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Abstract 

Developing robust cell recognition strategies is important in biochemical research, but 

the lack of well-defined target molecules creates a bottleneck in some applications. In this 



paper, a carbon nanotube sensor array was constructed for the label-free discrimination of live 

and dead mammal cells. Three types of carbon nanotube field-effect transistors (NTFET) 

were fabricated, and different features were extracted from the transfer characteristic curves 

for model training with linear discriminant analysis (LDA) and support-vector machine 

(SVM). Live and dead cells were accurately classified in more than 90% of samples in each 

sensor group using LDA as the algorithm. The recursive feature elimination with cross-

validation (RFECV) method was applied to handle the overfitting and optimize the model, 

and cells could be successfully classified with as few as four features and higher validation 

accuracy (up to 97.9%) after model optimization. The RFECV method also revealed the 

crucial features in the classification, indicating the participation of different sensing 

mechanisms in the classification. Finally, the optimized LDA model was applied for the 

prediction of unknown samples with accuracy of 87.5% to 93.8%, indicating that live and 

dead cell samples could be well recognized with the constructed model.  

 

 

Introduction 

Carbon nanotubes (CNTs) have been widely used for the detection of biomolecules at 

trace levels and for whole-cell sensing by electrochemical1-4 and optical5-6 techniques. 

However, the extra labeling steps are needed for those cell recognition strategies which are 

primarily based on detection of specific target biomolecules. In addition, the cell recognition 

could also be hindered by the complexity of biological matrix and lack of well-defined target 

biomolecule. The introduction of machine learning methods provides new opportunities for 

the cell recognition applications.7-9 Specifically, CNT-based electronic noses/tongues, which 

are based on sensor arrays fabricated from chemically functionalized CNTs, have shown the 

great potential in sensing applications with the help of machine learning.10-13 By analyzing the 

changes in electronic properties of different CNT sensors in the array, the fingerprints of 

target analytes can be drawn, which are classified by statistical analysis using machine 



learning algorithms such as linear discriminant analysis (LDA)8, 14-15 and support-vector 

machine (SVM).14, 16-17 Because of the high sensitivities, rapid responses and high integrations, 

the CNT-based electronic noses/tongues have been applied to the label-free detection of many 

analytes such as volatile organic compounds (VOCs),11, 13, 18 odors from different food 

items,19 and metal ions.20 Liu et al.11 developed the method for the classification of different 

VOCs with principal component analysis (PCA) and LDA. Different metalloporphyrin−CNT 

hybrid materials were selected for the fabrication of chemiresistor array. Schroeder et al.19 

constructed the chemiresistor sensor array for the classification of cheese, liquor, and edible 

oil based on their odor using a k-nearest neighbors model and a random forest model. The 

accuracy of prediction can be well improved by model training process. However, the loss of 

useful information in data collection may be a challenge for cell sensing applications using 

CNT-based electronic noses/tongues. Large amount of useful information was discarded in 

the feature extraction process as only few electronic properties, such as resistance and 

capacitance changes, were extracted as features in model training. We contend that using 

more features could potentially increase accuracy in whole cell recognition and provide 

invaluable information about the sensing mechanism when considering the feature importance, 

which in turn could provide a guidance for the design of new sensors for other applications. 

Sensor arrays comprised carbon nanotube-based field-effect transistors (NTFET) have 

shown advantages in the number of features, when compared to other CNT device 

configurations. By measuring the transfer characteristics of NTFET, many parameters, such 

as source-drain current values at different voltages, transconductance, on/off-current ratio, 

and threshold voltage, can be extracted as features in model training, thus providing more 

useful information compared with chemiresistor- or capacitor-based methods. Moreover, the 

changes of transfer characteristics can provide useful information about the sensing 

mechanism, especially the interactions between the CNTs and biomolecules. In our previous 

works, we identified 11 different features from the NTFET characteristics for model training 

and realized the classification of nonmalignant and malignant cells with LDA.21 The same 

strategy was also applied for the classification of different purine compounds.22 From the 



feature elimination process in model training, we evaluated dominant mechanisms in purine 

compounds sensing, which was further collaborated by DFT calculations. 

