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Abstract 

The ability to rapidly and reliably screen for bacterial vaginosis (BV) during pregnancy is of great 

significance for maternal health and pregnancy outcomes. In this proof-of-concept study, we demonstrated 

the potential of carbon nanotubes field-effect transistors (NTFET) in the rapid diagnostics of bacterial 

vaginosis with the sensing of BV-related factors such as pH and biogenic amines. The fabricated sensors 

showed good linearity to pH changes with a linear correlation coefficient of 0.99. The pH sensing 



performance was stable after more than one month of sensor storage. In addition, the sensor was able to 

classify BV-related biogenic amine negative/positive samples with machine learning, utilizing different test 

strategies and algorithms, including linear discriminant analysis (LDA), support-vector machine (SVM), 

and principal component analysis (PCA). The biogenic amine sample status could be well classified using 

a soft-margin SVM model with a validation accuracy of 87.5%. The accuracy could be further improved 

using gold gate electrode for measurement, with accuracy higher than 90% in both LDA and SVM models. 

We also explored the sensing mechanisms and found that the change in NTFET off-current was crucial for 

classification. The fabricated sensors successfully detect BV-related factors, demonstrating the competitive 

advantage of NTFET for point-of-care diagnostics of BV. 

 

Introduction 

Bacterial vaginosis (BV) represents a worldwide health issue, especially for pregnant women, as it is 

associated with an increased risk of obstetrical complications (e.g., premature membrane rupture, preterm 

birth and spontaneous abortion), sexually transmitted infections (e.g., HIV and human papillomavirus),1-6 

and some metabolic diseases during pregnancy such as preeclampsia and gestational diabetes.7-8 The early 

and longitudinal awareness of BV during pregnancy is of great significance for improving maternal health 

and pregnancy outcomes. However, routine diagnostic methods for BV via clinical examinations (i.e., 

Amsel criteria) lack sensitivity  to detect important underlying molecular changes associated with BV, even 

though one-third of pregnant women with BV are asymptomatic.9 Other methods sufficient to identify 

asymptomatic BV, such as microscopy (i.e., Nugent criteria) or molecular diagnostics vary in their 

availability for women due to differences in healthcare access. Rapid point-of-care screening for the 

presence of BV-related biomolecules may provide an early indication of women at risk for BV-related 

pregnancy diseases regardless of symptomology.10 Recent studies suggest the displacement of health-

promoting vaginal bacteria (i.e., Lactobacillus spp.) and outgrowth of potential pathogenic bacteria are 

associated with increased levels of biochemicals known as biogenic amines (e.g., putrescine, cadaverine, 



and tyramine) and elevated vaginal pH.11-13 Consequently, women with BV-type microbiota are highly 

likely to retain at-risk bacterial populations throughout pregnancy, highlighting the importance of 

identifying these women early during gestation.14 Figure S1 highlights the difference combined biogenic 

amine levels in vaginal samples from vaginal fluid samples of women who are clinically BV-negative and 

BV-positive. 

Although other state-of-the-art analytical methods can determine biogenic amine levels,15-20 access to 

BV diagnostics remains limited for self-testing and rapid, point-of-care settings, especially in populations 

with limited healthcare access. Current off-the-shelf patient tests for BV are limited to unreliable, color-

change pH tests.21-22 The measurement of biogenic amines is limited to the “Whiff” test in low-source 

settings, which is based on the odor due to the increased biogenic amines levels such as cadaverine and 

putrescine. However, the BV diagnostics with this subjective test are highly relied on the physicians’ 

judgment, and the lack of access to odor testing equipment may increase the risk of BV misdiagnosis. An 

ideal, rapid point-of-care (POC) test kit for BV risk in women will require an adequate shelf-life, and 

sensitivity and specificity comparable to laboratory analytical instruments.9  Additionally, manufacturing 

cost must allow commercial kit affordability across low-income and low-resource patients (e.g., Medicaid). 

Lastly, limited sensitivity and specificity of existing tests suggest that BV diagnostics may be optimized by 

using an array of sensors for parallel detections of different analytes rather than measurement of a single 

target molecule.  

