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ABSTRACT
Permissioned Blockchain (PBC) has become a prevalent data struc-
ture to ensure that the records are immutable and secure. However,
PBC still has significant challenges before it can be realized in dif-
ferent applications. One of such challenges is the overhead of the
communication which is required to execute the Byzantine Agree-
ment (BA) protocol that is needed for consensus building. As such,
it may not be feasible to implement PBC for resource constrained
environments such as Internet-of-Things (IoT). In this paper, we
assess the communication overhead of running BA in an IoT envi-
ronment that consists of wireless nodes (e.g., Raspberry PIs) with
meshing capabilities. As the the packet loss ratio is significant and
makes BA unfeasible to scale, we propose a network coding based
approach that will reduce the packet overhead and minimize the
consensus completion time of the BA. Specifically, various network
coding approaches are designed as a replacement to TCP protocol
which relies on unicasting and acknowledgements. The evaluation
on a network of Raspberry PIs demonstrates that our approach can
significantly improve scalability making BA feasible for medium
size IoT networks.
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1 INTRODUCTION
Since its application to cryptocurrencies, blockchain became a dis-
ruptive technology that started to be used in many different do-
mains such as healthcare, energy, logistics, and forensics [5, 6, 8, 10].
Depending on the application domain, structure of blockchain and
its components in terms of transaction verification and consensus
are re-designed for such cases to fit the requirements and needs.
For instance, structure-wise, there can be private (permissioned) or
public blockchains. In the case of former, only authorized nodes can
join a blockchain and they approve transactions by a special mech-
anism called BA which is different than the traditional hash-based
computations that are used in public blockchains.

Blockchain also enables distributed trust and eliminates the need
for a centralized authority for certain operations. Such feature
makes blockchain a good candidate to be employed for IoT where
resource constrained devices collect and exchange data for various
purposes. For instance, in energy systems, smart meters can form
a distributed mesh network and run certain application related
algorithms (e.g., demand response, key management, firmware up-
dates, etc.) by exchanging messages among themselves. Similarly,
IoT devices in a smart home or within an autonomous vehicle may
exchange data which may be stored in a distributed ledger for
integrity.

Such potential of blockchain for IoT has been recognized by
many stakeholders such as IBM [1] and researchers that started
to trigger a few studies in this emerging domain [9]. For instance,
the work in [15] proposes to store sensors data on a blockchain.
Another study [2] is focusing to store identities of IoT devices
on blockchain and then the authentication between interacting
parties is accomplished through blockchain. As can be seen, all these
studies use blockchain as a service to store some IoT related data.
Construction of a decentralized autonomous blockchain within
IoT devices is very rare. The most related study that constructs an
autonomous blockchain is [7]. In this study, the authors propose to
build a local blockhain for smart home to controlling and auditing
the data.

Despite the potential benefits of IoT and blockchain integration,
adapting blockhain to IoT is not straightforward and carries signifi-
cant overheads such as, high computation to solve proof-of-work,
and long latency to reach a consensus. These overheads may distress
IoT devices in terms of energy and bandwidth requirements. For
instance, BA protocol requires information exchanges among all
the nodes to reach a consensus. Requiring communication among
every node may lead to flooding which eventually makes scalability
impossible to achieve given that the communication needs to be
reliable too (i.e., re-transmissions will be inevitable).
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To address this issue, in this paper, we offer a network coding
based approach that can reduce transmissions that are otherwise
excessive when a reliable unicast protocol such as TCP is used.
Network coding enables fast relaying of data packets by slicing
them into small pieces of generations and rely on computation at
the receiver side to recover the whole packet. This study is the
first attempt to address the communication overhead of BA in the
IoT context. Our approach addresses both long latency to reach a
consensus and poor scalability due to enormous communication
overhead for disseminating blocks to the whole network.

Specifically, our proposed protocol works as follows: The leader
in permissioned blockchain applies linear network coding methods
[11] to distribute the block to parties in terms of generations. Each
party acknowledges the receipt of the generation and then, again
uses linear network coding distribute the same block until reaching
consensus according to practical BA. To adapt to our cases, we also
applied some fine tuning for the settings of the network coding
mechanisms. We proposed two new alternative options to set the
re-tranmission period for a generation for reduced consensus times.

