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ABSTRACT

We study the problem of PAC learning homogeneous halfspaces in
the presence of Tsybakov noise. In the Tsybakov noise model, the
label of every sample is independently flipped with an adversarially
controlled probability that can be arbitrarily close to 1/2 for a
fraction of the samples. We give the first polynomial-time algorithm
for this fundamental learning problem. Our algorithm learns the
true halfspace within any desired accuracy € and succeeds under a
broad family of well-behaved distributions including log-concave
distributions. Prior to our work, the only previous algorithm for
this problem required quasi-polynomial runtime in 1/e.

Our algorithm employs a recently developed reduction [29] from
learning to certifying the non-optimality of a candidate halfspace.
This prior work developed a quasi-polynomial time certificate al-
gorithm based on polynomial regression. The main technical con-
tribution of the current paper is the first polynomial-time certificate
algorithm. Starting from a non-trivial warm-start, our algorithm
performs a novel “win-win” iterative process which, at each step,
either finds a valid certificate or improves the angle between the
current halfspace and the true one. Our warm-start algorithm for
isotropic log-concave distributions involves a number of analytic
tools that may be of broader interest. These include a new efficient
method for reweighting the distribution in order to recenter it and
a novel characterization of the spectrum of the degree-2 Chow
parameters.
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1 INTRODUCTION

The main result of this paper is the first polynomial-time algorithm
for learning halfspaces in the presence of Tsybakov noise under a
broad family of distributions. Before we explain our contributions
in detail, we provide some context and motivation for this work.

1.1 Background

Learning in the presence of noise is a central challenge in machine
learning. In this paper, we study the (supervised) binary classifi-
cation setting, where the goal is to learn a Boolean function from
random labeled examples with noisy labels. In more detail, we fo-
cus on the problem of learning homogeneous halfspaces in Valiant’s
PAC learning model [58] when the labels have been corrupted by
Tsybakov noise [57].

A (homogeneous) halfspace is any function Ay : RY - {+1}
of the form hy(x) = sign({w, x)), where the vector w € RY is
called the weight vector of hy, and sign : R — {£1} is defined by
sign(t) = 1if t > 0 and sign(t) = —1 otherwise. Halfspaces (or
Linear Threshold Functions) are arguably the most fundamental
and extensively studied concept class in the learning theory and ma-
chine learning literature, starting with early work in the 1950s and
60s [53-55] and leading to fundamental and practically important
techniques [33, 59].

Halfspaces are known to be efficiently learnable without noise,
i.e., when the labels are consistent with a halfspace, see, e.g., [49].
In the presence of noisy labels, the picture is more muddled. In the
agnostic model [38, 41] (when a constant fraction of the labels can
be adversarially chosen), learning halfspaces is computationally
hard [18, 31, 35], even under the Gaussian distribution [26, 34]. This
motivates the study of “benign” noise models, where positive results
may be possible. The most basic such model, known as Random
Classification Noise (RCN) [1], prescribes that each label is flipped
independently with probability exactly n < 1/2. In the RCN model,
halfspaces are known to be learnable in polynomial time [10].

The uniform noise assumption in the RCN model is accepted to
be unrealistic. To address this issue, various natural noise models
have been proposed and studied, capturing a number of realistic
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noise sources. The two most prominent such models are, in order
of increasing difficulty, the Massart (or bounded) noise model [51],
and the Tsybakov noise model [57]. In the Massart model, the label
of a datapoint x is flipped independently with probability n(x) at
most n < 1/2. Importantly, the flipping probability depends on the
datapoint x (instance specific noise).

Motivation for Tsybakov Noise Model. The bounded (Massart)
noise assumption, i.e., that the probability that labels are flipped
is globally bounded away from 1/2, fails to accurately capture a
number of practically relevant noise sources, including the human
annotator noise [9, 15, 42, 43]. In particular, the humans responsible
for labeling the training data are much more prone to incorrectly
classify points closer to the decision boundary (where “cats" and
“dogs" look almost the same), than points far from the boundary. For
example, it was empirically shown in [44] that when non-expert
annotators (Amazon Mechanical Turk) were used to annotate the
RTE-1 dataset [16], roughly 20% of the datapoints were classified
almost at random, i.e., had n(x) ~ 1/2. More broadly, a long line
of research (both applied and theoretical) [12, 13, 28, 32, 39, 52, 63]
focuses on noise models that do not restrict the flipping probability
globally, but allow it to be arbitrarily close to 1/2 near the decision
boundary. On the other hand, since datapoints from low-density
regions are also likely to be classified almost randomly (see, e.g.,
[32] and references therein), assuming that high noise rates occur
only close to the decision boundary does not sufficiently capture
these situations.

The Tsybakov noise model [50] provides a unified framework
that significantly extends the Massart noise condition to capture
the above scenarios: it prescribes that the label of each example is
independently flipped with some probability which is controlled
by an adversary, but is not uniformly bounded by a constant less
than 1/2. In particular, it allows the flipping probabilities to be
arbitrarily close to 1/2 for a fraction of the examples. Importantly,
it makes no geometric assumptions about the noise, e.g., that it is
only potentially large close to the decision boundary.

Formally, we have the following definition:

Definition 1.1 (PAC Learning with Tsybakov Noise). Let C be a
concept class of Boolean-valued functions over X = RY, 7 be a
family of distributions on X, 0 < € < 1 be the error parameter, and
0 < a <1, A > 0 be parameters of the noise model.

Let f be an unknown target function in C. A Tsybakov example
oracle, EXTsyb( f, F), works as follows: Each time EXTsyb( f,F)is
invoked, it returns a labeled example (x, y), such that: (a) x ~ Dy,
where Dy is a fixed distribution in ', and (b) y = f(x) with proba-
bility 1 — n(x) and y = —f(x) with probability n(x). Here n(x) is
an unknown function that satisfies the (@, A)-Tsybakov noise con-
dition. That is, for any 0 < ¢ < 1/2, n(x) satisfies Pry.p_[1(x) =
1/2—t] < AtTa.