Biosensors based on carbon nanotubes make rapid screening of BV feasible by realizing monitoring 

of both vaginal pH and biogenic amines with the same sensor. Carbon nanotubes have been previously 

employed for pH sensing using optical techniques23-25 and surface-enhanced Raman spectroscopy 

(SERS).26-27 However, electrochemical detection methods have several advantages, including rapid analysis, 

high sensitivity, low cost of instrumentation, and outstanding advantages in miniaturization.28-31 With the 

significant progress in microminiaturization and manufacturing cost control, fabricated electrochemical 

sensors show great potential in the point-of-care testing of pH. Different variables such as peak potential in 

voltammetry,32 open circuit potential,33-35 and resistance36 can be employed for pH detection. Compared 



with pH monitoring, the monitoring of physiologic biogenic amine levels requires a higher demand of 

electrochemical sensors. The stability of the sensor should be guaranteed to tolerate the complex sample 

matrix in the analysis, and the reuse of the sensor should be considered for cost control. In addition, the 

precise determination of biogenic amine compounds is difficult without separation techniques on the same 

electrochemical sensor, and the concentration of biogenic amines can vary widely between different 

samples. An electrochemical sensor with high specificity could be a solution for biogenic amines detection, 

but the bottleneck in muti-target analysis may limit its use since the BV diagnostics could not be determined 

by a single type of biogenic amine compound. And in fact, the construction of a sensor with high specificity 

may lead to the increased cost and workload in the device production due to extra labeling/blocking steps, 

which is not affordable for low-income and low-resource patient screens of BV-risk (i.e., at-risk or low-

risk). 

Diagnostic modalities that qualitatively test for BV presence in biologic samples based on a 

combination of related factors including increased pH and a relative change in biogenic amine levels may 

be superior as a point-of-care diagnostic test compared to precise quantification methods such as 

fluorescence spectroscopy18 or mass spectrometry.19 Fabrication of sensors that classify BV sample type 

may also be more straightforward, user-friendly, and accurate for women across differing racial groups, 

reproductive-stages and ages (all of which can impact baseline vaginal measurements). Machine learning 

has been applied previously as a powerful tool to classify sample types. Our previous studies have correctly 

classified different purine compounds/volatile organic compounds/metal ions with NTFET biosensors.37-39 

The interactions between analytes and NTFET could result in the different changes of the transfer 

characteristics, which are extracted as different features in the training model. The “fingerprints” of 

different BV types (e.g., BV-negative versus BV-positive) composed of these features could be classified 

with the machine learning method. However, the concentrations of diagnostically important compounds 

differ significantly across biological samples from different BV patients, making accurate classification of 

these samples more difficult than samples with fixed concentrations. The complexity of biological matrix 



also results in large uncertainty, for which an optimized protocol should be developed to make the 

measurement more reliable.  

Herein, we aimed to realize both pH sensing and biogenic amine classification with the same sensor. 

The integration of multiple devices on the same sensor chip improves its potential capacity for monitoring 

different diagnostic targets. To this end, firstly, NTFET devices with different decorations were fabricated 

and tested for pH sensing. We then evaluated the pH sensing results from the 1st to 33rd days. The NTFET 

devices decorated with gold nanoparticles (Au-NTFET) were considered a favorite choice with a shelf-life 

of more than one month. The Au-NTFET devices were then used for the classification of biogenic amines 

across a range of sample concentration (mimicking BV-positive and BV-negative samples). Both Ag/AgCl 

and Au reference electrodes were tested as liquid gate electrodes in the NTFET measurements. The 

accuracy of different machine learning training models was explored using different algorithms such as 

linear discriminant analysis, linear support-vector machine (both hard-margin and soft-margin), and 

principal component analysis (PCA). The BV negative/positive samples were well classified with the 

optimized test protocol. The accuracy value was higher than 90%, showing the feasibility of NTFET for 

POC diagnostics of BV.  