In this work, we aim to develop the label-free strategy for the discrimination of live and 

dead cells. Although classic methods, such as cell staining with different dyes, have been 

widely used for dead cell recognition in routine biological tasks, it is still essential to develop 

non-optical methods for the discrimination of live and dead cells. Compared with live cells, 

dead cells exhibit changes in morphology, permeability, and metabolism, which we expect to 

affect their interactions with CNTs, resulting in different NTFET characteristics. For the 

construction of sensor array in this work, we chose three types of functional single-walled 

carbon nanotubes (SWCNTs). Commercial semiconductor enriched SWCNTs were decorated 

with gold nanoparticles, and gold nanoparticles were functionalized with self-assembled 

monolayers (SAM) of dodecanethiol (DD) and 11-mercaptoundecanoic acid (MUA) because 

of their respective hydrophobic and hydrophilic properties. We have collected 15 features for 

the model training with LDA and linear SVM for each sensor group. Our training model 

showed good validation accuracy (up to 91.7%) for the classification. Then, recursive feature 

elimination with cross-validation method was applied for the evaluation of different features. 

The optimized model showed that live and dead cells could be classified with only 4 to 5 

features and higher validation accuracy (up to 97.9%). The optimized LDA model was also 

applied for the prediction of unknown samples with accuracy of 87.5% to 93.8%. Finally, we 

could conclude that the classification highly relied on several key features, and the several 

sensing mechanisms dominated in the classification.   

 

Materials and Methods 

Commercial semiconductor-enriched single-walled carbon nanotubes (IsoSol-S100, 

NanoIntegris) with 0.1% metallic and 99.9% semiconducting composition were used for the 

fabrication of sensors in this work. 1 mM chloroauric acid (HAuCl4·3H2O, Alfa Aesar) was 

prepared in 0.1 M HCl solution for the gold nanoparticles decorations. 10 mM dodecanethiol 



(Sigma-Aldrich) and 10 mM 11-mercaptoundecanoic acid (Sigma-Aldrich) were prepared in 

water/ethanol mixture for the functionalization of carbon nanotubes. Doxorubicin (Sigma-

Aldrich) was used for the induction of cell death in the experiment. 

Field-Effect Transistor Fabrication. The interdigitated gold electrodes were 

patterned on the 2 × 2 mm2 Si/SiO2 wafers using photolithography. The chips were then wire-

bonded into standard 40-pin ceramic dual inline packages and secured with 

polydimethylsiloxane (PDMS) by heating at 80 oC for 1 h. Subsequently, 3 μL of IsoSol-

SWCNTs (0.02 g mL-1, dispersed in toluene) were deposited between the gold electrodes 

through dielectrophoresis (DEP) using a Keithley 3390 Arbitrary Waveform (10 VPP, 100 kHz 

for 2 min), then annealed at 120 oC for 24 h in the oven to evaporate the organic solvent.  

The gold nanoparticles were deposited on the carbon nanotubes by bulk electrolysis of 

HAuCl4 solution using a 3-electrodes system. Ag/AgCl electrode/Pt electrode/carbon 

nanotubes were employed as reference/counter/working electrode, respectively. The 

electrolysis was finished at –0.2 V for 30 s. The gold nanoparticles were characterized by a 

scanning electron microscopy (ZEISS sigma500 VP) with an accelerating voltage of 3 kV.  

Dodecanethiol and 11-mercaptoundecanoic acid were decorated on gold nanoparticles as self-

assembled monolayers of thiols. 200 μL of dodecanethiol solution (10 mM, Vethanol/Vwater = 

1:1) was incubated on the gold nanoparticles for 2 h. 11-mercaptoundecanoic acid solution 

(10 mM, Vethanol/Vwater = 7:3) was incubated on the gold nanoparticles for 24 h (protected by 

ethanol bath). After the functionalization, the devices were rinsed with ethanol and deionized 

water consecutively. The devices decorated with 11-mercaptoundecanoic acid decoration 

were kept in the vacuum for another 1 h to remove the ethanol remained on the surface. 

Electrical measurements. Two different Keithley SourceMeter units, 2400 and 

2602B, were employed for electrical measurements. NTFET characteristics were measured in 

phosphorate buffer (pH = 7.4) with an Ag/AgCl electrode as the liquid gate electrode, and the 

gate voltage (Vg) was swept from +0.6 V to –0.6 V with a source-drain voltage (Vsd) of 0.05 

V. 



