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Abstract—The multi-commodity flow-cut gap is a fundamen-
tal parameter that affects the performance of several divide &
conquer algorithms, and has been extensively studied for vari-
ous classes of undirected graphs. It has been shown by Linial,
London and Rabinovich [20] and by Aumann and Rabani [5]
that for general n-vertex graphs it is bounded by O(log n) and
the Gupta-Newman-Rabinovich-Sinclair conjecture [13] asserts
that it is O(1) for any family of graphs that excludes some fixed
minor.

We show that the multicommodity flow-cut gap on directed
planar graphs is O(log3 n). This is the first sub-polynomial
bound for any family of directed graphs of super-constant
treewidth. We remark that for general directed graphs, it has
been shown by Chuzhoy and Khanna [11] that the gap is
˜Ω(n1/7), even for directed acyclic graphs.

As a direct consequence of our result, we also obtain the first
polynomial-time polylogarithmic-approximation algorithms for
the Directed Non-Bipartite Sparsest-Cut, and the Directed
Multicut problems for directed planar graphs, which extends
the long-standing result for undirectd planar graphs by Rao
[22] (with a slightly weaker bound).

At the heart of our result we investigate low-distortion
quasimetric embeddings into directed �1. More precisely, we
construct O(log2 n)-Lipschitz quasipartitions for the shortest-
path quasimetric spaces of planar digraphs, which generalize
the notion of Lipschitz partitions from the theory of metric
embeddings. This construction combines ideas from the theory
of bi-Lipschitz embeddings, with tools form data structures on
directed planar graphs.

Keywords-mertic embeddings; approximation algorithms;
sparsest cut; planar graphs; quasimetric spaces;

I. INTRODUCTION

The multi-commodity flow-cut gap has been proven in-

strumental in the design of routing and divide & conquer

algorithms in graphs. Bounds on this parameter generalize

the max-flow/min-cut theorem, and lead to deep connections

between algorithm design, graph theory, and geometry [20],

[5], [3].

While the flow-cut gap for several classes of undirected

graphs has been studied extensively, the case of directed

graphs is poorly understood. In this work we make progress

towards overcoming this limitation by showing that the flow-

cut gap on n-vertex planar digraphs is O(log3 n). This is

the first sub-polynomial bound on any family of digraphs of

super-constant treewidth (not directed treewidth but the ab-

stract graphs ignoring directions are of constant treewidth).

We contrast our result with the strong lower bound due to

Chuzhoy and Khanna [11], who showed that for general

directed graphs the gap is Ω̃(n1/7), even for directed acyclic

graphs. Thus it is highly natural to deal with planar directed

graphs. Note that there is a long standing conjecture that

for undirected planar graphs the flow-cut gap is O(1) (we

will mention more details later). There is no progress for a

long time. So it seems hard to improve our flow-cut gap to

O(1) (this improvement would imply the above mentioned

conjecture).

In order to prove our main results, we investigate low-

distortion metric embeddings into directed �1. More pre-

cisely, our result is obtained by proving an equivalent

result in the theory of bi-Lipschitz quasimetric embeddings,

which are mappings that generalize the standard theory

of bi-Lipschitz metric embeddings to the asymmetric case.

The distortion bound of our quasimetric embedding im-

plies the same bound for the standard LP relaxations of

various cut problems on directed graphs. Therefore, as a

direct consequence, we also obtain the first polynomial-

time polylogarithmic-approximation algorithms for several

cut problems on directed graphs, including Directed Non-

Bipartite Sparsest-Cut, and Directed Multicut for directed

planar graphs.

A. Multi-commodity flow-cut gaps for undirected graphs

A multi-commodity flow instance in an undirected graph

G is defined by two non-negative functions: c : E(G)→ R

and d : V (G) × V (G) → R. We refer to c and d as the

capacity and demand functions respectively. The maximum
concurrent flow is the maximal value ε such that for every

u, v ∈ V (G), ε · d(u, v) can be simultaneously routed

between u and v, without violating the edge capacities. We

refer to this value as maxflow(G, c, d).
For every S ⊆ V (G), the sparsity of S is defined as

follows: ∑
(u,v)∈E(G) c(u, v)|1S(u)− 1S(v)|∑
u,v∈V (G) d(u, v)|1S(u)− 1S(v)| ,
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where 1S : V (G)→ {0, 1} is the indicator for membership

in S. The sparsity of a cut is a natural upper bound for

maxflow(G, c, d). The multi-commodity max-flow min-cut
gap for G, denoted by gap(G), is the maximum gap between

the value of the flow and the upper bound given by the

sparsity formula, over all multi-commodity flow instances

on G. The flow-cut gap on undirected graphs has been

studied extensively, and several upper and lower bounds

have been obtained for various graph classes. The gap is

referred to as the uniform multi-commodity flow-cut gap

for the special case where there is a unit demand between

every pair of vertices. Leighton and Rao [19] showed that

the uniform flow-cut gap is Θ(log n) in undirected graphs.

Subsequently Linial, London and Rabinovich [20] and Au-

mann and Rabani [5] showed that the non-uniform multi-

commodity flow-cut gap for the Sparsest Cut problem with

k demand pairs is upper bounded by O(log k).
The flow-cut gap immediately implies a polynomial-

time approximation algorithm for Sparsest-Cut, with ap-

proximation ratio equal to the gap. For general graphs,

improved approximation algorithms have been obtained via

semidefinite programming relaxations. This approach, pio-

neered by Arora, Rao and Vazirani [4], leads to O(
√
log k)-

approximation for the uniform case, and has been extended

to O(
√
log k log log k)-approximation for the general case

by Arora, Lee and Naor [3]. The latter approach relies upon

embeddings of metric spaces of negative type into �1.

Besides these there are various studies of the flow-cut

gap for specific graph families. A central conjecture posed

by Gupta, Newman, Rabinovich, and Sinclair in [13] asserts

the following.

Conjecture 1 (GNRS Conjecture [13]). The multi-
commodity flow-cut gap on any family F of graphs is O(1)
if and only if F forbids some fixed minor.

Arguably one of the most interesting cases of Conjecture

1, which is still open, is the case of planar graphs, which is

often referred to as the planar embedding conjecture:

Conjecture 2 (Planar Embedding Conjecture). The multi-
commodity flow-cut gap on planar graphs is O(1).

Conjecture 2 has been verified for the case of series-

parallel graphs [13], O(1)-outerplanar graphs [8], O(1)-
pathwidth graphs [18], and for some special classes of planar

metrics [26]. However, Conjecture 2 is still wide open, and

the current best gap is O(
√
log n) by Rao [22] from 1999.

