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ABSTRACT
We study the problem of PAC learning homogeneous halfspaces in

the presence of Tsybakov noise. In the Tsybakov noise model, the

label of every sample is independently flipped with an adversarially

controlled probability that can be arbitrarily close to 1/2 for a

fraction of the samples. We give the first polynomial-time algorithm
for this fundamental learning problem. Our algorithm learns the

true halfspace within any desired accuracy 𝜖 and succeeds under a

broad family of well-behaved distributions including log-concave

distributions. Prior to our work, the only previous algorithm for

this problem required quasi-polynomial runtime in 1/𝜖 .
Our algorithm employs a recently developed reduction [29] from

learning to certifying the non-optimality of a candidate halfspace.

This prior work developed a quasi-polynomial time certificate al-

gorithm based on polynomial regression. The main technical con-
tribution of the current paper is the first polynomial-time certificate
algorithm. Starting from a non-trivial warm-start, our algorithm

performs a novel “win-win” iterative process which, at each step,

either finds a valid certificate or improves the angle between the

current halfspace and the true one. Our warm-start algorithm for

isotropic log-concave distributions involves a number of analytic

tools that may be of broader interest. These include a new efficient

method for reweighting the distribution in order to recenter it and

a novel characterization of the spectrum of the degree-2 Chow

parameters.

CCS CONCEPTS
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.
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1 INTRODUCTION
The main result of this paper is the first polynomial-time algorithm

for learning halfspaces in the presence of Tsybakov noise under a

broad family of distributions. Before we explain our contributions

in detail, we provide some context and motivation for this work.

1.1 Background
Learning in the presence of noise is a central challenge in machine

learning. In this paper, we study the (supervised) binary classifi-

cation setting, where the goal is to learn a Boolean function from

random labeled examples with noisy labels. In more detail, we fo-

cus on the problem of learning homogeneous halfspaces in Valiant’s

PAC learning model [58] when the labels have been corrupted by

Tsybakov noise [57].
A (homogeneous) halfspace is any function ℎw : R𝑑 → {±1}

of the form ℎw (x) = sign(⟨w, x⟩), where the vector w ∈ R𝑑 is

called the weight vector of ℎw and sign : R→ {±1} is defined by

sign(𝑡) = 1 if 𝑡 ≥ 0 and sign(𝑡) = −1 otherwise. Halfspaces (or

Linear Threshold Functions) are arguably the most fundamental

and extensively studied concept class in the learning theory and ma-

chine learning literature, starting with early work in the 1950s and

60s [53–55] and leading to fundamental and practically important

techniques [33, 59].

Halfspaces are known to be efficiently learnable without noise,

i.e., when the labels are consistent with a halfspace, see, e.g., [49].

In the presence of noisy labels, the picture is more muddled. In the

agnostic model [38, 41] (when a constant fraction of the labels can

be adversarially chosen), learning halfspaces is computationally

hard [18, 31, 35], even under the Gaussian distribution [26, 34]. This

motivates the study of “benign” noise models, where positive results

may be possible. The most basic such model, known as Random

Classification Noise (RCN) [1], prescribes that each label is flipped

independently with probability exactly 𝜂 < 1/2. In the RCN model,

halfspaces are known to be learnable in polynomial time [10].

The uniform noise assumption in the RCN model is accepted to

be unrealistic. To address this issue, various natural noise models

have been proposed and studied, capturing a number of realistic

https://doi.org/10.1145/3406325.3450998
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noise sources. The two most prominent such models are, in order

of increasing difficulty, the Massart (or bounded) noise model [51],

and the Tsybakov noise model [57]. In the Massart model, the label

of a datapoint x is flipped independently with probability 𝜂 (x) at
most 𝜂 < 1/2. Importantly, the flipping probability depends on the

datapoint x (instance specific noise).

Motivation for Tsybakov Noise Model. The bounded (Massart)

noise assumption, i.e., that the probability that labels are flipped

is globally bounded away from 1/2, fails to accurately capture a

number of practically relevant noise sources, including the human
annotator noise [9, 15, 42, 43]. In particular, the humans responsible

for labeling the training data are much more prone to incorrectly

classify points closer to the decision boundary (where “cats" and

“dogs" look almost the same), than points far from the boundary. For

example, it was empirically shown in [44] that when non-expert

annotators (Amazon Mechanical Turk) were used to annotate the

RTE-1 dataset [16], roughly 20% of the datapoints were classified

almost at random, i.e., had 𝜂 (x) ≈ 1/2. More broadly, a long line

of research (both applied and theoretical) [12, 13, 28, 32, 39, 52, 63]

focuses on noise models that do not restrict the flipping probability

globally, but allow it to be arbitrarily close to 1/2 near the decision
boundary. On the other hand, since datapoints from low-density

regions are also likely to be classified almost randomly (see, e.g.,

[32] and references therein), assuming that high noise rates occur

only close to the decision boundary does not sufficiently capture

these situations.

The Tsybakov noise model [50] provides a unified framework

that significantly extends the Massart noise condition to capture

the above scenarios: it prescribes that the label of each example is

independently flipped with some probability which is controlled

by an adversary, but is not uniformly bounded by a constant less

than 1/2. In particular, it allows the flipping probabilities to be

arbitrarily close to 1/2 for a fraction of the examples. Importantly,

it makes no geometric assumptions about the noise, e.g., that it is
only potentially large close to the decision boundary.

Formally, we have the following definition:

Definition 1.1 (PAC Learning with Tsybakov Noise). Let C be a

concept class of Boolean-valued functions over 𝑋 = R𝑑 , F be a

family of distributions on 𝑋 , 0 < 𝜖 < 1 be the error parameter, and

0 ≤ 𝛼 < 1, 𝐴 > 0 be parameters of the noise model.

Let 𝑓 be an unknown target function in C. A Tsybakov example
oracle, EXTsyb (𝑓 , F ), works as follows: Each time EX

Tsyb (𝑓 , F ) is
invoked, it returns a labeled example (x, 𝑦), such that: (a) x ∼ Dx,
where Dx is a fixed distribution in F , and (b) 𝑦 = 𝑓 (x) with proba-

bility 1 − 𝜂 (x) and 𝑦 = −𝑓 (x) with probability 𝜂 (x). Here 𝜂 (x) is
an unknown function that satisfies the (𝛼,𝐴)-Tsybakov noise con-
dition. That is, for any 0 < 𝑡 ≤ 1/2, 𝜂 (x) satisfies Prx∼Dx [𝜂 (x) ≥
1/2 − 𝑡] ≤ 𝐴 𝑡

𝛼
1−𝛼 .

Let D denote the joint distribution on (x, 𝑦) generated by the

above oracle. A learning algorithm is given i.i.d. samples from D
and its goal is to output a hypothesis function ℎ : 𝑋 → {±1} such
that with high probabilityℎ is 𝜖-close to 𝑓 , i.e., it holds Prx∼Dx [ℎ(x)
≠ 𝑓 (x)] ≤ 𝜖 .

The Tsybakov noise model was proposed in [50], then refined

in [57], and subsequently studied in a number of works, see, e.g., [6,

8, 11, 36, 37, 57]. All these prior works address information-theoretic

aspects of the model, i.e., do not provide computationally efficient

algorithms in high dimensions. The only algorithmic result we

are aware of in this model is the prior work by a subset of the

authors [29], which gave a quasi-polynomial time algorithm for

learning homogeneous halfspaces under a family of well-behaved

distributions (including log-concave distributions). Obtaining a

polynomial time algorithm for any any non-trivial setting (even

under Gaussian Marginals) was a long-standing open problem in

learning theory, see, e.g., [2].

It is easy to see that the Tsybakov model becomes more chal-

lenging as the parameter 𝛼 in Definition 1.1 decreases. In particular,

it is well-known that poly(𝑑, 1/𝜖1/𝛼 ) samples are necessary (and

sufficient) to learn halfspaces in this model. That is, an exponential

dependence in 1/𝛼 is information-theoretically required for any

algorithm that solves this problem.

We note that the error guarantee of Definition 1.1 is a strong

identifiability guarantee for the true function, which is information-

theoretically impossible in the agnostic model. In the following

remark, we emphasize that even a constant factor approximation to

the optimal misclassification error is insufficient for identifiability.

This is important as it implies a computational separation between

the Tsybakov and agnostic models, even under Gaussian marginals.

Remark 1.2 (Identifiability versus Misclassification Er-

ror). Definition 1.1 requires that the learning algorithm identifies
the true function 𝑓 ∈ C within arbitrary accuracy 𝜖 . A related
commonly used loss function is the misclassification error, i.e., the
probability Pr(x,𝑦)∼D [ℎ(x) ≠ 𝑦]. We note that having an efficient
algorithm with misclassification error OPT + 𝜖 for all 𝜖 > 0, where
OPT = inf𝑔∈C Pr(x,𝑦)∼D [𝑔(x) ≠ 𝑦], is equivalent to having an effi-
cient algorithm with the guarantee of Definition 1.1. We emphasize
however that there is a major qualitative difference between achieving
misclassification error of OPT + 𝜖 and achieving error 𝑐 ·OPT + 𝜖 , for
a constant 𝑐 > 1. The latter guarantee only allows us to approximate
𝑓 within error Ω(OPT).

Obtaining errorOPT+𝜖 in the agnostic model is known to require

time 𝑑poly(1/𝜖) for halfspaces under Gaussian marginals [26, 34, 40].

On the positive side, [5, 17, 25, 30] gave poly(𝑑/𝜖) time algorithms

for agnostically learning halfspaces under log-concave marginals.

These algorithms have error of 𝑂 (OPT) + 𝜖 , which is significantly

weaker as explained in Remark 1.2.

1.2 Our Contributions
The existence of a computationally efficient learning algorithm in

the presence of Tsybakov noise for any natural concept class and

under any distributional assumptions has been a long-standing

open problem in learning theory. In this work, we make significant
progress in this direction by essentially resolving the complexity of
learning halfspaces in this model.

In this section, we formally state our contributions. We start by

defining the distribution family for which our algorithms succeed.

Definition 1.3 (Well-Behaved Distributions). For 𝐿, 𝑅,𝑈 > 0 and

𝑘 ∈ Z+, a distribution Dx on R𝑑 is called (𝑘, 𝐿, 𝑅,𝑈 )-well-behaved
if for any projection (Dx)𝑉 ofDx on a 𝑘-dimensional subspace𝑉 of

R𝑑 , the corresponding pdf𝛾𝑉 on𝑉 satisfies the following properties:
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(i) 𝛾𝑉 (x) ≥ 𝐿, for all x ∈ 𝑉 with ∥x∥
2
≤ 𝑅 (anti-anti-concentration),

and (ii) 𝛾𝑉 (x) ≤ 𝑈 for all x ∈ 𝑉 (anti-concentration). If, addition-

ally, there exists 𝛽 ≥ 1 such that, for any 𝑡 > 0 and unit vector

w ∈ R𝑑 , we have that Prx∼Dx [| ⟨w, x⟩ | ≥ 𝑡] ≤ exp(1 − 𝑡/𝛽) (sub-
exponential concentration), we call Dx (𝑘, 𝐿, 𝑅,𝑈 , 𝛽)-well-behaved.

We focus on the case that the marginal distributionDx on the ex-
amples is well-behaved for some values of the relevant parameters.

Definition 1.3 specifies the concentration and anti-concentration

conditions on the low-dimensional projections of the data distri-

bution that are required for our learning algorithm. Throughout

this paper, we will take 𝑘 = 3, i.e., we only require 3-dimensional

projections to have such properties.

Interestingly, the class of well-behaved distributions is quite

broad. In particular, it is easy to show that the broad class of

isotropic log-concave distributions is well-behaved for 𝐿, 𝑅,𝑈 , 𝛽

being universal constants. Moreover, as Definition 1.3 does not re-

quire a specific functional form for the underlying density function,

it encompasses a much more general set of distributions.

