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Abstract—The multi-commodity flow-cut gap is a fundamen-
tal parameter that affects the performance of several divide &
conquer algorithms, and has been extensively studied for vari-
ous classes of undirected graphs. It has been shown by Linial,
London and Rabinovich [20] and by Aumann and Rabani [5]
that for general n-vertex graphs it is bounded by O(logn) and
the Gupta-Newman-Rabinovich-Sinclair conjecture [13] asserts
that it is O(1) for any family of graphs that excludes some fixed
minor.

We show that the multicommodity flow-cut gap on directed
planar graphs is O(log®n). This is the first sub-polynomial
bound for any family of directed graphs of super-constant
treewidth. We remark that for general directed graphs, it has
been shown by Chuzhoy and Khanna [11] that the gap is
Q(n/7), even for directed acyclic graphs.

As a direct consequence of our result, we also obtain the first
polynomial-time polylogarithmic-approximation algorithms for
the Directed Non-Bipartite Sparsest-Cut, and the Directed
Multicut problems for directed planar graphs, which extends
the long-standing result for undirectd planar graphs by Rao
[22] (with a slightly weaker bound).

At the heart of our result we investigate low-distortion
quasimetric embeddings into directed (1. More precisely, we
construct O(log® n)-Lipschitz quasipartitions for the shortest-
path quasimetric spaces of planar digraphs, which generalize
the notion of Lipschitz partitions from the theory of metric
embeddings. This construction combines ideas from the theory
of bi-Lipschitz embeddings, with tools form data structures on
directed planar graphs.

Keywords-mertic embeddings; approximation algorithms;
sparsest cut; planar graphs; quasimetric spaces;

I. INTRODUCTION

The multi-commodity flow-cut gap has been proven in-
strumental in the design of routing and divide & conquer
algorithms in graphs. Bounds on this parameter generalize
the max-flow/min-cut theorem, and lead to deep connections
between algorithm design, graph theory, and geometry [20],
(51, [3].

While the flow-cut gap for several classes of undirected
graphs has been studied extensively, the case of directed
graphs is poorly understood. In this work we make progress
towards overcoming this limitation by showing that the flow-
cut gap on n-vertex planar digraphs is O(log®n). This is
the first sub-polynomial bound on any family of digraphs of
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super-constant treewidth (not directed treewidth but the ab-
stract graphs ignoring directions are of constant treewidth).
We contrast our result with the strong lower bound due to
Chuzhoy and Khanna [11], who showed that for general
directed graphs the gap is Q(nl/ 7), even for directed acyclic
graphs. Thus it is highly natural to deal with planar directed
graphs. Note that there is a long standing conjecture that
for undirected planar graphs the flow-cut gap is O(1) (we
will mention more details later). There is no progress for a
long time. So it seems hard to improve our flow-cut gap to
O(1) (this improvement would imply the above mentioned
conjecture).

In order to prove our main results, we investigate low-
distortion metric embeddings into directed ¢;. More pre-
cisely, our result is obtained by proving an equivalent
result in the theory of bi-Lipschitz quasimetric embeddings,
which are mappings that generalize the standard theory
of bi-Lipschitz metric embeddings to the asymmetric case.
The distortion bound of our quasimetric embedding im-
plies the same bound for the standard LP relaxations of
various cut problems on directed graphs. Therefore, as a
direct consequence, we also obtain the first polynomial-
time polylogarithmic-approximation algorithms for several
cut problems on directed graphs, including Directed Non-
Bipartite Sparsest-Cut, and Directed Multicut for directed
planar graphs.

A. Multi-commodity flow-cut gaps for undirected graphs

A multi-commodity flow instance in an undirected graph
G is defined by two non-negative functions: ¢: E(G) — R
and d: V(G) x V(G) — R. We refer to ¢ and d as the
capacity and demand functions respectively. The maximum
concurrent flow is the maximal value € such that for every
u,v € V(G), € - d(u,v) can be simultaneously routed
between u and v, without violating the edge capacities. We
refer to this value as maxflow(G, ¢, d).

For every S C V/(Q), the sparsity of S is defined as
follows:

Z(u,’u)eE(G) c(u, v)[1s(u) — 1s(v)]
E'U,,UEV(G) d(u,v)[1s(u) = 1g(v)| ’
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where 1g: V(G) — {0, 1} is the indicator for membership
in S. The sparsity of a cut is a natural upper bound for
maxflow(G, ¢,d). The multi-commodity max-flow min-cut
gap for G, denoted by gap(G), is the maximum gap between
the value of the flow and the upper bound given by the
sparsity formula, over all multi-commodity flow instances
on G. The flow-cut gap on undirected graphs has been
studied extensively, and several upper and lower bounds
have been obtained for various graph classes. The gap is
referred to as the uniform multi-commodity flow-cut gap
for the special case where there is a unit demand between
every pair of vertices. Leighton and Rao [19] showed that
the uniform flow-cut gap is ©(logn) in undirected graphs.
Subsequently Linial, London and Rabinovich [20] and Au-
mann and Rabani [5] showed that the non-uniform multi-
commodity flow-cut gap for the Sparsest Cut problem with
k demand pairs is upper bounded by O(log k).

The flow-cut gap immediately implies a polynomial-
time approximation algorithm for Sparsest-Cut, with ap-
proximation ratio equal to the gap. For general graphs,
improved approximation algorithms have been obtained via
semidefinite programming relaxations. This approach, pio-
neered by Arora, Rao and Vazirani [4], leads to O(+/log k)-
approximation for the uniform case, and has been extended
to O(+/log k log log k)-approximation for the general case
by Arora, Lee and Naor [3]. The latter approach relies upon
embeddings of metric spaces of negative type into /1.

Besides these there are various studies of the flow-cut
gap for specific graph families. A central conjecture posed
by Gupta, Newman, Rabinovich, and Sinclair in [13] asserts
the following.

Conjecture 1 (GNRS Conjecture [13]). The multi-
commodity flow-cut gap on any family F of graphs is O(1)
if and only if F forbids some fixed minor.