Cell Sensing on Sensor Array. The scheme of whole-cell detection on the fabricated 

liquid gated NTFET is shown in Figure 1. Mouse B16 melanoma cells were prepared for cell 

sensing. The apoptosis was induced with the addition of 10 μM of doxorubicin for 24 h. Both 

cell culture conditions and the procedure for induction of apoptosis are described in 

supporting information. MTT tests was also employed for the evaluation of cell death 

(Supporting Information). Before the cell sensing test, the devices were immersed in 0.01 M 

PBS to obtain constant NTFET characteristics. Then the devices were immersed in 400 μL of 

PBS for 1 h and NTFET characteristics were measured as the control group. Subsequently, 

the devices were incubated with 400 μL of cell suspension (106 cells mL-1) for another 1 h. 

After the incubation, the cell suspension was discarded, and NTFET characteristics were 

measured as the test group. For each measurement, the device was rinsed with deionized 

water and immersed in another 400 μL of PBS for 2 min before data collection. The same 

protocol was employed for both live/dead cell sensing on the devices with different 

decorations.  

Cell Discrimination with Machine Learning. The same protocol was employed 

for features extraction as previously reported.21-23 The NTFET characteristics of each sample 

from test group and control group were utilized for the calculation features. The 15 features 

shown in Figure S1 were calculated according to the equations shown in Table 1 using Python 

3.7. Linear discriminant analysis (LDA) and support-vector machine (SVM) were utilized as 

algorithms for the classification of live and dead cells using Python. The Past 3 software was 

utilized for the model visualization after LDA. Recursive feature elimination with cross-

validation (k=5) method was applied for the elimination of the features.  

 

Results and Discussion 

Decoration of CNTs. Carbon nanotubes were deposited between the interdigitated 

gold electrodes using dielectrophoresis. Scanning electron microscopy (SEM) images 

revealed that carbon nanotubes were aligned between the fingers of interdigitated gold 



electrodes and formed interconnected networks (Figure 2). Due to the heterogeneity of 

SWCNTs suspension, the carbon nanotubes were not uniformly distributed among different 

electrodes. In addition, we found that the amount of carbon nanotubes deposited should be 

well controlled to guarantee the high on/off ratio of NTFET characteristics. Gold 

nanoparticles decorated both SWCNTs and the surface of gold electrodes with a narrow size 

distribution (μ=73.8 nm, σ=15.3 nm, calculated using ImageJ software). The NTFET 

characteristics of bare SWCNT and Au-SWCNT are depicted in Figure S2. NTFET transfer 

characteristics are consistent with p-type semiconducting behavior of SWCNT. The devices 

became more conductive after the gold nanoparticles deposition. The statistics of the 

maximum of source-drain current in NTFET characteristics before and after gold 

nanoparticles deposition are shown in Figure S3a and S3c. The data collected from 375 

devices shows that the maximum of drain current increased by 151% on average after gold 

nanoparticles deposition, resulting in higher transconductance. The minimum of source-drain 

current also increased on average from 0.93 μA to 9.3 μA after deposition with gold 

nanoparticles (Figure S3b and S3d).  

Dodecanethiol (DD) and 11-mercaptoundecanoic acid (MUA) were selected because of 

their similar molecular size but different surface properties of the resulting self-assembled 

monolayers (SAM) on the gold surface.24-26 The terminal alkyl chain of DD yields 

hydrophobic SAM, while SAM produced from MUA are hydrophilic due to the terminal 

carboxyl groups. Different protocols were chosen for the decoration of these two thiol 

molecules. The rapid kinetics of the self-assembled monolayers of thiols on gold substrates 

have been reported,27 which was consistent with the our results in DD decoration. The 

conductance of devices dramatically decreased after incubation with DD for 2 h. However, 

we found the conductance only slightly decreased with the MUA incubation, indicating 

longer time to form SAM. Herein, 24 h was finally employed as the time span for the MUA 

decoration. The NTFET characteristics indicated the decrease of conductance after decoration. 

As shown in Figure S2, the conductance values decreased by about 90% after DD decoration, 

and about 60% after MUA decoration. Meanwhile, the shift of threshold voltage to the 



negative direction was also observed, indicating that the carbon nanotubes were n-doped after 

SAM formation on gold nanoparticles. 