Since the complexity of our algorithm depends (polynomially)

on 1/𝐿, 1/𝑅,𝑈 , 𝛽 , we state here a simplified version of our main

result for the case that these parameters are bounded by a universal

constant. To simplify the relevant theorem statements, we will

sometimes say that a distribution D of labeled examples in R𝑑 ×
{±1} is well-behaved to mean that its marginal distribution Dx is

well-behaved. We show:

Theorem 1.4 (Learning TsybakovHalfspaces underWell-Be-

haved Distributions). Let D be a well-behaved isotropic distribu-
tion on R𝑑 × {±1} that satisfies the (𝛼,𝐴)-Tsybakov noise condition
with respect to an unknown halfspace 𝑓 (x) = sign(⟨w∗, x⟩). There
exists an algorithm that draws 𝑁 = 𝑂𝐴,𝛼 (𝑑/𝜖)𝑂 (1/𝛼) samples from
D, runs in poly(𝑁,𝑑) time, and computes a vector ŵ such that, with
high probability we have that errDx

0−1 (ℎŵ, 𝑓 ) ≤ 𝜖 .

See Theorem 5.1 for a more detailed statement.

For the class of log-concave distributions, we give a significantly

more efficient algorithm:

Theorem 1.5 (Learning Tsybakov Halfspaces under Log–

concave Distributions). Let D be a distribution on R𝑑 × {±1}
that satisfies the (𝛼,𝐴)-Tsybakov noise condition with respect to an
unknown halfspace 𝑓 (x) = sign(⟨w∗, x⟩) and is such that Dx is
isotropic log-concave. There exists an algorithm that draws 𝑁 =

poly(𝑑)𝑂 (𝐴/𝜖)𝑂 (1/𝛼2) samples from D, runs in poly(𝑁,𝑑) time,
and computes a vector ŵ such that, with high probability, we have
that errDx

0−1 (ℎŵ, 𝑓 ) ≤ 𝜖 .

See Theorem 5.2 for a more detailed statement. Since the sample

complexity of the problem is poly(𝑑, 1/𝜖1/𝛼 ), the algorithm of The-

orem 1.5 is qualitatively close to best possible.

1.3 Overview of Techniques
Here we give an intuitive summary of our techniques in tandem

with a comparison to the most relevant prior work. A more detailed

technical discussion is provided in the proceeding sections.

Our learning algorithms employ the certificate-based frame-

work of [29]. At a high-level, this framework allows us to effi-

ciently reduce the problem of finding a near-optimal halfspace

ℎŵ (x) = sign(⟨ŵ, x⟩) to the (easier) problem of certifying whether
a candidate halfspace ℎw (x) = sign(⟨w, x⟩) is “far” from the opti-

mal halfspace 𝑓 (x) = sign(⟨w∗, x⟩). The idea is to use a certificate

algorithm (as a black-box) and combine it with an online convex

optimization routine. Roughly speaking, starting from an initial

guess w0 for w∗, a judicious combination of these two ingredients

allows us to efficiently compute a near-optimal halfspace ŵ, i.e., one

that the certifying algorithm cannot reject. We note that a similar

approach has been used in [14] for converting non-proper learners

to proper learners in the Massart noise model.

With the aforementioned approach as the starting point, the

learning problem reduces to that of designing an efficient certifying

algorithm. In recent work [29], the authors developed a certifying

algorithm for Tsybakov halfspaces based on high-dimensional poly-

nomial regression. This method leads to a certifying algorithm

with sample complexity and runtime 𝑑polylog(1/𝜖) , i.e., a quasi-

polynomial upper bound. As we will explain in Section 3.1, the [29]

approach is inherently limited to quasi-polynomial time and new

ideas are needed to obtain a polynomial time algorithm. The main
contribution of this paper is the design of a polynomial-time certificate
algorithm for Tsybakov halfspaces under well-behaved distributions.

The key idea to design a certificate in the Tsybakov noise model

is the following simple but crucial observation: If w∗ is the nor-
mal vector to true halfspace, then for any non-negative function

𝑇 (x), it holds that E(x,𝑦)∼D [𝑇 (x)𝑦 ⟨w∗, x⟩] ≥ 0. On the other hand,

for any w ≠ w∗ there exists a non-negative function 𝑇 (x) such
that E(x,𝑦)∼D [𝑇 (x) 𝑦 ⟨w, x⟩] < 0. In other words, there exists a

reweighting of the space that makes the expectation of 𝑦 ⟨w, x⟩ neg-
ative (Fact 3.1). Note that we can always use as 𝑇 (x) the indicator
of the disagreement region between the candidate halfspace ℎw (x)
and the optimal halfspace 𝑓 (x) = ℎw∗ (x). Of course, since opti-

mizing over the space of non-negative functions is intractable, we

need to restrict our search space to a “simple” parametric family of

functions. In [29], squares of low-degree polynomials were used,

which led to a quasi-polynomial upper bound.

In this work, we consider certifying functions of the form:

𝑇 (x) =
1
{
𝜎1 ≤ ⟨w, x⟩ ≤ 𝜎2 ,−𝑡1 ≤

〈
v, projw⊥

x
⟨w,x⟩

〉
≤ −𝑡2

}
⟨w, x⟩

that are parameterized by a vector v and scalar thresholds 𝜎1, 𝜎2,

𝑡1, 𝑡2 > 0. Here projw⊥ denotes the orthogonal projection on the

subspace orthogonal to w. It will be important for our approach

that functions of this form are specified by 𝑂 (𝑑) parameters.

Of course, it may not be a priori clear why functions of this

form can be used as certifying functions in our setting. The in-

tuition behind choosing functions of this simple form is given in

Section 3.1. In particular, in Claim 3.4, we show that for any in-

correct guess w there exists a certifying vector v that makes the

expectation E(x,𝑦)∼D [𝑇 (x) 𝑦 ⟨w, x⟩] negative. In fact, the vector

v = projw⊥w
∗/



projw⊥w

∗


2
:= (w∗)⊥w suffices for this purpose.

The key challenge is in finding such a certifying vector v algo-

rithmically. We note that our algorithm in general does not find

(w∗)⊥w . But it does find a vector v with similar behavior, in the

sense of making the E(x,𝑦)∼D [𝑇 (x) 𝑦 ⟨w, x⟩] sufficiently negative.

To achieve this goal, we take a two-step approach: The first step

involves computing an initialization vector v0 that has non-trivial
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correlation with (w∗)⊥w . In our second step, we give a perceptron-

like update rule that iteratively improves the initial guess until it

converges to a certifying vector v. While this algorithm is relatively

simple, its correctness relies on a win-win analysis (Lemma 3.12)

whose proof is quite elaborate. In more detail, we show that for any

non-certifying vector v that is sufficiently correlated with (w∗)⊥w ,
we can efficiently compute a direction that improves its correlation

to (w∗)⊥w . We then argue (Lemma 3.13) that by choosing an ap-

propriate step size this iteration converges to a certifying vector

within a small number of steps.

A subtle point is that the aforementioned analysis does not take

place in the initial space, where the underlying distribution is well-

behaved and the labels are Tsybakov homogeneous halfspaces,

but in a transformed space. The transformed space is obtained by

restricting our points in a band and then performing an appro-

priate “perspective” projection on the subspace orthogonal to w
(Section 3.2). Fortunately, we are able to show (Proposition 3.6)

that this transformation preserves the structure of the problem:

The transformed distribution remains well-behaved (albeit with

somewhat worse parameters) and satisfies the Tsybakov noise con-

dition (again with somewhat worse parameters) with respect to a

potentially biased halfspace. In fact, this consideration motivated

our use of the perspective projection in the definition of 𝑇 (x).
It remains to argue how to compute an initialization vector v0

that acts as a warm-start for our algorithm. Naturally, the sample

complexity and runtime of our certificate algorithm depend on

the quality of the initialization. The simplest way to initialize is

by using a random unit vector. With random initialization, we

achieve initial correlation roughly 1/
√
𝑑 , which leads to a certifying

algorithm with complexity (𝑑/𝜖)𝑂 (1/𝛼) (Theorem 3.3). This simple

initialization suffices to obtain Theorem 1.4 for the general class of

well-behaved distributions.

To obtain our faster algorithm for log-concave marginals (Theo-

rem 1.5), we use the exact same approach described above starting

from a better initialization. Our algorithm to obtain a better start-

ing vector leverages additional structural properties of log-concave

distributions. Our initialization algorithm runs in poly(𝑑) time (in-

dependent of 1/𝛼) and computes a unit vector whose correlation

with (w∗)⊥w is Ω(𝜖1/𝛼 ) (Theorem 4.2).

Specifically, our initialization algorithm works as follows:

(1) It starts by conditioning on a random sufficiently narrow

band around the current candidate w and projecting the

samples on the subspace w⊥.
(2) It transforms the resulting distribution to ensure that it is

isotropic log-concave through rescaling and rejection sam-

pling.

(3) It then computes the degree-2 Chow parameters and uses

them to construct a low-dimensional subspace𝑉 insidewhich

(w∗)⊥w has sufficiently large projection. This subspace 𝑉 is

the span of the degree-1 Chow vector and the large eigen-

vectors of the degree-2 Chow matrix.

(4) Finally, the algorithm outputs a uniformly random vector

in 𝑉 that can be shown to have the desired correlation with

(w∗)⊥w .
The resulting distribution after the initial conditioning in Step 1

is still log-concave and approximately satisfies the Tsybakov noise

condition with respect to a near-origin centered halfspace orthogo-

nal to w. However, the distribution may no longer be zero-centered

and may contain a tiny amount of non-Tsybakov noise — in the

sense that we may end with points x having 𝜂 (x) > 1/2. As we can
control the total non-Tsybakov noise, the latter is not a significant

issue. We address the former issue by reweighting the distribution

to make it isotropic. We do this by applying rejection sampling with

probabilitymin(1, exp(−⟨x, r⟩)), for some vector r that we compute

via SGD (so that the resulting mean is near-zero) and then rescaling

by the inverse covariance matrix.

After the first two steps, our goal is to find any vector with non-

trivial correlation (w∗)⊥w , given that the underlying distribution

is isotropic log-concave. We show that the labels 𝑦 must corre-

late with some degree-2 polynomial in

〈
(w∗)⊥w , x

〉
. Our algorithm

crucially exploits this property, along with recently established

“thin shell” estimates [48] for log-concave distributions, to show

that a large part of this correlation is explained by the vector of

degree-1 Chow parameters and the top few eigenvectors of the

degree-2 Chow matrix. This implies that the subspace 𝑉 spanned

by those vectors contains a non-trivial part of (w∗)⊥w , and thus

a random vector from 𝑉 has non-trivial correlation with (w∗)⊥w
with constant probability.

1.4 Related Work
Recent work by a subset of the authors [29] gave the first non-trivial

algorithm for learning homogeneous halfspaces with Tsybakov

noise under a family of “well-behaved” distributions. The notion

of well-behaved distributions in that work is somewhat different

than ours, but also contains log-concave distributions. The sample

complexity and runtime of the [29] algorithm is 𝑑polylog(1/𝜖) and
the quasi-polynomial upper bound is tight for their techniques.

The Tsybakov noise model lies in between theMassart model [51,

56] and the agnostic model [38, 41]. During the past five years,

substantial algorithmic progress has been made on learning with

Massart noise in both the distribution-specific setting [3, 4, 28, 61–

63] and the distribution-free PAC model [14, 19]. The algorithmic

techniques in these prior works are known to inherently fail for the

more challenging Tsybakov noise model, and new ideas are needed

for this more general setting.

Learning in the agnostic model is known to be computation-

ally hard, even under well-behaved marginals. Specifically, recent

work [26, 34] proved Statistical Query lower bounds of 𝑑poly(1/𝜖)

for agnostically learning halfspaces to errorOPT+𝜖 under Gaussian
marginals. This lower bound bound is qualitatively matched by the

𝐿1 regression algorithm [40]. A related line of work [5, 17, 25, 30, 45]

gave efficient algorithms for agnostically learning halfspaces under

log-concave marginals. While these algorithms run in poly(𝑑/𝜖)
time, they achieve a “semi-agnostic” error guarantee of𝑂 (OPT) +𝜖 ,
instead of OPT + 𝜖 . As already mentioned in Remark 1.2, this guar-

antee is significantly weaker and cannot be used to approximate

the true function within any desired accuracy.

This work is part of the broader direction of designing robust

learning algorithms for a range of statistical models with respect

to natural and challenging noise models. A line of work [5, 20–

23, 25, 27, 45–47] has given efficient robust learners for a range of
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settings in the presence of adversarial corruptions. See [24] for a

recent survey on the topic.

1.5 Structure of This Paper
After the required preliminaries in Section 2, in Section 3 we give

our certifying algorithm for the class of well-behaved distributions.