 

Materials and Methods 

Carbon Nanotube-based Field-Effect Transistor (NTFET) Fabrication. The 2 × 2 mm2 

Si/SiO2 wafers with four interdigitated gold electrodes were fabricated using photolithography. After being 

wire-bonded into 40-pin ceramic dual-inline packages (CERDIP), the chips were secured with 

polydimethylsiloxane (PDMS) by heating at 80 oC for 1 h. The semiconducting single-walled carbon 

nanotubes (IsoSol-SWCNTs) were deposited on the chips using dielectrophoresis (DEP) with a Keithley 

3390 Arbitrary Waveform. The 3 μL of IsoSol-SWCNTs (0.02 g mL-1, dispersed in toluene, NanoIntegris) 

were deposited between the gold electrodes with a bias voltage of 10 V and a frequency of 100 Hz for 2 

min. The packages were annealed at 120 oC overnight. Then carbon nanotubes were decorated with gold 



nanoparticles through bulk electrolysis of HAuCl4 (HAuCl4·3H2O, Alfa Aesar) solution at –0.2 V for 30 s 

using a 3-electrodes system (Reference: 1 M Ag/AgCl electrode; Counter: Pt electrode; Working: 

interdigitated gold electrodes with carbon nanotubes). Lastly, the gold nanoparticles were functionalized 

with different self-assembled monolayers (SAM). 200 μL of dodecanethiol (10 mM, Vethanol/Vwater = 1:1, 

Sigma-Aldrich) and 11-mercaptoundecanoic acid (10 mM, Vethanol/Vwater = 7:3, Sigma-Aldrich) were 

separately incubated on the chips for 2 and 24 h to fabricate different types of sensors. The chips were 

washed with ethanol and deionized water after functionalization and dried for the following tests. 

Electrical Measurements. The NTFET characteristics were measured using two different source 

meters, Keithley Source Meter Unit 2400 and 2602B. A 1 M Ag/AgCl electrode (CH Instruments, Inc.) 

was used as the gate electrode in both pH sensing and biogenic amines detection. The gate voltage (Vg) was 

swept from +0.6 V to –0.6 V with a source-drain voltage (Vsd) of 0.05 V in the measurement. An Au 

electrode (CH Instruments, Inc.) was also used as the liquid gate electrode to detect the biogenic amines. 

pH Sensing on Different Sensors. The scheme of pH/biogenic amines sensing is shown in Figure 

1. pH buffers from 2 to 12 were prepared based on the Britton-Robinson methods.40 Solution of H3PO4, 

H3BO3, and CH3COOH (0.04 M) were prepared by dissolving the acids in 100 mL of water with an initial 

pH of ~1.8. The buffers from pH 2 to 12, with increments of one, were prepared by adding 0.2 M of NaOH 

solution. A Mettler Toledo Seven Multi pH meter was employed for the measurement of pH. 

The prepared devices were firstly immersed in 400 μL of buffer (pH =12) for 1 h to reach the balance 

in the ion transfer between the functionalized carbon nanotubes and the buffer. After the rinsing step, the 

devices were immersed in another 400 μL of buffer (pH = 12) for 5 minutes, and NTFET characteristics 

were measured. The FET measurements were repeated every 5 minutes until NTFET characteristics were 

constant. Subsequently, the devices were immersed in the buffers with pH values from 12 to 2 successively, 

and NTFET characteristics were measured after 5 minutes. Between the switch of buffers, both devices and 

gate electrodes were rinsed with deionized water. The NTFET characteristics were also measured in the 

buffers in reverse order from pH 2 to 12. 



Biogenic Amines Sensing. Sensing with Ag/AgCl Gate Electrode.  An artificial vaginal fluid 

simulant (VFS) was prepared following the previously reported recipe41 and inoculated with 

physiologically-relevant concentrations of the biogenic amines putrescine, cadaverine, spermine, 

spermidine, and tyramine as reported in the previous publication,12 as well as agmatine and trimethylamine 

that were measured from the same sample set as the publication12 and are shown in Table S1. Median 

biogenic amine concentrations from samples classified as BV-negative and median concentrations from the 

samples classified as BV-positive were used to create BV-negative and BV-positive mock samples. Before 

the test, the devices were immersed in deionized water firstly until the NTFET characteristics were constant. 

In the sensing process, the devices were incubated with 400 μL of deionized water for 10 min, and NTFET 

characteristics were measured as the control group. Subsequently, the devices were incubated with 400 μL 

of BV negative/positive samples for another 10 min, and NTFET characteristics were measured as the test 

group. To collect NTFET characteristics, the devices were rinsed with deionized water after incubation, 

and NTFET characteristics were measured in 0.01 M phosphate buffer (PBS). 