Induction of cell death. We chose doxorubicin, a chemotherapy drug widely used in 

the induction of apoptosis, for the cell treatment in this project. The experiment started from 2 

million cells, and the percentage of dead cells was evaluated by cell counting with trypan 

blue staining. As shown in Tables S1 and S2, the percentage of dead cells increased with the 

increase of the concentration of doxorubicin after 24 h induction. At the same time, less cells 

were observed after the treatment, indicating that the cell proliferation was inhibited by 

doxorubicin. After 48 h, the percentage of dead cells was around 60% in the three groups 

treated with different concentration of doxorubicin, and even less cells were observed. These 

results were confirmed by the data from MTT assay. As shown in Figure S4, the decrease of 

adsorbance in the experimental group indicated the high apoptotic rate, indicating that at least 

60% of cells were dead after 10 μM of doxorubicin treatment for 24 h in both experimental 

groups. In addition, we also observed the obvious morphological changes of cells after 10 μM 

treatment for 24 h. Therefore, 10 μM of doxorubicin and 24 h treatment were considered 

effecitive for the cell death induction, which were employed in the following experiments. 

Cell Sensing: NTFET Characteristics and Sensing Mechanisms. The NTFET 

characteristics were measured both before and after incubation with live cells on three 

different types of devices with gold nanoparticle-decorated SWCNTs before (i) and after 

functionalization with dodecanethiol (DD) (ii) and 11-mercaptoundecanoic acid (MUA) (iii) 

(Figure 3a-c, labeled as Au-NTFET, DD-NTFET and MUA-NTFET in the following 

discussion). Because incubation with cells was performed in phosphate buffer saline (PBS), 

the influence of PBS on the devices was also investigated. The NTFET characteristics of 

these three types of devices remained constant after incubation in PBS for 1 h (Figure S5). 

After cell incubation, the source-drain conductance values of the devices commonly 

decreased by 10% to 40% (when measured at –0.5 V gate voltage). The differences in the 

conductance decrease might be related to the batch-to-batch variations in different cell 



suspensions. Meanwhile, the negative shift of threshold voltage could be observed on all the 

three types of sensors, indicating that the SWCNTs were n-doped after cell incubation. The 

permanent conductance decreases, and threshold voltage shifts after cell incubation showed 

that the irreversible non-specific cell adhesion might play a key role in the cell sensing. The 

cells could be adsorbed on the devices after incubation, which has been demonstrated by 

fluorescence microscopy in previous work.21 The cell adsorption might change the NTFET 

characteristics in different ways. Firstly, the cell adhesion on the device might change the 

channel resistance, leading to the conductance changes. Secondly, the ions/biomolecules 

released from the absorbed live/dead cells might interact with CNT hybrids, which was 

shown as the doping behavior in the NTFET characteristics. In addition, the transconductance, 

which is defined by the slope value of the linear region in the transfer NTFET characteristic 

curve, also decreased, indicating that the change of NTFET characteristics might also be 

related to other mechanisms such as Schottky barrier modulation and carrier mobility 

changes.28  

Similar NTFET characteristics were observed after dead cells incubation (Figure 3d-f). 

Since doxorubicin was applied for the induction of cell death, we also addressed the influence 

of doxorubicin residue. The NTFET characteristics of all three types of devices were 

measured after incubation with different concentrations of doxorubicin (10-9 M to 10-5 M). 

The results shown in Figure S6 indicated that doxorubicin almost had not influence on the 

NTFET characteristics of MUA-NTFET even at high concentrations. For Au-NTFET and 

DD-NTFET, the signal change could be obviously observed from 10-8 M and reached a 

plateau at 10-5 M, which might be because of the saturation of doxorubicin adsorption on the 

surface of chip. The signal changes indicated that rinsing step was essential to eliminate the 

influence of doxorubicin by diluting doxorubicin to 10-9 M. Since rinsing steps were repeated 

for several times in our protocol, the doxorubicin could be effectively removed from the cell 

suspension. The assumption was well supported by the NTFET characteristics after 

incubation with dead cells (Figure 3d-f), which didn’t show an extra conductance decrease 

compared with the NTFET characteristics after incubation with live cells (Figure 3a-c). In 



conclusion, the doxorubicin could be effectively removed after rinsing steps and is not 

associated with the change of NTFET characteristics. 