Since then, no improvement has been made. The best-known

lower bound is 2 [17].

For graphs excluding any fixed minor the flow-cut gap is

known to be O(1) for uniform demands [15].

B. Multi-commodity flow-cut gaps for directed graphs

For the case of directed graphs, the flow-cut gap is defined

in terms of the Directed Non-Bipartite Sparsest Cut problem

which is an asymmetric variant of the Sparsest Cut problem,

and is defined as follows. Let G be a directed graph and

let c : E(G) → R≥0 be a capacity function. Let T =
{(s1, t1), (s2, t2), . . . , (sk, tk)} be a set of terminal pairs,

where each terminal pair (si, ti) has a non-negative demand

dem(i). A cut in G is a subset of directed edges of E(G).
For a cut S ⊆ E(G) in G, let IS be the set of all indices

i ∈ {1, 2, . . . , k} such that all paths from si to ti have at

least one edge in S. Let D(S) =
∑

i∈IS dem(i) be the

demand separated by S. Let W (S) = C(S)
D(S) be the sparsity

of S. The goal is to find a cut with minimum sparsity. The

LP relaxation of this problem corresponds to the dual of

the LP formulation of the directed maximum concurrent

flow problem, and the integrality gap of this LP relaxation

is the directed multi-commodity flow-cut gap. Hajiaghayi

and Räcke [14] showed an upper bound of O(
√
n) for the

flow-cut gap. This upper bound on the gap has been further

improved by Gupta [12], and the current best approximation

ratio is given by Agarwal, Alon and Charikar to Õ(n11/23)
in [2].

Besides these there are only a few studies of the flow-cut

gap for specific (directed) graph families. For directed graphs

whose abstract graphs are of treewidth t, it has been shown

that the gap is at most t logO(1) n by Mémoli, Sidiropoulos

and Sridhar [21]. Salmasi, Sidiropoulos and Sridhar [25]

have shown that the gap for the uniform case is O(1) on

directed graphs whose abstract graphs are series-parallel, and

on digraphs whose abstract graphs are of bounded pathwidth,

which implies O(log n) bounds for the gap on the non-

uniform case.
On the lower bound side Saks et al. [24] showed that for

general directed graphs the flow-cut gap is at least k−ε, for

any constant ε > 0, and for any k = O(log n/ log log n).
The current best lower bound is given by Chuzhoy and

Khanna who showed a Ω̃(n
1
7 ) lower bound for the flow-

cut gap in [11].
Our main result on multi-commodity flow-cut gaps.: In

this paper we obtain the first poly-logarithmic upper bound

for any family of digraphs whose abstract graph is of super-

constant treewidth. Our main result on multi-commodity

flow-cut gaps is as follows.

Theorem I.1. The uniform multi-commodity flow-cut gap
on planar digraphs is O(log2 n). The non-uniform multi-
commodity flow-cut gap on planar digraphs is O(log3 n).

Given the strong lower bound by Chuzhoy and Khanna

[11] for general directed graphs (even for directed acyclic

graphs), it is highly natural to deal with planar digraphs.
This result can be considered as a first step to generalize

Conjecture 2 for planar digraphs. Let us observe that if we

could show O(1) gap in Theorem I.1, this would imply Con-

jecture 2. Moreover, this result extends the above mentioned

long-standing result for undirectd planar graphs by Rao [22]

to planar digraphs (with a slightly weaker bound).
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Theorem I.1 is a direct consequence of our main technical

result, which uses the theory of Lipschitz quasipartitions,

and is stated formally in Theorem I.4 (see [21], [25] for the

reduction).

C. Cut problems of directed graphs

Better bounds on the flow-cut gap typically also imply

better approximation ratios for solving cut problems. For

the Directed Non-Bipartite Sparsest Cut problem the flow-

cut gap upper bounds of [14] and [2] are also accompanied

by O(
√
n) and O(ñ11/23) polynomial time approximation

algorithms respectively. Similarly for digraphs whose ab-

stract graph are of treewidth t, a t logO(1) n polynomial time

approximation algorithm is also provided in [21].

Another closely related cut problem is the Directed

Multicut problem which is defined as follows. Let G be

a directed graph and let c : E(G) → R≥0 be a ca-

pacity function. Let T = {(s1, t1), (s2, t2), . . . , (sk, tk)}
be a set of terminal pairs. A cut in G is a subset of

E(G). The capacity of a cut S is c(S) =
∑

e∈S c(e).
The goal is to find a cut separating all terminal pairs,

minimizing the capacity of the cut. This problem is NP-

hard. An O(
√
n log n) approximation algorithm for Directed

Multicut was presented by Cheriyan, Karloff and Rabani

[9]. Subsequently an Õ(n2/3/OPT 1/3)-approximation was

given due to Kortsarts, Kortsarz and Nutov [16]. Finally [2]

also gives an improved Õ(n11/23)-approximation algorithm

for this problem. Again for digraphs whose abstract graphs

are of treewidth t a t logO(1) n approximation algorithm was

also shown in [21].

On the hardness side [10] demonstrated an Ω( logn
log logn )-

hardness for the Directed Non-Bipartite Sparsest Cut

problem and the Directed Multicut problem under the as-

sumption that NP �⊆ DTIME (nlognO(1)

). This was further

improved by them in a subsequent work [11] to obtain

an 2Ω(log1−ε n)-hardness result for both problems for any

constant ε > 0 assuming that NP ⊆ ZPP .

Our main results for these problems are the following

theorems.

Theorem I.2. There exists a polynomial-time O(log2 n)-
approximation algorithm for the Uniform Directed
Sparsest Cut problem on planar digraphs. Moreover,
there exists a polynomial-time O(log3 n)-approximation
algorithm for the General Directed Sparsest Cut problem
on planar digraphs.

Theorem I.3. There exists a polynomial time O(log2 n)-
approximation algorithm for the Directed Multicut
problem on planar digraphs.

Both of the above results are direct consequences of

our results on the theory of bi-Lipschitz quasimetric em-

beddings, which we describe in the next subsection. We

refer the reader to [21], [25] for a detailed description of

the reduction from directed cut problems to bi-Lipschitz

quasimetric embeddings.

D. Quasimetric spaces and embeddings

Random quasipartitions.: A quasimetric space is a pair

(X, d) where X is a set of points and d : X ×X → R+ ∪
{+∞}, that satisfies the following two conditions:

(1) For all x, y ∈ X , d(x, y) = 0 iff x = y.

(2) For all x, y, z ∈ X , d(x, y) ≤ d(x, z)+d(z, y).