Arguably one of the most interesting cases of Conjecture
1, which is still open, is the case of planar graphs, which is
often referred to as the planar embedding conjecture:

Conjecture 2 (Planar Embedding Conjecture). The multi-
commodity flow-cut gap on planar graphs is O(1).

Conjecture 2 has been verified for the case of series-
parallel graphs [13], O(1)-outerplanar graphs [8], O(1)-
pathwidth graphs [18], and for some special classes of planar
metrics [26]. However, Conjecture 2 is still wide open, and
the current best gap is O(y/logn) by Rao [22] from 1999.
Since then, no improvement has been made. The best-known
lower bound is 2 [17].

For graphs excluding any fixed minor the flow-cut gap is
known to be O(1) for uniform demands [15].

B. Multi-commodity flow-cut gaps for directed graphs

For the case of directed graphs, the flow-cut gap is defined
in terms of the Directed Non-Bipartite Sparsest Cut problem

which is an asymmetric variant of the Sparsest Cut problem,
and is defined as follows. Let G be a directed graph and
let ¢ : E(G) — Rx>o be a capacity function. Let T =
{(s1,t1),(s2,t2),...,(sk,tx)} be a set of terminal pairs,
where each terminal pair (s;,t;) has a non-negative demand
dem(4). A cut in G is a subset of directed edges of E(G).
For a cut S C F(G) in G, let Ig be the set of all indices
i € {1,2,...,k} such that all paths from s; to ¢; have at
least one edge in S. Let D(S) = > ,.; dem(i) be the
demand separated by S. Let W (S) = gg‘?; be the sparsity
of S. The goal is to find a cut with minimum sparsity. The
LP relaxation of this problem corresponds to the dual of
the LP formulation of the directed maximum concurrent
flow problem, and the integrality gap of this LP relaxation
is the directed multi-commodity flow-cut gap. Hajiaghayi
and Ricke [14] showed an upper bound of O(y/n) for the
flow-cut gap. This upper bound on the gap has been further
improved by Gupta [12], and the current best approximation
ratio is given by Agarwal, Alon and Charikar to O(n'!/23)
in [2].

Besides these there are only a few studies of the flow-cut
gap for specific (directed) graph families. For directed graphs
whose abstract graphs are of treewidth ¢, it has been shown
that the gap is at most tlogo(l) n by Mémoli, Sidiropoulos
and Sridhar [21]. Salmasi, Sidiropoulos and Sridhar [25]
have shown that the gap for the uniform case is O(1) on
directed graphs whose abstract graphs are series-parallel, and
on digraphs whose abstract graphs are of bounded pathwidth,
which implies O(logn) bounds for the gap on the non-
uniform case.

On the lower bound side Saks et al. [24] showed that for
general directed graphs the flow-cut gap is at least k£ — ¢, for
any constant ¢ > 0, and for any k = O(logn/loglogn).
The current best lower bound is given by Chuzhoy and
Khanna who showed a Q(n7) lower bound for the flow-
cut gap in [11].

Our main result on multi-commodity flow-cut gaps.: In
this paper we obtain the first poly-logarithmic upper bound
for any family of digraphs whose abstract graph is of super-
constant treewidth. Our main result on multi-commodity
flow-cut gaps is as follows.

Theorem L.1. The uniform multi-commodity flow-cut gap
on planar digraphs is O(log2 n). The non-uniform multi-
commodity flow-cut gap on planar digraphs is O(log3 n).

Given the strong lower bound by Chuzhoy and Khanna
[11] for general directed graphs (even for directed acyclic
graphs), it is highly natural to deal with planar digraphs.

This result can be considered as a first step to generalize
Conjecture 2 for planar digraphs. Let us observe that if we
could show O(1) gap in Theorem I.1, this would imply Con-
jecture 2. Moreover, this result extends the above mentioned
long-standing result for undirectd planar graphs by Rao [22]
to planar digraphs (with a slightly weaker bound).
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Theorem 1.1 is a direct consequence of our main technical
result, which uses the theory of Lipschitz quasipartitions,
and is stated formally in Theorem 1.4 (see [21], [25] for the
reduction).

C. Cut problems of directed graphs

Better bounds on the flow-cut gap typically also imply
better approximation ratios for solving cut problems. For
the Directed Non-Bipartite Sparsest Cut problem the flow-
cut gap upper bounds of [14] and [2] are also accompanied
by O(y/n) and O(72''/?3) polynomial time approximation
algorithms respectively. Similarly for digraphs whose ab-
stract graph are of treewidth ¢, a tlogo(l) n polynomial time
approximation algorithm is also provided in [21].

Another closely related cut problem is the Directed
Multicut problem which is defined as follows. Let G' be
a directed graph and let ¢ : E(G) — Rso be a ca-
pacity function. Let T = {(s1,t1),(S2,t2),. .., (Sk,tx)}
be a set of terminal pairs. A cut in G is a subset of
E(G). The capacity of a cut S is c(S) = ) .gc(e).
The goal is to find a cut separating all terminal pairs,
minimizing the capacity of the cut. This problem is NP-
hard. An O(y/nlogn) approximation algorithm for Directed
Multicut was presented by Cheriyan, Karloff and Rabani
[9]. Subsequently an O(n2/3/OPT"/3)-approximation was
given due to Kortsarts, Kortsarz and Nutov [16]. Finally [2]
also gives an improved O(n''/23)-approximation algorithm
for this problem. Again for digraphs whose abstract graphs
are of treewidth t a ¢ logo(l) n approximation algorithm was
also shown in [21].

On the hardness side [10] demonstrated an Q(lolgofgO o)
hardness for the Directed Non-Bipartite Sparsest Cut
problem and the Directed Multicut problem under the as-
sumption that NP ¢ DTIME (n'°8 ”O(l)). This was further
improved by them in a subsequent work [11] to obtain
an 220°8" " ")_hardness result for both problems for any
constant € > 0 assuming that NP C ZPP .

Our main results for these problems are the following
theorems.

Theorem L2. There exists a polynomial-time O(log® n)-
approximation algorithm for the Uniform Directed
Sparsest Cut problem on planar digraphs. Moreover,
there exists a polynomial-time O(log3 n)-approximation
algorithm for the General Directed Sparsest Cut problem
on planar digraphs.