The choice of cell concentration was also investigated in the protocol. The NTFET 

characteristics after incubation with different concentrations of cells (103 to 106 mL-1) were 

measured, and conductance change at –0.5 V gate voltage was applied for the discussion of 

signal changes. The results in Figure S7 showed that conductance decrease could be observed 

even with 104 mL-1 of cells, which is consistent with our previous results where we found that 

the adsorption of several hundred cells might lead to the change of NTFET characteristics.21 

However, the signal changes were not uniform across all device types with cell suspensions at 

low concentrations (for example, 104 mL-1 of dead cells in DD-NTFET in Figure S7e and 105 

mL-1 of live cells in MUA-NTFET in Figure S7c). To guarantee that enough cells could be 

adsorbed on the chip surface for the interaction with carbon nanotubes, we selected 106 mL-1 

as the concentration for the cell incubation. The influence of different percentages of dead 

cells was also investigated by obtaining different percentages of dead cells after treating with 

different concentrations of doxorubicin. Features F1, F2, and F15 were selected for the 

comparison of NTFET characteristics due to their significance in the classification (vide 

infra). As shown in Figure S8, there is no trend for the change of these three features with the 

increase of percentage of dead cells. These similarities showed that the discrimination of 

live/dead cells could not be achieved by a single feature in the NTFET characteristics, 

indicating the necessity of machine learning method. 

Classification of live/dead cells. To construct the data matrix, we have picked 15 

different features from the transfer NTFET characteristic curves, which are summarized in 

Figure S1. Compared with our previous studies,21-23 another 4 features related to the 

conductance changes at ± 0.5 V and ± 0.55 V were included because of the rapid conductance 

change in the characteristic curves. The choice of features was based on the changes of 

physical properties of transistors, such as the changes of conductance values at different 

voltages, shift of threshold voltage and transconductance change in the linear region, which 



were related to different sensing mechanisms such as doping mechanism and Schottky barrier 

modulation.28-32 The data range of each feature value is given in the Figure S9-S11 and the 

feature values of each sample in different models are provided in Supporting Material 2. 

Firstly, the classification of live and dead cells with each type of sensor was investigated 

based on all the 15 features. Both linear discriminant analysis (LDA) and linear support-

vector machine (SVM) were applied as the algorithms for the classification with 15 features 

in each sensor group (Au-NTFET: 30 dead cell samples and 30 live cell samples; DD-NTFET: 

24 dead cell samples and 24 live cell samples; MUA-NTFET: 30 dead cell samples and 30 

live cell samples). The Python codes for model training are provided in the supporting 

information. As shown in Table S3 and Figure 4 (the canonical scores of samples in different 

LDA models are given in Supporting Material 3), good training accuracy values (85.4% to 

100%) could be obtained in all the three LDA models and two SVM models (except MUA-

NTFET with the training accuracy of 69.1%). Good validation accuracy values could also be 

obtained in all the three groups (90.0% in Au-NTFET, 91.7% in DD-NTFET, and 90.0% in 

MUA-NTFET) after model training with LDA, suggesting that live and dead cells could 

potentially be well classified with a LDA model. The normalized confusion matrices are 

presented in Table S4, which are calculated with the confusion matrices of five test sets in the 

cross validation (k=5). The validation accuracy values of the training models with linear SVM 

were much lower (78.3% in Au-NTFET, 72.9% in DD-NTFET, and 60.0% in MUA-NTFET, 

shown in Table S5). We have also explored the combinations of two different sensor groups 

(labeled as Au-NTFET+DD-NTFET, Au-NTFET+MUA-NTFET and DD-NTFET+MUA-

NTFET in the following discussion, including 15×2=30 features) for the classification. For 

the LDA models, the results showed that the validation accuracy decreased in all the 

combinations of two sensor groups (79.2% in Au-NTFET+DD-NTFET, 88.3% in Au-

NTFET+MUA-NTFET, and 88.3% in DD-NTFET+MUA-NTFET). The reason could be the 

statistical distributions of the features in sensor combinations are not consistent with each 

other regarding the classes. The validation accuracy was marginally improved after 

combinations of sensor groups in the SVM models (79.2% in Au-NTFET+DD-NTFET, 80.0% 



in Au-NTFET+MUA-NTFET, and 75.0% in DD-NTFET+MUA-NTFET). However, the 

validation accuracy was much lower than the training accuracy after combinations of sensor 

groups in both LDA and SVM models (100% in all the LDA models, and 87.5% to 96.4% in 

the SVM models, Table S3), indicating that overfitting might happen with more features. 