The notion of random quasipartitions was introduced in

[21]. A quasipartition of a quasimetric space (X, d) is

a transitive reflexive relation on X . We remark that this

definition is a generalization of the notion of a partition of a

set of points, which can be viewed as a symmetric transitive

binary relation, where two points are related if and only if

they belong to the same cluster.

Let G be a digraph and let M = (V (G), dG) be its

shortest-path quasimetric space. Let F ⊆ E(G). Let

R = {(u, v) ∈ V (G)×V (G) : v is reachable from u in G\F}.

It is immediate to check that R is indeed a quasipartition.

We say that R is induced by the cutset F .

Let M = (X, d) be a quasimetric space. For any fixed

r ≥ 0, we say that a quasipartition Q of M is r-bounded if

for every x, y ∈ X with (x, y) ∈ Q, we have d(x, y) ≤ r.

For any β > 0, we say that a distribution over r-bounded

quasipartitions of M , D, is β-Lipschitz if for any x, y ∈ X ,

we have that

Pr
P∼D

[(x, y) /∈ P ] ≤ β
d(x, y)

r
.

Given a distribution D over quasipartitions we sometimes

use the term random quasipartition (with distribution D) to

refer to any quasipartition P sampled from D. We consider

the quasimetric space obtained from the shortest path dis-

tance of a directed graph. Mémoli, Sidiropoulos and Sridhar

in [21] find an O(1)-Lipschitz distribution over r-bounded

quasipartitions of tree quasimetric spaces. They also prove

the existence of a O(t log n)-Lipschitz distribution over r-

bounded quasipartitions for any quasimetric that is obtained

from a directed graph of treewidth t.

Our main result on Lipschitz quasipartitions is the follow-

ing theorem. This is the main technical contribution of this

paper. The fact that the quasipartition is efficiently samplable

is needed in the algorithmic applications.

Theorem I.4. Let n ∈ N, and let G be an n-vertex
planar digraph with non-negative edge lengths. Then for
any Δ > 0, there exists a Δ-bounded, O(log2 n)-Lipschitz
random quasipartition of the quasimetric space (V (G), dG).
Moreover the quasipartition is samplable in polynomial
time.
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Quasimetric embeddings.: Before stating our embed-

ding results, we first need to introduce some notations

and definitions. Let M = (X, d) and M ′ = (X ′, d′) be

quasimetric spaces. A mapping f : X → X ′ is called

an embedding of distortion c ≥ 1 if there exists some

α > 0, such that for all x, y ∈ X , we have d(x, y) ≤ α ·
d′(f(x), f(y)) ≤ c ·d(x, y). We say that f is isometric when

c = 1. We remark that this definition directly generalizes the

standard notion of distortion of maps between metric spaces;

however, here the ordering of any pair of points is important

when dealing with distances.

Directed �1 (Charikar et al. [7]).: The directed �1
distance between two points x and y is given by d�1(x, y) =∑
i

|xi − yi|+
∑
i

|xi| −
∑
i

|yi|.
We can now state the main result on embeddability into

directed �1, which is an immediate consequence of Theorem

I.4. For a detailed description of the reduction from the

directed �1 embeddability to Lipschitz quasipartitions, we

refer the reader to [21], [25].

Theorem I.5. Let n ∈ N, and let G be an n-vertex planar
digraph with non-negative edge lengths. Then the quasimet-
ric space (V (G), dG) admits an embedding into directed
�1 with distortion O(log3 n). Moreover the embedding is
computable in polynomial time.

E. High-level Overview of our Proof

As we have explained above, all of the results in this

paper are direct consequences of a single result concerning

random quasipartitions. Specifically, we show that for any

planar digraph G, and for any “scale” Δ > 0, there

exists a Δ-bounded O(log2 n)-Lipschitz quasipartition of the

quasimetric space (V (G), dG).

We remark that it is known that the classical theory of

Lipschitz partitions of metric spaces is known to not be

sufficient for obtaining such a result (see [21], [25]). Thus, in

order to handle the quasimetric case we combine ideas from

the theory of Lipschitz partitions with methods developed

within the literature of distance oracles for directed planar

graphs, developed by Thorup [27].

Because we deal with directed graphs, some difficulties

in using the distance oracle results appear in our proof. See

Figure 1 for example. Moreover, we also have to consider

some random partitioning scheme of directed graphs, which

is similar to the one used by Klein, Plotkin and Rao [15]

for undirected graphs.

We now explain what are the main ingredients used in the

proof, and how they are combined in our main algorithm.

The input to the algorithm consists of a directed planar graph

G and Δ > 0. The output is a random quasiparition of

the quasimetric space (V (G), dG). The main steps of the

algorithm are as follows. In order to simplify the exposition,

we relax slightly the notation.

Step 1: Partioning G into layers. It has been

shown by Thorup [27] that any planar digraph can

be decomposed into a sequence of vertex-disjoint

“layers” L1, L2, . . ., such that each layer Li has a

directed rooted spanning tree Ti, such that at least

one of the two following properties hold:

(i) Every vertex in Li can be reached from

the root via a directed path of length at

most Δ in Ti.

(ii) Every vertex in Li can reach the root

via a directed path of length at most Δ in

Ti.

We construct a randomized version of this decom-

position scheme, which is similar to the random

partitioning scheme used by Klein, Plotkin and Rao

[15]. One important property is that during this ran-

dom decomposition step, each edge (u, v) ∈ E(G)
is cut with probability at most O(dG(u, v)/Δ).
A key property is that, as in Thorup [27], every

path of length at most Δ can be contained in at

most three consecutive layers. This fact implies

that in order to obtain a quasipartition for G, it

is enough to compute a quasipartition for each

layer, and then output their “common refinement”

(which is formally defined by taking the union of

the corresponding cutsets).

Step 2: Quasipartioning each layer. It now re-

mains to show how to compute a quasipartiton

for each layer. Fix some layer L. We now invoke

another result of Thorup [27], who showed that

there exists three shortest paths P1, P2, P3 of

length at most Δ in L, such that V (P1 ∪P2 ∪P3)
is a balanced vertex separator of L. Of course, we

cannot simply delete the paths P1, P2, P3, since

this would cut some edges with probability 1 (since

the choice of the paths is deterministic). Instead,

we show how to delete some random set of edges

C ⊆ E(L), such that both of the following two

conditions hold for the resulting digraph:

(i) Each edge (u, v) ∈ E(L) is cut with

probability at most O(dL(u, v)/Δ).
(ii) If there exists a path R from u to v
that intersects P1 ∪ P2 ∪ P3, then it must

be that dG(u, v) ≤ Δ.