In Section 4, we give our more efficient certifying algorithm for log-

concave distributions. Finally, in Section 5, we review the certificate

framework and put everything together to prove our main results.

2 PRELIMINARIES
For 𝑛 ∈ Z+, let [𝑛]

def

= {1, . . . , 𝑛}. We will use small boldface char-

acters for vectors. For x ∈ R𝑑 and 𝑖 ∈ [𝑑], x𝑖 denotes the 𝑖-th

coordinate of x, and ∥x∥2
def

= (∑𝑑
𝑖=1 x

2

𝑖
)1/2 denotes the ℓ2-norm of

x. We will use ⟨x, y⟩ for the inner product of x, y ∈ R𝑑 and 𝜃 (x, y)
for the angle between x, y. We will use 1𝐴 to denote the character-

istic function of the set 𝐴, i.e., 1𝐴 (x) = 1 if x ∈ 𝐴 and 1𝐴 (x) = 0 if

x ∉ 𝐴.

Let e𝑖 be the 𝑖-th standard basis vector in R𝑑 . For 𝑑 ∈ N, let
S𝑑−1

def

= {x ∈ R𝑑 : ∥x∥2 = 1} be the unit sphere. We will denote

by proj𝑈 (x) the projection of x onto the subspace 𝑈 ⊂ R𝑑 . For a
subspace 𝑈 ⊂ R𝑑 , let 𝑈⊥ be the orthogonal complement of 𝑈 . For

a vector w ∈ R𝑑 , we use w⊥ to denote the subspace spanned by

vectors orthogonal to w, i.e., w⊥ = {u ∈ R𝑑 : ⟨w, u⟩ = 0}. Finally,
we denote by w⊥v the projection of the vector w on the subspace

v⊥ after normalization, i.e., w⊥v =
w−⟨w,v⟩ v
∥w−⟨w,v⟩ v∥

2

.

We use E[𝑋 ] for the expectation of the random variable 𝑋 and

Pr[E] for the probability of event E.
We study the binary classification setting where labeled exam-

ples (x, 𝑦) are drawn i.i.d. from a distribution D on R𝑑 × {±1}.
We denote by Dx the marginal of D on x. The zero-one error be-

tween two hypotheses 𝑓 , ℎ (with respect to Dx) is err
Dx
0−1 (𝑓 , ℎ)

def

=

Prx∼Dx [𝑓 (x) ≠ ℎ(x)].

3 EFFICIENTLY CERTIFYING
NON-OPTIMALITY

In this section, we give an efficient algorithm that can certify

whether a candidate weight vector w defines a halfspace ℎw (x) =
sign(⟨w, x⟩) that is far from the optimal halfspace sign(⟨w∗, x⟩).
Before we formally describe and analyze our algorithm, we provide

some intuition.

Background: Certifying Non-Optimality. Our approach relies on

the following simple but powerful idea, introduced in [29]: If a

candidate weight vectorw defines a halfspaceℎw (x) = sign(⟨w, x⟩)
that differs from the target halfspace 𝑓 (x) = sign(⟨w∗, x⟩), there
exists a certifying function of its non-optimality. In more detail,

there exists a reweighting of the space that makes the expectation

of 𝑦 ⟨w, x⟩ negative. This intuition is captured in Fact 3.1, stated

below. We note that the only assumption required for this to hold is

that the underlying distribution on examples assigns positive mass

to the symmetric difference of any two distinct halfspaces.

Fact 3.1 (Certifying Function). Let D be a distribution on
R𝑑 ×{±1} such that: (a) For any pair of distinct unit vectors v, u ∈ R𝑑 ,

we have that
Prx∼Dx [ℎv (x) ≠ ℎu (x)] > 0

. (b) D satisfies the Tsybakov noise condition with optimal classifier
𝑓 (x) = sign(⟨w∗, x⟩). Then we have:

(1) For any𝑇 : R𝑑 ↦→ R+, we have that E(x,𝑦)∼D [𝑇 (x) 𝑦 ⟨w∗, x⟩] ≥
0.

(2) For any non-zero vectorw ∈ R𝑑 such that 𝜃 (w,w∗) > 0, there ex-
ists a function 𝑇 : R𝑑 ↦→ R+ satisfying E(x,𝑦)∼D [𝑇 (x) 𝑦 ⟨w, x⟩]
< 0.

Proof. For the first statement, note that

E
(x,𝑦)∼D

[𝑇 (x) 𝑦
〈
w∗, x

〉
] = E

x∼Dx
[𝑇 (x) |

〈
w∗, x

〉
| (1 − 𝜂 (x))]−

E
x∼Dx

[𝑇 (x) |
〈
w∗, x

〉
| 𝜂 (x)] = E

x∼Dx
[𝑇 (x) |

〈
w∗, x

〉
| (1 − 2𝜂 (x))] ≥ 0 ,

where we used the fact that 𝜂 (x) ≤ 1/2 and 𝑇 (x) ≥ 0.

For the second statement, letw ≠ 0 and 𝜃 (w,w∗) > 0. By picking

as a certifying function𝑇 the indicator function of the disagreement

region between 𝑓 and ℎw, i.e., 𝑇 (x)
def

= 1{ℎw (x) ≠ 𝑓 (x)}, we have
that

E
(x,𝑦)∼D

[𝑇 (x) 𝑦 ⟨w, x⟩] = − E
x∼Dx

[𝑇 (x) | ⟨w, x⟩ | (1 − 2𝜂 (x))] .

We claim that Ex∼Dx [𝑇 (x) | ⟨w, x⟩ | (1 − 2𝜂 (x))] > 0, which proves

the second statement. To see this, we use our assumption that

the symmetric difference between any pair of distinct homoge-

neous halfspaces has positive probability mass. First, we note that

from the Tsybakov condition (for any choice of parameters) we

have that Prx∼Dx [𝜂 (x) = 1/2] = 0. So, it suffices to show that

Ex∼Dx [𝑇 (x) | ⟨w, x⟩ |] > 0.

Let w′ be a non-zero vector such that the hyperplane {x :

⟨w′, x⟩ = 0} is contained in the disagreement region {x : ℎw (x) ≠
𝑓 (x)} and 𝜃 (w,w′), 𝜃 (w∗,w′) > 0. This implies that {x : ℎw (x) ≠
𝑓 (x)} ⊃ {x : ℎw′ (x) ≠ 𝑓 (x)} and Prx∼Dx [ℎw′ (x) ≠ 𝑓 (x)] > 0.

Note that |⟨w, x⟩| > 0 for all x with ℎw′ (x) ≠ 𝑓 (x). Therefore, we
get that

E
x∼Dx

[𝑇 (x) | ⟨w, x⟩ |] ≥ E
x∼Dx

[1{ℎw′ (x) ≠ 𝑓 (x)}| ⟨w, x⟩ |] > 0 .

This completes the proof of Fact 3.1. □

Main Result of this Section. Fact 3.1 shows that a certifying func-

tion exists. However, in general, finding such a function is information-

theoretically and computationally hard. By leveraging our distribu-

tional assumptions, we show that a certifying function of a specific

simple form exists and can be computed in polynomial time.

For the rest of this section, we work with distributions that

are (3, 𝐿, 𝑅, 𝛽)-well-behaved. These distributions satisfy the same

properties as those in Definition 1.3, except the anti-concentration

condition. (The anti-concentration condition is only required at the

end of our analysis in Section 5 to deduce that small angle between

two halfspaces implies small 0-1 error.)

Definition 3.2. For 𝐿, 𝑅 > 0, 𝛽 ≥ 1, and 𝑘 ∈ Z+, a distribution Dx
on R𝑑 is called (𝑘, 𝐿, 𝑅, 𝛽)-well-behaved if the following conditions

hold: (i) For any projection (Dx)𝑉 of Dx on a 𝑘-dimensional sub-

space 𝑉 of R𝑑 , the corresponding pdf 𝛾𝑉 on 𝑉 satisfies 𝛾𝑉 (x) ≥ 𝐿,

for all x ∈ 𝑉 with ∥x∥
2
≤ 𝑅 (anti-anti-concentration). (ii) For any
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𝑡 > 0 and unit vector w ∈ R𝑑 , we have that Prx∼Dx [| ⟨w, x⟩ | ≥
𝑡] ≤ exp(1 − 𝑡/𝛽) (sub-exponential concentration).

Specifically, we have:

Theorem 3.3 (Efficiently Certifying Non-Optimality). Let
D be a (3, 𝐿, 𝑅, 𝛽)-well-behaved isotropic distribution on R𝑑 × {±1}
that satisfies the (𝛼,𝐴)-Tsybakov noise condition with respect to an
unknown halfspace 𝑓 (x) = sign(⟨w∗, x⟩). Letw be a unit vector with
𝜃 (w,w∗) ≥ 𝜃 , where 𝜃 ∈ (0, 𝜋]. There is an algorithm that, given
as input w, 𝜃 , and 𝑁 = ((𝐴/(𝐿𝑅)) · (𝑑/𝜃 ))𝑂 (1/𝛼) log(1/𝛿) samples
fromD, it runs in poly(𝑁,𝑑) time, and with probability at least 1−𝛿
returns a certifying function 𝑇w : R𝑑 ↦→ R+ such that

E
(x,𝑦)∼D

[𝑇w (x) 𝑦 ⟨w, x⟩] ≤ −
1

𝛽

(
𝐿𝑅 𝜃

𝐴𝑑

)𝑂 (1/𝛼)
. (1)

3.1 Intuition and Roadmap of the Proof
In this subsection, we give an intuitive proof overview of The-

orem 3.3 along with pointers to the corresponding subsections

where the proof of each component appears. First, we discuss the

specific form of the certifying function that we compute. The proof

of Fact 3.1 shows that a valid choice for the certifying function

would be the characteristic function of the disagreement region

between the candidate hypothesis w and the optimal halfspace w∗,
i.e.,𝑇w (x) = 1{sign(⟨w, x⟩) ≠ sign(⟨w∗, x⟩}. Unfortunately, we do
not know w∗ (this is the vector we are trying to approximate!), and

therefore it is unclear how to algorithmically use this certifying

function.

Our goal is to judiciously define a parameterized family of “sim-

ple” certifying functions and optimize over this family to find one

that acts similarly to the indicator of the disagreement region. A

natural attempt to construct a certifying function for a guess w
would be to focus on a small “band” around the candidate halfspace

w. This idea bears some similarity with the technique of “localiza-

tion", an approach going back to [7], which has previously seen

success for the problem of efficiently learning homogeneous half-

spaces with Massart noise [3, 4, 28, 62]. Unfortunately, this idea

is inherently insufficient to provide us with a certifying function

for the following reason: Even an arbitrarily thin band around

w will assign more probability mass on points that do not be-

long in the disagreement region, and therefore the expectation

E(x,𝑦)∼D [1{𝜎1 ≤ ⟨w, x⟩ ≤ 𝜎2}𝑦 ⟨w, x⟩] will be positive. See Fig-
ure 1 for an illustration.

Intuitively, we need a way to boost the contribution of the dis-

agreement region. One way to achieve this is by constructing a

smooth reweighting of the space. In particular, we can look in the

direction of the projection of w∗ on the orthogonal complement of

w, i.e., the vector

(w∗)⊥w =
projw⊥ (w∗)


projw⊥ (w∗)




2

,

that lies in the 2-dimensional subspace spanned by w and w∗;
see Figure 1. Notice that the disagreement region is a subset of

the points that have negative inner product with (w∗)⊥w . There-
fore, a candidate reweighting can be obtained by using a polyno-

mial 𝑝 (
〈
(w∗)⊥w , x

〉
) of moderately large degree that will boost

w∗
w

(w∗)⊥w
⟨(w∗ )⊥w ,x⟩<𝑡

𝜎2

𝜎1

Figure 1: The indicator of a band {x : 𝜎1 ≤ ⟨w, x⟩ ≤ 𝜎2}
cannot be used as a certificate even when there is no noise
and the underlying distribution is the standard Gaussian:
the contribution of the positive points (red region) is larger
than the contribution of the negative points (blue region).
On the other hand, taking the intersection of the band and
the halfspace with normal vector (w∗)⊥w and a sufficiently
negative threshold 𝑡 < 0 gives us a subset of the disagreement
region (intersection of blue and green regions).

the points that lie in the disagreement region. This was the ap-

proach used in the recent work [29]. Since (w∗)⊥w is not known,

one needs to formulate a convex program (SDP) over the space of

all 𝑑-variate polynomials of sufficiently large degree 𝑘 implying

that the corresponding SDP has 𝑑Ω (𝑘) variables. Unfortunately, it
is not hard to show that the required degree cannot be smaller than

Ω(log(1/𝜖)). Therefore, this approach can only give a 𝑑Ω (log(1/𝜖)) ,
i.e., quasi-polynomial, certificate algorithm.