Sensing with Au Gate Electrode. In the sensing process with the Au gate electrode, the Au electrode 

was immersed in the solution directly during the test. The devices were incubated with 400 μL of PBS for 

10 min, and NTFET characteristics were measured directly as the control group without the rinsing step. 

The devices were then immersed in 400 μL of BV negative/positive samples for another 10 min, and 

NTFET characteristics were measured as the test group. Before the following sample test, the Au electrode 

was rinsed with acetone, isopropanol, and deionized water. 

Data Processing. For each sample, the features calculations were based on the NTFET characteristics 

from the test and control groups. Based on our previously published work's established machine learning 

strategy,42 15 features were extracted from the transfer characteristics (Figure S2 and Table S2), and 

different LDA/SVM models were selected for classification using Python 3.7 (Table S3). Past 3 software 

was used for the visualization of results in the LDA model. The elimination of features was based on 

recursive feature elimination with a cross-validation (k=10) method. 

 



Results and Discussion 

pH Sensing. The fabricated sensors were tested for pH sensing within the range of pH values between 

2 and 12. It has been previously reported that carbon nanotubes are highly sensitive to pH changes, and 

NTFET devices have been applied for pH sensing.43-46 Because the sensors with different decorations may 

respond to the pH changes differently due to the different functional groups, the NTFET characteristics at 

different pH values were investigated on the  NTFETs decorated with gold nanoparticles (Au-NTFET), and 

after functionalization with dodecanethiol SAMs (DD-NTFET) and 11-mercaptoundecanoic acid SAMs 

(MUA-NTFET). The dodecanethiol SAMs provide a hydrophobic interface and the 11-

mercaptoundecanoic acid SAMs are hydrophilic. The sensors with bare carbon nanotubes were also tested.  

Before testing, each device was immersed in a buffer (pH 12) to balance the interactions between 

hydronium ions and carbon nanotubes. Subsequently, the NTFET characteristics, i.e., source-drain current 

versus applied liquid gate voltage, at different pH values were measured. As shown in Figure 2 (pH 12 to 

2) and Figure S3 (pH 2 to 12), the drain current decreased with the decrease of pH, and the threshold voltage 

shifted to the negative direction. The negative shift in pH sensing indicated that the doping mechanism 

might be a general one in different sensing applications with our fabricated sensors. We observed the 

decrease of current at –0.6 V (associated with on-current) but increase of current at 0.6 V (associated with 

off-current). The opposite trend in off-current changes might indicate a contribution from other sensing 

mechanisms such as Schottky barrier modulation.47 To investigate the influence of solvent, the NTFET 

characteristics at different pH values were measured in two opposite test sequences (From 12 to 2 and 2 to 

12 in turn), and similar results were obtained, showing that the current changes were only related to pH 

changes. 

We also evaluated the linearity between the device conductance and pH values based on the 

conductance values at –0.5 V. As shown in Figure 3, good linearity was obtained for all four sensor types 

with linear correlation coefficients between 0.97 and 0.99. The results showed the capacity of fabricated 

sensors in pH sensing in a wide pH range (2 to 12). It should be noted that the good linearity could always 

be observed regardless of the decoration strategies, suggesting that the hydronium ions might interact with 



carbon nanotubes directly in the sensing process. The defects on sidewalls of bare carbon nanotubes, the 

wrapped polymer used to enrich the semiconducting CNTs, and the SiO2/Si chip surface might also 

participate in this process. We also investigated the shelf-life of our fabricated sensors after storage at room 

temperature. The results for Au-NTFET (Figure S4) showed that the sensitivity remains unchanged after 

storage for 12 days, and the sensors still demonstrated pH sensing after 33 days with a linear correlation 

coefficient of 0.99 (Figure 3b, albeit at lower conductance values), suggesting that the fabricated sensors 

have an acceptable shelf-life. We also investigated the shelf-life of three other sensor types but found them 

inferior to Au-NTFET (Figure S5).  