We refer to the above process as “quasipartitioning

the neighborhood of the separator”; we give more

details about this process in Step 3.

Equipped with this process, we easily obtain a

quasipartition for L via recursion: we recursively

run the algorithm, effectively quasipartitioning the

neighborhoods of all separators of each connected

component of L\V (P1∪P2∪P3). The final output

is the union of all cutsets computed in all recursive

483

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 16,2022 at 22:12:58 UTC from IEEE Xplore.  Restrictions apply. 



calls. Since every edge can be contained in at most

O(log n) recursive calls, it follows by the union

bound that the probability of cutting any particular

edge is at most O(log n) times the probability

of cutting it in each quasipartitioning step, which

we show below is at most O(log n · dL(u, v)/Δ),
which implies the result.

Step 3: Quasipartioning the neighborhood of
a separator. Because the separators involved in

Step 2 consist of the union of at most three

shortest paths, it can be shown that it is enough to

handle the case of a single separator path P . An

important difficulty here is that common intuition

from the notion of a “neighborhood” in the case

of undirected graphs, does not directly translate to

the directed case that we are dealing with. Roughly

speaking, the reason is that there are two different

neighborhoods of P : one consisting of all vertices

that are at distance at most Δ from some vertex in

P , and one consisting of all vertices that are at dis-

tance at most Δ to some vertex in P (See Figure 1

for example). We obtain a quasipartitioning scheme

that, roughly speaking, handles the “overlay” of

these two neighborhoods. This process is inspired

from the algorithm of Bartal [6] for computing

Lipschitz partitions of undirected graphs. Bartal’s

algorithm computes a random partition by growing

balls of radii that are distributed according to some

truncated exponential distribution. We adapt Bar-

tal’a algorithm by growing random “quasiballs”,

and showing that a similar analysis can be used to

analyze their behavior.

This completes the high-level description of our approach.
Comparison to Klein-Plotkin-Rao and beyond.: It has

been shown by Klein, Plotkin and Rao [15], that for any

undirected graph G that excludes some fixed minor, for any

Δ > 0, the shortest path metric (V (G), dG) admits a Δ-

bounded, O(1)-Lipschitz partition. Here, we obtain a slightly

weaker bound (i.e. O(log2 n) instead of O(1)), for the more

general case of directed graphs, but our resut holds only

for planar digraphs. The reason is that the approach in [15]

directly produces a forbidden minor, when the partitioning

scheme fails to produce a bounded partition. This is, in fact,

one of the very few known results for general minor-free

graph families, that does not use the celebrated theory of

graph minors of Robertson and Seymour [23]. In contrast,

we use planarity in very specific ways in order to randomly

“decompose” the input graph into more manageable pieces.

More precisely, we only use the above mentioned path

separator theorems by Thorup [27] for planar undirected

graphs. Ittai and Gavoille [1] showed that the above planar

result can be extended to minor-free undirected graphs. We

leave it as an open problem to extend our approach to

arbitrary families of minor-free directed graphs.

F. Organization
In Section II we introduce some definitions that will be

used throughout the rest of the paper. In Section III we

describe a general process for deleting random subsets of

edges, that is analogous to Bartal’s Lipschitz partitioning

scheme [6]. In Section IV we show how to apply this

general process to the special case of quasipartitioning the

“neighborhood” of a shortest path. This corresponds to the

above Step 3. In Section V we introduce a randomized

variant of Thorup’s decomposition scheme [27]; we also

use (recursively) the path separator theorems from [27] in

combination with the quasipartitioning scheme from Section

IV, to obtain a quasipartitioning scheme for each part of

the decomposition. This corresponds to the above Step

1. Finally, we put all the ingredients together in Section

VI, where we present the main algorithm for sampling a

Lipschitz quasipartition in any planar digraph.

II. DEFINITIONS AND PRELIMINARIES

We now introduce some notation that will be used

throughout the paper. For any functions f, g : N → N, we

write f(n) � g(n) whenever f(n) = O(g(n)).
Graphs and subgraphs.: For any graph G and any U ⊂

V (G), we denote by G[U ] the subgraph of G induced by

U ; that is V (G[U ]) = U , and E(G[U ]) = E(G)∩ (U ×U).
For any r > 0, we write

NG(U, r) = {v ∈ V (G) : dG(U, v) ≤ r},
where

dG(U, v) := min
u∈U

dG(u, v).

For any digraph G, any u, v ∈ V (G), and any directed

path P from u to v in G, we refer to u and v as the head
and tail of P , respectively. We denote by len(P ) the length

of P . For any a, b ∈ V (P ), we write a ≤P b if a precedes

b in the traversal of P . We also write b ≥P a if a ≤P b.
For any graph G, X ⊆ V (G), and α ∈ [1, 0], we say that

X is a α-balanced vertex separator of G if every connected

component of G \X has at most α|V (G)| vertices.

For any digraph G, let
←−
G denote the digraph obtained

by reversing the direction of every edge. For any path Q in

G, let
←−
Q denote the path in

←−
G obtained by reversing the

direction of every edge in Q.
For any digraph G, and any path P in G, and any

x, y ∈ V (P ), such that either x = y, or x appears before

y in P , we denote by P [x, y] the subpath of P from x to

y. Adapting standard set-theoretic notation, we also write

P [x, y) = P [x, y] \ {y}, P (x, y) = P [x, y] \ {x}, and

P (x, y) = P [x, y] \ {x, y},
III. EXPONENTIAL RANDOM QUASIBALLS

In this section we analyze the behavior of a general

process for constructing quasipartitions. The process in-

volves computing a sequence of cutsets that are induced by

quasiballs of exponentially distributed radius.
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The process is completely analogous to the algorithm used

by Bartal [6] to compute probabilistic partitions of metric

spaces.

Let H be a digraph, with |V (H)| = n, and let Δ > 0.

We define a probability distribution D over cutsets of H ,

i.e. 2E(H), as follows. First, we define a sequence of pairwise

disjoint subsets B1, . . . , Bt ⊆ V (H). Let I = [0,Δ lnn),
and let I be the truncated exponential probability dis-

tribution on I with probability density function p(x) =
n

n−1 · 1Δ ·e−x/Δ. Initially all vertices in H are unmarked. Let

v1 ∈ V (H) be chosen arbitrarily. Let R1 ∼ I, and define

B1 = ballH(v1, R1).

We mark all vertices in B1. For any i ≥ 1, we proceed in-

ductively. If all vertices in H are marked, then we terminate

the sequence at t = i − 1. Otherwise, we arbitrarily either

terminate the sequence at t = i−1, or we proceed to define

Bi; that is, this choice can depend on all previous random

choices. We set vi be to an arbitrary unmarked vertex. Let

Ri ∼ I, and define

Bi = ballH(vi, Ri) \ (B1 ∪ . . . ∪Bi−1) .