Theorem L3. There exists a polynomial time O(log® n)-
approximation algorithm for the Directed Multicut
problem on planar digraphs.

Both of the above results are direct consequences of
our results on the theory of bi-Lipschitz quasimetric em-
beddings, which we describe in the next subsection. We
refer the reader to [21], [25] for a detailed description of

the reduction from directed cut problems to bi-Lipschitz
quasimetric embeddings.

D. Quasimetric spaces and embeddings

Random quasipartitions.: A quasimetric space is a pair
(X,d) where X is a set of points and d: X x X — R U
{400}, that satisfies the following two conditions:

(1) For all z,y € X, d(z,y) =0iff x = y.
(2) Forall z,y,z € X, d(x,y) < d(z,z)+d(z,y).

The notion of random quasipartitions was introduced in
[21]. A quasipartition of a quasimetric space (X,d) is
a transitive reflexive relation on X. We remark that this
definition is a generalization of the notion of a partition of a
set of points, which can be viewed as a symmetric transitive
binary relation, where two points are related if and only if
they belong to the same cluster.

Let G be a digraph and let M = (V(G),dg) be its
shortest-path quasimetric space. Let FF C F(G). Let

R ={(u,v) € V(G)xV(G) : v is reachable from u in G\ F'}.

It is immediate to check that R is indeed a quasipartition.
We say that R is induced by the cutset F'.

Let M = (X,d) be a quasimetric space. For any fixed
r > 0, we say that a quasipartition Q) of M is r-bounded if
for every x,y € X with (z,y) € Q, we have d(z,y) < r.
For any 8 > 0, we say that a distribution over r-bounded
quasipartitions of M, D, is B-Lipschitz if for any =,y € X,
we have that

d(z,y)
A llz,y) ¢ Pl < f——.

Given a distribution D over quasipartitions we sometimes
use the term random quasipartition (with distribution D) to
refer to any quasipartition P sampled from D. We consider
the quasimetric space obtained from the shortest path dis-
tance of a directed graph. Mémoli, Sidiropoulos and Sridhar
in [21] find an O(1)-Lipschitz distribution over r-bounded
quasipartitions of tree quasimetric spaces. They also prove
the existence of a O(tlogn)-Lipschitz distribution over r-
bounded quasipartitions for any quasimetric that is obtained
from a directed graph of treewidth t.

Our main result on Lipschitz quasipartitions is the follow-
ing theorem. This is the main technical contribution of this
paper. The fact that the quasipartition is efficiently samplable
is needed in the algorithmic applications.

Theorem 1.4. Let n € N, and let G be an n-vertex
planar digraph with non-negative edge lengths. Then for
any A > 0, there exists a A-bounded, O(log® n)-Lipschitz
random quasipartition of the quasimetric space (V(G),dg).
Moreover the quasipartition is samplable in polynomial
time.
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Quasimetric embeddings.: Before stating our embed-
ding results, we first need to introduce some notations
and definitions. Let M = (X,d) and M’ = (X',d') be
quasimetric spaces. A mapping f : X — X’ is called
an embedding of distortion ¢ > 1 if there exists some
a > 0, such that for all z,y € X, we have d(z,y) < a -
d'(f(x), f(y)) < c-d(z,y). We say that f is isometric when
c = 1. We remark that this definition directly generalizes the
standard notion of distortion of maps between metric spaces;
however, here the ordering of any pair of points is important
when dealing with distances.

Directed 01 (Charikar et al. [7]).: The directed ¢,
distance between two points x and y is given by dy, (z,y) =
2ol =yl 4+ 2wl = X [yl

' We can now lstate the Zmain result on embeddability into
directed ¢1, which is an immediate consequence of Theorem
[.4. For a detailed description of the reduction from the
directed ¢; embeddability to Lipschitz quasipartitions, we
refer the reader to [21], [25].

Theorem LS. Let n € N, and let G be an n-vertex planar
digraph with non-negative edge lengths. Then the quasimet-
ric space (V(G),dg) admits an embedding into directed
¢y with distortion O(log®n). Moreover the embedding is
computable in polynomial time.

E. High-level Overview of our Proof

As we have explained above, all of the results in this
paper are direct consequences of a single result concerning
random quasipartitions. Specifically, we show that for any
planar digraph G, and for any “scale” A > 0, there
exists a A-bounded O(log® n)-Lipschitz quasipartition of the
quasimetric space (V(G),dg).

We remark that it is known that the classical theory of
Lipschitz partitions of metric spaces is known to not be
sufficient for obtaining such a result (see [21], [25]). Thus, in
order to handle the quasimetric case we combine ideas from
the theory of Lipschitz partitions with methods developed
within the literature of distance oracles for directed planar
graphs, developed by Thorup [27].

Because we deal with directed graphs, some difficulties
in using the distance oracle results appear in our proof. See
Figure 1 for example. Moreover, we also have to consider
some random partitioning scheme of directed graphs, which
is similar to the one used by Klein, Plotkin and Rao [15]
for undirected graphs.

We now explain what are the main ingredients used in the
proof, and how they are combined in our main algorithm.
The input to the algorithm consists of a directed planar graph
G and A > 0. The output is a random quasiparition of
the quasimetric space (V(G),dq). The main steps of the
algorithm are as follows. In order to simplify the exposition,
we relax slightly the notation.
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Step 1: Partioning G into layers. It has been
shown by Thorup [27] that any planar digraph can
be decomposed into a sequence of vertex-disjoint
“layers” L1, Lo, ..., such that each layer L; has a
directed rooted spanning tree 75, such that at least
one of the two following properties hold:

(i) Every vertex in L; can be reached from

the root via a directed path of length at

most A in T;.