Biogenic Amines Sensing. Sensing with Ag/AgCl Electrode. Because of their long shelf-life in pH 

sensing, the sensors decorated with bare gold nanoparticles (Au-NTFET) were chosen for the biogenic 

amines sensing evaluation. These sensors, after storage for different time lengths, were randomly chosen 

for the following studies. A 1 M Ag/AgCl electrode was employed as the liquid gate electrode for the 

investigation. Considering about the low stability of some biogenic amines such as tyramine, the VFS 

control was applied to prepare the BV-negative and BV-positive mock samples, given that innate buffering 

capability of vaginal secretions (e.g., lactate/lactic acid) or addition of exogenous buffers may act to 

stabilize biogenic amines over time.48 For both negative and positive samples, the conductance decrease 

could be observed after sample incubation (Figures 4a and b). The conductance decrease indicated that 

some biomolecules might be adsorbed on the devices after incubation and result in the changes of NEFET 

characteristics. We also measured the NTFET characteristics after incubation with VFS controls (without 

biogenic amines).  The conductance increased slightly after incubation (Figure S6), indicating that any 

conductance decrease was only related to the interaction between biogenic amines and CNT hybrids. 

However, the classification of BV-negative/positive samples could not be achieved based on the 

conductance changes alone because there were no significant differences between outcomes in these two 

groups. Machine learning techniques were then applied for the classification based on the 15 features 

extracted from the NTFET characteristics. These 15 features were selected based on the transfer 

characteristics of field-effect transistors, such as the transconductance change in the linear region, the 



changes of conductance values at different voltages, and the shift of threshold voltage. These feature values 

are associated with different sensing mechanisms such as doping mechanism and Schottky barrier 

modulation,47, 49-52 which can explain the interactions between the compounds and the CNT. Both linear 

discriminant analysis (LDA) and support-vector machine (SVM) were employed as algorithms in model 

training. However, the results showed that the validation accuracy values were only about 68.0% for the 

LDA model and 52.0% for the SVM model (Figure S7 and Tables S4-S5). The training accuracy values 

(85.0% for the LDA model and 62.8% for the SVM model) were also unsatisfactory, which were 

insufficient for sample classification. 

Optimization of Training Model. The low accuracy indicated that the model required optimization for 

classification. We tried to optimize the model based on different combinations of the features. Based on the 

characteristics of NTFET devices fabricated from semiconducting SWCNTs, we discarded some features 

to simplify the model in the first step. Eight features, including Features 1, 2, 5, 7, 9, 11, 13, and 15 were 

selected, which represented the transconductance changes, threshold voltage changes, and conductance 

changes in the linear region. However, some of these features might be correlated to each other, given that 

all the conductance values were picked from the linear region. Therefore, Pearson correlation coefficient 

values were calculated for the evaluation of correlations among the selected eight features. The results in 

Figure S8 showed that only Feature 2 was uncorrelated to other features. All the features related to 

conductance changes (Feature 5 to 15) were highly related to each other, and Feature 1 (transconductance 

changes) was also related to the conductance changes, indicating that more features could be eliminated 

from the model. One-way ANOVA was then used to compare each feature between the BV-negative and 

BV-positive sample groups. The results in Table S7 showed that Feature 1 and Feature 2 were significantly 

different in these two groups, indicating that these two might be critical features for sample classification. 

The p-values of all the other features were higher than 0.8, which means that the classification might not 

be realized with conductance changes alone. 

Since Feature 2 was the only one which was not related to other features and significantly different in 

the BV-negative/positive samples, the distribution of Feature 2 was studied. In the data set, the samples 



were split as training group and test group randomly with a ratio of 4:1. However, the training accuracy 

(64.4%) was still not good (shown in the confusion matrix in Table S5), but a high validation accuracy 

(87.5%) was obtained in the test group even with such a training set. Herein, soft-margin SVM was applied 

as the algorithm for the sample classification, which maximized the margin but still allowed some 

misclassifications within it. We chose three features for the classification in this model. Besides Feature 1 

and Feature 2, Feature 8 was also kept in the model because a relatively low p-value was obtained for 

Feature 8 in one-way ANOVA. The confusion matrix in Table S5 showed that high accuracy could be 

obtained in both the training group (89.8%) and the test group (87.5%) using these selected features. The 

validation accuracy was comparable to training accuracy, showing the robustness of the model. In addition, 

it was also comparable with the validation accuracy in the test group with LDA. 