We mark all vertices in Bi. This completes the inductive

construction of the sequence B1, . . . , Bt. Finally, we set

F =
t⋃

i=1

E(H) ∩ (Bi × (V (H) \ (B1 ∪ . . . ∪Bi))) .

That is, for all i ∈ {1, . . . , t}, the cutset F contains all edges

starting in Bi and ending at outside of B1 ∪ . . . ∪Bi. This

completes the definition of the random cutset F . We say that

the resulting probability distribution D is a Δ-shock.

We remark that the above process is quite general and

allows for many different strategies for choosing the next

vertex vi, and for deciding whether to terminate the sequence

before all vertices have been marked. In our main algorithm,

we will apply this process by choosing the vertices v1, . . . , vt
from an inverse traversal of some shortest path (see Section

IV).

We next analyze Δ-shocks.

Lemma III.1. Let H be a digraph, let Δ > 0, let D be a
Δ-shock, and let F ∼ D. Then, for any (u, v) ∈ E(H), we
have

Pr[(u, v) ∈ F ] ≤ 2dH(u, v)/Δ.

The proof of Lemma III.1 is similar to the analysis of an

analogous result for the case of metric cases from Bartal [6].

For the sake of completeness, the proof of Lemma III.1 is

given in Section A.

IV. QUASIPARTITIONING THE NEIGHBORHOOD OF A

DIRECTED PATH

Let H be a digraph, let Δ > 0, and let Q be a shortest path

in H from some v ∈ V (H) to some v′ ∈ V (H), of length at

most Δ. We describe a procedure for computing a random

quasipartition, given H and Q. Let I = [0,Δ lnn), and let

I be the truncated exponential probability distribution on I
with probability density function p(x) = n

n−1 · 1
Δ · e−x/Δ.

The procedure consists of the following steps.

Procedure PATH-QUASIPARTITION(H,Q,Δ)
Step 1: Cutting balls away from Q. For any i ∈
N, let Ri ∼ I. Let a1 = v′,

B1 = ballH(a1, R1),

For any i > 1, let ai be the first vertex not in

B1 ∪ . . . ∪ Bi−1 that we visit when traversing
←−
Q

starting from v′. Let

Bi = ballH(ai, Ri) \
⎛⎝i−1⋃

j=1

Bj

⎞⎠ .

For any i ∈ N, let

Fi = E(H) ∩ (Bi × (V (H) \Bi)).

See Figure 1 for an example.

Step 2: Cutting balls towards Q. For any i ∈ N,

let R′i ∼ I. Let a′1 = v,

B′1 = ball←−
H
(a′1, R

′
1),

For any i > 1, let a′i be the first vertex not in

B′1 ∪ . . . ∪ B′i−1 that we visit when traversing

Q starting from v; w.l.o.g. we may assume that

d←−
H
(a′i, a

′
i−1) = R′i, by subdividing one edge of

H . Let

B′i = ball←−
H
(a′i, R

′
i) \

⎛⎝i−1⋃
j=1

B′j

⎞⎠ .

For any i ∈ N, let

F ′i = E(H) ∩ ((V (H) \B′i)×B′i).

Step 3: Output. Let F =
⋃

i∈N Fi, F
′ =

⋃
i∈N F ′i .

We output the cutset C = F ∪ F ′, and the

quasipartition Z induced by C.

This completes the description of the procedure.

Portal assignment.: The procedure PATH-

QUASIPARTITION computes sets of vertices A = {ai}i,
A′ = {a′i}i. We refer to the vertices in A ∪ A′ as portals.

We define mappings

π1 : V (Q)→ A,

and

π2 : V (Q)→ A′,

as follows. For any ai ∈ A, and for any x ∈ V (
←−
Q [ai, ai+1)),

we set π1(x) = ai. For any a′i ∈ A′, and for any x ∈
V (Q[ai, ai+1)), we set π2(x) = ai. Figure 2 depicts an

example.
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Figure 1. An example of Step 1 in procedure PATH-QUASIPARTITION(H,Q,Δ). Each Bi is depicted as a region with a distinct color. For clarity, only
the regions B1, . . . , B4 are depicted. The sets F1, . . . , F4 are also depicted, each with a different color. We remark that Q is a shortest path from v to
v′, but does not need to be a shortest path from v′ to v. Consequently, the intersection of each Bi with Q does not need to consist of a single contiguous
sub-path (e.g. B3).

Figure 2. An example portal assignment.

Analysis.: We now analyze the quasipartition computed

by procedure PATH-QUASIPARTITION.

Lemma IV.1. Let H be a digraph, let Q be a shortest path
in H of length at most Δ > 0. Let C be a random cutset
computed by Procedure PATH-QUASIPARTITION(H,Q,Δ),
and let Z be the induced quasipartition. Then the following
conditions hold:

(1) For any (x, y) ∈ E(H),

Pr[(x, y) /∈ Z] � dH(x, y)

Δ
.

(2) Let x, y ∈ V (H). Suppose that there exists
some path P from x to y in H \ C, such that P
intersects Q. Then, dH(x, y) � Δ log n.

Proof: First we prove part (1). From Lemma III.1 it

follows that for any i ∈ {1, 2}, during Step i, the probability

of cutting (x, y) is at most 2dH(x, y)/Δ. By taking a union

bound over the two steps, the assertion follows.

It remains to prove part (2). Let a and b be the first and

last vertices in V (P ) ∩ V (Q) that we encounter along a

traversal of P .

We argue that dH(x, π2(a)) � Δ log n. Recall that C =
F ∪ F ′, where F is the cutset computed in Step 1, and F ′

is the cutset computed in Step 2. Let P1 = P [x, a]. Since

P ⊆ H \ C, it follows that E(P1) ∩ F ′ = ∅. By induction

on i ∈ N, we have that for all i ≥ 1, there exists no path in

H \ F ′ from any vertex in V (H) \ (B′1 ∪ . . . ∪ B′i) to any

vertex in B′1∪ . . .∪B′i. Therefore, there exist j, k ∈ N, with

j ≤ k, such that x ∈ B′j and a ∈ B′k (see Figure 3). Thus

dH(x, π2(a)) ≤ dH(x, aj) + dH(aj , π2(a))

(triangle inequality)

� Δ log n+ dH(aj , π2(a))

(x ∈ B′j ⊆ ball←−
H
(aj , Rj))

� Δ log n+Δ

(aj ≤Q ak ≤Q π2(a) and len(Q) ≤ Δ)

� Δ log n, (1)

as required.