In this work, we instead use a hard threshold function together

with a band to isolate (a non-trivial subset of) the disagreement re-

gion. Specifically, we consider a function of the form1{
〈
(w∗)⊥w , x

〉
< 𝑡} for some scalar threshold 𝑡 ; see Figure 1. Since (w∗)⊥w is un-

known, we need to find a certifying vector v that is perpendicular

to w, i.e., v ∈ w⊥ and acts similarly to (w∗)⊥w . This leads us to the
following non-convex optimization problem

min

𝑡 ∈R,v∈w⊥
E

(x,𝑦)∼D
[1{𝜎1 ≤ ⟨w, x⟩ ≤ 𝜎2}1{⟨v, x⟩ < 𝑡} ⟨w, x⟩] .

Thus far, we have succeeded in reducing the number of parameters

that we want to compute down to𝑂 (𝑑), but now we are faced with

a non-convex optimization problem. Our main result is an efficient

algorithm that computes a certifying vector v and a threshold 𝑡

that does not necessarily minimize the above non-convex objective,

but still suffice to make the corresponding expectation sufficiently

negative.

We now describe the main steps we use to compute the certifying

vector v. The first obstacle we need to overcome is that, for v ∈
w⊥, the corresponding instance fails to satisfy the Tsybakov noise

condition. In particular, when we project the datapoints on w⊥,
the region close to the boundary of the optimal halfspace becomes

“fuzzy" even without noise: Points with different labels are mapped

to the same point of w⊥; see Figure 2a. We bypass this difficulty by

using a perspective projection to map the datapoints onto w⊥. For
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w∗
w

(w∗)⊥w

(a) Orthogonal projection.

w∗w∗
w

(w∗)⊥w

(b) Perspective projection.

Figure 2: The dotted line on top of the figures corresponds
to the subspace w⊥. When we project the points to w⊥ or-
thogonally, we map points with different labels to the same
point of w⊥ and obtain the “fuzzy" region where blue points
(classified as negative byw∗) overlap with red points (positive
according to w∗). On the other hand, the perspective projec-
tion defined in Equation 2 preserves linear separability.

non-zero vectors w, x ∈ R𝑑 , the perspective projection of x on w is

defined as follows:

𝜋w (x)
def

= projw⊥
x
⟨w, x⟩ . (2)

Notice that without noise the perspective projection keeps the

dataset linearly separable (see Figure 2b), which means that after

we perform this projection the label noise of the resulting instance

will again satisfy the Tsybakov noise condition. In addition, we

show that this transformation will preserve the crucial distribu-

tional properties (concentration, anti-anti-concentration) of the

underlying marginal distribution Dx. For a detailed discussion and

analysis of this data transformation, see Subsection 3.2.

Given this setup, the certificate that our algorithm will compute

for a candidate weight vector w ∈ R𝑑 is a function of the form

𝑇w (x) =
1 {𝜎1 ≤ ⟨w, x⟩ ≤ 𝜎2 ,−𝑡1 ≤ ⟨v, 𝜋w (x)⟩ ≤ −𝑡2}

⟨w, x⟩ =:
𝜓 (x)
⟨w, x⟩ ,

(3)

for some vector v ∈ R𝑑 and scalars 𝜎1, 𝜎2, 𝑡1, 𝑡2 > 0. For an illus-

tration, in Figure 2b we plot the set of the indicator function𝜓 (x)
which is a (high-dimensional) trapezoid.

It is not difficult to verify that by choosing v = (w∗)⊥w and appro-

priately picking 𝜎1, 𝜎2, 𝑡1, 𝑡2, the corresponding certificate function

𝑇w resembles the indicator function of the disagreement region and

certifies the non-optimality of the candidate halfspace w. In the

following claim, we prove that for any non-optimal halfspace there

exists a certifying function of the above form.

Claim 3.4. Let D be a (3, 𝐿, 𝑅, 𝛽)-well-behaved isotropic distribu-
tion on R𝑑 × {±1} that satisfies the (𝛼,𝐴)-Tsybakov noise condition
with respect to an unknown halfspace 𝑓 (x) = sign(⟨w∗, x⟩). Fix
any non-zero vector w such that 𝜃 (w,w∗) > 0. Then, by setting
v = (w∗)⊥w in the definition (3) of𝑇w (x), there exist 𝜎1, 𝜎2, 𝑡1, 𝑡2 > 0

such that E(x,𝑦)∼D [𝑇w (x) 𝑦 ⟨w, x⟩] < 0.

We note here that the proof of Claim 3.4 is sketched below for

the sake of intuition and is not required for the subsequent analysis.

Proof Sketch. Setting v = (w∗)⊥w in (3), we have

E
(x,𝑦)∼D

[𝑇w (x) 𝑦 ⟨w, x⟩] = E
(x,𝑦)∼D

[𝜓 (x) 𝑦]

= E
(x,𝑦)∼D

[
𝜓 (x) (1 − 2𝜂 (x)) sign(

〈
w∗, x

〉
)
]
.

We will show that by appropriate choices of 𝜎1, 𝜎2, 𝑡1, 𝑡2 the in-

dicator 𝜓 (x) above corresponds to a subset of the disagreement

region {x : sign(⟨w, x⟩) ≠ sign(⟨w∗, x⟩)}. See Figure 3 for an

illustration. More precisely, since the distribution satisfies an anti-

anti-concentration property, we can choose 𝜎1, 𝜎2 = Θ(𝑅), so that

inside the band {𝜎1 ≤ ⟨w, x⟩ ≤ 𝜎2} there is non-zero probability

mass. In particular, by setting 𝜎1 = 𝜌𝑅/2 and 𝜎2 = 𝜌𝑅/
√
2, for some

𝜌 ∈ (0, 1], we have that the band has mass roughly Ω(𝜌𝑅3). For
these choices of 𝜎1 and 𝜎2, we can pick 𝑡1 = Θ(𝑅/𝜌) and guarantee

that the slope of the corresponding line in the two-dimensional

subspace is sufficiently small, so that we get a trapezoid whose

intersection with the aforementioned horizontal band is large (see

Figure 3). It remains to tune the parameter 𝑡2. Since 𝜃 = 𝜃 (w,w∗) is
known, we may pick 𝑡2 = Θ(𝑅 tan𝜃/𝜌) in order to make sure that

the trapezoid is a subset of the disagreement region between w∗

and w. □

From the above proof, it is clear that one does not really need to

optimize the scalars 𝜎1, 𝜎2, 𝑡1. Their values can be chosen according

to the parameters of the underlying well-behaved distribution. Our

optimization problem will be with respect to the vector v and the

threshold 𝑡2. However, optimizing the expectation of the certifying

function 𝑇w of Equation (3) is still a non-convex problem. Given

a candidate certifying vector v0 that has non-trivial correlation

with (w∗)⊥w , our main structural result is a win-win statement

showing that either there exists a threshold 𝑡2 that, together with v0,
makes the corresponding expectation of𝑇w sufficiently negative, or

a perceptron-like update rule will improve the correlation between

(w∗)⊥w and w. In particular, we show that after roughly poly(𝑑/𝜖)
updates the correlation between the guess v and (w∗)⊥w will be

sufficiently large so that there exists some threshold 𝑡2 that makes

v a certifying vector. Having such a vector v, it is easy to optimize

over all possible thresholds and find a value for 𝑡2 that works. For
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𝜎2

𝜎1

〈
(w∗)⊥w , 𝜋w (x)

〉
= −𝑡2〈

(w∗)⊥w , 𝜋w (x)
〉
= −𝑡1

w∗ w

(w∗)⊥w

Figure 3: The function 𝜓 (x) for v = (w∗)⊥w =
projw⊥ (w∗)
∥projw⊥ (w∗)∥2

defined in (3) and appropriate scalars 𝜎1, 𝜎2, 𝑡1, 𝑡2 is the indica-
tor of a subset of the disagreement region {x : sign(⟨w, x⟩) ≠
sign(⟨w∗, x⟩)}.

the formal statement of this claim and its proof, see Subsection 3.3

and Proposition 3.11.

3.2 Data Transformation
In this subsection, we show that we can simplify the problem of

searching for a certifying vector v in 𝑇w (x) defined in Equation (3)

by projecting the samples to an appropriate (𝑑 − 1)-dimensional

subspace via the perspective projection (2). The main proposition

of this subsection (Proposition 3.6) shows that this operation in

some sense preserves the structure of the problem. In more detail,

the transformed distribution remains well-behaved and satisfies the

Tsybakov noise condition (albeit with somewhat worse parameters).

The transformation we perform is as follows:

(1) We first condition on the band 𝐵 = {x : ⟨x,w⟩ ∈ [𝜎1, 𝜎2]},
for some positive parameters 𝜎1, 𝜎2.

(2) We then perform the perspective projection on the samples,

𝜋w (·), defined in Equation (2).

To facilitate the proceeding formal description, we introduce the

following definition.

Definition 3.5 (Transformed Distribution). LetD be a distribution

on R𝑑 × {±1}, 𝐵 ⊆ R𝑑 and (x, 𝑦) ∼ D.

• We use D𝐵 to denote D conditioned on x being in the set 𝐵.

• Let 𝑞 : R𝑑 ↦→ R𝑑 . We denote by D𝑞
the distribution of the

random variable (𝑞(x), 𝑦).
With the above notation, D𝑞

𝐵
is the distribution obtained by first

conditioning on 𝐵 and then applying the transformation 𝑞(·) to
D𝐵 .

With Definition 3.5 in place, the distribution obtained fromD af-

ter we condition on the band 𝐵 isD𝐵 , and the distribution obtained

from D𝐵 after we perform the perspective projection is D𝜋w
𝐵

. We

can now state the main proposition of this subsection.

Proposition 3.6 (Properties of D𝜋w
𝐵

). Let D be a (3, 𝐿, 𝑅, 𝛽)-
well-behaved isotropic distribution on R𝑑 × {±1} that satisfies the
(𝛼,𝐴)-Tsybakov noise condition with respect to an unknown halfspace
𝑓 (x) = sign(⟨w∗, x⟩). Fix any unit vector w such that 𝜃 (w,w∗) = 𝜃 ,
and let 𝐵 = {x : ⟨x,w⟩ ∈ [𝜌𝑅/2, 𝜌𝑅/

√
2]}, for some 𝜌 ∈ (0, 1]. Then,

for some 𝑐 = (𝐿𝑅)𝑂 (1) , the following conditions hold:

(1) The distribution D𝜋w
𝐵

on R𝑑 × {±1} is
(
2, 𝑐𝜌3, 1𝜌 ,

𝛽
𝑐𝜌 log

1

𝜌

)
-

well-behaved.
(2) The distributionD𝜋w

𝐵
satisfies the

(
𝛼, 𝐴

𝑐𝜌

)
-Tsybakov noise con-

dition with optimal classifier sign
(〈
(w∗)⊥w , x

〉
+ 1/tan𝜃

)
.

The rest of this subsection is devoted to the proof of Proposi-

tion 3.6. Before we proceed with the proof, we express the problem

of finding a certifying vector v satisfying (3) in the transformed

domain. Indeed, it is not hard to see that after we condition on 𝐵

and perform the perspective projection 𝜋w, our goal is to find a

vector v and scalars 𝑡1, 𝑡2 > 0 such that

E
(z,𝑦)∼D𝜋w

𝐵

[1{−𝑡1 ≤ ⟨v, z⟩ ≤ −𝑡2}𝑦] < 0 . (4)

More formally, we have the following simple lemma showing that if

we find a certifying vector v and parameters 𝑡1, 𝑡2 in the transformed

instance D𝜋w
𝐵

satisfying Equation (4), the same vector and param-

eters will be a certificate with respect to the initial well-behaved

distribution D. The relevant expectation remains negative but is

slightly closer to zero.