It should be noticed that some features in the above models are highly correlated, which 

could cause overfitting problems, and undermine the model’s predictiability.33 The 

correlations between different features were evaluated by Pearson correlation coefficient 

values, which are shown in the heatmaps (Figure S12-S14). We have found that features F4, 

F6, F8, F10, and F12 were highly correlated to each other in all the three sensor groups. It 

might be because all these 5 features were related to conductance changes in the linear region, 

which were also based on similar equations in the calculations of feature values. For the same 

reasons, features F5, F7, F9, F11, and F13 were highly correlated since all these features were 

related to the off-current changes at positive voltages in NTFET transfer characteristics, 

which is indicative of the sensing mechanisms based on doping mechanism and Schottky 

barrier modulation.28 Features F4, F6, F8, F10 and F12 were negatively correlated to F5, F7, 

F9, F11, and F13 in the Au-NTFET, but relatively uncorrelated in DD-NTFET and MUA-

NTFET. On the other hand, features F3 and F14 were also highly correlated to each other 

because the minimum of conductance was equal to conductance at 0.6 V in some samples 

(Figure S1). For the other three features, F2 was uncorrelated to other features in Au-NTFET 

but highly correlated in the other two groups. It should be noticed that features F1 and F15 

were highly correlated in both Au-NTFET and DD-NTFET but the correlations with other 

features were still different. Herein, these two features were still discussed separately in the 

following discussion. One-way ANOVA was also run for the comparison of feature values 

between live and dead cells (Table S6). The results showed the means of features F1, F10 and 

F12 were statistically significantly different between live and dead cell samples in all the 

three sensor types. Otherwise, for several features (F9, F13 and F15), the distinct p-values 

among the three groups should be noticed, indicating that there is no statistically significant 
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difference for these three features between live and dead cells in several groups, and different 

features may dominate the classification in different sensor groups.  

To explore the which features are essential in the cell classification, the recursive feature 

elimination with cross-validation (RFECV) method was introduced for the selection of 

features, which eliminated features based on a weighting scheme with the weights being 

initially assigned to the features from an estimator.22 We performed RFECV on both LDA 

and SVM models. For the LDA models, the results in Figure S15 and Table 1 showed that 5 

to 11 of 15 features were needed for the classification with each sensor group, and 7 to 23 of 

30 features were needed for the sensor group combinations. The validation accuracy shown in 

Table 2 was improved with both single sensor group (up to 95.8% in DD-NTFET) and sensor 

group combinations (up to 97.9 % in Au-NTFET+DD-NTFET). Among these features, F1, F2, 

F12, and F15 participated in the classifications in all the combinations. These four features 

also represent 4 different parameters in the transfer characteristics, which are 

transconductance change (F1), threshold voltage shift (F2), on-current change (F15), and off-

current change (F12). Conversely, features F3 and F14 never appeared in any combinations, 

showing that these two features might be least significant for the cell classification using a 

LDA model. The validation accuracy was also improved in both single sensor group (up to 80% 

in Au-NTFET with 4 features) and sensor group combinations (up to 87.5% in Au-

NTFET+DD-NTFET with 9 features) in SVM models (Figure S16, Table S7-S8), which were 

also satisfactory for the classification. For the SVM models, it should be noticed that the 

classification was still not satisfactory for the MUA-NTFET (only 68.3% with Feature 1) 

after RFECV process. Features F1, F5, and F13 appeared in most combinations using SVM 

models, which were mainly related to transconductance change and on-current change. If we 

only considered about the two training models with the best validation accuracy values in 

SVM models (Au-NTFET+DD-NTFET and Au-NTFET+MUA-NTFET), we found that the 

off-current change still played an important role in the classification. The main difference 

between LDA models and SVM models is the participation of threshold voltage shift.  



We also noticed that several highly correlated features were present in the optimized 

models after RFECV. The results in Figure S15 also showed that a high validation accuracy 

(higher than 90%) could still be obtained with even less features. Herein, the model was 

further simplified with less features by declining the correlated features. We chose the three 

single sensor groups in the LDA models for the simplification. For the highly correlated 

features which also have similar correlations with the other features, only the feature with 

lowest p-value in the Table S6 would be kept in model training. The final feature 

combinations for each sensor group were shown in Table S9. Good validation accuracy could 

be kept in both Au-NTFET (93.3% with 5 features, Table S10) and DD-NTFET (97.9% with 

4 features, which was even higher than the combinations recommended by RFECV). The 

validation accuracy decreased to 85% in MUA-NTFET with only 5 features, which might 

explain why 11 features were needed in the optimized model after RFECV. In summary, the 

validation accuracy value was still satisfactory after model simplification in the three sensor 

groups, indicating that live and dead cells could be well classified with a simple LDA model 

using each type of sensor. 