We next argue that dH(π1(b), y) � Δ log n. Arguing as

in the paragraph above, we have that there exist s, t ∈ N,
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Figure 3. The configuration in the proof of Lemma IV.1. The path P1 is
not cut by F ′.

with s ≥ t, such that b ∈ Bs and y ∈ Bt. Thus

dH(π1(b), y) ≤ dH(π1(b), at) + dH(at, y)

(triangle inequality)

� dH(π1(b), at) + Δ log n

(y ∈ Bt ⊆ ballH(at, Rt))

� Δ+Δ log n

(π1(b) ≤Q as ≤Q at and len(Q) ≤ Δ)

� Δ log n, (2)

as required.

We next argue that dH(π2(a), π2(b)) � Δ. If π2(a) ≤Q

π2(b), then π2(a) can reach π2(b) by following Q, and

thus dH(π2(a), π2(b)) ≤ len(Q) ≤ Δ. Thus it remains

to consider the case π2(a) ≥Q π2(b). Let i, j ∈ N, such

that π2(a) = a′i and π2(b) = a′j . Since a′i ≥Q a′j , it

follows that i ≥ j. If i = j, then π2(a) = π2(b), and thus

dH(π2(a), π2(b)) = 0. Thus, it remains to consider the case

i > j. By induction on the execution of Step 2, we have that

for all t ∈ N, any vertex in V (H) \ (B′1 ∪ . . . ∪B′t) cannot

reach any vertex in B′1 ∪ . . . ∪ B′t in H \ F ′. Therefore,

a cannot reach b, which is a contradiction. We have thus

established that

dH(π2(a), π2(b)) ≤ Δ. (3)

Next, we argue that dH(π2(b), π1(b)) ≤ Δ. By the choice

of portals, we have that π2(b) ≤Q b ≤Q π1(b). Since

len(Q) ≤ Δ, this implies that

dH(π2(b), π1(b)) ≤ len(Q) ≤ Δ. (4)

Combining (1), (2), (3) and (4) with the trian-

gle inequality, we obtain dH(x, y) ≤ dH(x, π2(a)) +
dH(π2(a), π2(b)) + dH(π2(b), π1(b)) + dH(π1(b), y) �
Δ log n + Δ + Δ + Δ logn � Δ log n, which concludes

the proof.

V. CRASHING WAVES

In this section, we refine some important concepts in [27].

This is one of the keys in our analysis in the next section.

We recall the following definition from [27]. A (t,Δ)-
layered spanning tree T in a digraph H is a directed rooted

spanning tree such that any root-to-leaf path in T is the

Figure 4. A sample from a (v,Δ)-wave.

concatenation of at most t shortest paths in H , each of length

at most Δ. We say that H is (t,Δ)-layered if it contains

such a spanning tree. We are interested in (1,Δ)-layered

graphs and their properties. However, we use the slightly

more general definition in order to maintain a compatible

notation with [27].

Definition V.1 (Wave). Let G be a digraph, v ∈ V (G),
Δ > 0. We define a probability distribution, D, supported
over 2E(G). Let τ0, . . . , τn ∈ [0,Δ) be chosen uniformly and
independently at random. Let

V0 = {u ∈ V (G) : dG(v, u) ≤ 2Δ + τ0},
and for any i ≥ 1, let

Vi =

{ {u ∈ V (G) : dG(Vi−1, u) ≤ 2Δ + τi} if i is even
{u ∈ V (G) : dG(u, Vi−1) ≤ 2Δ + τi} if i is odd

For any i ∈ N, let

Ei =

{
E(G) ∩ (Vi−1 × Vi) if i is odd
E(G) ∩ (Vi × Vi−1) if i is even

Finally, let
E′ =

⋃
i

Ei.

We define D to be the distribution of the random variable
E′. We refer to D as a (v,Δ)-wave.

Figure 4 gives an example of the construction of a wave.

From the above definition, we show the following lemma.

Lemma V.2. Let G be a digraph, v ∈ V (G), Δ > 0.
Suppose that all edges in G have length at most Δ. Let
D be a (v,Δ)-wave. Let E′ be a subset of edges sampled
from D, i.e. E′ ∼ D. Then the following properties hold:

(i) For any (a, b) ∈ E(G), we have that

Pr[(a, b) ∈ E′] � dG(a, b)

Δ
.

(ii) The following holds with probability 1. Let P
be any path in G of length at most Δ. There exists
some i ≥ 0, such that V (P ) ⊆ Vi ∪ Vi+1 ∪ Vi+1.
Furthermore, P can be decomposed into consecu-
tive subpaths P = P1 ◦ P2 ◦ P3, such that for all
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i ∈ {1, 2, 3}, there exists j ∈ {i, i+1, i+2}, such
that Pi ⊆ Vj

(iii) The following holds with probability 1. For any
i ∈ N, contracting

⋃
j<i Vj into a single vertex,

and deleting
⋃

j>i Vj results in a (1,Δ)-layered
graph.

Proof: We first prove (i). Let (a, b) ∈ E(G). Consider

the process of sampling E′ from D. Let U0 = {v}, and for

any i ≥ 1, let Ui = V0∪ . . .∪Vi−1. Intuitively, we can think

of the process of sampling E′ as inductively constructing

the sequence {Vi}i≥0, and Ui is the set of vertices that have

already been explored just before constructing Vi. In order

to cut the edge (a, b) during the construction of Vi, it must

be that

dG(Ui, a) ≤ 2Δ + τi < dG(Ui, b). (5)

This implies that

dG(Ui, a) ≤ 3Δ. (6)

By the definition of a wave we have that NG(Ui, 2Δ) ⊆
Ui+2. Combining with (6) we get

dG(Ui+2, a) ≤ Δ. (7)

However, (7) implies that, with probability 1, {a, b} ⊆ Ui+1,

and thus (a, b) cannot be cut during the construction of

Vi+2. Therefore, (a, b) can potentially be cut in at most

two consecutive steps during the constructing of some Vi

and Vi+1. Note that i is a random variable that depends on

the choice of the random variables {τi}i≥0. In each one of

these two steps, by triangle inequality, we have that (a, b) is

cut when (5) holds, which happens with probability at most
dG(Ui,b)−dG(Ui,a)

Δ ≤ dG(a,b)
Δ . By the union bound over these

two steps, it follows that the probability that (a, b) is cut

at any point during the construction of the wave is at most

2dG(a,b)
Δ , as required. This proves part (i).

Next, we prove part (ii). Let P be any path in G of length

at most Δ. Let w and w′ be the first and last vertices in P .