In summary, the BV-negative/positive samples were well classified using soft-margin SVM after 

optimizing the model with the elimination of features. The accuracy could be significantly improved with 

the selection of features and algorithms. However, a higher accuracy was desired, and the errors in the 

classification could not be ignored. This strategy assumed that the biogenic amines molecules would be 

irreversibly adsorbed on the SWCNT devices. Because of the differences in biogenic amine concentrations 

between BV-negative and BV-positive samples, different NTFET characteristics could be observed and 

discriminated with the developed model. However, the results showed that these biomolecules might be 

washed away according to the recovery of drain current after several washing steps (Figure S9). The loss 

of biomolecules after washing might offset the differences in the concentrations between BV-negative and 

BV-positive samples, potentially resulting in the low accuracy in the classification. 

Sensing with Au Electrode. The NTFET characteristics were measured directly after incubation 

without rinsing in order to eliminate the influence of the rinsing step. The gate electrode was immersed in 

the sample solution during the whole incubation process. However, we found that the Ag/AgCl electrode 

could not tolerate the matrix, leading to no response to the sample solution. Therefore, we chose the Au 

electrode as the gate electrode for the investigation. As shown in Figures 4c and d, the Au electrode can be 

used to detect both BV-negative and BV-positive sample types. Compared with the NTFET characteristics 



with Ag/AgCl electrode, the threshold voltage was even more positive with the Au electrode. The threshold 

voltage was around 0.1 V in the phosphorate buffer with the Ag/AgCl electrode, but around 0.5 V with the 

Au electrode. Meanwhile, a higher off-current could be observed (0.1 to 5 μA with the Ag/AgCl electrode 

versus 5 to 20 μA with Au electrode). We also investigated the adsorption of biogenic amine molecules on 

the Au electrode. The repeatable NTFET characteristics in two tests (Figure S10) showed that these 

biomolecules could be thoroughly washed away after incubation, which guaranteed the reuse of Au 

electrodes on different sensors. 

With the same 15 features, both LDA and SVM models were used to classify BV negative and positive 

samples. As shown in Figure 5a and Tables S4-S5, the two groups could be well classified using Au 

electrode with a training/validation accuracy of 100% in both models, indicating the significant 

improvement of accuracy with the change of gate electrode. Principal component analysis (PCA) was also 

applied for data training, and BV-negative/positive samples were also well classified in the PCA model. 

The high accuracy of the PCA model (Figure 5b) supported our hypothesis given that the two groups were 

not classified in advance in an unsupervised learning method. Lastly, we used the recursive feature 

elimination with cross-validation (RFECV) method to investigate the crucial features in the classification 

in both the LDA and SVM models. 38 The results in Figure S11 and Table S8 indicated that only 3 of 15 

features in the LDA model could achieve a validation accuracy of 100%. For the linear-SVM model, only 

one feature was enough for the validation accuracy of 100%. The result from RFECV-SVM showed that 

Feature 14 was dominant in the classification, which represented the off-current change. In the RFECV-

LDA model, on-current change (Feature 15) and transconductance (Feature 1) also contributed to the 

classification as well as the off-current change (Feature 8). Herein, we could conclude that the off-current 

change might dominate the classification of biogenic amine samples with a gold liquid gate electrode, 

consistent with the opposite changes in off-current for the negative and positive samples shown in Figure 

4. The off-current would decrease after sample incubation in negative samples, but remain the same or even 

increase, after incubation in most positive samples, showing as the difference in values of features in Figure 

S12. The off-current changes were also accompanied by a threshold voltage shift, demonstrating that the 



doping mechanism might play a key role in biogenic amine sensing. In addition, the transconductance 

changes should also be considered, indicating the contributions of other sensing mechanisms. 

 

Conclusion 

We successfully demonstrated the application of NTFET in the rapid screening of mock bacterial 

vaginosis samples (i.e. BV-negative or BV-positive), realized by pH sensing and biogenic amine 

classification using the same carbon nanotube-based sensor. Four types of NTFET sensors based on 

different decorations were fabricated, and all of them showed strong linearity with high linear correlation 

coefficients (0.97 to 0.99) in pH sensing. Acceptable prototype stability was observed on the carbon 

nanotube sensor decorated with bare gold nanoparticles (Au-NTFET) after storing at room temperature for 

one month, which was fundamental to applying carbon nanotube sensors in the proposed POC BV-

diagnostic. The Au-NTFET sensor was also used to classify biogenic amine levels in samples, reflecting 