Prediction of unknown samples with optimized model. Although our optimized 

model showed good accuracy in the classification, the validation of model with unknown 

samples is still important to evaluate the model in the applications. Herein, an external 

validation set was constructed for the evaluation of the optimized model after RFECV method 

(the models with selected features are shown in Table 1 and Table S7, and the feature values 

of each sample are provided in Supporting Material 4), which contained 8 replicates of both 

live and dead cell samples for each type of NTFET. As shown in Table 3, the unknown 

samples were well predicted with the optimized LDA models (87.5% for Au-NTFET, 93.8% 

for DD-NTFET, and 87.5% for MUA-NTFET). The SVM models were also applied for the 

predictions. Compared with the validation accuracy of the optimized SVM model in Table S8, 

the prediction accuracy was higher for DD-NTFET (87.5% vs 79.2%), and almost identical 

for MUA-NTFET (68.8% versus 68.3%). A decrease of prediction accuracy was observed for 



Au-NTFET (62.5% versus 80%) with SVM model, which was mainly due to the incorrect 

prediction of live cell samples. It should be noticed that the validation accuracy of optimized 

SVM model is at most 80% (Table S8), which may undermine its credibility in the prediction. 

The LDA model still showed higher accuracy in the prediction of unknown samples 

compared with SVM model, which was consistent with the conclusion from the training 

models. In summary, the prediction of unknown samples was still satisfactory with the 

optimized LDA model, showing that LDA might be more feasible for the classification of live 

and dead cells in this work.   

 

Conclusion 

In this work, a carbon nanotube field-effect transistor (NTFET) sensor array was 

constructed for the label-free whole-cell sensing. The NTFET characteristics in cell sensing 

showed the participation of different sensing mechanisms, such as doping and Schottky 

barrier modulations. With the extraction of features from the transfer characteristics, two 

different algorithms, linear discriminant analysis (LDA) and support-vector machine (SVM), 

were applied for the classification of live and dead cells. Live and dead cells were well 

classified with a good validation accuracy higher than 90% in each sensor group using a LDA 

model, and the accuracy could be further improved in each sensor group and sensor group 

combinations using the recursive feature elimination (RFECV) with cross-validation method 

in both LDA and SVM models. The RFECV results indicated that cell classification was 

highly relied on several crucial features. These crucial features reveled that the 

transconductance and on-current change were greatly significant in the classification. In 

addition, the threshold voltage shift and off-current change also played important roles in the 

classification, suggesting the participation of several different mechanisms. The simplified 

model showed that live and dead cells could be well classified with only 4 to 5 features using 

a LDA model, and live and dead cells as unknown samples could be well predicted. However, 

we still need to point out that there are more challenges for the applications in real samples 



compared with this proof-of-concept study. The cell number may vary in a real sample, which 

may also be a mixture of different types of cells. The complexity of biological matrix may 

also challenge the application of sensors in some cases. In addition, the improvement in 

sensor fabrication should be made to guarantee the repeatability in the test with the same type 

of sensors. A more general and robust model will be continuously explored in our further 

study, which is expected for the classification of more target cells.  
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Figure 1 Schematic illustration of a liquid gated NTFET. A Ag/AgCl reference electrode was 
employed as liquid gate electrode (G) whereas interdigitated gold electrodes were employed 
as source (S) and drain (D) electrodes with a source–drain bias voltage as 50 mV. The inset 
shows the three diffrerent deocrations on the carbon nanotubes including bare gold 
nanoparticles, dodecanethiol (DD) and 11-mercaptoundecanoic acid (MUA). 

  



 

Figure 2 Scanning electron microscopy (SEM) images of SWCNTs hybrids. (a-b) SEM 
images of bare SWCNTs deposited between the interdigitated gold electrodes. (c-d) SEM 
images of gold nanoparticles decorated on SWCNTs. Scale bar is 1 μm for panel a-c and 2 
μm for panel d.  