Let D denote the joint distribution on (x,y) generated by the
above oracle. A learning algorithm is given i.i.d. samples from D
and its goal is to output a hypothesis function h : X — {+1} such
that with high probability h is e-close to f, i.e., it holds Pry. o, [h(x)
+ f(x)] <e

The Tsybakov noise model was proposed in [50], then refined
in [57], and subsequently studied in a number of works, see, e.g., [6,
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8,11,36,37,57]. All these prior works address information-theoretic
aspects of the model, i.e., do not provide computationally efficient
algorithms in high dimensions. The only algorithmic result we
are aware of in this model is the prior work by a subset of the
authors [29], which gave a quasi-polynomial time algorithm for
learning homogeneous halfspaces under a family of well-behaved
distributions (including log-concave distributions). Obtaining a
polynomial time algorithm for any any non-trivial setting (even
under Gaussian Marginals) was a long-standing open problem in
learning theory, see, e.g., [2].

It is easy to see that the Tsybakov model becomes more chal-
lenging as the parameter « in Definition 1.1 decreases. In particular,
it is well-known that poly(d, 1/ ella) samples are necessary (and
sufficient) to learn halfspaces in this model. That is, an exponential
dependence in 1/« is information-theoretically required for any
algorithm that solves this problem.

We note that the error guarantee of Definition 1.1 is a strong
identifiability guarantee for the true function, which is information-
theoretically impossible in the agnostic model. In the following
remark, we emphasize that even a constant factor approximation to
the optimal misclassification error is insufficient for identifiability.
This is important as it implies a computational separation between
the Tsybakov and agnostic models, even under Gaussian marginals.

REMARK 1.2 (IDENTIFIABILITY VERSUS MISCLASSIFICATION ER-
ROR). Definition 1.1 requires that the learning algorithm identifies
the true function f € C within arbitrary accuracy €. A related
commonly used loss function is the misclassification error, i.e., the
probability Pr(y ,)..p [h(x) # y]. We note that having an efficient
algorithm with misclassification error OPT + € for all € > 0, where
OPT = infyec Pr(x,y)~p[9(%) # yl, is equivalent to having an effi-
cient algorithm with the guarantee of Definition 1.1. We emphasize
however that there is a major qualitative difference between achieving
misclassification error of OPT + € and achieving error ¢ - OPT + ¢, for
a constant ¢ > 1. The latter guarantee only allows us to approximate
f within error Q(OPT).

Obtaining error OPT+¢ in the agnostic model is known to require
time dP°Y(1/€) for halfspaces under Gaussian marginals [26, 34, 40].
On the positive side, [5, 17, 25, 30] gave poly(d/e) time algorithms
for agnostically learning halfspaces under log-concave marginals.
These algorithms have error of O(OPT) + €, which is significantly
weaker as explained in Remark 1.2.

1.2 Our Contributions

The existence of a computationally efficient learning algorithm in
the presence of Tsybakov noise for any natural concept class and
under any distributional assumptions has been a long-standing
open problem in learning theory. In this work, we make significant
progress in this direction by essentially resolving the complexity of
learning halfspaces in this model.

In this section, we formally state our contributions. We start by
defining the distribution family for which our algorithms succeed.

Definition 1.3 (Well-Behaved Distributions). For L,R,U > 0 and
k € Z., a distribution Dy on RY is called (k, L, R, U)-well-behaved
if for any projection (Dx)y of Dx on a k-dimensional subspace V of
R?, the corresponding pdf yy on V satisfies the following properties:
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() yv (x) = L, for all x € V with ||x||, < R (anti-anti-concentration),
and (ii) yy (x) < U for all x € V (anti-concentration). If, addition-
ally, there exists f > 1 such that, for any ¢ > 0 and unit vector
w € R?, we have that Pry_p [| (W, x)| > t] < exp(1—1t/f) (sub-
exponential concentration), we call Dy (k, L, R, U, ff)-well-behaved.

We focus on the case that the marginal distribution Dy on the ex-
amples is well-behaved for some values of the relevant parameters.
Definition 1.3 specifies the concentration and anti-concentration
conditions on the low-dimensional projections of the data distri-
bution that are required for our learning algorithm. Throughout
this paper, we will take k = 3, i.e., we only require 3-dimensional
projections to have such properties.

Interestingly, the class of well-behaved distributions is quite
broad. In particular, it is easy to show that the broad class of
isotropic log-concave distributions is well-behaved for L, R, U,
being universal constants. Moreover, as Definition 1.3 does not re-
quire a specific functional form for the underlying density function,
it encompasses a much more general set of distributions.

Since the complexity of our algorithm depends (polynomially)
on 1/L,1/R, U, f, we state here a simplified version of our main
result for the case that these parameters are bounded by a universal
constant. To simplify the relevant theorem statements, we will
sometimes say that a distribution D of labeled examples in R? x
{£1} is well-behaved to mean that its marginal distribution Dy is
well-behaved. We show:

THEOREM 1.4 (LEARNING TSYBAKOV HALFSPACES UNDER WELL-BE-
HAVED DISTRIBUTIONS). Let D be a well-behaved isotropic distribu-
tion on RY x {+1} that satisfies the (a, A)-Tsybakov noise condition
with respect to an unknown halfspace f(x) = sign({w"*,x)). There
exists an algorithm that draws N = OA,a(d/e)O(l/OO samples from
D, runs in poly(N, d) time, and computes a vector W such that, with
high probability we have that errgz"l(h;v,f) <e.

See Theorem 5.1 for a more detailed statement.
For the class of log-concave distributions, we give a significantly
more efficient algorithm:

THEOREM 1.5 (LEARNING TSYBAKOV HALFSPACES UNDER LOG—
CONCAVE DISTRIBUTIONS). Let D be a distribution on RY x {1}
that satisfies the (a, A)-Tsybakov noise condition with respect to an
unknown halfspace f(x) = sign({w*,x)) and is such that Dy is
isotropic log-concave. There exists an algorithm that draws N =
poly(d) O(A/e)o(l/“z) samples from D, runs in poly(N, d) time,
and computes a vector W such that, with high probability, we have
that err(e"l(h‘;,,f) <e.