(i) Every vertex in L; can reach the root

via a directed path of length at most A in

T;.
We construct a randomized version of this decom-
position scheme, which is similar to the random
partitioning scheme used by Klein, Plotkin and Rao
[15]. One important property is that during this ran-
dom decomposition step, each edge (u,v) € E(G)
is cut with probability at most O(dg(u,v)/A).
A key property is that, as in Thorup [27], every
path of length at most A can be contained in at
most three consecutive layers. This fact implies
that in order to obtain a quasipartition for G, it
is enough to compute a quasipartition for each
layer, and then output their “common refinement”
(which is formally defined by taking the union of
the corresponding cutsets).
Step 2: Quasipartioning each layer. It now re-
mains to show how to compute a quasipartiton
for each layer. Fix some layer L. We now invoke
another result of Thorup [27], who showed that
there exists three shortest paths Py, P, Ps of
length at most A in L, such that V/(P; U P, U P3)
is a balanced vertex separator of L. Of course, we
cannot simply delete the paths P, P, P3, since
this would cut some edges with probability 1 (since
the choice of the paths is deterministic). Instead,
we show how to delete some random set of edges
C C E(L), such that both of the following two
conditions hold for the resulting digraph:

(i) BEach edge (u,v) € E(L) is cut with

probability at most O(dr,(u,v)/A).

(ii) If there exists a path R from u to v

that intersects P; U P, U P3, then it must

be that dg(u,v) < A.

We refer to the above process as “quasipartitioning
the neighborhood of the separator”; we give more
details about this process in Step 3.

Equipped with this process, we easily obtain a
quasipartition for L via recursion: we recursively
run the algorithm, effectively quasipartitioning the
neighborhoods of all separators of each connected
component of L\ V (P;UP,UPs). The final output
is the union of all cutsets computed in all recursive



calls. Since every edge can be contained in at most
O(logn) recursive calls, it follows by the union
bound that the probability of cutting any particular
edge is at most O(logn) times the probability
of cutting it in each quasipartitioning step, which
we show below is at most O(logn - dp,(u,v)/A),
which implies the result.
Step 3: Quasipartioning the neighborhood of
a separator. Because the separators involved in
Step 2 consist of the union of at most three
shortest paths, it can be shown that it is enough to
handle the case of a single separator path P. An
important difficulty here is that common intuition
from the notion of a “neighborhood” in the case
of undirected graphs, does not directly translate to
the directed case that we are dealing with. Roughly
speaking, the reason is that there are two different
neighborhoods of P: one consisting of all vertices
that are at distance at most A from some vertex in
P, and one consisting of all vertices that are at dis-
tance at most A to some vertex in P (See Figure 1
for example). We obtain a quasipartitioning scheme
that, roughly speaking, handles the “overlay” of
these two neighborhoods. This process is inspired
from the algorithm of Bartal [6] for computing
Lipschitz partitions of undirected graphs. Bartal’s
algorithm computes a random partition by growing
balls of radii that are distributed according to some
truncated exponential distribution. We adapt Bar-
tal’a algorithm by growing random “quasiballs”,
and showing that a similar analysis can be used to
analyze their behavior.
This completes the high-level description of our approach.
Comparison to Klein-Plotkin-Rao and beyond.: It has
been shown by Klein, Plotkin and Rao [15], that for any
undirected graph G that excludes some fixed minor, for any
A > 0, the shortest path metric (V(G),dg) admits a A-
bounded, O(1)-Lipschitz partition. Here, we obtain a slightly
weaker bound (i.e. O(log” n) instead of O(1)), for the more
general case of directed graphs, but our resut holds only
for planar digraphs. The reason is that the approach in [15]
directly produces a forbidden minor, when the partitioning
scheme fails to produce a bounded partition. This is, in fact,
one of the very few known results for general minor-free
graph families, that does not use the celebrated theory of
graph minors of Robertson and Seymour [23]. In contrast,
we use planarity in very specific ways in order to randomly
“decompose” the input graph into more manageable pieces.
More precisely, we only use the above mentioned path
separator theorems by Thorup [27] for planar undirected
graphs. Ittai and Gavoille [1] showed that the above planar
result can be extended to minor-free undirected graphs. We
leave it as an open problem to extend our approach to
arbitrary families of minor-free directed graphs.

FE. Organization

In Section II we introduce some definitions that will be
used throughout the rest of the paper. In Section III we
describe a general process for deleting random subsets of
edges, that is analogous to Bartal’s Lipschitz partitioning
scheme [6]. In Section IV we show how to apply this
general process to the special case of quasipartitioning the
“neighborhood” of a shortest path. This corresponds to the
above Step 3. In Section V we introduce a randomized
variant of Thorup’s decomposition scheme [27]; we also
use (recursively) the path separator theorems from [27] in
combination with the quasipartitioning scheme from Section
IV, to obtain a quasipartitioning scheme for each part of
the decomposition. This corresponds to the above Step
1. Finally, we put all the ingredients together in Section
VI, where we present the main algorithm for sampling a
Lipschitz quasipartition in any planar digraph.

II. DEFINITIONS AND PRELIMINARIES

We now introduce some notation that will be used
throughout the paper. For any functions f,¢g : N — N, we
write f(n) < g(n) whenever f(n) = O(g(n)).

Graphs and subgraphs.: For any graph GG and any U C
V(G), we denote by G[U] the subgraph of G induced by
U, thatis V(G[U]) = U, and E(G[U]) = E(G)N(U x U).
For any r > 0, we write

Na(U,r) ={v e V(G) : dg(U,v) < r},

where
de(U,v) == min de(u,v).

For any digraph G, any u,v € V(G), and any directed
path P from u to v in G, we refer to u and v as the head
and tail of P, respectively. We denote by len(P) the length
of P. For any a,b € V(P), we write a <p b if a precedes
b in the traversal of P. We also write b >p a if a <p b.

For any graph G, X C V(G), and « € [1,0], we say that
X is a a-balanced vertex separator of G if every connected
component of G \ X has at most a|V(QG)] vertices.

For any digraph G, let G denote the digraph obtained
by reversing the direction of every edge. For any path ) in
G, let ) denote the path in G obtained by reversing the
direction of every edge in Q.