Lemma 3.7. Let D be a (3, 𝐿, 𝑅, 𝛽)-well-behaved distribution on
R𝑑 and let 𝐵 = {x : ⟨x,w⟩ ∈ [𝜌𝑅/2, 𝜌𝑅/

√
2]}, for some 𝜌 ∈ (0, 1].

Let w ∈ R𝑑 be a unit vector and let v ∈ w⊥, 𝑡1, 𝑡2 > 0 be such that
E(z,𝑦)∼D𝜋w

𝐵
[1{−𝑡1 ≤ ⟨v, z⟩ ≤ −𝑡2}𝑦] < −𝐶 , for some 𝐶 > 0. Then

we have that E(x,𝑦)∼D [𝑇w (x) 𝑦 ⟨w, x⟩] = −Ω(𝐶𝐿𝑅3𝜌).

Proof of Proposition 3.6. Our goal is to compute a certificate of

the form (3). As we already discussed, if we had chosen to simply

project the points on the subspace w⊥, we would have obtained

an instance that is not linearly separable — even if the noise rate

𝜂 (x) was identically zero. By first conditioning on the set 𝐵 =

{x : ⟨x,w⟩ ∈ [𝜎1, 𝜎2]}, where 𝜎1, 𝜎2 > 0, and then performing the

perspective projection 𝜋w, we keep the dataset linearly separable

(with respect to the noiseless distribution, i.e., for 𝜂 (x) = 0), albeit

by a biased linear classifier. We have the following lemma.

Lemma 3.8. Let D be a distribution on R𝑑 × {±1} such that for
(x, 𝑦) ∼ D we have that 𝑦 = sign(⟨w∗, x⟩). Let w be any unit
vector such that 𝜃 (w,w∗) = 𝜃 ∈ (0, 𝜋]. For (z, 𝑦) ∼ D𝜋w

𝐵
it holds

𝑦 = sign

(〈
(w∗)⊥w , z

〉
+ 1

tan𝜃

)
, i.e., the transformed distribution is

linearly separable by a biased hyperplane.

Proof. Observe that w∗ = 𝜆1 (w∗)⊥w + 𝜆2w, where 𝜆1 > 0. We

then have

sign(
〈
w∗, x

〉
) = sign

(
𝜆1

〈
(w∗)⊥w , x

〉
+ 𝜆2 ⟨w, x⟩

)
= sign

(〈
(w∗)⊥w , 𝜋w (x)

〉
+ 𝜆2

𝜆1

)
,

where to get the last equality we use the fact that 𝜆1 and ⟨w, x⟩ are
both positive given that we conditioned on the band 𝐵. Observe that

if the angle between w and w∗ is 𝜃 , then 𝜆1 = sin𝜃 and 𝜆2 = cos𝜃 .

This completes the proof. □

We next show that conditioning on the band 𝐵 will not make

the Tsybakov noise condition substantially worse.

Lemma 3.9. LetD be a (3, 𝐿, 𝑅, 𝛽)-well-behaved isotropic distribu-
tion on R𝑑 × {±1} that satisfies the (𝛼,𝐴)-Tsybakov noise condition
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with respect to an unknown halfspace 𝑓 (x) = sign(⟨w∗, x⟩). Let 𝐵 =

{x : ⟨x,w⟩ ∈ [𝜌𝑅/2, 𝜌𝑅/
√
2]}, for some 𝜌 ∈ (0, 1]. ThenD𝐵 satisfies

the Tsybakov noise condition with parameters (𝛼,𝑂 (𝐴/(𝑅3𝐿𝜌))) and
optimal linear classifier w∗.

Proof. Wehave that Prx∼Dx [1−2𝜂 (x) > 𝑡 |x ∈ 𝐵] ≤ Prx∼Dx [1−
2𝜂 (x) > 𝑡]/Prx∼Dx [𝐵]. From the proof of Lemma 3.7, we have

seen that we can use the anti-anti-concentration property of Dx to

bound Prx∼Dx [𝐵] from below. Specifically, we have Prx∼Dx [𝐵] ≥
Ω(𝐿𝑅3𝜌). Therefore, D𝐵 satisfies the Tsybakov noise condition

with parameters (𝛼,𝑂 (𝐴/(𝑅3𝜌𝐿)). □

Finally, we show that the transformation of Equation (2) also

preserves the anti-anti-concentration and concentration properties

of the marginal distribution Dx.

Lemma 3.10. Let D be a (3, 𝐿, 𝑅, 𝛽)-well-behaved distribution. Fix
any unit vectorw and let𝐵 = {x : ⟨x,w⟩ ∈ [𝜌𝑅/2, 𝜌𝑅/

√
2]}, for some

𝜌 ∈ (0, 1]. Then the transformed distributionD𝜋w
𝐵

is (2,Ω(𝐿𝜌3𝑅3), 1/𝜌,
𝑂 (𝛽/(𝑅𝜌) log(1/(𝐿𝑅𝜌))))-well-behaved.

Proposition 3.6 follows by combining Lemmas 3.8, 3.9, 3.10.

3.3 Efficient Certificate Computation Given
Initialization

In this subsection, we give our main algorithm for computing a

non-optimality certificate in the transformed instance, i.e., a vector

v and parameters 𝑡1, 𝑡2 > 0 satisfying Equation (4). Recall that after

the perspective projection transformation of Subsection 3.2, we

now have sample access to i.i.d. labeled examples (x, 𝑦) from a

well-behaved distribution D on R𝑑 × {±1} satisfying the Tsybakov
noise condition (albeit with somewhat worse parameters) with

the optimal classifier being a non-homogeneous halfspace (see

Proposition 3.6.)

Our certificate algorithm in this subsection assumes the exis-

tence of an initialization vector, i.e., a vector that has non-trivial

correlation with (w∗)⊥w . The simplest way to find such a vector

is by picking a uniformly random unit vector. A random initializa-

tion suffices for the guarantees of this subsection (and in particular

for Theorem 3.3). We note that for the family of log-concave dis-

tributions, we can leverage additional structure to design a fairly

sophisticated initialization algorithm that in turn leads to a faster

certificate algorithm (see Section 4).

The main algorithmic result of this section is an efficient al-

gorithm to compute a certifying vector satisfying Equation (4).

Note that we are essentially working in (𝑑 − 1) dimensions, since

we have already projected the examples to the subspace w⊥. As
shown in Proposition 3.6, the transformed distribution D𝜋w

𝐵
is still

well-behaved and follows the Tsybakov noise condition, but with

somewhat worse parameters than the initial distribution D.

To avoid clutter in the relevant expressions, we overload the nota-

tion and useD instead ofD𝜋w
𝐵

in the rest of this section. Moreover,

we use the notation (𝐿, 𝑅, 𝛽) and (𝛼,𝐴) to denote the well-behaved

distribution’s parameters and the Tsybakov noise parameters. The

actual parameters ofD𝜋w
𝐵

(quantified in Proposition 3.6) are used in

the proof of Theorem 3.3. To simplify notation, we will henceforth

denote by v∗ the vector (w∗)⊥w . We show:

Proposition 3.11. Let D be a (2, 𝐿, 𝑅, 𝛽)-well-behaved distribu-
tion on R𝑑 × {±1} satisfying the (𝛼,𝐴)-Tsybakov noise condition
with respect to an unknown halfspace 𝑓 (x) = sign(⟨v∗, x⟩ + 𝑏). Let
v0 ∈ R𝑑 be a unit vector such that ⟨v0, v∗⟩ ≥ 4𝑏/𝑅. There is an
algorithm (Algorithm 1) with the following performance guarantee:

Given v0 and 𝑁 = 𝑑
𝛽2𝑅2

𝑏2

(
𝐴
𝑅𝐿

)𝑂 (1/𝛼)
log(1/𝛿) samples fromD, the

algorithm runs in poly(𝑁,𝑑) time, and with probability at least 1−𝛿
returns a unit vector v ∈ R𝑑 and a scalar 𝑡 ∈ R+ such that

E
(x,𝑦)∼D

[1[−𝑅 ≤ ⟨v, x⟩ ≤ −𝑡] 𝑦] ≤ − 𝑏

𝑅𝛽

(
𝑅𝐿

𝐴

)𝑂 (1/𝛼)
.

Algorithm 1 employs a “perceptron-like" update rule that in poly-

nomially many rounds succeeds in improving the angle between

the initial guess v0 and the target vector (w∗)⊥w = v∗. While the

algorithm is relatively simple, its proof of correctness relies on a

novel structural result (Lemma 3.12) whose proof is the main tech-

nical contribution of this section. Roughly speaking, our structural

result establishes the following win-win statement: Given a vector

whose correlation with v∗ is non-trivial, either this vector is already
a certifying vector (see Item 1 of Lemma 3.12 and Lemma 3.7) or the

update step will improve the angle with v∗ (Item 2 of Lemma 3.12).

In more detail, starting with a vector v0 that has non-trivial

correlation with v∗, we consider the following update rule

v(𝑡+1) = v(𝑡 ) + 𝜆g , (5)

where 𝜆 > 0 is an appropriately chosen step size and

g = E
(x,𝑦)∼D

[1{−𝑅 ≤ ⟨v(𝑡 ) , x⟩ ≤ −𝑅/2}𝑦 proj(v(𝑡 ) )⊥ (x)] ,

where proj(v(𝑡 ) )⊥ (x) is the projection of x to the subspace (v(𝑡 ) )⊥.
In Lemma 3.13, we show that if v(𝑡 ) is not a certifying vector,

i.e., it does not satisfy Item 1 of Lemma 3.13, then there exists an

appropriately small step size 𝜆 that improves the correlation with v∗

after the update. This is guaranteed by Item 2 of Lemma 3.13, which

shows that g has positive correlation with (v∗)⊥v (the normalized

projection of v∗ onto v⊥), and thus will turn v(𝑡 ) towards the

direction of v∗ decreasing the angle between them.

We are now ready to state and prove our win-win structural

result:

Lemma 3.12 (Win-Win Result). Let D be a (2, 𝐿, 𝑅, 𝛽)-well-
behaved distribution on R𝑑 × {±1} that satisfies the (𝛼,𝐴)-Tsybakov
noise condition with respect to 𝑓 (x) = sign(⟨v∗, x⟩ + 𝑏), and v ∈ R𝑑
be a unit vector with ⟨v, v∗⟩ ≥ 4𝑏/𝑅. Consider the band 𝐵𝑡 = {x :

−𝑅 ≤ ⟨v, x⟩ ≤ −𝑡} for 𝑡 ∈ [𝑅/2, 𝑅] and define

g = E
(x,𝑦)∼D

[1𝐵𝑅/2 (x) 𝑦 projv⊥ (x)] .

For some 𝑐 = (𝑅𝐿/𝐴)𝑂 (1/𝛼) , one of the following statements is satis-
fied:

(1) There exists 𝑡0 ∈ (𝑅/2, 𝑅], such that E(x,𝑦)∼D
[
1𝐵𝑡

0
(x) 𝑦

]
≤

−𝑐2 𝑏
𝑅𝛽

.

(2) It holds ⟨g, v∗⟩ ≥ 𝑐2 𝜋𝑏
4𝛽

.

Moreover, the first condition always holds if 𝜃 (v, v∗) ≤ 𝑏 𝑐/𝛽 .
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Algorithm 1 Computing a Certificate Given Initialization

1: procedure ComputeCertificate((𝐿, 𝑅, 𝛽), (𝐴, 𝛼), 𝛿, v0, D̂)

2: Input: Empirical distribution D̂ of a (2, 𝐿, 𝑅, 𝛽)-well-behaved
distribution that satisfies the (𝛼,𝐴)-Tsybakov noise condition,
initialization vector v0, confidence probability 𝛿 .

3: Output: A certifying vector v and positive scalars 𝑡1, 𝑡2 that

satisfy (4).