 

  



 

Figure 3 Transfer characteristics of NTFET, i.e, source-drain current (Isd) versus applied 
liquid gate voltage, of NTFET with different decorations after cells incubation. (a-c) Transfer 
characteristics of NTFET with (a) bare gold nanoparticles, (b) dodecanethiol, and (c) 11-
mercaptoundecanoic acid decoration after live cells incubation. (d-f) Transfer characteristics 
of NTFET with (d) bare gold nanoparticles, (e) dodecanethiol, and (f) 11-mercaptoundecanoic 
acid decoration after dead cells incubation. Devices were incubated with phosphate buffer for 
1 h as the control and with cells for another 1 h before the measurement of transfer 
characteristics. Drain current was measured  by sweepting gate voltage  (Vg) from  ̶ 0.6 V to 
0.6 V. Source–drain bias voltage (Vsd) was 50 mV. 

  



 

 

Figure 4 Visualization of training models of live/dead cells classification with diffrerent 
sensor groups and sensor group combinations. (a-c) Classification of live cells (red) and dead 
cells (blue) with (a) Au-NTFET, (b) DD-NTFET, and (c) MUA-NTFET. (d-f) Classification 
of live cells and dead cells with the combination of (d) Au-NTFET and DD-NTFET, (e) Au-
NTFET and MUA-NTFET, and (f) DD-NTFET and MUA-NTFET. Linear discriminant 
analysis was applied as the algorithm for the model traning. 15 features were applied for each 
sensor group and thirty features (15×2) were applied for each sensor group combination 

 

 

  



Table 1 Selection of Features and Prediction Accuray after Model Training with 
RFECV-LDA in Different Sensor Groups and Sensor Group Combinations. k=5 in the 
Cross-Validation Process. 

NO. Features Au DD MUA Au+DD Au+MUA DD+MUA 
1 (tc-t0)/t0     _  
2 Vth,c-Vth,0    _ _  
3 (Gc,min-G0,min)/G0,min       
4 (Gc-G0)/G@vth (0.6V)    _   
5 (Gc-G0)/G@vth (–0.6V)      _ 
6 (Gc-G0)/G@vth (0.55V)    _ _  
7 (Gc-G0)/G@vth (–0.55V)       
8 (Gc-G0)/G@vth (0.5V)     _ _ 
9 (Gc-G0)/G@vth (–0.5V)      _ 

10 (Gc-G0)/G@vth (0.4V)    _   
11 (Gc-G0)/G@vth (–0.4V)       
12 (Gc-G0)/G@vth (0.3V)     _  
13 (Gc-G0)/G@vth (–0.3V)       
14 (Gc-G0)/G0 (0.6V)       
15 (Gc-G0)/G0 (–0.6V)     _  

Accuracy  93.3% 95.8% 95.0% 97.9% 96.7% 93.8% 
 
Table 2 Normalized Confusion Matrices of Test Sets after Model Training with RFECV-
LDA in Different Sensor Groups and Sensor Group Combinations. k=5 in the Cross-
Validation Process. 

 Dead Cells Live Cells Accuracy Precision Recall F1 Score 

Au-NTFET 
0.9 0.1 

0.933 0.964 0.9 0.931 
0.033 0.967 

DD-NTFET 
0.958 0.042 

0.958 0.958 0.958 0.958 
0.042 0.958 

MUA-NTFET 
0.967 0.033 

0.95 0.935 0.967 0.951 
0.067 0.933 

Au-NTFET+DD-
NTFET 

0.958 0.042 
0.979 1 0.958 0.979 

0 1 

Au-NTFET+MUA-
NTFET 

0.933 0.067 
0.967 1 0.933 0.966 

0 1 

DD-NTFET+MUA-
NTFET 

0.917 0.083 0.938 0.957 0.917 0.937 
0.042 0.958 

 

  



Table 3 Prediction Accuracy of Unknown Samples with the Optimzed Models after 
RFECV 

 Dead Cells Live Cells Accuracy 

Au-NTFET (LDA) 
7 1 

0.875 
1 7 

DD-NTFET (LDA) 
8 0 

0.938 
1 7 

MUA-NTFET (LDA) 
6 2 

0.875 
0 8 

Au-NTFET (SVM) 
8 0 

0.625 
6 2 

DD-NTFET (SVM) 
7 1 

0.875 
1 7 

MUA-NTFET (SVM) 
7 1 

0.688 
4 4 
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