See Theorem 5.2 for a more detailed statement. Since the sample
complexity of the problem is poly(d, 1/ €l/®) the algorithm of The-
orem 1.5 is qualitatively close to best possible.

1.3 Overview of Techniques

Here we give an intuitive summary of our techniques in tandem
with a comparison to the most relevant prior work. A more detailed
technical discussion is provided in the proceeding sections.

Our learning algorithms employ the certificate-based frame-
work of [29]. At a high-level, this framework allows us to effi-
ciently reduce the problem of finding a near-optimal halfspace
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hg (x) = sign({w, x)) to the (easier) problem of certifying whether
a candidate halfspace hy (x) = sign({w, x)) is “far” from the opti-
mal halfspace f(x) = sign({w”, x)). The idea is to use a certificate
algorithm (as a black-box) and combine it with an online convex
optimization routine. Roughly speaking, starting from an initial
guess wo for w*, a judicious combination of these two ingredients
allows us to efficiently compute a near-optimal halfspace w, i.e., one
that the certifying algorithm cannot reject. We note that a similar
approach has been used in [14] for converting non-proper learners
to proper learners in the Massart noise model.

With the aforementioned approach as the starting point, the
learning problem reduces to that of designing an efficient certifying
algorithm. In recent work [29], the authors developed a certifying
algorithm for Tsybakov halfspaces based on high-dimensional poly-
nomial regression. This method leads to a certifying algorithm
with sample complexity and runtime drolylog(1/€) je g quasi-
polynomial upper bound. As we will explain in Section 3.1, the [29]
approach is inherently limited to quasi-polynomial time and new
ideas are needed to obtain a polynomial time algorithm. The main
contribution of this paper is the design of a polynomial-time certificate
algorithm for Tsybakov halfspaces under well-behaved distributions.

The key idea to design a certificate in the Tsybakov noise model
is the following simple but crucial observation: If w* is the nor-
mal vector to true halfspace, then for any non-negative function
T(x),itholdsthat E(y ,).p [T(X)y (w*,x)] > 0.On the other hand,
for any w # w* there exists a non-negative function T (x) such
that E(y y)~p[T(x) y (W, x)] < 0.In other words, there exists a
reweighting of the space that makes the expectation of y (w, x) neg-
ative (Fact 3.1). Note that we can always use as T(x) the indicator
of the disagreement region between the candidate halfspace hy (x)
and the optimal halfspace f(x) = hy+(x). Of course, since opti-
mizing over the space of non-negative functions is intractable, we
need to restrict our search space to a “simple” parametric family of
functions. In [29], squares of low-degree polynomials were used,
which led to a quasi-polynomial upper bound.

In this work, we consider certifying functions of the form:

1 {al <{w,x) <oy ,—-t < <v,projwi <“;‘x>> < —tz}

T(x) = )

that are parameterized by a vector v and scalar thresholds oy, o2,
t1,t2 > 0. Here proj,,. denotes the orthogonal projection on the
subspace orthogonal to w. It will be important for our approach
that functions of this form are specified by O(d) parameters.

Of course, it may not be a priori clear why functions of this
form can be used as certifying functions in our setting. The in-
tuition behind choosing functions of this simple form is given in
Section 3.1. In particular, in Claim 3.4, we show that for any in-
correct guess w there exists a certifying vector v that makes the
expectation E(y ). p[T(x) y (W, x)] negative. In fact, the vector
V= plrojwiw*/Hprojwlw*||2 := (w*)Lv suffices for this purpose.

The key challenge is in finding such a certifying vector v algo-
rithmically. We note that our algorithm in general does not find
(w*)1w. But it does find a vector v with similar behavior, in the
sense of making the E(, ). [T(x) y (w, x)] sufficiently negative.
To achieve this goal, we take a two-step approach: The first step
involves computing an initialization vector v that has non-trivial
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correlation with (w*)+v. In our second step, we give a perceptron-
like update rule that iteratively improves the initial guess until it
converges to a certifying vector v. While this algorithm is relatively
simple, its correctness relies on a win-win analysis (Lemma 3.12)
whose proof is quite elaborate. In more detail, we show that for any
non-certifying vector v that is sufficiently correlated with (w*)-w,
we can efficiently compute a direction that improves its correlation
to (w*)1w. We then argue (Lemma 3.13) that by choosing an ap-
propriate step size this iteration converges to a certifying vector
within a small number of steps.

A subtle point is that the aforementioned analysis does not take
place in the initial space, where the underlying distribution is well-
behaved and the labels are Tsybakov homogeneous halfspaces,
but in a transformed space. The transformed space is obtained by
restricting our points in a band and then performing an appro-
priate “perspective” projection on the subspace orthogonal to w
(Section 3.2). Fortunately, we are able to show (Proposition 3.6)
that this transformation preserves the structure of the problem:
The transformed distribution remains well-behaved (albeit with
somewhat worse parameters) and satisfies the Tsybakov noise con-
dition (again with somewhat worse parameters) with respect to a
potentially biased halfspace. In fact, this consideration motivated
our use of the perspective projection in the definition of T (x).

It remains to argue how to compute an initialization vector vy
that acts as a warm-start for our algorithm. Naturally, the sample
complexity and runtime of our certificate algorithm depend on
the quality of the initialization. The simplest way to initialize is
by using a random unit vector. With random initialization, we
achieve initial correlation roughly 1/Vd, which leads to a certifying
algorithm with complexity (d/ €)9(1/@) (Theorem 3.3). This simple
initialization suffices to obtain Theorem 1.4 for the general class of
well-behaved distributions.