4: v(0) ← v0
5: 𝑇 ← poly(1/𝐿, 1/𝑅,𝐴)1/𝛼 · poly(1/𝑏, 1/𝛽)
6: 𝜆 ← 1

𝛽3
poly(𝐿, 𝑅, 1/𝐴)1/𝛼 ; 𝑐 ← 𝑏

𝑅𝛽
poly(𝐿, 𝑅, 1/𝐴)1/𝛼

7: for 𝑡 = 1, . . . ,𝑇 do
8: 𝐵𝑡

′
= {x : −𝑅 ≤

〈
v(𝑡−1) , x

〉
≤ −𝑡 ′}

9: if there exists 𝑡0 ∈ (𝑅/2, 𝑅] such that

E(x,𝑦)∼D̂
[
1𝐵𝑡

0
(x) 𝑦

]
≤ −𝑐

10: return(v(𝑡−1) , 𝑅, 𝑡0)
11: ĝ(𝑡 ) ← E(x,𝑦)∼D̂

[
1𝐵𝑅/2 (x) 𝑦 proj(v(𝑡−1) )⊥ (x)

]
12: v(𝑡 ) ← v(𝑡−1)+𝜆ĝ(𝑡 )

∥v(𝑡−1)+𝜆ĝ(𝑡 ) ∥
2

In the next lemma, we show that if Item 2 of Lemma 3.12 is

satisfied, then an update step decreases the angle between the

current vector v and the optimal vector v∗.

Lemma 3.13 (Correlation Improvement). For unit vectors v∗, v ∈
R𝑑 , let ĝ ∈ R𝑑 such that ⟨ĝ, v∗⟩ ≥ 𝑐

𝛽
, ⟨ĝ, v⟩ = 0, and ∥ĝ∥

2
≤ 𝛽 , with

𝑐 > 0 and 𝛽 ≥ 1. Then, for v′ = v+𝜆ĝ
∥v+𝜆ĝ∥

2

, with 𝜆 = 𝑐
2𝛽3

, we have that

⟨v′, v∗⟩ ≥ ⟨v, v∗⟩ + 𝜆2𝛽2/2.

To analyze the sample complexity of Algorithm 1, we require

the following simple lemma, which bounds the sample complexity

of estimating the update function and testing the current candidate

certificate.

Lemma 3.14 (Estimating g). LetD be a (2, 𝐿, 𝑅, 𝛽)-well-behaved
distribution. Given𝑁 = 𝑂 ((𝑑𝛽2/𝜖2) log(𝑑/𝛿)) i.i.d samples (x(𝑖) , 𝑦 (𝑖) ))
from D, the estimator ĝ = 1

𝑁

∑𝑁
𝑖=1 1𝐵𝑅/2

(
x(𝑖)

)
𝑦 (𝑖)x(𝑖) satisfies the

following with probability at least 1 − 𝛿 :
• ∥ĝ − g∥

2
≤ 𝜖 , where g = E(x,𝑦)∼D [1𝐵𝑅/2 (x) 𝑦 x], and

• ∥ĝ∥
2
≤ 𝑒𝛽 + 𝜖 .

Before we proceed with the proof of Proposition 3.11, we show

that we can efficiently check for the certificate in Line 9 of Algo-

rithm 1 with high probability.

Lemma 3.15. Let D̂𝑁 be the empirical distribution obtained from
D with𝑁 = 𝑂 (log(1/𝛿)/𝜖2) samples. Then, with probability 1−𝛿 , for
every 𝑡 ∈ R+, | E(x,𝑦)∼D [1𝐵𝑡 (x) 𝑦] − E(x,𝑦)∼D̂𝑁

[1𝐵𝑡 (x) 𝑦] | ≤ 𝜖 .

We are now ready to prove Proposition 3.11.

Proof of Proposition 3.11. Consider the 𝑘-th iteration of Al-

gorithm 1. Let g(𝑘) = E(x,𝑦)∼D [1𝐵𝑅/2
𝑘

(x)𝑦x], where 𝐵𝑅/2
𝑘
(x) = {x :

−𝑅 ≤
〈
x, v(𝑘)

〉
≤ −𝑅/2} and 𝐺 :=

√
𝑏 (𝑅𝐿/𝐴)𝑂 (1/𝛼) . Moreover, let

ĝ(𝑘) = 1

𝑁

∑𝑁
𝑖=1 1𝐵𝑅/2

𝑘

(
x(𝑖)

)
𝑦 (𝑖)x(𝑖) and note that from Lemma 3.14

we have that given 𝑁 = 𝑂
(
𝑑𝛽2/𝐺4

log(1/(𝐿𝑅)) log(𝑑𝑇 /𝛿)
)
sam-

ples, for every iteration 𝑘 , it holds that




ĝ(𝑘) − g(𝑘)



2

≤ 𝐺2/(16𝛽)

and




ĝ(𝑘)



2

≤ 𝑒𝛽 +𝐺2/(16𝛽) ≤ 3𝛽 , with probability 1 − 𝛿/𝑇 .
We first show that if Condition 1 of Lemma 3.12 is satisfied, then

Algorithm 1 terminates at Line 10 returning a certifying vector.

The only issue is that we have access to the empirical distribution

D̂𝑁 instead of D. From Lemma 3.15, we have that the empirical

expectation of Line 9 is sufficiently close to the true expectation

that appears in Condition 1 of Lemma 3.12, thus it is going to find

it.

We now analyze the case when Condition 1 of Lemma 3.12 is

not true. From Lemma 3.12, we immediately get that since Condi-

tion 1 is not satisfied, Condition 2 is true. Then, using the update

rule v(𝑘+1) =
v(𝑘 )+𝜆g̃(𝑘 )
∥v(𝑘 )+𝜆g̃(𝑘 ) ∥

2

with 𝜆 = 𝐺2/(64𝛽3), where g̃(𝑘) =

proj(v(𝑘 ) )⊥ ĝ
(𝑘)

(here g̃(𝑘) is the ĝ(𝑘) with the component on the di-

rection v(𝑘) removed). Note that this procedure only decreases the

norm of g̃ (by the Pythagorean theorem). Then, from Lemma 3.13,

we have

〈
v(𝑘+1) , v∗

〉
≥
〈
v(𝑘) , v∗

〉
+𝐺4/𝛽4.

The update rule is repeated for at most 𝑂 (𝛽4/𝐺4) iterations.
From Lemma 3.12, we have that a certificate exists if the angle with

the optimal vector is sufficiently small. Putting everything together,

our total sample complexity is 𝑁 = 𝑂̃

(
𝑑𝛽4

𝑏2𝐺4

)
log(1/𝛿). It is also

clear that the runtime is poly(𝑁,𝑑), which completes the proof. □

3.4 Proof of Theorem 3.3
To prove Theorem 3.3, we will use the iterative algorithm developed

in Proposition 3.11 initialized with a uniformly random unit vector

v0. It is easy to show that such a random vector will have non-trivial

correlation with v∗.

Fact 3.16 (see, e.g., Remark 3.2.5 of [60]). Let v be a unit vector
in R𝑑 . For a random unit vector u ∈ R𝑑 , with constant probability, it
holds | ⟨v, u⟩ | = Ω(1/

√
𝑑).

We now present the proof of Theorem 3.3 putting together the

machinery developed in the previous subsections.

Proof of Theorem 3.3. As explained in Section 3.1, we are look-

ing for a certificate function𝑇w (x) of the form given in Equation (3).

As argued in Section 3.2, the search for such a certificate function

can be simplified by projecting the samples to a (𝑑−1)-dimensional

subspace via the perspective projection.

From Proposition 3.6, choosing 𝜌 = 𝑂 (𝜃/
√
𝑑), there is a 𝑐 =

(𝐿𝑅)𝑂 (1) such that the resulting distribution D𝜋w
𝐵

is (2, 𝑐𝜃/
√
𝑑,√

𝑑/𝜃, 𝛽
√
𝑑/(𝑐𝜃 ) log(

√
𝑑/𝜃 ))-well-behaved and satisfies the (𝛼,

𝐴𝑑1/2/(𝑐𝜃 ))-Tsybakov noise condition.
From Fact 3.16, a random unit vector v ∈ R𝑑−1 with constant

probability satisfies

〈
v, (w∗)⊥w

〉
= Ω(1/

√
𝑑). We call this event E.

From Proposition 3.11, conditioning on the event E and using

𝛽4

𝑏2

(
𝐴
𝑅𝐿

)𝑂 (1/𝛼)
log(1/𝛿) samples, with probability 1 − 𝛿 , we get a

(v′, 𝑅, 𝑡0) such that

E
(x,𝑦)∼D𝜋w

𝐵

[
1[−𝑅 ≤

〈
v′, x

〉
≤ −𝑡0] 𝑦

]
≤ − (𝜃𝐿𝑅/(𝐴𝑑))𝑂 (1/𝛼) /𝛽 .
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By inverting the transformation (Lemma 3.7), we get that

E
(x,𝑦)∼D

[𝑇w (x) ⟨x,w⟩𝑦] ≤ − (𝜃𝐿𝑅/(𝐴𝑑))𝑂 (1/𝛼) /𝛽 .

Overall, we conclude that with constant probability Algorithm 1

returns a valid certificate. Repeating the process 𝑘 = 𝑂 (log(1/𝛿))
times, we can boost the probability to 1 − 𝛿 . The total number

of samples for finding and testing these candidate certificates un-

til we find a correct one with probability at least 1 − 𝛿 is 𝑁 =(
𝑑 𝐴
𝜃𝐿𝑅

)𝑂 (1/𝛼)
log(1/𝛿). It is also clear that the runtime is poly(𝑁,𝑑),

which completes the proof. □

4 MORE EFFICIENT CERTIFICATE FOR
LOG-CONCAVE DISTRIBUTIONS

In this section, we present a more efficient certificate algorithm for

the important special case of isotropic log-concave distributions. To

achieve this, we use Algorithm 1 from the previous section starting

from a significantly better initialization vector. To obtain such an

initialization, we leverage the structure of log-concave distributions.

The main result of this section is the following theorem.

Theorem 4.1 (Certificate for Log-concave Distributions).

LetD be a distribution onR𝑑×{±1} that satisfies the (𝛼,𝐴)-Tsybakov
noise condition with respect to the halfspace 𝑓 (x) = sign(⟨w∗, x⟩)
and is such that Dx is isotropic log-concave. Let w be a unit vector
that satisfies 𝜃 (w,w∗) ≥ 𝜃 , where 𝜃 ∈ (0, 𝜋]. There is an algorithm

that, given as input w, 𝜃 , and 𝑁 = poly(𝑑) ·
(
𝐴
𝜃

)𝑂 (1/𝛼2)
log(1/𝛿)

samples from D, it runs in poly(𝑑, 𝑁 ) time, and with probability at
least 1 − 𝛿 returns a certifying function 𝑇w : R𝑑 ↦→ R+ such that

E
(x,𝑦)∼D

[𝑇w (x) 𝑦 ⟨w, x⟩] ≤ −
(
𝜃

𝐴

)𝑂 (1/𝛼2)
. (6)

In other words, we give an algorithm whose sample complexity

and running time as a function of 𝑑 is a fixed degree polynomial,

independent of the noise parameters.

To establish Theorem 4.1, we apply Algorithm 1 starting from

a better initialization vector. The main technical contribution of

this section is an efficient algorithm to obtain such a vector for

log-concave marginals.

Theorem 4.2 (Efficient Initialization for Log-Concave Dis-

tributions). LetD be a distribution on R𝑑 × {±1} that satisfies the
(𝛼,𝐴)-Tsybakov noise condition with respect to an unknown halfspace
𝑓 (x) = sign(⟨w∗, x⟩) and is such that Dx is isotropic log-concave.
There exists an algorithm that, given an 𝜖 > 0, a unit vector w such
that ∥w∗ −w∥

2
= Θ(𝜖), and 𝑁 = poly(𝑑) · (𝐴/(𝛼𝜖))𝑂 (1/𝛼) samples

from D, it runs in poly(𝑑, 𝑁 ) time, and with constant probability re-
turns a unit vector v such that

〈
v, (w∗)⊥w

〉
≥ (𝛼𝜖/𝐴)𝑂 (1/𝛼) , where

(w∗)⊥w is the component of w∗ perpendicular to w.

4.1 Intuition and Roadmap of the Proof
Here we sketch the proof of Theorem 4.2 and point to the rele-

vant lemmas in the formal argument. We start with the following

definition

Definition 4.3 ((𝛼, 𝛽)-isotropic distribution). We say that a dis-

tribution D is (𝛼, 𝛽)-isotropic, if for every unit vector u ∈ R𝑑 , it
holds | Ex∼D [⟨x, u⟩] | ≤ 𝛼 and 1/𝛽 ≤ Ex∼D [⟨x, u⟩2] ≤ 𝛽 .

