 live cell samples; MUA-NTFET: 30 dead cell samples and 30
live cell samples). The Python codes for model training are provided in the supporting
information. As shown in Table S3 and Figure 4 (the canonical scores of samples in different
LDA models are given in Supporting Material 3), good training accuracy values (85.4% to
100%) could be obtained in all the three LDA models and two SVM models (except MUA-
NTFET with the training accuracy of 69.1%). Good validation accuracy values could also be
obtained in all the three groups (90.0% in Au-NTFET, 91.7% in DD-NTFET, and 90.0% in
MUA-NTFET) after model training with LDA, suggesting that live and dead cells could
potentially be well classified with a LDA model. The normalized confusion matrices are
presented in Table S4, which are calculated with the confusion matrices of five test sets in the
cross validation (k=5). The validation accuracy values of the training models with linear SVM
were much lower (78.3% in Au-NTFET, 72.9% in DD-NTFET, and 60.0% in MUA-NTFET,
shown in Table S5). We have also explored the combinations of two different sensor groups
(labeled as Au-NTFET+DD-NTFET, Au-NTFET+MUA-NTFET and DD-NTFET+MUA-
NTFET in the following discussion, including 15%2=30 features) for the classification. For
the LDA models, the results showed that the validation accuracy decreased in all the
combinations of two sensor groups (79.2% in Au-NTFET+DD-NTFET, 88.3% in Au-
NTFET+MUA-NTFET, and 88.3% in DD-NTFET+MUA-NTFET). The reason could be the
statistical distributions of the features in sensor combinations are not consistent with each
other regarding the classes. The validation accuracy was marginally improved after

combinations of sensor groups in the SVM models (79.2% in Au-NTFET+DD-NTFET, 80.0%



in Au-NTFET+MUA-NTFET, and 75.0% in DD-NTFET+MUA-NTFET). However, the
validation accuracy was much lower than the training accuracy after combinations of sensor
groups in both LDA and SVM models (100% in all the LDA models, and 87.5% to 96.4% in
the SVM models, Table S3), indicating that overfitting might happen with more features.

It should be noticed that some features in the above models are highly correlated, which
could cause overfitting problems, and undermine the model’s predictiability.** The
correlations between different features were evaluated by Pearson correlation coefficient
values, which are shown in the heatmaps (Figure S12-S14). We have found that features F4,
F6, F8, F10, and F12 were highly correlated to each other in all the three sensor groups. It
might be because all these 5 features were related to conductance changes in the linear region,
which were also based on similar equations in the calculations of feature values. For the same
reasons, features F5, F7, F9, F11, and F13 were highly correlated since all these features were
related to the off-current changes at positive voltages in NTFET transfer characteristics,
which is indicative of the sensing mechanisms based on doping mechanism and Schottky
barrier modulation.?® Features F4, F6, F8, F10 and F12 were negatively correlated to F5, F7,
F9, F11, and F13 in the Au-NTFET, but relatively uncorrelated in DD-NTFET and MUA-
NTFET. On the other hand, features F3 and F14 were also highly correlated to each other
because the minimum of conductance was equal to conductance at 0.6 V in some samples
(Figure S1). For the other three features, F2 was uncorrelated to other features in Au-NTFET
but highly correlated in the other two groups. It should be noticed that features F1 and F15
were highly correlated in both Au-NTFET and DD-NTFET but the correlations with other
features were still different. Herein, these two features were still discussed separately in the
following discussion. One-way ANOVA was also run for the comparison of feature values
between live and dead cells (Table S6). The results showed the means of features F1, F10 and
F12 were statistically significantly different between live and dead cell samples in all the
three sensor types. Otherwise, for several features (F9, F13 and F15), the distinct p-values

among the three groups should be noticed, indicating that there is no statistically significant
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difference for these three features between live and dead cells in several groups, and different
features may dominate the classification in different sensor groups.

To explore the which features are essential in the cell classification, the recursive feature
elimination with cross-validation (RFECV) method was introduced for the selection of
features, which eliminated features based on a weighting scheme with the weights being
initially assigned to the features from an estimator.”> We performed RFECV on both LDA
and SVM models. For the LDA models, the results in Figure S15 and Table 1 showed that 5
to 11 of 15 features were needed for the classification with each sensor group, and 7 to 23 of
30 features were needed for the sensor group combinations. The validation accuracy shown in
Table 2 was improved with both single sensor group (up to 95.8% in DD-NTFET) and sensor
group combinations (up to 97.9 % in Au-NTFET+DD-NTFET). Among these features, F1, F2,
F12, and F15 participated in the classifications in all the combinations. These four features
also represent 4 different parameters in the transfer characteristics, which are
transconductance change (F1), threshold voltage shift (F2), on-current change (F15), and off-
current change (F12). Conversely, features F3 and F14 never appeared in any combinations,
showing that these two features might be least significant for the cell classification using a
LDA model. The validation accuracy was also improved in both single sensor group (up to 80%
in Au-NTFET with 4 features) and sensor group combinations (up to 87.5% in Au-
NTFET+DD-NTFET with 9 features) in SVM models (Figure S16, Table S7-S8), which were
also satisfactory for the classification. For the SVM models, it should be noticed that the
classification was still not satisfactory for the MUA-NTFET (only 68.3% with Feature 1)
after RFECV process. Features F1, F5, and F13 appeared in most combinations using SVM
models, which were mainly related to transconductance change and on-current change. If we
only considered about the two training models with the best validation accuracy values in
SVM models (Au-NTFET+DD-NTFET and Au-NTFET+MUA-NTFET), we found that the
off-current change still played an important role in the classification. The main difference