To obtain our faster algorithm for log-concave marginals (Theo-
rem 1.5), we use the exact same approach described above starting
from a better initialization. Our algorithm to obtain a better start-
ing vector leverages additional structural properties of log-concave
distributions. Our initialization algorithm runs in poly(d) time (in-
dependent of 1/a) and computes a unit vector whose correlation
with (w*)1v is Q(e!/9) (Theorem 4.2).

Specifically, our initialization algorithm works as follows:

(1) It starts by conditioning on a random sufficiently narrow
band around the current candidate w and projecting the
samples on the subspace w.

(2) It transforms the resulting distribution to ensure that it is
isotropic log-concave through rescaling and rejection sam-
pling.

(3) It then computes the degree-2 Chow parameters and uses
them to construct alow-dimensional subspace V inside which
(w*)+v has sufficiently large projection. This subspace V is
the span of the degree-1 Chow vector and the large eigen-
vectors of the degree-2 Chow matrix.

(4) Finally, the algorithm outputs a uniformly random vector
in V that can be shown to have the desired correlation with
(wh)tw.

The resulting distribution after the initial conditioning in Step 1
is still log-concave and approximately satisfies the Tsybakov noise
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condition with respect to a near-origin centered halfspace orthogo-
nal to w. However, the distribution may no longer be zero-centered
and may contain a tiny amount of non-Tsybakov noise — in the
sense that we may end with points x having (x) > 1/2. As we can
control the total non-Tsybakov noise, the latter is not a significant
issue. We address the former issue by reweighting the distribution
to make it isotropic. We do this by applying rejection sampling with
probability min(1, exp(—(x, r))), for some vector r that we compute
via SGD (so that the resulting mean is near-zero) and then rescaling
by the inverse covariance matrix.

After the first two steps, our goal is to find any vector with non-
trivial correlation (w*)+, given that the underlying distribution
is isotropic log-concave. We show that the labels y must corre-
late with some degree-2 polynomial in ((w*)*¥,x). Our algorithm
crucially exploits this property, along with recently established
“thin shell” estimates [48] for log-concave distributions, to show
that a large part of this correlation is explained by the vector of
degree-1 Chow parameters and the top few eigenvectors of the
degree-2 Chow matrix. This implies that the subspace V spanned
by those vectors contains a non-trivial part of (w*)*¥, and thus
a random vector from V has non-trivial correlation with (w*)+w
with constant probability.

1.4 Related Work

Recent work by a subset of the authors [29] gave the first non-trivial
algorithm for learning homogeneous halfspaces with Tsybakov
noise under a family of “well-behaved” distributions. The notion
of well-behaved distributions in that work is somewhat different
than ours, but also contains log-concave distributions. The sample
complexity and runtime of the [29] algorithm is dP°Y108(1/€) and
the quasi-polynomial upper bound is tight for their techniques.

The Tsybakov noise model lies in between the Massart model [51,
56] and the agnostic model [38, 41]. During the past five years,
substantial algorithmic progress has been made on learning with
Massart noise in both the distribution-specific setting [3, 4, 28, 61—
63] and the distribution-free PAC model [14, 19]. The algorithmic
techniques in these prior works are known to inherently fail for the
more challenging Tsybakov noise model, and new ideas are needed
for this more general setting.

Learning in the agnostic model is known to be computation-
ally hard, even under well-behaved marginals. Specifically, recent
work [26, 34] proved Statistical Query lower bounds of dPely(1/€)
for agnostically learning halfspaces to error OPT+e€ under Gaussian
marginals. This lower bound bound is qualitatively matched by the
L regression algorithm [40]. A related line of work [5, 17, 25, 30, 45]
gave efficient algorithms for agnostically learning halfspaces under
log-concave marginals. While these algorithms run in poly(d/e)
time, they achieve a “semi-agnostic” error guarantee of O(OPT) +e¢,
instead of OPT + €. As already mentioned in Remark 1.2, this guar-
antee is significantly weaker and cannot be used to approximate
the true function within any desired accuracy.

This work is part of the broader direction of designing robust
learning algorithms for a range of statistical models with respect
to natural and challenging noise models. A line of work [5, 20—
23, 25, 27, 45-47] has given efficient robust learners for a range of
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settings in the presence of adversarial corruptions. See [24] for a
recent survey on the topic.

1.5 Structure of This Paper

After the required preliminaries in Section 2, in Section 3 we give
our certifying algorithm for the class of well-behaved distributions.
In Section 4, we give our more efficient certifying algorithm for log-
concave distributions. Finally, in Section 5, we review the certificate
framework and put everything together to prove our main results.

2 PRELIMINARIES

For n € Zy, let [n] def {1,...,n}. We will use small boldface char-

acters for vectors. For x € R? and i € [d], x; denotes the i-th
coordinate of x, and ||x]|2 def (Z?’:l x?)l/2 denotes the #,-norm of
x. We will use (x,y) for the inner product of x,y € R? and 0(x,y)
for the angle between x,y. We will use 1 4 to denote the character-
istic function of the set A, i.e., 14(x) =1ifx € Aand 1 4(x) =0 if
X ¢ A.

Let e; be the i-th standard basis vector in RY. Ford € N, let
gd-1 def {x € R? : ||x||2 = 1} be the unit sphere. We will denote
by proji; (x) the projection of x onto the subspace U C R4, For a
subspace U C R?, let UL be the orthogonal complement of U. For
a vector w € R?, we use w to denote the subspace spanned by
vectors orthogonal to w, i.e., wt={ue RY . (w,u) = 0}. Finally,

we denote by wv the projection of the vector w on the subspace
_ w—{(w,v)v

W= (w.v) vy

We use E[X] for the expectation of the random variable X and

Pr[&] for the probability of event &.
We study the binary classification setting where labeled exam-
ples (x,y) are drawn i.i.d. from a distribution D on RY x {+1}.

We denote by Dx the marginal of D on x. The zero-one error be-

tween two hypotheses f, h (with respect to Dy) is errgz"1 (f.h) et

Pry.p, [f(x) # h(x)].