For any digraph G, and any path P in G, and any
x,y € V(P), such that either x = y, or x appears before
y in P, we denote by P[z,y] the subpath of P from z to
y. Adapting standard set-theoretic notation, we also write
Plz,y) = Plz,y] \ {y}, P(z,y) = Plz,y] \ {z}, and
P(z,y) = Plz,y] \ {z, y},

III. EXPONENTIAL RANDOM QUASIBALLS

In this section we analyze the behavior of a general
process for constructing quasipartitions. The process in-
volves computing a sequence of cutsets that are induced by
quasiballs of exponentially distributed radius.
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The process is completely analogous to the algorithm used
by Bartal [6] to compute probabilistic partitions of metric
spaces.

Let H be a digraph, with |V (H)| = n, and let A > 0.
We define a probability distribution D over cutsets of H,
i.e. 2B(H) s follows. First, we define a sequence of pairwise
disjoint subsets By,...,B; C V(H). Let I = [0, Alnn),
and let Z be the truncated exponential probability dis-
tribution on [ with probability density function p(z) =
—n_.L.e=#/A Tnitially all vertices in H are unmarked. Let

n—1 A€
v1 € V(H) be chosen arbitrarily. Let Ry ~ Z, and define

= ballH(vl,Rl).

We mark all vertices in B;. For any ¢ > 1, we proceed in-
ductively. If all vertices in H are marked, then we terminate
the sequence at t = ¢ — 1. Otherwise, we arbitrarily either
terminate the sequence at ¢ = ¢ — 1, or we proceed to define
B;; that is, this choice can depend on all previous random
choices. We set v; be to an arbitrary unmarked vertex. Let
R; ~ T, and define

BZ‘ = ballH(vi, Rz) \ (Bl U...U Bi—l) .

We mark all vertices in B;. This completes the inductive

construction of the sequence B4y, ..., B;. Finally, we set

F:OE(H)O(Bix(V(H)\(Blu...U

i=1

That is, for all « € {1, ..., ¢}, the cutset F' contains all edges
starting in B; and ending at outside of By U...U B;. This
completes the definition of the random cutset F'. We say that
the resulting probability distribution D is a A-shock.

We remark that the above process is quite general and
allows for many different strategies for choosing the next
vertex v;, and for deciding whether to terminate the sequence
before all vertices have been marked. In our main algorithm,
we will apply this process by choosing the vertices vy, ..., vy
from an inverse traversal of some shortest path (see Section
V).

We next analyze A-shocks.

Lemma IIL.1. Let H be a digraph, let A > 0, let D be a
A-shock, and let F' ~ D. Then, for any (u,v) € E(H), we
have

Pr{(u,v) € F| < 2dg(u,v)/A.

The proof of Lemma III.1 is similar to the analysis of an
analogous result for the case of metric cases from Bartal [6].
For the sake of completeness, the proof of Lemma III.1 is
given in Section A.

IV. QUASIPARTITIONING THE NEIGHBORHOOD OF A
DIRECTED PATH

Let H be a digraph, let A > 0, and let () be a shortest path
in H from some v € V(H) to some v' € V(H), of length at

most A. We describe a procedure for computing a random
quasipartition, given H and Q. Let [ = [0, Alnn), and let
7 be the truncated exponential probability distribution on I
with probability density function p(z) = -5 - % cem /A,
The procedure consists of the following steps.
Procedure PATH-QUASIPARTITION(H, @, A)
Step 1: Cutting balls away from (. For any i €

N, let R; ~Z. Let ay = v,

B1 = ballH(al, Rl),
For any 7 > 1, let a; be the first vertex not <£1
By U...U B;_; that we visit when traversing @)
starting from v’. Let

UB

= bally (a;, R

For any i € N, let
Fy=E(H)N(B; x (V(H)\ By)).

See Figure 1 for an example.
Step 2: Cutting balls towards Q. For any i € N,
let R, ~Z. Let a} = v,

B} = ballg (e}, 1)),

For any 7 > 1, let a; be the first vertex not in
Bi U...U B]_, that we visit when traversing
Q starting from v; w.l.o.g. we may assume that
d¢(az,a;_y) = Rj, by subdividing one edge of
H. Let

B = balle ( a;, R;)\

UB’

For any ¢ € N, let
F/ =E(H)N

K2

(V(H)\ Bj) x B)).

Step 3: Output. Let ' = |, Fi, I = U,y Fi-
We output the cutset C = F U F’, and the
quasipartition Z induced by C.
This completes the description of the procedure.
Portal  assignment.: The  procedure  PATH-

QUASIPARTITION computes sets of vertices A = {a;},
A" = {a}};. We refer to the vertices in AU A’ as portals.
We define mappings

m : V(Q) = A,

and
e V(Q) = A,

as follows. For any a; € A, and for any = € V(a[aj7ai+1)),
we set m1(x) = a;. For any a; € A’, and for any = €
V(Qlas,a;41)), we set ma(x) = a;. Figure 2 depicts an
example.
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Figure 1.

the regions Bi, ..., By are depicted. The sets F7, ..

An example of Step 1 in procedure PATH-QUASIPARTITION(H, Q, A). Each B; is depicted as a region with a distinct color. For clarity, only
., F4 are also depicted, each with a different color. We remark that @ is a shortest path from v to

v’, but does not need to be a shortest path from v’ to v. Consequently, the intersection of each B; with @ does not need to consist of a single contiguous

sub-path (e.g. B3).

)
)

[
a;=v

Figure 2.

Analysis.: We now analyze the quasipartition computed
by procedure PATH-QUASIPARTITION.

Lemma IV.1. Let H be a digraph, let Q be a shortest path
in H of length at most A > 0. Let C be a random cutset
computed by Procedure PATH-QUASIPARTITION(H, ), A),
and let Z be the induced quasipartition. Then the following
conditions hold:

(1) For any (x,y) € E(H),

dp(z,y)
Pr((z,y) & Z] < HT-

(2) Let x,y € V(H). Suppose that there exists
some path P from x to y in H \ C, such that P
intersects Q. Then, dp(z,y) S Alogn.

Proof: First we prove part (1). From Lemma III.1 it
follows that for any ¢ € {1, 2}, during Step 4, the probability
of cutting (x,y) is at most 2d g (z,y)/A. By taking a union
bound over the two steps, the assertion follows.