In order to test our proposed approach, we built a wireless mesh
network testbed using Raspberry-PIs to mimic an interconnected
IoT environment.We compared our network coding based approach
with TCP-based information spreading on the testbed. The results
demonstrated that our approaches based on network coding can
significantly reduce the consensus reaching time while decreasing
the number of transmissions and hence providing energy efficiency
for resource constrined IoT devices.

The rest of this paper is organized as follows. In the next sec-
tion, we give a broad background about public and permissioned
blockchains and BA protocol. In Section III, we explain the details
of the proposed information spreading approach to reach consen-
sus between nodes. Section IV contains experimental setup and
performance evaluation. Finally, Section V concludes the paper.

2 BACKGROUND
In this section, we provide the necessary background on types
of blockchain and BA protocol before we move on to detail our
approach.

2.1 Public and Permissioned Blockchain
Blockchain is now a very well-known technology that contains a
series of ordered chain of blocks stamped to each other. The chain
structure is built by linking the hash of preceding block to the
current one, the current one to the succeeding one, and so on. This
establishes a strong tie between blocks which guarantees the order
of blocks and provides an implicit strong immutability mechanism
[13].

The blockchain structure in broad sense is categorized as public
and permissioned [14]. The most widely-used Blockchains, such as
Bitcoin and Ethereum, fall into public Blockchain category where
everyone is able to read and write from/to the ledger without any
restriction (i.e., there is no membership requirement). However, in
PBC [3], the participants form a members-only club, and thus only
the consortium of participants are able to update the blockchain.

The process of adding new blocks to the chain is carried out via
a protocol, which establishes consensus such that all participants

Figure 1: An illustration of how BA protocol works with
replicated nodes.

confirm the new block. The consensus protocols may differ among
blockchains. For instance, Bitcoin uses proof-of-work based con-
sensus protocol which requires computation intensive hash puzzle.
On the other hand, PBC such as Hyperledger uses some sort of BA
protocol [4] which is explained next.

2.2 Byzantine Agreement Protocol
BA method is well-known consensus protocol in distributed com-
puting in case of nodes failures [4]. This algorithm provides relia-
bility of data or computation, even though arbitrary nodes conduct
malicious actions, especially when sending and receiving messages
that were crafted to disrupt the consensus protocol.

BA is recently started to be used in permissioned blockchain
to establish consensus in a byzantine setting where some of the
nodes assumed to act maliciously to deteriorate the system. In this
setting, where there is n nodes, a consensus can be achieved if
at least (2n − 1)/3 number of nodes act honestly. Honesty means
providing correct information to the other participants. In permis-
sioned blockchain, there are two different types of nodes called
Leader and Validator. First, a randomly selected Leader builds a
block from transactions. This block is then distributed by leader
to the Valitador nodes for verification. Validators will check the
transactions within the block and distribute it again to the other Val-
idators after signing it as shown in Figure 1. Each node, then again,
distribute the block captured from the other node. This distribution
process continues until each Validator node collects individually
signed version of the block from the other ones. After n − 1 version
of blocks are gathered, the Validators check differences between
blocks. If (2n − 1)/3 of these blocks are valid, the Validator nodes
inform the Leader about confirmation and add the block to its local
chain.

3 PROPOSED APPROACHES
3.1 Overview
In PBC, we propose removing proof-of-work based consensus when
a new block is to be confirmed since this requires heavy computa-
tion that cannot be afforded by resource-constrained IoT devices.
Instead, we opt to use a BA protocol. However, as this protocol
also requires heavy communication among the nodes (i.e.,n2 trans-
missions) that is detrimental for IoT devices, we aim to reduce
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Figure 2: An illustration of how a block divided into genera-
tions

this communication overhead by utilizing the concept of network
coding.

Network coding is a mechanism that does not simply forward
the data, but recombines several input packets into one or several
output packets [11]. In communication networks, the information
is transported in the same way as cars share a highway or fluid
share a pipe, and network coding breaks with this assumption. To
better illustrate network coding, let’s define a network pair (G, S),
where G is a finite directed multigraph and S is a source node in
G and does not have any incoming nodes. At S, a finite number of
data is multicast to other nodes, and all nodes can pass the received
data to other nodes. The coding is done at the source node before
the data is multicast.