3 EFFICIENTLY CERTIFYING
NON-OPTIMALITY

In this section, we give an efficient algorithm that can certify
whether a candidate weight vector w defines a halfspace Ay (x) =
sign({w, x)) that is far from the optimal halfspace sign({w*, x)).
Before we formally describe and analyze our algorithm, we provide
some intuition.

v+ after normalization, i.e., w™v

Background: Certifying Non-Optimality. Our approach relies on
the following simple but powerful idea, introduced in [29]: If a
candidate weight vector w defines a halfspace hy (x) = sign({w, x))
that differs from the target halfspace f(x) = sign({w*, x)), there
exists a certifying function of its non-optimality. In more detalil,
there exists a reweighting of the space that makes the expectation
of y (w, x) negative. This intuition is captured in Fact 3.1, stated
below. We note that the only assumption required for this to hold is
that the underlying distribution on examples assigns positive mass
to the symmetric difference of any two distinct halfspaces.

Fact 3.1 (CERTIFYING FUNCTION). Let D be a distribution on
R x {x1} such that: (a) For any pair of distinct unit vectorsv,u € R4,
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we have that
Pry.p, [hv(x) # hu(x)] > 0

. (b) D satisfies the Tsybakov noise condition with optimal classifier

f(x) = sign({w*,x)). Then we have:

(1) ForanyT : R? > R, we have thatE(y y)~p[T(x)y (w*,x)] =
0.

(2) For any non-zero vectorw € RY such that 0(w, w*) > 0, there ex-
ists a function T : R v Ry satisfying Exy~o[Tx) y(w,x)]
<0.

Proor. For the first statement, note that

(nyI;JND[T(X) y(w",x)] = " [Tl {(w",x) (1 = n(x))]-

LE Tl (w"x) [n(x)] = E T (W' x) | (1-2n(x))] > 0,

where we used the fact that (x) < 1/2 and T(x) > 0.

For the second statement, let w # 0 and 0(w, w*) > 0. By picking
as a certifying function T the indicator function of the disagreement

region between f and hy, i.e., T(x) def 1{hw(x) # f(x)}, we have
that

(x,y];ZND[T(X)MW’X)] = x~EZ)X [T (W, x) [ (1-2n(x))] .
We claim that Ex. p [T(x)] (W, x) | (1 -25(x))] > 0, which proves
the second statement. To see this, we use our assumption that
the symmetric difference between any pair of distinct homoge-
neous halfspaces has positive probability mass. First, we note that
from the Tsybakov condition (for any choice of parameters) we
have that Pry_p _[17(x) = 1/2] = 0. So, it suffices to show that
Ex o, [T(X)[(w,x)[] > 0.

Let w’ be a non-zero vector such that the hyperplane {x :
(w’,x) = 0} is contained in the disagreement region {x : hy(x) #
f(x)} and 0(w, w’), 0(w*, w’) > 0. This implies that {x : hy(x) #
f®)} 2 {x: hw(x) # f(X)} and Pry.p, [hw (x) # f(x)] > 0.
Note that [(w, x)| > 0 for all x with hy(x) # f(x). Therefore, we
get that

LB T@Hw.x) ]

~x

[T{hw (x) # fF)}H (W, x) [] > 0.

> E
x~ Dy
This completes the proof of Fact 3.1. O

Main Result of this Section. Fact 3.1 shows that a certifying func-
tion exists. However, in general, finding such a function is information-
theoretically and computationally hard. By leveraging our distribu-
tional assumptions, we show that a certifying function of a specific
simple form exists and can be computed in polynomial time.

For the rest of this section, we work with distributions that
are (3, L, R, f)-well-behaved. These distributions satisfy the same
properties as those in Definition 1.3, except the anti-concentration
condition. (The anti-concentration condition is only required at the
end of our analysis in Section 5 to deduce that small angle between
two halfspaces implies small 0-1 error.)

Definition 3.2. For L,R > 0, f > 1, and k € Z,, a distribution Dy
on R is called (k, L, R, p)-well-behaved if the following conditions
hold: (i) For any projection (Dx)y of Dy on a k-dimensional sub-
space V of RY, the corresponding pdf yy on V satisfies yy (x) > L,
for all x € V with [|x||, < R (anti-anti-concentration). (ii) For any
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t > 0 and unit vector w € R, we have that Pry_p [|(W,x)| >
t] < exp(1 — t/p) (sub-exponential concentration).

Specifically, we have:

THEOREM 3.3 (EFFICIENTLY CERTIFYING NON-OPTIMALITY). Let
D be a (3,L, R, f)-well-behaved isotropic distribution on RY x {1}
that satisfies the (a, A)-Tsybakov noise condition with respect to an
unknown halfspace f (x) = sign({w"*, x)). Let w be a unit vector with
O(w,w*) > 0, where 0 € (0, ]. There is an algorithm that, given
as input w, 6, and N = ((A/(LR)) - (d/6))°V/® log(1/8) samples
from D, it runs in poly(N, d) time, and with probability at least 1 - §
returns a certifying function Ty, : R? > Ry such that

[Tw (%) y (W, x)]

0\O(1/a)
l(LR ) )

< | ==
="p\ad

3.1 Intuition and Roadmap of the Proof

E
(xy)~D

In this subsection, we give an intuitive proof overview of The-
orem 3.3 along with pointers to the corresponding subsections
where the proof of each component appears. First, we discuss the
specific form of the certifying function that we compute. The proof
of Fact 3.1 shows that a valid choice for the certifying function
would be the characteristic function of the disagreement region
between the candidate hypothesis w and the optimal halfspace w*,
ie, Ty (x) = 1{sign({w, x)) # sign({(w*, x)}. Unfortunately, we do
not know w* (this is the vector we are trying to approximate!), and
therefore it is unclear how to algorithmically use this certifying
function.