It remains to prove part (2). Let a and b be the first and
last vertices in V(P) N V(Q) that we encounter along a
traversal of P.

T
AN QR QR VAN
al ay ay

An example portal assignment.

We argue that dy(x,m2(a)) S Alogn. Recall that C' =
F U F’, where F is the cutset computed in Step 1, and F’
is the cutset computed in Step 2. Let P, = Plz,a]. Since
P C H\C, it follows that E(P;) N F’ = (). By induction
on i € N, we have that for all 4 > 1, there exists no path in
H \ F' from any vertex in V(H) \ (B{ U...U B}) to any
vertex in Bf U...U B\. Therefore, there exist j, k € N, with
j <k, such that x € B]’» and a € Bj, (see Figure 3). Thus

dp(x,m(a)) < du(x,a;) + du(aj, m2(a))
(triangle inequality)
S Alogn + du(aj, m(a))
(z € B} Cballz(aj, Ry))

S Alogn+ A
(a; <q ar <@ m2(a) and len(Q) < A)
S Alogn, (D

as required.

We next argue that dy(m1(b),y) < Alogn. Arguing as
in the paragraph above, we have that there exist s,t € N,
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Figure 3. The configuration in the proof of Lemma IV.1. The path P is
not cut by F”.

with s > ¢, such that b € B, and y € B;. Thus
du(m1(b),y) < du(m1(b),ar) + du(ar, y)
(triangle inequality)
<dp(mi(b),a) + Alogn
(y (S Bt Q baHH(CLt, Rt))

S A+ Alogn
(m1(b) <@ as <@ a; and len(Q) < A)
< Alogn, 2

as required.

We next argue that dp(ma(a), m2(b)) S A.If ma(a) <g
ma(b), then ma(a) can reach mo(b) by following @, and
thus dg(ma(a), (b)) < len(Q) < A. Thus it remains
to consider the case ma(a) >¢g ma(b). Let 4,5 € N, such
that my(a) = a) and ma(b) = a;. Since a >¢ a;, it
follows that ¢ > j. If ¢ = j, then ma(a) = m2(b), and thus
dp(m2(a), w2 (b)) = 0. Thus, it remains to consider the case
1 > 7. By induction on the execution of Step 2, we have that
for all ¢ € N, any vertex in V(H) \ (B} U...U Bj) cannot
reach any vertex in Bf U...U B} in H \ F’. Therefore,
a cannot reach b, which is a contradiction. We have thus
established that

dy(ma(a), m (b)) < A. 3)

Next, we argue that dy (w2 (D), 71(b)) < A. By the choice
of portals, we have that ma(b) <o b <g mi(b). Since
len(Q) < A, this implies that

dH(ﬂ'g(b),Tf'l(b)) S len(Q) S A (4)

Combining (1), (2), (3) and (4) with the trian-
gle inequality, we obtain dg(z,y) < dg(z,m(a)) +
d (ma(a), ma(b)) + dpr(ma(b),ma(8) + dia(ma(b),y) <
Alogn + A+ A+ Alogn < Alogn, which concludes
the proof. [ ]

V. CRASHING WAVES

In this section, we refine some important concepts in [27].
This is one of the keys in our analysis in the next section.
We recall the following definition from [27]. A (¢, A)-
layered spanning tree 1" in a digraph H is a directed rooted
spanning tree such that any root-to-leaf path in 7' is the

Figure 4. A sample from a (v, A)-wave.

concatenation of at most ¢ shortest paths in H, each of length
at most A. We say that H is (¢, A)-layered if it contains
such a spanning tree. We are interested in (1, A)-layered
graphs and their properties. However, we use the slightly
more general definition in order to maintain a compatible
notation with [27].

Definition V.1 (Wave). Let G be a digraph, v € V(G),
A > 0. We define a probability distribution, D, supported
over 2P(9) Let 7y, ..., 7, € [0,A) be chosen uniformly and
independently at random. Let

Vo ={u e V(Q) : dg(v,u) < 2A + 719},

and for any i > 1, let

Vi — {w e V(Q) :da(Vic1,u) <2A + 7} if i is even
Tl v e V(Q) i de(u, Vi) <2A+ 1} ifiis odd
For any i € N, let
b _ [ EG)N (Vi x Vi) ifiis odd
Tl E(GYN (Vi x Viy)  ifiis even

Finally, let
E' =JE.

We define D to be the distribution of the random variable
E'. We refer to D as a (v, A)-wave.

Figure 4 gives an example of the construction of a wave.
From the above definition, we show the following lemma.

Lemma V.2. Let G be a digraph, v € V(G), A > 0.
Suppose that all edges in G have length at most A. Let
D be a (v,A)-wave. Let E' be a subset of edges sampled
from D, i.e. E' ~ D. Then the following properties hold:

(i) For any (a,b) € E(G), we have that

Prl(a,b) € B) 5 2el®0)
A
(ii) The following holds with probability 1. Let P
be any path in G of length at most A. There exists
some i > 0, such that V(P) C V; U V31 U Vg1,
Furthermore, P can be decomposed into consecu-
tive subpaths P = P) o P, o Ps3, such that for all
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i € {1,2,3}, there exists j € {i,i+ 1,7+ 2}, such
that P; C 'V

(iii) The following holds with probability 1. For any
t € N, contracting Uj < Vj into a single vertex,
and deleting \J;.; Vj results in a (1,A)-layered
graph.

Proof: We first prove (i). Let (a,b) € E(G). Consider
the process of sampling E’ from D. Let Uy = {v}, and for
any ¢ > 1, let U; = VyU...UV;_;. Intuitively, we can think
of the process of sampling E’ as inductively constructing
the sequence {V; };>0, and Uj is the set of vertices that have
already been explored just before constructing V;. In order
to cut the edge (a,b) during the construction of V;, it must
be that

dg(Ui,CL) <2A+ 713 <dg(Ui,b). 5
This implies that
de(Us,a) < 3A. (6)

By the definition of a wave we have that Ng(U;,2A) C
U;4+2. Combining with (6) we get

da(Uigz2,a) < A. (7

However, (7) implies that, with probability 1, {a, b} C U;41,
and thus (a,b) cannot be cut during the construction of
Vit2. Therefore, (a,b) can potentially be cut in at most
two consecutive steps during the constructing of some V;
and V;4 ;. Note that ¢ is a random variable that depends on
the choice of the random variables {7;};>¢. In each one of
these two steps, by triangle inequality, we have that (a, b) is
cut when (5) holds, which happens with probability at most
dG(Ui’b)ZdG(U“a) < dcf’b). By the union bound over these
two steps, it follows that the probability that (a,b) is cut

at any point during the construction of the wave is at most
QdG(T“’b, as required. This proves part (i).