Let i be the minimum integer such that V (P ) ∩ Vi �= ∅.
Let v be an arbitrary vertex in V (P ) ∩ Vi. Since P has

length at most Δ, it follows that for any v′ ∈ V (P ), either

dG(v, v
′) ≤ Δ, or dG(v

′, v) ≤ Δ. In both cases, this implies

that v′ ∈ Vi ∪ Vi+1 ∪ Vi+2. Since v′ is arbitrary, we get

P ⊆ Vi ∪ Vi+1 ∪ Vi+2. It remains to show that P can be

decomposed into consecutive subpaths P = P1 ◦ P2 ◦ P3,

such that for all i ∈ {1, 2, 3}, there exists j ∈ {i, i+1, i+2},
such that Pi ⊆ Vj . By the construction of a wave, it follows

that for all t, we either cut all edges from Vt to Vt+1, or

we cut all the edges from Vt+1 to Vt. Thus, while traversing

P , if we leave some set Vt, we can never return to Vt (see

Figure 4). This implies that the intersection of P with each

of the sets Vi, Vi+1, and Vi+2 is either empty or a subpath

of P , which concludes the proof of part (ii).

Finally, part (iii) follows by contracting Ui into a single

vertex ui, and setting the spanning tree T in the definition

of layered graph to be the shortest path tree rooted at ui.

We need the following result from [27].

Lemma V.3 (Thorup [27]). Let Δ > 0, and let H be a
planar (1,Δ)-layered digraph. Then, there exist shortest
paths P1, P2, P3 in H , each having length at most Δ, and
such that V (P1)∪V (P2)∪V (P3) is a 2/3-balanced vertex
separator in H . Moreover, there exists a polynomial-time
algorithm which given H and Δ outputs P1, P2, and P3.

Lemma V.4. Let Δ > 0. Let H be a planar (1,Δ)-layered
digraph. Then there exists a Δ-bounded, O(log2 n)-Lipschitz
quasipartition of the quasimetric space (V (H), dH).

Proof: We construct a random cutset C recursively. If

H contains at most c = O(1) vertices, then the result follows

by letting C be the set of all edges in H of length at least

Δ, with probability 1. Otherwise, we proceed as follows.

By Lemma V.3, we compute shortest paths P1, P2, P3 in H ,

each of length at most Δ, such that V (P1 ∪ P2 ∪ P3) is a

2/3-balanced vertex separator in H . For each i ∈ {1, 2, 3},
we run procedure PATH-QUASIPARTITION(H,Pi,Δ), and

obtain a random cutset Ci ⊆ E(H). We then recurse on

each connected component of H \ (P1 ∪P2 ∪P3). Let P be

the set of all paths computed by Lemma V.3 in all recursive

calls.

Let also C be the set of all random cutsets computed

during all recursive calls. We set

C =
⋃

C′∈C
C ′,

and we output the quasipartition R induced by C. This

completes the description of the algorithm.

We next show that R is O(log n)-Lipschitz. Let (u, v) ∈
E(H). By construction, we have that (u, v) is contained in

at most one subgraph at each level of the recursion. Since

the depth of the recursion is k = O(log n), it follows that

(u, v) is contained in at most k subgraphs H1, . . . , Hk of

H , with

H = H1 ⊇ H2 ⊇ . . . ⊇ Hk.

For each i ∈ {1, . . . , k} let Pi,1, Pi,2, Pi,3 be the shortest

paths that the algorithm computes in Hi, such that V (P1 ∪
P2 ∪ P3) is a 2/3-balanced separator in Hi. For each i ∈
{1, . . . , k} let Ci be the random cutset that the algorithm
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computes in Hi. We have

Pr[(u, v) /∈ R] ≤ Pr[(u, v) ∈ C]

= Pr [(u, v) ∈ C1 ∪ . . . ∪ Ck]

≤
k∑

i=1

Pr[(u, v) ∈ Ci]

(union bound)

�
k∑

i=1

dHi
(u, v)

Δ

(part (1) of Lemma IV.1)

=

k∑
i=1

dH(u, v)

Δ

(since (u, v) ∈ E(H1) ∩ . . . ∩ E(Hk))

� log n
dH(u, v)

Δ
,

(k � log n)

and thus R is O(log n)-Lipschitz.

It remains to show that R is O(Δ logn)-bounded. Let

x, y ∈ V (H), such that (x, y) ∈ R. This implies that there

exists some path L from x to y in H \ C. Let

X =
⋃
P∈P

V (P ).

If V (L) ∩ X = ∅, then by the basis of the recursion we

have that L can contain at most c = O(1) edges, each of

length less than Δ, and thus dH(x, y) = O(Δ). Otherwise,

V (L) ∩ X �= ∅. This implies that there exists some path

P ∈ P such that L intersects P . By part (2) of Lemma

IV.1 it follows that dH(x, y) � Δ log n. Thus, in all cases

we obtain that dH(x, y) � Δ log n, which implies that

R is O(Δ logn)-bounded, concluding the proof. To obtain

a Δ-bounded, O(log2 n)-Lipschitz quasipartition, we just

scale the quasi-metric space (V (H), dH) by a factor of

Θ(1/ log n).

VI. LIPSCHITZ QUASIPARTITIONS FOR PLANAR

DIGRAPHS

We now prove our main result on Lipschitz quasiparti-

tions, which is the main technical ingredient of this paper.

We begin by describing the algorithm for computing a

quasipartition, and we then prove that it satisfies the desired

properties.

The input to the algorithm is a directed planar graph G,

and some parameter Δ > 0. The algorithm proceeds in the

following steps:

Step 1: Sampling from a wave. Pick an arbitrary

v ∈ V (G). Let D be a (v,Δ)-wave, and let Q′ be

a quasipartition sampled according to D, induced

by some cutset E′ ⊆ E(G); that is Q′ ∼ D. Let

{Vi}i∈N be as in Definition V.1. For any i, let

Gi be a (1,Δ)-layered graph (with probability 1)

obtained by part (iii) of Lemma V.2.

Step 2: Quasipartitioning each layer. By

Lemma V.4 it follows that for each i, there ex-

ists a polynomial-time samplable Δ/3-bounded

O(log2 n)-Lipschitz quasipartition Di of Gi. In

polynomial time, we sample some Qi ∼ Di,

induced by some cutset Fi.

Step 3: Output. Let F = E′ ∪ (
⋃

i Fi). The final

output is the quasipartition R induced by the cutset

F .

We are now ready to prove the main result of this Section.