Our goal is to judiciously define a parameterized family of “sim-
ple” certifying functions and optimize over this family to find one
that acts similarly to the indicator of the disagreement region. A
natural attempt to construct a certifying function for a guess w
would be to focus on a small “band” around the candidate halfspace
w. This idea bears some similarity with the technique of “localiza-
tion", an approach going back to [7], which has previously seen
success for the problem of efficiently learning homogeneous half-
spaces with Massart noise [3, 4, 28, 62]. Unfortunately, this idea
is inherently insufficient to provide us with a certifying function
for the following reason: Even an arbitrarily thin band around
w will assign more probability mass on points that do not be-
long in the disagreement region, and therefore the expectation
Exy~D [1{o1 < (w,x) < o2}y (w,x)] will be positive. See Fig-
ure 1 for an illustration.

Intuitively, we need a way to boost the contribution of the dis-
agreement region. One way to achieve this is by constructing a
smooth reweighting of the space. In particular, we can look in the
direction of the projection of w* on the orthogonal complement of
w, i.e., the vector

(e PO (W)

 [lprojys (wH)l, °

that lies in the 2-dimensional subspace spanned by w and w*;
see Figure 1. Notice that the disagreement region is a subset of
the points that have negative inner product with (w*)1v. There-
fore, a candidate reweighting can be obtained by using a polyno-
mial p(<(w*)lW,x>) of moderately large degree that will boost
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W
--------- i e o1

((w*)iW x)<t

Figure 1: The indicator of a band {x : 01 < (w,x) < oy}
cannot be used as a certificate even when there is no noise
and the underlying distribution is the standard Gaussian:
the contribution of the positive points (red region) is larger
than the contribution of the negative points (blue region).
On the other hand, taking the intersection of the band and
the halfspace with normal vector (w*)** and a sufficiently
negative threshold ¢ < 0 gives us a subset of the disagreement
region (intersection of blue and green regions).

the points that lie in the disagreement region. This was the ap-
proach used in the recent work [29]. Since (w*)*¥ is not known,
one needs to formulate a convex program (SDP) over the space of
all d-variate polynomials of sufficiently large degree k implying
that the corresponding SDP has d?() variables. Unfortunately, it
is not hard to show that the required degree cannot be smaller than
Q(log(1/€)). Therefore, this approach can only give a d(10g(1/€)),
i.e., quasi-polynomial, certificate algorithm.

In this work, we instead use a hard threshold function together
with a band to isolate (a non-trivial subset of) the disagreement re-
gion. Specifically, we consider a function of the form 1 { ( (w*)Lw, x)
< t} for some scalar threshold t; see Figure 1. Since (w*)+ is un-
known, we need to find a certifying vector v that is perpendicular
tow, ie,v € wl and acts similarly to (w*)1w. This leads us to the
following non-convex optimization problem

min E [1{o; £ (w,x) < o2} 1{(v,x) < t} (W, x)].

teRyvewt (x,y)~D
Thus far, we have succeeded in reducing the number of parameters
that we want to compute down to O(d), but now we are faced with
a non-convex optimization problem. Our main result is an efficient
algorithm that computes a certifying vector v and a threshold ¢
that does not necessarily minimize the above non-convex objective,
but still suffice to make the corresponding expectation sufficiently
negative.

We now describe the main steps we use to compute the certifying
vector v. The first obstacle we need to overcome is that, for v €
w, the corresponding instance fails to satisfy the Tsybakov noise
condition. In particular, when we project the datapoints on w,
the region close to the boundary of the optimal halfspace becomes
“fuzzy" even without noise: Points with different labels are mapped
to the same point of w=; see Figure 2a. We bypass this difficulty by
using a perspective projection to map the datapoints onto w=. For
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(b) Perspective projection.

Figure 2: The dotted line on top of the figures corresponds
to the subspace w'. When we project the points to w' or-
thogonally, we map points with different labels to the same
point of w' and obtain the “fuzzy" region where blue points
(classified as negative by w*) overlap with red points (positive
according to w*). On the other hand, the perspective projec-
tion defined in Equation 2 preserves linear separability.

non-zero vectors w, x € R?, the perspective projection of x on w is
defined as follows:
(0 € projys s (@)

Notice that without noise the perspective projection keeps the
dataset linearly separable (see Figure 2b), which means that after
we perform this projection the label noise of the resulting instance
will again satisfy the Tsybakov noise condition. In addition, we
show that this transformation will preserve the crucial distribu-
tional properties (concentration, anti-anti-concentration) of the
underlying marginal distribution Dx. For a detailed discussion and
analysis of this data transformation, see Subsection 3.2.

Given this setup, the certificate that our algorithm will compute
for a candidate weight vector w € R is a function of the form

1{o; <{w,x) <02,-t1 (v, mw(x)) < -2}  ¢Y(x)

(W, x) T wx)’
®)

Tw(x) =
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for some vector v € R and scalars o1, 03, t1, t > 0. For an illus-
tration, in Figure 2b we plot the set of the indicator function (x)
which is a (high-dimensional) trapezoid.

It is not difficult to verify that by choosing v = (w*)*¥ and appro-
priately picking o1, 09, t1, t2, the corresponding certificate function
Tw resembles the indicator function of the disagreement region and
certifies the non-optimality of the candidate halfspace w. In the
following claim, we prove that for any non-optimal halfspace there
exists a certifying function of the above form.

Cramv 3.4. Let D be a (3, L, R, f)-well-behaved isotropic distribu-
tion on RY x {£1} that satisfies the (a, A)-Tsybakov noise condition
with respect to an unknown halfspace f(x) = sign({w*,x)). Fix
any non-zero vector w such that (w,w*) > 0. Then, by setting
v = (w*)1v in the definition (3) of Ty (x), there exist o1, 02, t1,t2 > 0
such that E(y )~ p [Tw(x) y (W, x)] < 0.

We note here that the proof of Claim 3.4 is sketched below for
the sake of intuition and is not required for the subsequent analysis.