Next, we prove part (ii). Let P be any path in G of length
at most A. Let w and w’ be the first and last vertices in P.
Let ¢ be the minimum integer such that V(P) N'V; # (.
Let v be an arbitrary vertex in V(P) N V;. Since P has
length at most A, it follows that for any v’ € V(P), either
da(v,v") < A, ordg(v',v) < A. In both cases, this implies
that v' € V; U V;11 U Vi, o. Since v’ is arbitrary, we get
P C V; UV, UVio. It remains to show that P can be
decomposed into consecutive subpaths P = P} o Py o Ps,
such that for all ¢ € {1,2, 3}, there exists j € {i,i+1,i+2},
such that P; C Vj. By the construction of a wave, it follows
that for all ¢, we either cut all edges from V; to V;41, or
we cut all the edges from V;11 to V;. Thus, while traversing
P, if we leave some set V;, we can never return to V; (see
Figure 4). This implies that the intersection of P with each
of the sets V;, V11, and V1 is either empty or a subpath
of P, which concludes the proof of part (ii).

Finally, part (iii) follows by contracting U; into a single
vertex u;, and setting the spanning tree 7' in the definition
of layered graph to be the shortest path tree rooted at u;. W

We need the following result from [27].

Lemma V.3 (Thorup [27]). Let A > 0, and let H be a
planar (1, A)-layered digraph. Then, there exist shortest
paths Py, Py, P3 in H, each having length at most A, and
such that V(Py) UV (Py) UV (Ps) is a 2/3-balanced vertex
separator in H. Moreover, there exists a polynomial-time
algorithm which given H and A outputs Py, P>, and Ps.

Lemma V4. Let A > 0. Let H be a planar (1, A)-layered
digraph. Then there exists a A-bounded, O(log® n)-Lipschitz
quasipartition of the quasimetric space (V(H),dp).

Proof: We construct a random cutset C' recursively. If
H contains at most ¢ = O(1) vertices, then the result follows
by letting C be the set of all edges in H of length at least
A, with probability 1. Otherwise, we proceed as follows.
By Lemma V.3, we compute shortest paths Py, P, Ps in H,
each of length at most A, such that V(P U P, U Ps) is a
2/3-balanced vertex separator in H. For each i € {1,2,3},
we run procedure PATH-QUASIPARTITION(H, P;, A), and
obtain a random cutset C; C FE(H). We then recurse on
each connected component of H \ (P, U P, U P3). Let P be
the set of all paths computed by Lemma V.3 in all recursive
calls.

Let also C be the set of all random cutsets computed
during all recursive calls. We set

c=c,
crec

and we output the quasipartition R induced by C. This
completes the description of the algorithm.

We next show that R is O(logn)-Lipschitz. Let (u,v) €
E(H). By construction, we have that (u,v) is contained in
at most one subgraph at each level of the recursion. Since
the depth of the recursion is k = O(logn), it follows that
(u,v) is contained in at most k subgraphs Hj, ..., Hy of
H, with

H=H,D>HyD...2 Hy.

For each i € {1,...,k} let P, 1, P2, P; 3 be the shortest
paths that the algorithm computes in H;, such that V(P U
P, U Ps) is a 2/3-balanced separator in H;. For each i €
{1,...,k} let C; be the random cutset that the algorithm

Authorized licensed use limited to: University of lllinois at Chicago Library. Downloaded on June 16,2022 at 22:12:58 UTC from IEEE Xplore. Restrictions apply.



computes in ;. We have

Pr{(u,v) ¢ R] < Pr[(u,v) € C]
=Pr(u,v) € C1U...UCY]

k
< ZPr[(u,v) e ()
i=1
(union bound)

k
dg, (u,v)
<§ SHAR )
T A

(part (1) of Lemma IV.1)

k
B dp(u,v)
= giA
(since (u,v) € E(Hy)N...NE(Hy))

and thus R is O(logn)-Lipschitz.

It remains to show that R is O(Alogn)-bounded. Let
x,y € V(H), such that (x,y) € R. This implies that there
exists some path L from z to y in H \ C. Let

xX=Jv(P).
Pep
If V(L) N X = 0, then by the basis of the recursion we
have that L can contain at most ¢ = O(1) edges, each of
length less than A, and thus dy(x,y) = O(A). Otherwise,
V(L) N X # (. This implies that there exists some path
P € P such that L intersects P. By part (2) of Lemma
IV.1 it follows that dy(z,y) < Alogn. Thus, in all cases
we obtain that dy(z,y) < Alogn, which implies that
R is O(Alogn)-bounded, concluding the proof. To obtain
a A-bounded, O(log®n)-Lipschitz quasipartition, we just
scale the quasi-metric space (V(H),dy) by a factor of
O(1/logn). [ |

VI. LIPSCHITZ QUASIPARTITIONS FOR PLANAR
DIGRAPHS

We now prove our main result on Lipschitz quasiparti-
tions, which is the main technical ingredient of this paper.
We begin by describing the algorithm for computing a
quasipartition, and we then prove that it satisfies the desired
properties.

The input to the algorithm is a directed planar graph G,
and some parameter A > (0. The algorithm proceeds in the
following steps:

Step 1: Sampling from a wave. Pick an arbitrary
v € V(G). Let D be a (v, A)-wave, and let Q) be
a quasipartition sampled according to D, induced
by some cutset £ C E(G); that is @ ~ D. Let
{Vi}ien be as in Definition V.1. For any i, let

G; be a (1, A)-layered graph (with probability 1)
obtained by part (iii) of Lemma V.2.