As can be seen, network coding is very suitable for the settings
where there is a one-to-many information spreading and the com-
plete information does not merely depend on receiving the packets
in specific orders but rather receiving a sufficient number of pack-
ets. This fits exactly to our case of the BA protocol, where for each
consensus establishment, each node needs to disseminate a certain
block to the other ones. In addition, using network coding is shown
to bring performance improvements in static settings and thus we
adopt it for IoT environment where performance would be an issue.

The details of our approach are as follows: Using network cod-
ing, we first divide the block information into д generations. Each
generations contains k pieces of chunks each of which is exactly
d bytes as shown in Figure 2. Each chunk is encoded via using a
network coding library [12] and are broadcast over the network.
Each recipients of chunks, try to decode the generation using the
encoding vector. When a node completes decoding the generation
successfully, it informs (i.e., acknowledges) the source node. If the
source node collects all the feedback from nodes which show that
every node is completed its decoding, it starts to broadcast the next
generation until the block successfully reaches all the parties.

3.2 Fine Tuning for IoT Environments
Network Coding retransmission period for transmissions is critical
and may cause unnecessary retransmission of packets or longer
waiting time to transfer a generation. Therefore, we propose differ-
ent retransmission calculation methods in order to converge faster.
The proposed calculation methods are described below separately.

3.2.1 Fixed Period. It is a well-known fact that packet loss in wire-
less communication is not necessarily due to the network con-
gestion. The packet may drop as a result of multi-path fading or

RF interference. Hence, increasing the retransmission period may
result in waiting longer for transferring a generation.

Instead, we propose setting a maximum timeout value (MTO)
and waiting based on this value to retransmit a generation. The
MTO is assumed to be fixed (and that’s why this is the name of the
approach) and not updated during the process. For the waiting time,
we propose using two mechanisms: 1) Regular waiting method
where we wait for exactly the MTO value; and 2) Random waiting
method where we wait for a random time between 0 and MTO for
each retransmission period.

3.2.2 Logarithmically Increasing Period. A logarithmically increas-
ing function is increasing slower than any non-constant polynomial.
In order to achieve a minimum number of retransmission timeout
during network coding, we propose to use a logarithmically in-
creasing function to calculate the new retransmission period. In this
work, we propose the following logarithmic function to determine
the MTO.

f (x) = 2.89 ∗ ln(r ∗MTO) (1)
where r is the number of retransmissions.

As we did in the Fixed Period approach, we apply both random
and regular mechanisms to determine the individual retransmision
period (i.e., waiting time).

3.2.3 Exponentially Increasing Period. In contrast to the logarith-
mically increasing functions, exponentially increasing functions
increase more rapidly. An exponentially increasing function may
result in less retransmision in network coding. The main drawback
is that it may require more time to successfully transfer each gen-
eration to other nodes. We propose the following exponentially
increasing function:

f (x) = 1.44r ∗MTO (2)
where r is the number of retransmissions.

Again, random and regular mechanisms are applied in the similar
manner.

4 PERFORMANCE EVALUATION
In this section, we describe the experiment setup and present the
results along with discussion.

4.1 Experiment Setup
To assess the communication overhead of the BA protocol, we
built an IEEE 802.11s-based wireless mesh network that consist of
ProtronixWi-Fi dongles (See Fig. 3b) attached to Raspberry-PIs (See
Fig. 3a) in the Electrical and Computer Engineering Department at
FIU. We first describe how we setup the testbed using IEEE 802.11s.

(a) Raspberry Pi 3. (b) Protronix USB WiFi Adapter.

Figure 3: Components of the testbed
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The IEEE 802.11s module needed a special setup procedure in
Linux environment to build the mesh network. We provided this
required setup procedure and the used commands in Appendix A.
While building the testbed, we carefully dispersed the Raspberry
PIs around aisles of the third floor in the Engineering Center. The
Raspberry PIs are placed not to be in a line-of-sight position be-
tween each other. There are concrete walls and doors between them
as can be seen in Figure 4. By this positioning, we try to mimic
realistic conditions that reflects the path attenuation, refraction and
diffraction of the signal while it propagates through space in wild.
Wireless USB Adapter allows Raspberry PIs to create to a wireless
network which complies with IEEE 802.11g and shows abilities of
transferring data through obstacles even in a steel-and-concrete
structure.