PROOF SKETCH. Setting v = (w*)1v in (3), we have

E [w(x)y(w.x)] = (nyISJN > [V (x) yl]

(x y)~2)[
= E [1//()() (1-2n(x)) sign(<w*,x))] .
(xy)~D

We will show that by appropriate choices of o1, 09, t1, t2 the in-
dicator /(x) above corresponds to a subset of the disagreement
region {x : sign((w,x)) # sign({w*,x))}. See Figure 3 for an
illustration. More precisely, since the distribution satisfies an anti-
anti-concentration property, we can choose o1, 02 = ©(R), so that
inside the band {07 < (w,x) < 02} there is non-zero probability
mass. In particular, by setting o1 = pR/2 and o3 = pR/V/2, for some
p € (0,1], we have that the band has mass roughly Q(pR?). For
these choices of ;1 and o2, we can pick t; = ©(R/p) and guarantee
that the slope of the corresponding line in the two-dimensional
subspace is sufficiently small, so that we get a trapezoid whose
intersection with the aforementioned horizontal band is large (see
Figure 3). It remains to tune the parameter ty. Since 6 = 6(w, w*) is
known, we may pick tp = ©(Rtan 6/p) in order to make sure that
the trapezoid is a subset of the disagreement region between w*
and w. O

From the above proof, it is clear that one does not really need to
optimize the scalars o1, 02, t1. Their values can be chosen according
to the parameters of the underlying well-behaved distribution. Our
optimization problem will be with respect to the vector v and the
threshold t». However, optimizing the expectation of the certifying
function Ty of Equation (3) is still a non-convex problem. Given
a candidate certifying vector vo that has non-trivial correlation
with (w*)1¥, our main structural result is a win-win statement
showing that either there exists a threshold t; that, together with vy,
makes the corresponding expectation of T, sufficiently negative, or
a perceptron-like update rule will improve the correlation between
(w*)1¥ and w. In particular, we show that after roughly poly(d/e)
updates the correlation between the guess v and (w*)*v will be
sufficiently large so that there exists some threshold t; that makes
v a certifying vector. Having such a vector v, it is easy to optimize
over all possible thresholds and find a value for t; that works. For
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(W)™, 1w (%)) = ~t

(W)t 1w (%)) = ~t1

Figure 3: The function y/(x) for v = (w*)1v = %

defined in (3) and appropriate scalars o1, 02, t1, t2 is the indica-
tor of a subset of the disagreement region {x : sign({w,x)) #

sign({(w*,x))}.

the formal statement of this claim and its proof, see Subsection 3.3
and Proposition 3.11.

3.2 Data Transformation

In this subsection, we show that we can simplify the problem of
searching for a certifying vector v in Ty (x) defined in Equation (3)
by projecting the samples to an appropriate (d — 1)-dimensional
subspace via the perspective projection (2). The main proposition
of this subsection (Proposition 3.6) shows that this operation in
some sense preserves the structure of the problem. In more detail,
the transformed distribution remains well-behaved and satisfies the
Tsybakov noise condition (albeit with somewhat worse parameters).
The transformation we perform is as follows:
(1) We first condition on the band B = {x : (x,w) € [0y, 02]},
for some positive parameters o1, 0.
(2) We then perform the perspective projection on the samples,
7w (+), defined in Equation (2).
To facilitate the proceeding formal description, we introduce the
following definition.

Definition 3.5 (Transformed Distribution). Let D be a distribution
onR? x {#1}, BC R? and (x, y) ~D.
e We use Dp to denote D conditioned on x being in the set B.
o Letg: R? - R, We denote by D1 the distribution of the
random variable (q(x),y).
With the above notation, Z)g is the distribution obtained by first
conditioning on B and then applying the transformation g(-) to
Dg.

With Definition 3.5 in place, the distribution obtained from D af-
ter we condition on the band B is Dp, and the distribution obtained
from Dp after we perform the perspective projection is Dg“’. We
can now state the main proposition of this subsection.

PROPOSITION 3.6 (PROPERTIES OF Dg"). Let D be a (3,L,R, f)-
well-behaved isotropic distribution on R? x {1} that satisfies the
(a, A)-Tsybakov noise condition with respect to an unknown halfspace
f(x) = sign({w",x)). Fix any unit vector w such that 0(w,w*) = 0,
and let B = {x : (x,w) € [pR/2, pR/V2]}, for some p € (0,1]. Then,
for some ¢ = (LR)OW), the following conditions hold:
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(1) The distribution Z)g“’ onRY x {£1} is (2, cp3, %, é log %)-
well-behaved.
(2) The distribution Dg“’ satisfies the (a, %)—Tsybakov noise con-
dition with optimal classifier sign (((w*)*v,x) + 1/tan 6).
The rest of this subsection is devoted to the proof of Proposi-
tion 3.6. Before we proceed with the proof, we express the problem
of finding a certifying vector v satisfying (3) in the transformed
domain. Indeed, it is not hard to see that after we condition on B
and perform the perspective projection 7y, our goal is to find a
vector v and scalars t1, ty > 0 such that
E [1{-t; < (v,z) < —tr}y] <O. (4)
(zy)~Dg”
More formally, we have the following simple lemma showing that if
we find a certifying vector v and parameters t1, t; in the transformed
instance Dg‘” satisfying Equation (4), the same vector and param-
eters will be a certificate with respect to the initial well-behaved
distribution . The relevant expectation remains negative but is
slightly closer to zero.

LEmMA 3.7. Let D be a (3, L, R, B)-well-behaved distribution on
RY and let B = {x : (x, w) € [pR/2, pR/V2]}, for some p € (0,1].
Letw € R? be a unit vector and let v € w, t1, 12 > 0 be such that
E(z,y)~1)§“’ [1{-t; < (v,z) < —ta}y] < —C, for some C > 0. Then

we have that Exy~0 [Tw(x)y (w,x)] = —Q(CLR3p).

Proof of Proposition 3.6. Our goal is to compute a certificate of
the form (3). As we already discussed, if we had chosen to simply
project the points on the subspace w', we would have obtained
an instance that is not linearly separable — even if the noise rate
n(x) was identically zero. By first conditioning on the set B =
{x: (x,w) € [01, 02]}, where 01, 02 > 0, and then performing the
perspective projection sy, we keep the dataset linearly separable
(with respect to the noiseless distribution, i.e., for n(x) = 0), albeit
by a biased linear classifier. We have the following lemma.