Given a weight vector w of unit length, our goal is to find a unit

vector v that has non-trivial correlation with (w∗)⊥w , i.e., such that〈
(w∗)⊥w , v

〉
is roughly 𝜖1/𝛼 , where w∗ is the optimal halfspace.

Our first step is to condition on a thin band around the current

candidate w (similarly to Section 3, see Figure 1). When the size

of the band approaches 0, we get an instance whose separating

hyperplane is perpendicular to (w∗)⊥w and has much larger Tsy-

bakov noise rate. After that, we would like (similarly to Section 3) to

project the points on the subspace (w∗)⊥w . Instead of having a zero
length band, we will instead take a very thin band. We have already

seen in Section 3 that we can apply a perspective transformation

in order to project the points on (w∗)⊥w and obtain an instance

that satisfies the Tsybakov noise condition (with somewhat worse

parameters). Unfortunately, for the current setting of log-concave

distributions, we cannot use the perspective projection, as it does
not preserve the log-concavity of the underlying distribution. On

the other hand, we know that log-concavity is preserved when we

condition on convex sets (such as the thin band we consider here)

and when we perform orthogonal projections.

As we have seen (see Figure 2a), an orthogonal projection will

create a “fuzzy" region with arbitrary sign. However, we can control

the probability of this “fuzzy" region by taking a sufficiently thin

random band. In particular, instead of Tsybakov noise, we will end

up with the following noise condition: For some small 𝜉 > 0, with

probability 2/3 the noise 𝜂 (x) is bounded above by 1/2−𝜉 , and with
probability roughly 𝜉Θ(1) we have 𝜂 (x) > 1/2 (this corresponds to
the probability of the “fuzzy" region). For the proof of this statement

and detailed discussion on how the random band results in this

above noise guarantee.

Lemma 4.4 (Properties of Transformed Instance). Let D be
a distribution on R𝑑 × {±1} that satisfies the (𝛼,𝐴)-Tsybakov noise
condition with respect to an unknown halfspace 𝑓 (x) = sign(⟨w∗, x⟩)
and is such thatDx is isotropic log-concave. Fix 𝜖 > 0 and unit vector
w such that 𝜃 (w,w∗) = Θ(𝜖). Let 𝑠 be a sufficiently small multiple
of 𝜖 . Set 𝜉 = (Θ(𝑠/𝐴))1/𝛼 and 𝑠 ′ = Θ(𝜉3 𝑠 𝜖). Pick 𝑥0 uniformly at
random from [𝑠, 2𝑠] and define the random band 𝐵𝑥0 = {x ∈ R𝑑 :

⟨x,w⟩ ∈ [𝑥0, 𝑥0 + 𝑠 ′]}.
Define the distribution D⊥ = Dprojw⊥

𝐵𝑥
0

, the classifier 𝑓 ⊥ (x⊥) =
sign(𝑥0/tan𝜃 +

〈
x⊥, (w∗)⊥w

〉
), and the noise function

𝜂⊥ (x⊥) = Pr(z,𝑦)∼D⊥ [𝑦 ≠ 𝑓 ⊥ (z) |z = x⊥] .
Then D⊥ is an (𝑂 (1),𝑂 (1))-isotropic log-concave distribution and,
with probability at least 99%, satisfies the following noise condition:
Prx⊥∼D⊥x [𝜂

⊥ (x⊥) ≤ 1/2 − 𝜉] ≥ 2/3 and Prx⊥∼D⊥x [𝜂
⊥ (x⊥) ≥

1/2] ≤ 𝜉3 .

From this point on, we will be working in the subspace w⊥

and assume that the distribution satisfies the aforementioned noise

condition. As we have discussed, the marginal distribution on the

examples remains log-concave and it is not hard to make its covari-

ance be close to the identity. However, conditioning on the thin slice

may result in a distribution with large mean, even though originally

the distribution was centered. This is a non-trivial technical issue.
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We cannot simply translate the distribution to be origin-centered,

as this would result in a potentially very biased optimal halfspace.

Our proof crucially relies on the assumption of having a distribu-

tion that is nearly centered and at the same time for the optimal

halfspace to have small bias. We overcome this obstacle in Step 1

below.

Lemma 4.5. Let D be an isotropic log-concave distribution on R𝑑 .
Letw ∈ R𝑑 be a unit vector and let 𝐵 = {x ∈ R𝑑 : ⟨w, x⟩ ∈ [𝑎, 𝑏]} for
𝑎, 𝑏 > 0 smaller than some universal absolute constant. There exists
an algorithm that, given 𝛾 > 0 and poly(𝑑/𝛾) independent samples
fromDprojw⊥

𝐵
, runs in sample polynomial time, and returns a vector r

such that if z is obtained from Dprojw⊥
𝐵

by rejection sampling, where
a sample x is accepted with probability min(1, 𝑒−⟨r,x⟩), then:
• A sample is rejected with probability 𝑝 , where 𝑝 ∈ (0, 1) is an
absolute constant.
• The distribution of z is (𝛾,𝑂 (1))-isotropic log-concave.

Our approach is as follows:

(1) First, we show that there is an efficient rejection sampling

procedure that preserves log-concavity and gives us a distri-

bution that is nearly isotropic (see Definition 4.3). For the al-

gorithm and its detailed proof of correctness, see Lemma 4.5.

(2) Then we show the following statement: Under the following

assumptions

(i) the x-marginal is nearly isotropic,

(ii) the optimal halfspace has sufficiently small bias, and

(iiii) the noise 𝜂 (x) is bounded away from 1/2 with constant

probability,

we can compute in polynomial time a vector v with good

correlation to the target (w∗)⊥w . This is established below.

Proposition 4.6. LetD be a distribution on R𝑑 × {±1} such that
Dx is (𝛼, 𝛽)-isotropic log-concave. Let 𝑓 (x) = sign(⟨v∗, x⟩ − 𝜃 ) be
such that Pr(x,𝑦)∼D [𝑦 ≠ 𝑓 (x) |x] = 𝜂 (x), where for some 𝜉 > 0

we have that Prx∼Dx [𝜂 (x) < 1/2 − 𝜉] ≥ 2/3 and Prx∼Dx [𝜂 (x) >
1/2] ≤ 𝜉 ′, where 𝜉 ′ is a constant degree polynomial in 𝜉1. Then, as
long as |𝛼 | + |𝜃 | is less than a sufficiently small constant multiple
of 1/(log(1/𝜉)), there exists an algorithm with sample complexity
and runtime poly(𝑑/𝜉) that with constant probability returns a unit
vector v ∈ R𝑑 such that ⟨v, v∗⟩ > poly(𝜉).

We start by describing our algorithm to transform the distribu-

tion to nearly isotropic position (Step 1 above). We avoid translating

the samples by reweighting the distribution using rejection sam-

pling. To achieve this, we find an approximate stationary point of

the non-convex objective 𝐹 (r) =


Ex∼Dx [xmax(1, exp(− ⟨r, x⟩)]



2
2
.

Notice that, since this is a non-convex objective as a function of

r, we can only use (projected) SGD to efficiently find a stationary

point. In particular, we show that a 𝛾-stationary point r of 𝐹 (r) will
make the above norm of the expectation roughly 𝑂 (𝛾). Therefore,
in time poly(𝑑/𝛾), we find a reweighting of the initial distribution

whose mean is close to 0. Given this point r, we then perform re-

jection sampling: We draw x from the initial distribution D and

accept it with probabilitymax(1, exp(− ⟨r, x⟩)), i.e., we “shrink" the
distribution along the direction r.
1
It is not difficult to verify that 𝜉′ = Θ(𝜉3) suffices.

We now explain how to handle the setting that the distribution

is approximately log-concave (Step 2 above). After we make our

distribution nearly isotropic, we compute the degree-2 Chow pa-

rameters of the distribution, i.e., the vector E(x,𝑦)∼D [𝑦x] and the

matrix E(x,𝑦)∼D [𝑦 (xx⊺ − I)]. We show that there exists a degree-2

polynomial 𝑝 (
〈
(w∗)⊥w , x

〉
) that correlates non-trivially with the

labels 𝑦. This means that (w∗)⊥w correlates reasonably with the

degree-2 Chow parameters. In particular, (w∗)⊥w has a non-trivial

projection on the subspace𝑉 spanned by the degree-1 Chow param-

eters (this is a single vector) and the eigenvectors of the degree-2

Chowmatrix with large eigenvalues. Our plan is to return a random

unit vector of the subspace 𝑉 . However, in order for this random

vector to have non-trivial correlation with (w∗)⊥w , we also need

to show that the dimension of 𝑉 is not very large.

The last part of our argument shows that𝑉 has reasonably small

dimension. To prove this, we first show that the dimension of 𝑉

can be bounded above by the variance of the projection of D onto

𝑉 , Dproj𝑉 , Varx∼Dproj𝑉 [∥x∥22]. Then we make essential use of a

recent “thin-shell” result (Lemma 4.7) about log-concave measures

that bounds from above Varx∼Dproj𝑉 [∥x∥22].
Lemma 4.7 (Corollary 13 of [48]). Let D be any isotropic log-

concave distribution on R𝑑 . We have that Varx∼D [∥x∥22] ≤ 𝑑3/2 .

4.2 Proof of Theorem 4.1
Using Theorem 4.2, we can prove Theorem 4.1. The proof is similar

to the proof of Theorem 3.3, but we additionally need to guess how

far the current guess w is from w∗.

Proof of Theorem 4.1. We start by guessing a value 𝜖 = Ω(𝜃 )
such that ∥w −w∗∥

2
= Θ(𝜖). From Proposition 3.6 with 𝜌 =

𝑂 (𝜃 (𝛼𝜖/𝐴)𝑂 (1/𝛼) ), we have that the distribution D𝜋w
𝐵

is then (2,
Ω(𝜌), 1/𝜌,𝑂 (log(1/𝜌)/𝜌))-well-behaved and also satisfies the (𝛼,
𝑂 (𝐴/𝜌))-Tsybakov noise condition, where we used that the val-

ues 𝐿, 𝑅 are absolute constants. Using Theorem 4.2, a random unit

vector v ∈ R𝑑 with constant probability 𝛿1 satisfies
〈
v, (w∗)⊥w

〉
≥

(𝛼𝜖/𝐴)𝑂 (1/𝛼) . We call this event E. Conditioning on the event

E, from Proposition 3.11, using
𝛽4

𝜃 2

(
𝐴
𝜃𝛼

)𝑂 (1/𝛼2)
log(1/𝛿) samples,

with probability 1 − 𝛿 , we get a (v′, 𝑅, 𝑡0) such that

E
(x,𝑦)∼D𝜋w

𝐵

[
1[−𝑅 ≤

〈
v′, x

〉
≤ −𝑡0]𝑦

]
≤ − (𝜃𝛼/𝐴)𝑂 (1/𝛼

2) /𝛽 .

Using Lemma 3.7, we get that

E
(x,𝑦)∼D

[𝑇w (x) ⟨x,w⟩𝑦] ≤ − (𝜃𝛼/𝐴)𝑂 (1/𝛼
2) /𝛽 .

Conditioning on the event E𝑐 , where E𝑐 is the complement of E,
Algorithm 1 either returns a certificate or returns nothing. Thus, by

taking 𝑘 = 𝑂 (log(1/𝛿)) random vectors, we get that the probability

that event E𝑐 happens is at most (1 − 𝛿1)𝑘 ≤ 𝑒−𝛿1𝑘 . Thus, by
taking 𝑂 (log 1/𝛿) random vectors and running Algorithm 1 with

confidence 𝛿/log(1/𝛿), we get a certificate with probability 1 − 2𝛿 .
Moreover, the number of samples needed to construct the empirical

distribution is

(
𝐴
𝜃𝛼

)𝑂 (1/𝛼2)
log(1/𝛿). Finally, to guess the value of

𝜖 , it suffices to run the algorithm for the values 𝜃, 2𝜃, . . . , 1 which

will increase the complexity by a log(1/𝜃 ) factor. This completes

the proof of Theorem 4.1. □
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5 LEARNING A NEAR-OPTIMAL HALFSPACE
VIA ONLINE CONVEX OPTIMIZATION

In this section we present a black-box approach that uses our cer-

tificate algorithms from the previous sections to learn halfspaces in

the presence of Tsybakov noise. In more detail, we provide a generic

result showing that one can apply a certificate oracle in a black-

box manner combined with online gradient descent to learn the

unknown halfspace. We note that an essentially identical approach,

with slightly different formalism, was given in [29].