Proof of Theorem I.4: Let F be the cutset computed

by the algorithm described above, and let R be the induced

quasipartition. Let also D, E′, Gi, Di, Fi be as in the

description of the algorithm.

We need to bound the probability that any ordered pair

of vertices is not in R. First, consider some (u, v) ∈ E(G).
By part (i) of Lemma V.2 we have that

Pr[(u, v) ∈ E′] � dG(u, v)

Δ
(8)

With probability 1, there exists at most one i ∈ N, such

that (u, v) ∈ E(Gi). Conditioned on the event that (u, v) ∈
E(Gi), by Lemma V.4 we have

Pr[(u, v) ∈ Fi] � log2 n
dG(u, v)

Δ
(9)

Combining (8), (9), and the fact that (u, v) can be in at most

one graph Gi, it follows by the union bound that

Pr[(u, v) ∈ F ] = Pr

[
(u, v) ∈ E′ ∪

(⋃
i

Fi

)]

= Pr

[
((u, v) ∈ E′) ∨

(
(u, v) ∈

⋃
i

Fi

)]

≤ Pr [(u, v) ∈ E′] + Pr

[
(u, v) ∈

⋃
i

Fi

]
(union bound)

� log2 n
dG(u, v)

Δ
. (10)

We have thus established that the probability of cutting

any particular edge is low. We next extend this bound to

arbitrary ordered pairs of vertices. Let u′, v′ ∈ V (G). If v′

is not reachable from u′ in G, the condition holds vacuously.

Thus, we may assume w.l.o.g. that v′ is reachable from u′

in G. Let P be a shortest path from u′ to v′ in G. Let

P = w1, . . . , wt, with w1 = u′, wt = v′. We have that if

(u′, v′) /∈ R, then at least one edge of P must be in F , since

otherwise v′ is reachable from u′ in G \ F , which implies
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(u′, v′) ∈ R. Thus, we have

Pr[(u′, v′) /∈ R] ≤ Pr[E(P ) ∩ F �= ∅]

= Pr

[(
t−1⋃
i=1

(wi, wi+1)

)
∩ F �= ∅

]

= Pr

[
t−1∨
i=1

((wi, wi+1) ∩ F �= ∅)
]

≤
t−1∑
i=1

Pr [(wi, wi+1) ∩ F �= ∅]

(union bound)

� log2 n
t−1∑
i=1

dG(wi, wi1)

Δ

(by (10))

= log2 n
dG(u

′, v′)
Δ

(P is a u′v′ shortest path)

Thus, we have established that the probability that any

ordered pair is not contained in the quasipartition is bounded,

as required.

It remains to show that R is Δ-bounded. To that end, it

suffices to show that for any a, b ∈ V (G), if dG(a, b) > Δ,

then (a, b) /∈ R. In order to prove the latter property, it

suffices to show that for any path Z from a to b, at least

one edge of Z is in the cutset F ; that is, E(Z) ∩ F �= ∅.
Let Z ′ be prefix of Z of length Δ (we may assume that Z ′

has length exactly Δ by subdividing one edge and inserting

a vertex on Z at distance exactly Δ from u). By part (ii)

of Lemma V.2 we have that, with probability 1, there exists

some i ∈ N, such that Z ′ can be decomposed into three

subpaths Z ′ = Z ′1◦Z ′2◦Z ′3, such that each Z ′t is contained in

some Gs. By setting Z ′′ to be the longest of the three paths

Z ′1, Z ′2 and Z ′3, we conclude that there exists some subpath

Z ′′ of Z ′, of length strictly greater than Δ/3, and there exists

some j ∈ N, such that Z ′′ ⊆ Gj . Since, by construction, Dj

is Δ/3-bounded, it follows that E(Z ′′) ∩ Fi �= ∅. Since

Fi ⊆ F , and E(Z ′′) ⊆ E(Z), we get that E(Z) ∩ F �= ∅,
which concludes the proof.
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APPENDIX

.

Proof of Lemma III.1: The proof is a direct adaptation

of the argument of Bartal [6], which holds for the case of

metric spaces. Here, we observe that the same analysis holds

for the directed variant we have defined.

Fix some (u, v) ∈ E(H). We will derive an upper

bound on the probability that (u, v) is included in the cutset

F . Let i ∈ {1, . . . , t}. If dH(vi, u) > dH(vi, v), then

the probability that (u, v) is included at the cutset while

computing Xi is 0. Therefore, we may assume w.l.o.g. that

dH(vi, u) ≤ dH(vi, v). Following Bartal [6], we define the

following events:

Ai: u, v ∈ V (H) \ (Bi−1 ∪ . . . ∪ Bi), where we

define B0 = ∅. That is, none of u and v have been

included in any Xj , for any j < i.
M I

i : dH(vi, v) ≤ Ri, conditioned on Ai. That is,

this is the event that both u and v are included in

Bi, conditioned on Ai.

MX
i : dH(vi, u) ≤ Ri < dH(vi, v), conditioned on

Ai. That is, this is the event that (u, v) is cut when

computing Bi.

MN
i : Ri < dH(vi, u), conditioned on Ai. That is,

this is the event that none of the vertices u and v
is included in Xi, conditioned on Ai.

Ni: The event that for all j ∈ {i + 1, . . . , t}, we

have |{u, v}∩Bj | ≤ 1, conditioned on Ai. That is,

the vertices u and v are not both included in the

same cluster Bj , for all j > i, conditioned on Ai.

From [6], we have

Pr[MX
i ] =

∫ dH(vi,v)

dH(vi,u)

p(x)dx

=
n

n− 1
·
(
1− e−

dH (vi,v)−dH (vi,u)

Δ

)
e−dH(vi,v)/Δ

≤ n

n− 1
· dH(u, v)

Δ
e−dH(vi,v)/Δ.

Moreover

Pr[MN
i ] =

∫ dH(vi,u)

0

p(x)dx

=
n

n− 1
·
(
1− e−dH(vi,u)/Δ

)
.

Following [6], we now prove by induction on i that

Pr[Ni] ≤
(
2− i

n− 1

)
dH(u, v)

Δ
.

We have

Pr[Ni] = Pr[MX
i ] + Pr[MN

i ] Pr[Ni+1]

≤ n

n− 1
· dH(u, v)

Δ
e−dH(vi,u)/Δ

+
n

n− 1

(
1− e−dH(vi,v)/Δ

)(
2− i+ 1

n

)
dH(u, v)

Δ

≤
(
2− t

n− 1

)
dH(u, v)

Δ
,

which completes the induction. We have thus established

that

Pr[(u, v) ∈ F ] ≤ Pr[N0] ≤ 2dH(u, v)/Δ,

which concludes the proof.
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