Step 2: Quasipartitioning each layer. By
Lemma V.4 it follows that for each 7, there ex-
ists a polynomial-time samplable A /3-bounded
O(log® n)-Lipschitz quasipartition D; of G;. In
polynomial time, we sample some @Q; ~ D;,
induced by some cutset F;.

Step 3: Output. Let F' = E' U (|J, F;). The final
output is the quasipartition R induced by the cutset
F.

We are now ready to prove the main result of this Section.
Proof of Theorem 1.4: Let F be the cutset computed
by the algorithm described above, and let R be the induced
quasipartition. Let also D, E’, G;, D;, F; be as in the
description of the algorithm.
We need to bound the probability that any ordered pair
of vertices is not in R. First, consider some (u,v) € E(G).
By part (i) of Lemma V.2 we have that

< dG (’LL, U)

Pr[(u,v) € F'] < A

®)

With probability 1, there exists at most one ¢ € N, such
that (u,v) € E(G;). Conditioned on the event that (u,v) €
E(G;), by Lemma V.4 we have

da(u,v)

Pr[(u,v) € F;] < log?n A

€))

Combining (8), (9), and the fact that (u, v) can be in at most
one graph Gj, it follows by the union bound that

Pr[(u,v) € F] = Pr l(u,v) c€EU (U F1>

=Pr l((u,v) eE)V <(u,v) € UF)

(u,v) € UFZ

< Pr[(u,v) € E'|+Pr

(union bound)
dG (u: U)

<log*n A

(10)

We have thus established that the probability of cutting
any particular edge is low. We next extend this bound to
arbitrary ordered pairs of vertices. Let u’,v’ € V(G). If v/
is not reachable from v’ in G, the condition holds vacuously.
Thus, we may assume w.l.o.g. that v’ is reachable from v’
in G. Let P be a shortest path from u’ to v’ in G. Let
P = wq,...,w, with w; = 4/, w; = v'. We have that if
(u’,v") ¢ R, then at least one edge of P must be in F, since
otherwise v’ is reachable from v’ in G \ F, which implies
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(v/,v") € R. Thus, we have
Pr[(v/,v") ¢ R] < Pr[E(P)NF # 0

(O(wiawi+1)> NE#0

i=1

=Pr

=Pr [\/ ((wi7wi+1) oy 7& @)

=1

t—1

< ZPT [(wi, wiy1) N F # (]
i=1
(union bound)

t—1
d 1y Wiy
§log2n27G(w i)

i=1 A
(by (10))
o2, da(u, )
=log“n A

(P is a /v shortest path)

Thus, we have established that the probability that any
ordered pair is not contained in the quasipartition is bounded,
as required.

It remains to show that R is A-bounded. To that end, it
suffices to show that for any a,b € V(G), if dg(a,b) > A,
then (a,b) ¢ R. In order to prove the latter property, it
suffices to show that for any path Z from a to b, at least
one edge of Z is in the cutset F'; that is, E(Z) N F # (.
Let Z’ be prefix of Z of length A (we may assume that Z’
has length exactly A by subdividing one edge and inserting
a vertex on Z at distance exactly A from u). By part (ii)
of Lemma V.2 we have that, with probability 1, there exists
some ¢ € N, such that Z’ can be decomposed into three
subpaths Z' = Z} 0 Z} 0 Z}, such that each Z] is contained in
some G,. By setting Z” to be the longest of the three paths
Z4, Zh and Z}, we conclude that there exists some subpath
Z" of Z', of length strictly greater than A/3, and there exists
some j € N, such that Z” C G,. Since, by construction, D;
is A/3-bounded, it follows that E(Z"”) N F; # (. Since
F;, CF,and E(Z") C E(Z), we get that E(Z) N F # {),
which concludes the proof. ]
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APPENDIX

Proof of Lemma I1l.1: The proof is a direct adaptation
of the argument of Bartal [6], which holds for the case of
metric spaces. Here, we observe that the same analysis holds
for the directed variant we have defined.

Fix some (u,v) € E(H). We will derive an upper
bound on the probability that (u,v) is included in the cutset
F. Let i € {1,...,t}. If dg(v;,u) > dg(vi,v), then
the probability that (u,v) is included at the cutset while
computing X; is 0. Therefore, we may assume w.l.0.g. that
dp (vi,u) < dg(vi,v). Following Bartal [6], we define the
following events:

At u,v € V(H) \ (Bi—1 U ... U B;), where we
define By = . That is, none of « and v have been
included in any X, for any j < i.

M}: dg(vi,v) < R;, conditioned on A;. That is,
this is the event that both « and v are included in
B;, conditioned on A;.
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MZX: dg(vi,u) < R; < dg(vi,v), conditioned on
A;. That is, this is the event that (u,v) is cut when
computing B;.

MY: R; < dg(v;,u), conditioned on A;. That is,
this is the event that none of the vertices u and v
is included in X;, conditioned on A;.

N;: The event that for all j € {i +1,...,t}, we
have |{u,v}NB;| < 1, conditioned on A;. That is,
the vertices u and v are not both included in the
same cluster By, for all j > ¢, conditioned on A;.

From [6], we have

dg (vi,v)
PN = [ e
dp (vi,u)
__n (1 76_W) e~ du(vi,v)/A
n—1
N (CI5) ey
=1 A
Moreover
dH(’U“u)
Pr[M)N] = / p(z)dz
0

n

) (1 _ e—dH(vi,u)/A) '

n—1

Following [6], we now prove by induction on ¢ that

i dp(u,v)
1< _ et
Pr[V;] < <2 p— 1) A
We have
Pr[N;] = Pr[M;X] + Pr[M}] Pr[N; 1]
< " dH(u’U)ede(vi,u)/A
“n-—1 A
n _ —dg(viw)/A _ i+1 dH(“” U)
N n—1 (1 ¢ ) <2 n A
< (2t ) dulwv)
- n—1 A

which completes the induction. We have thus established
that
Pr[(u,v) € F] < Pr[No] < 2dg(u,v)/A,

which concludes the proof.
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