Using the aforementioned approach, we establish the two main

algorithmic results of this paper.

Theorem 5.1 (Learning TsybakovHalfspaces underWell-Be-

haved Distributions). Let D be a (3, 𝐿, 𝑅,𝑈 , 𝛽)-well-behaved iso-
tropic distribution on R𝑑 × {±1} that satisfies the (𝛼,𝐴)-Tsybakov
noise condition with respect to an unknown halfspace 𝑓 (x) = sign(

⟨w∗, x⟩). There exists an algorithm that draws 𝑁 = 𝛽4
(
𝑑 𝑈 𝐴
𝑅𝐿 𝜖

)𝑂 (1/𝛼)
log (1/𝛿) samples from D, runs in poly(𝑁,𝑑) time, and computes a
vector ŵ such that, with probability 1−𝛿 , we have that errDx

0−1 (ℎŵ, 𝑓 ) ≤
𝜖 .

For the important special case of log-concave distributions on

examples, we give a more efficient learning algorithm.

Theorem 5.2 (Learning Tsybakov Halfspaces under Log–

concave Distributions). Let D be a distribution on R𝑑 × {±1}
that satisfies the (𝛼,𝐴)-Tsybakov noise condition with respect to an
unknown halfspace 𝑓 (x) = sign(⟨w∗, x⟩) and is such that Dx is
isotropic log-concave. There exists an algorithm that draws 𝑁 =

poly(𝑑) ·
(
𝐴
𝜖

)𝑂 (1/𝛼2)
log (1/𝛿) samples from D, runs in poly(𝑁,𝑑)

time, and computes a vector ŵ such that, with probability 1 − 𝛿 , we
have that errDx

0−1 (ℎŵ, 𝑓 ) ≤ 𝜖 .

To formally describe the approach of this section, we require the

notion of a certificate oracle. A certificate oracle is an algorithm that,

given a candidate weight vectorw and an accuracy parameter 𝜌 > 0,

it returns a certifying function𝑇 (x). Recall that a certifying function
is a non-negative function that satisfies E(x,𝑦)∼D [𝑇 (x)𝑦 ⟨x,w⟩] ≤
−𝜌 for some 𝜌 > 0. We have already described how to efficiently

implement such an oracle in Section 3.

Definition 5.3 (Certificate Oracle). LetD be a distribution onR𝑑×
{±1}that satisfies the (𝛼,𝐴)-Tsybakov noise condition with respect

to an unknown halfspace 𝑓 (x) = sign(⟨w∗, x⟩). For a decreasing
function 𝜌 (·) : R+ ↦→ R+, we define C(w, 𝜃, 𝛿) to be the following 𝜌-
certificate oracle: For any unit vector w and 𝜃 > 0, if 𝜃 (w,w∗) ≥ 𝜃 ,

then a call to C(w, 𝜃, 𝛿), with probability at least 1 − 𝛿 , returns a
function 𝑇 (x), with ∥𝑇 ∥∞ ≤ 1 such that

E
(x,𝑦)∼D

[𝑇 (x)𝑦 ⟨x,w⟩] ≤ −𝜌 (𝜃 ) ,

and with probability at most 𝛿 returns “FAIL”.

Remark 5.4. We note that the above oracle provides a “one-sided”
guarantee in the following sense.When the candidate vectorw satisfies
𝜃 (w,w∗) ≥ 𝜃 , the oracle is required to return a certifying function 𝑇
with high probability. But it may also return such a function when
𝜃 (w,w∗) ≤ 𝜃 . In other words, the oracle is not required to output

“FAIL" with high probability whenw is nearly parallel tow∗. We show
that an one-sided oracle of non-optimality suffices for our purposes.

Remark 5.5. Using Fact 3.1 the optimal halfspace w∗ satisfies
E(x,𝑦)∼D [𝑇 (x) 𝑦 ⟨x,w∗⟩] ≥ 0 for any non-negative function𝑇 . There-
fore, as w approaches w∗, we have that

lim

𝜃 (w,w∗)→0

inf

𝑇 :∥𝑇 ∥∞≤1
E

(x,𝑦)∼D
[𝑇 (x) 𝑦 ⟨x,w⟩] = 0,

where ∥𝑇 ∥∞ is the ℓ∞ norm for functions, i.e., ∥𝑇 ∥∞ = supx∈R𝑑 |𝑇 (x) |.
That is, lim𝜃→0

𝜌 (𝜃 ) = 0 and it is natural that the non-negative func-
tion 𝜌 (𝜃 ) is a decreasing function of the (lower bound on the) angle
between w and w∗. Intuitively, the closer w is to w∗, the harder it is
to find a certifying function 𝑇 that makes E(x,𝑦)∼D [𝑇 (x) 𝑦 ⟨x,w⟩]
sufficiently negative. Moreover, if our goal is to estimate the vector
w∗ within angle 𝜖 , we can always give the oracle this worst-case
target angle, i.e., 𝜃 = 𝜖 . Finally, notice that when the distribution D
is isotropic, we have 𝜌 (𝜃 ) ≤ 1, as follows from ∥𝑇 ∥∞ ≤ 1 and the
Cauchy-Schwarz inequality.

Given a certificate oracle, the following result shows we can

efficiently approximate the optimal halfspace using projected online

gradient descent.

Proposition 5.6 (Certificate-Based Optimization). Let D
be a (3, 𝐿, 𝑅, 𝛽)-well-behaved isotropic distribution on R𝑑 × {±1}
that satisfies the (𝛼,𝐴)-Tsybakov noise condition with respect to
an unknown halfspace 𝑓 (x) = sign(⟨w∗, x⟩), and let C be a 𝜌-
certificate oracle. There exists an algorithm that makes at most 𝑇 =

1

𝜌2 (𝜖)
1

𝛼

(
𝐴
𝑅 𝐿

)𝑂 (1/𝛼)
calls to C(·), draws 𝑁 = 𝑑

𝑇𝛽2

𝜌2 (𝜖) log
(

𝑑𝑇
𝛿𝜌 (𝜖)

)
samples from D, runs in time poly(𝑇, 𝑁,𝑑), and computes a weight
vector ŵ such that with probability 1 − 𝛿 we have that 𝜃 (ŵ,w∗) ≤ 𝜖

.

The algorithm establishing Proposition 5.6 is given in pseu-

docode in Algorithm 2. In the remaining part of this section, we

provide a proof sketch of Proposition 5.6.

Proof Sketch. The main idea of the algorithm is to provide a

sequence of adaptively chosen convex loss functions to an Online

Convex Optimization algorithm, for example Online Gradient De-

scent (OGD). In more detail, we construct these loss functions using

our certificate oracle C. At round 𝑡 , we call the certificate oracle to
obtain a certifying function 𝑇 (x) and set

ℓ𝑡 (w) = −
〈

E
(x,𝑦)∼D

[(𝑇 (x) + 𝜆)𝑦x] ,w
〉
,

where 𝜆 > 0 acts similarly to a regularizer. The last term 𝜆⟨w,

E(x,𝑦)∼D [𝑦x]⟩ prevents the trivial vector w = 0 from being a valid

solution (in the sense of one that minimizes regret, see also the full

version of the paper)

The crucial property of the above sequence of loss functions is

that they are positive and bounded away from 0 whenw is far from

w∗. Their value will always be greater than (roughly) 𝜌 (𝜖), given
the guarantee of our certificate oracle from Definition 5.3 for 𝜃 = 𝜖

and assuming that the regularizer 𝜆 is sufficiently small.

We then provide this convex loss function to the OGD algorithm

that updates the guess according to the gradient of ℓ𝑡 (w). Our
analysis follows from the regret guarantee of OGD. Sincewe provide

convex (and in particular linear) loss functions to OGD, we know
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the average regret will converge to 0 as𝑇 →∞with a convergence

rate roughly𝑂 (1/
√
𝑇 ). This means that the oracle can only succeed

in returning certifying functions for a bounded number of rounds,

since every time the oracle succeeds, OGD suffers loss of at least

𝜌 (𝜖). Therefore, after roughly 1/𝜌 (𝜖)2 rounds the regret will be so
small that for at least one round the certificate oracle must have

failed. Our algorithm then stops and returns the halfspace of that

iteration. Even though our certificate is “one-sided", we know that

the probability that it failed with 𝜃 (w,w∗) being larger than 𝜖 is

very small, which implies that we have indeed found a vector w
very close to w∗. □

Algorithm 2 Learning Halfspaces with Tsybakov Noise using a

𝜌-certificate oracle C
1: procedure ALG(𝜖, 𝛿,D, C) ⊲ 𝜖 : accuracy, 𝛿 : confidence

2: Input:D is a (3, 𝐿, 𝑅, 𝛽)-well-behaved distribution that satisfies
the (𝛼,𝐴)-Tsybakov noise condition, and C is a 𝜌-certificate

oracle.

3: Output: A vector ŵ such that err
Dx
0−1 (ℎŵ, 𝑓 ) ≤ 𝜖 with proba-

bility at least 1 − 𝛿 .
4: w(0) ← e1

5: 𝑇 ← 1

𝜌 (𝜖)2𝛼

(
𝐴
𝑅 𝐿

)𝑂 (1/𝛼)
6: Draw 𝑁 = 𝑂̃

(
𝑑 · 𝑇𝛽2

𝜌2 (𝜖) log
(
1

𝛿

))
samples from D to form

the empirical distribution D̂
7: for 𝑡 = 1, . . . ,𝑇 do
8: 𝜂𝑡 ← 1/(

√
𝑡 + 𝜌 (𝜖))

9: if w(𝑡−1) = 0 then
10: Set ℓ̂𝑡 (w) ←

〈
w,−E(x,𝑦)∼D̂

[
𝜌 (𝜖)
2

𝑦x
]〉

11: w(𝑡 ) ← ΠB
(
w(𝑡−1) − 𝜂𝑡∇w ℓ̂𝑡

(
w(𝑡−1)

))
12: else
13: Ans← C(w(𝑡−1)/




w(𝑡−1)



2

, 𝜖, 𝛿/𝑇 )

14: if Ans = FAIL then
15: return w(𝑡−1)

16: 𝑇w(𝑡 ) (x) ← Ans

17: Set ℓ̂𝑡 (w) ←
〈
w,−E(x,𝑦)∼D̂

[(
𝑇w(𝑡 ) (x) +

𝜌 (𝜖)
2

)
𝑦x

]〉
18: w(𝑡 ) ← ΠB

(
w(𝑡−1) − 𝜂𝑡∇w ℓ̂𝑡

(
w(𝑡−1)

))
⊲

B = {x ∈ R𝑑 : ∥x∥
2
≤ 1}

Given Proposition 5.6, it is straightforward to prove our main

results. Here we give the proof for the case of log-concave densities

and provide a similar argument for well-behaved distributions in

the full version of this paper.

Proof of Theorem 5.2. First, we require a 𝜌-certificate oracle

for log-concave distributions. The algorithm of Theorem 4.1 returns

a function𝑇w such thatE(x,𝑦)∼D [𝑇w (x)𝑦 ⟨w, x⟩] ≤ − (𝜃/𝐴)𝑂 (1/𝛼
2)
.

From the definition of𝑇w (i.e., Equation (3)), it is clear that ∥𝑇w∥∞ ≤
1

minx∈𝐵 | ⟨w,x⟩ | ≤
(
log𝐴

𝛼𝜃

)𝑂 (1/𝛼)
, where 𝐵 is the band from Equa-

tion (3). Note that the function 𝑇w/∥𝑇w∥∞ satisfies the conditions

of the 𝜌-certificate oracle. Thus, by scaling the output of the algo-

rithm of Theorem 4.1, we obtain a (𝜃𝛼/𝐴)𝑂 (1/𝛼2)
-certificate oracle.

From Proposition 5.6, this gives us an algorithm that returns a

vector ŵ such that 𝜃 (ŵ,w∗) ≤ 𝜖

log
2 (1/𝜖) with probability 1 − 𝛿 .

Using the fact that for log-concave distributions err
Dx
0−1 (ℎŵ, 𝑓 ) ≤

𝑂

(
log

2 (1/𝜖)𝜃 (ŵ,w∗)
)
+ 𝜖 the result follows. □
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