“healthy” (BV-negative) and “diseased” (BV-positive) sample types with machine learning techniques to 

optimize training models and testing strategy. In addition, the cost of each fabricated sensor is low (e.g., 

~$1/sensor), and time-efficient (e.g., 15 minutes/sensor), although prototype design is still under 

optimization, batch production over days is possible. With the introduction of the materials printing 

techniques and an automated system, it is expected that mass production of sensors and a low cost of each 

test could make this device accessible to low-income and low-resource patients and POC healthcare 

providers. Despite the demonstrated high accuracy, this remains a proof-of-concept study conducted on 

mock samples. Additional work is needed to assess the sensor performance across the breadth of biogenic 

amine concentrations documented among human samples12 and in a background of the many other common 

vaginal biomolecules,53 both of which may affect the accurate classification of BV. The complex and 

dynamic vaginal metabolic profile will require further sensor development for the rapid screening of 

bacterial vaginosis, with refinement of a diagnostic test to screen for bacterial vaginosis in patient samples 

(including greater compound and factor diversity). In addition, a standard operating procedure need to be 



established for the quality control of samples in the collection, transportation, storage, and testing to 

eliminate the errors from operations.  

Additionally, the design of a portable electronic unit instead of the laboratory analytical instruments 

used in this work should be accomplished for successful POC or user-based diagnostics. More data is 

needed to construct a general model in the rapid screening of BV with machine learning. This will be further 

explored in our future work. The current study demonstrated the feasibility of using a NEFET device in 

conjunction with different machine learning models to qualitatively classify mock BV biologic samples 

accurately. Further refinement and development of the technology may provide an economical, minimally 

invasive, rapid POC test for women in low-resource healthcare settings, poised to significantly decrease 

BV prevalence in at-risk populations.   
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Figure 1 Schematic illustration of pH/biogenic amine sensing. A 1 M Ag/AgCl reference electrode or a Au 
reference electrode was employed as liquid gate electrode whereas interdigitated gold electrodes (Gold 
blocks) were employed as source (S) and drain (D) electrodes with a source–drain bias voltage as 50 mV. 
The inset shows the different decorations on the carbon nanotubes including bare gold nanoparticles (Au 
NPs) and gold nanoparticles functionalized with self-assembled monolayers of dodecanethiol (DD) and 11-
mercaptoundecanoic acid (MUA). Cadaverine and putrescine are listed as the example of biogenic amines 
in the graph. 

  



 

Figure 2 Transfer characteristics of NTFET, i.e, source-drain current (Isd) versus applied liquid gate voltage 
(Vg), of NTFET with (a) bare SWCNTs, (b) gold nanoparticles, (c) dodecanethiol, and (d) 11-
mercaptoundecanoic acid decoration in the buffers with different pH values from 12 to 2. Drain current was 
measured by sweepting gate voltage (Vg) from   ̶0.6 V to 0.6 V with a source–drain bias voltage (Vsd) of 
0.05 V. 

  



 

Figure 3 Conductance versus pH for the NTFET sensors with (a) bare SWCNTs, (b) decorated with gold 
nanoparticles, and after functionalization with (c) dodecanethiol and (d) 11-mercaptoundecanoic acid in the 
buffers with different pH values from 2 to 12. Source-drain conductance (G) values at Vg =  ̶ 0.5 V of 
NTFET devices were normalized to the device conductance (GpH=12) in a buffer with a pH of 12. Error bars 
are calculated with the conductance values of 2 to 4 devices. 

  



 
Figure 4 Transfer characteristics of Au-NTFET after incubation with biogenic amines negative (a and c) 
and positive (b and d) samples. Both Ag/AgCl electrode (a and b) and Au electrode (c and d) were employed 
as the gate electrode in the measurement. Drain current was measured by sweepting gate voltage (Vg) from 
 ̶ 0.6 V to 0.6 V with a source–drain bias voltage (Vsd) of 0.05 V. 

  



 
Figure 5 Visualization of training models for the classification of biogenic amine samples with (a) linear 
discriminant analysis (LDA) and (b) principal component analysis (PCA). The data was collected with a 
Au electrode as gate electrode in FET measurement. 
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