Figure 4: The layout of testbed on FIU ECE floor.

Next, to fairly compare network coding based spreading method
with conventional TCP protocol, we changed some TCP stack pa-
rameters of Linux kernel to adapt it to lossy wireless environment.
The first tweak is related to congestion control algorithm. The Linux
kernels after version 2.4 uses Cubic congestion control algorithm
in TCP stack. However, the conventional TCP congestion control
algorithm works inefficiently in wireless environments which leads
to large Retransmission Timeout (RTOs) and poor overall perfor-
mance. This is a well-known issue in TCP research. Therefore, we
enabled F-RTO algorithm which is designed specially for wireless
environments to control the RTO parameter. Due to the lossy en-
vironment, TCP maximum re-transmission limit is not enough to
reach consensus for the 10-nodes testbed as will be discussed later.
The required parameter change details are provided in Appendix B.
For our approaches, we set the MTO values to 2.5 and 20 seconds
according to testbed size of 5 and 10 respectively.

4.2 Performance Metrics
In the experiments, we compared our Network Coding based ap-
proach to TCP unicasting since TCP is the currently used approach
in other environments for BA protocol. For our approach, the three
variations are represented as Fixed, Logaritmic and Exponential

in the graphs. We also show Random Network Coding and Regular
Network Coding separately. We used the following metrics to assess
the overhead and compare their performance:

• Total Size of the Outgoing Traffic: This metric shows the total
size of the traffic data packets that are sent by an applica-
tion until reaching a consensus in BA process. Note that
this metric is crucial for IoT environments since the devices
will be operated and minimizing energy usage is a priority.
Reducing the transmission counts will reduce the overall
energy consumption.

• Consensus Establishment Time: This metric indicates the total
elapsed time to reach a consensus via BA process. Depending
on the application needs, if there is an urgency for consensus,
this metric needs to be minimized.

4.3 Experiment Results and Discussion
We compared the performance of our approach with TCP under
two different network sizes, 5 and 10, to observe their scalability.
We analyze the results under both metrics below.

4.3.1 Consensus Establishment Time. The results for Completion
time for all approaches are shown in Figure 5. As can be seen, our
network coding based approaches significantly reduce the Com-
pletion Time compared to TCP Unicast approach for 10 nodes and
provides comparable results for 5 nodes. As expected, the real ef-
fectiveness of our approach is when the network size grows to
10 which implicates that network coding approach scales much
better. Specifically, the time is reduced by a magnitude of 4 to 8.
For the 5-node case, only Random Network Coding approaches
provide comparable result to TCP. In particular, Fixed approach
with random waiting performs the best as the waiting time for
retransmissions does not increase and congestion is not much as
there are few nodes in the network. However, the trend is reverse
for the Regular Network Coding approach. We speculate that 5
nodes is too small to come up with a meaningful pattern.

For the 10-node case, the Fixed retransmission function takes
the least time for both random and regular cases to reach a consen-
sus when compared to the others. This is due to the fact that the
randomly generated retransmission value is fixed and not grow-
ing over the time. Since it is fixed, the waiting time for the next
retransmission does not increase. Similarly, since the Logarithmic
function is slowly increasing in the beginning, its waiting time for
the next retransmission is far less than the Exponential one. Con-
sequently, the exponentially increasing Retransmission function
reaches the consensus later than the other ones. Another obser-
vation is that the regular retransmission method performs worse
than the random ones for each particular case. This is a result of
collisions during retransmissions. Even if a node waits for an expo-
nentially increasing time to retransmit again, the other nodes also
wait for a similar amount, which implies that each node would start
transmission synchronously. It causes unnecessary congestion over
the network and increases the packet drop rate.

As expected, TCP takes the most time to reach a consensus in
the 10-node case. This is due to the fact that TCP requires reliable
connection setup and acknowledgements for each pair of commu-
nication. In addition, TCP RTO mechanism causes unnecessary
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Figure 5: Consensus Establishment Time for different approaches.

waiting for each packet due to random packet loses. However, the
Network Coding based approaches require neither a connection
setup process nor congestion control mechanisms which are ad-
versely affected from packet losses as a result of RF interference.