between LDA models and SVM models is the participation of threshold voltage shift.



We also noticed that several highly correlated features were present in the optimized
models after RFECV. The results in Figure S15 also showed that a high validation accuracy
(higher than 90%) could still be obtained with even less features. Herein, the model was
further simplified with less features by declining the correlated features. We chose the three
single sensor groups in the LDA models for the simplification. For the highly correlated
features which also have similar correlations with the other features, only the feature with
lowest p-value in the Table S6 would be kept in model training. The final feature
combinations for each sensor group were shown in Table S9. Good validation accuracy could
be kept in both Au-NTFET (93.3% with 5 features, Table S10) and DD-NTFET (97.9% with
4 features, which was even higher than the combinations recommended by RFECV). The
validation accuracy decreased to 85% in MUA-NTFET with only 5 features, which might
explain why 11 features were needed in the optimized model after RFECV. In summary, the
validation accuracy value was still satisfactory after model simplification in the three sensor
groups, indicating that live and dead cells could be well classified with a simple LDA model
using each type of sensor.

Prediction of unknown samples with optimized model. Although our optimized
model showed good accuracy in the classification, the validation of model with unknown
samples is still important to evaluate the model in the applications. Herein, an external
validation set was constructed for the evaluation of the optimized model after RFECV method
(the models with selected features are shown in Table 1 and Table S7, and the feature values
of each sample are provided in Supporting Material 4), which contained 8 replicates of both
live and dead cell samples for each type of NTFET. As shown in Table 3, the unknown
samples were well predicted with the optimized LDA models (87.5% for Au-NTFET, 93.8%
for DD-NTFET, and 87.5% for MUA-NTFET). The SVM models were also applied for the
predictions. Compared with the validation accuracy of the optimized SVM model in Table S8,
the prediction accuracy was higher for DD-NTFET (87.5% vs 79.2%), and almost identical

for MUA-NTFET (68.8% versus 68.3%). A decrease of prediction accuracy was observed for



Au-NTFET (62.5% versus 80%) with SVM model, which was mainly due to the incorrect
prediction of live cell samples. It should be noticed that the validation accuracy of optimized
SVM model is at most 80% (Table S8), which may undermine its credibility in the prediction.
The LDA model still showed higher accuracy in the prediction of unknown samples
compared with SVM model, which was consistent with the conclusion from the training
models. In summary, the prediction of unknown samples was still satisfactory with the
optimized LDA model, showing that LDA might be more feasible for the classification of live

and dead cells in this work.

Conclusion

In this work, a carbon nanotube field-effect transistor (NTFET) sensor array was
constructed for the label-free whole-cell sensing. The NTFET characteristics in cell sensing
showed the participation of different sensing mechanisms, such as doping and Schottky
barrier modulations. With the extraction of features from the transfer characteristics, two
different algorithms, linear discriminant analysis (LDA) and support-vector machine (SVM),
were applied for the classification of live and dead cells. Live and dead cells were well
classified with a good validation accuracy higher than 90% in each sensor group using a LDA
model, and the accuracy could be further improved in each sensor group and sensor group
combinations using the recursive feature elimination (RFECV) with cross-validation method
in both LDA and SVM models. The RFECV results indicated that cell classification was
highly relied on several crucial features. These crucial features reveled that the
transconductance and on-current change were greatly significant in the classification. In
addition, the threshold voltage shift and off-current change also played important roles in the
classification, suggesting the participation of several different mechanisms. The simplified
model showed that live and dead cells could be well classified with only 4 to 5 features using
a LDA model, and live and dead cells as unknown samples could be well predicted. However,

we still need to point out that there are more challenges for the applications in real samples



compared with this proof-of-concept study. The cell number may vary in a real sample, which
may also be a mixture of different types of cells. The complexity of biological matrix may
also challenge the application of sensors in some cases. In addition, the improvement in
sensor fabrication should be made to guarantee the repeatability in the test with the same type
of sensors. A more general and robust model will be continuously explored in our further

study, which is expected for the classification of more target cells.
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Ag/AgCl electrode

Si/Sio,

Figure 1 Schematic illustration of a liquid gated NTFET. A Ag/AgCl reference electrode was
employed as liquid gate electrode (G) whereas interdigitated gold electrodes were employed
as source (S) and drain (D) electrodes with a source—drain bias voltage as 50 mV. The inset
shows the three diffrerent deocrations on the carbon nanotubes including bare gold
nanoparticles, dodecanethiol (DD) and 11-mercaptoundecanoic acid (MUA).