4.3.2 Total Size of the Outgoing Traffic. Next, we look at the total
amount of data transmitted by all the nodes. The results are shown
in Figure 6. As expected, TCP generates more traffic, because a block
should be transferred multiple times for each node. However, the
Network Coding approaches produce much less traffic due to the
fact that a single packet transfer is adequate for reaching multiple
neighbors by broadcasting. The reductions are consistent for both
5 and 10-node cases and is at least in the order of 2 to 4 magnitude.

Finally, we can obeserve that the Logarithmic and Exponen-
tial Retransmision functions in the Network Coding help decreas-
ing the traffic overhead at the expense of high consensus time.
When compared to each other, it can be seen that the Fixed re-
transmission method prominently produces the most traffic. This
can be attributed to more frequent retransmissions which increase
the probability of medium access collisions and packet losses. There-
fore, if energy savings is the most critical aspect of the application,
Logarithmic approach would be better than Fixed approach to
save more energy. Otherwise, if consensus time is critical, Fixed
approach should be used.

5 CONCLUSION
In this paper, we investigated a new mechanism for reducing the
communication overhead of the BA protocol that is used for PBC
applied to IoT settings. Specifically, we proposed network coding
to be used in wireless and lossy environments of IoT applications
to reduce the number of packet losses and accelerate the consensus
time. Several re-transmission timers are tried to fit the needs of IoT.

The proposed BA protocol is implemented in an actual wireless
mesh network of Raspberry PI devices at FIU Engineering Center.
The experimental evaluation with 10 nodes indicated that network
coding can surely decrease the consensus time while also reduc-
ing the number of transmissions which enables significant energy
savings for resource constrained IoT devices. Consequently, net-
work coding can be a viable approach when applying blockchain
technologies to IoT applications.
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7 APPENDICES
7.1 Steps of Building IEEE 802.11s-based

Testbed
First, we need to install usbutils tool and required firmware on
Rasberry PIs to be able to recognize thewireless adapters by running
the following commands.

$sudo apt−ge t i n s t a l l w i r e l e s s − t o o l s u s b u t i l s
$sudo apt−ge t i n s t a l l f imware− r a l i n k

Second, to configure wireless interface settings, we installed
iwtool as following,

$sudo apt−ge t i n s t a l l iw

Finally, we configure the wireless interface using following com-
mands.

$sudo iw dev wlan1 i n t e r f a c e add FIUmesh type mp
$sudo iw dev FIUmesh se t channe l 11
$sudo i f c o n f i g FIUmesh 1 0 . 1 . 1 . 2 9 netmask up
$sudo iw dev FIUmesh mesh j o i n
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Figure 6: The size of outgoing traffic for different approaches.

7.2 Adapting TCP Stack for Wireless
Environments

The default TCP stack installed in Linux does not perform well in
wireless conditions and thus leads to frequent timeouts and poor
overall performance. Therefore, we changed the default settings of
TCP as follows to adapt to the wireless environments.

$sudo s y s c t l ne t . i pv4 . t c p _ f r t o =1
$sudo s y s c t l ne t . i pv4 . t c p _ l ow_ l a t e n cy =1
$sudo s y s c t l ne t . i pv4 . t c p _ f r t o _ r e s p o n s e =2

$ne t . i pv4 . t c p _ s y n _ r e t r i e s = 15
$ne t . i pv4 . t c p _ s y n a c k _ r e t r i e s = 15
$ne t . i pv4 . t c p _ r e t r i e s 2 = 45

The first setting enables F-RTO recovery algorithm for TCP re-
stransmission timeouts. This parameter particularly boosts the
performance of TCP stack in wireless environments. The second
parameter forces TCP stack to prefer low latency rather than high
throughput settings. The third one enables aggressive response to
retransmision timeout in F-RTO settings. If F-RTO detects a TCP
retransmission, it acts aggressively to re-transmit again. The later
parameters are related to maximum retry counts. We increased
these parameters accordingly.

Another important settings is related to reliability of the TCP
stack. TCP is known as providing a reliable, stream-oriented connec-
tion between hosts which guarantees that the data reaches to the
destination. However, a naive use of TCP stack to just send the data
often fails in multi-hop wireless settings, and causes transmitted
data to never arrive to its destination. To avoid this behaviour, we
set SO LINGER socket option to keep socket alive till the packets
reach the destination.
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