Figure 2 Scanning electron microscopy (SEM) images of SWCNTs hybrids. (a-b) SEM
images of bare SWCNTs deposited between the interdigitated gold electrodes. (c-d) SEM
images of gold nanoparticles decorated on SWCNTs. Scale bar is 1 um for panel a-c and 2
pum for panel d.
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Figure 3 Transfer characteristics of NTFET, i.e, source-drain current (Isq) versus applied
liquid gate voltage, of NTFET with different decorations after cells incubation. (a-c) Transfer
characteristics of NTFET with (a) bare gold nanoparticles, (b) dodecanethiol, and (c) 11-
mercaptoundecanoic acid decoration after live cells incubation. (d-f) Transfer characteristics
of NTFET with (d) bare gold nanoparticles, (¢) dodecanethiol, and (f) 11-mercaptoundecanoic
acid decoration after dead cells incubation. Devices were incubated with phosphate buffer for
1 h as the control and with cells for another 1 h before the measurement of transfer
characteristics. Drain current was measured by sweepting gate voltage (V) from —0.6 V to
0.6 V. Source—drain bias voltage (V) was 50 mV.
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Figure 4 Visualization of training models of live/dead cells classification with diffrerent
sensor groups and sensor group combinations. (a-c) Classification of live cells (red) and dead
cells (blue) with (a) Au-NTFET, (b) DD-NTFET, and (c) MUA-NTFET. (d-f) Classification
of live cells and dead cells with the combination of (d) Au-NTFET and DD-NTFET, (e) Au-
NTFET and MUA-NTFET, and (f) DD-NTFET and MUA-NTFET. Linear discriminant
analysis was applied as the algorithm for the model traning. 15 features were applied for each
sensor group and thirty features (15%2) were applied for each sensor group combination



Table 1 Selection of Features and Prediction Accuray after Model Training with
RFECV-LDA in Different Sensor Groups and Sensor Group Combinations. k=5 in the
Cross-Validation Process.

NO. Features Au DD MUA Au+DD Au+tMUA DD+MUA
1 (te-to)/to v 4 v vV v vV
2 Vine-Vino v v v v v vV
3 (Gemin-Go.min)/Go,min
4 (Ge-Go)/G@vin (0.6V) v B Vv
5 (Ge-Go)/G@vin (—0.6V) v v
6 (Ge-Go)/Gavin (0.55V) v v R4 R4 vV
7 (Ge-Go)/Gavin (-0.55V) v vV
8 (Ge-Go)/Gavn (0.5V) v v v v
9 (Ge-Go)/G@vin (-0.5V) v v
10 (Ge-Go)/Gavn (0.4V) v v v vV
11 (Ge-Go)/Gavtn (—0.4V) v vV
12 (Ge-Go)/G@vn (0.3V) v 4 v v v vV
13 (Ge-Go)/Gavn (-0.3V) v Vv
14 (Ge-Go)/Go (0.6V)

15 (G-Go)/Go (-0.6V) v v v vV v vV
Accuracy 93.3% 95.8% 95.0% 97.9% 96.7% 93.8%

Table 2 Normalized Confusion Matrices of Test Sets after Model Training with RFECV-
LDA in Different Sensor Groups and Sensor Group Combinations. k=5 in the Cross-
Validation Process.

Dead Cells  Live Cells Accuracy Precision Recall F1 Score
0.9 0.1
Au-NTFET 0.933 0.964 0.9 0.931
0.033 0.967
0.958 0.042
DD-NTFET 0.958 0.958 0.958 0.958
0.042 0.958
0.967 0.033
MUA-NTFET 0.95 0.935 0.967 0.951
0.067 0.933
Au-NTFET+DD- 0.958 0.042
NTFET 0 . 0.979 1 0.958 0.979
Au-NTFET+MUA- 0.933 0.067
NTFET 0 . 0.967 1 0.933 0.966
DD-NTFET+MUA- 0.917 0.083

0.938 0.957 0.917 0.937
NTFET 0.042 0.958




Table 3 Prediction Accuracy of Unknown Samples with the Optimzed Models after
RFECV

Dead Cells Live Cells Accuracy

7 1

Au-NTFET (LDA) | , 0.875
8 0

DD-NTFET (LDA) | ; 0.938
6 2

MUA-NTFET (LDA) 0 o 0.875
8 0

Au-NTFET (SVM) 6 5 0.625
7 1

DD-NTFET (SVM) | ; 0.875
7 1

MUA-NTFET (SVM) A 4 0.688
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