LemMaA 3.8. Let D be a distribution on RY x {+1} such that for
(x,y) ~ D we have thaty = sign({w*,x)). Let w be any unit
vector such that O(w,w*) = 0 € (0, n]. For (z,y) ~ Z)gw it holds
y = sign (<(W*)J‘W, z> + ﬁ) i.e., the transformed distribution is
linearly separable by a biased hyperplane.

Proor. Observe that w* = A; (w*)*v + 1,w, where A1 > 0. We
then have

sign((w”,x)) = sign (11 ((w*)*¥,x) + 2 (w, %))

= sign (<(W*)J‘W, er(x)> + jt—j ,

where to get the last equality we use the fact that Ay and (w, x) are
both positive given that we conditioned on the band B. Observe that
if the angle between w and w* is 0, then A; = sin § and A2 = cos 6.
This completes the proof. O

We next show that conditioning on the band B will not make
the Tsybakov noise condition substantially worse.

LEmMMA 3.9. Let D be a (3, L, R, p)-well-behaved isotropic distribu-
tion on RY x {£1} that satisfies the (a, A)-Tsybakov noise condition
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with respect to an unknown halfspace f(x) = sign({w*,x)). Let B =
{x: (x,w) € [pR/2, pR/\2]}, for some p € (0,1]. Then Dp satisfies
the Tsybakov noise condition with parameters (o, O(A/(R3Lp))) and
optimal linear classifier w*.

ProoF. We have that Pry_ ) [1-21(x) > t|x € B] < Pry_p [1-
2n(x) > t]/Pry.p, [B]. From the proof of Lemma 3.7, we have
seen that we can use the anti-anti-concentration property of Dy to
bound Pry_ p_[B] from below. Specifically, we have Pry_ ¢ [B] >
Q(LR3p). Therefore, Dy satisfies the Tsybakov noise condition
with parameters (a, O(A/(R3pL)). O

Finally, we show that the transformation of Equation (2) also
preserves the anti-anti-concentration and concentration properties
of the marginal distribution Dy.

LEmMMA 3.10. Let D be a (3, L, R, f)-well-behaved distribution. Fix
any unit vectorw and letB = {x : (x,w) € [pR/2, pR/V2]}, for some
p € (0, 1]. Then the transformed distribution Dgw is (2, Q(Lp°R3),1/p,
O(pB/(Rp)log(1/(LRp))))-well-behaved.

Proposition 3.6 follows by combining Lemmas 3.8, 3.9, 3.10.

3.3 Efficient Certificate Computation Given
Initialization

In this subsection, we give our main algorithm for computing a
non-optimality certificate in the transformed instance, i.e., a vector
v and parameters t1, t2 > 0 satisfying Equation (4). Recall that after
the perspective projection transformation of Subsection 3.2, we
now have sample access to i.i.d. labeled examples (x,y) from a
well-behaved distribution 9 on R x {+1} satisfying the Tsybakov
noise condition (albeit with somewhat worse parameters) with
the optimal classifier being a non-homogeneous halfspace (see
Proposition 3.6.)

Our certificate algorithm in this subsection assumes the exis-
tence of an initialization vector, i.e., a vector that has non-trivial
correlation with (w*)+¥. The simplest way to find such a vector
is by picking a uniformly random unit vector. A random initializa-
tion suffices for the guarantees of this subsection (and in particular
for Theorem 3.3). We note that for the family of log-concave dis-
tributions, we can leverage additional structure to design a fairly
sophisticated initialization algorithm that in turn leads to a faster
certificate algorithm (see Section 4).

The main algorithmic result of this section is an efficient al-
gorithm to compute a certifying vector satisfying Equation (4).
Note that we are essentially working in (d — 1) dimensions, since
we have already projected the examples to the subspace w. As
shown in Proposition 3.6, the transformed distribution Z)gw is still
well-behaved and follows the Tsybakov noise condition, but with
somewhat worse parameters than the initial distribution D.

To avoid clutter in the relevant expressions, we overload the nota-
tion and use D instead of Dgw in the rest of this section. Moreover,
we use the notation (L, R, ) and (a, A) to denote the well-behaved
distribution’s parameters and the Tsybakov noise parameters. The
actual parameters of D %" (quantified in Proposition 3.6) are used in
the proof of Theorem 3.3. To simplify notation, we will henceforth
denote by v* the vector (w*)-¥. We show:
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ProposITION 3.11. Let D be a (2, L, R, f)-well-behaved distribu-
tion on R x {x1} satisfying the (a, A)-Tsybakov noise condition
with respect to an unknown halfspace f(x) = sign({(v*,x) + ). Let
vo € RY be a unit vector such that {(vo,v*) > 4b/R. There is an
algorithm (Algorithm 1) with the following performance guarantee:

o(1/a)
Givenvg and N =d i (I%) “ log(1/8) samples from D, the

b2
algorithm runs in poly(N, d) time, and with probability at least 1 — §
returns a unit vector v € R% and a scalart € Ry such that

b (RL O(1/a)
[L1[-R < (v,x) < —t]y] S_ﬁ(f) .
Algorithm 1 employs a “perceptron-like" update rule that in poly-
nomially many rounds succeeds in improving the angle between
the initial guess v and the target vector (w*)1¥ = v*. While the
algorithm is relatively simple, its proof of correctness relies on a
novel structural result (Lemma 3.12) whose proof is the main tech-
nical contribution of this section. Roughly speaking, our structural
result establishes the following win-win statement: Given a vector
whose correlation with v* is non-trivial, either this vector is already
a certifying vector (see Item 1 of Lemma 3.12 and Lemma 3.7) or the
update step will improve the angle with v* (Item 2 of Lemma 3.12).
In more detail, starting with a vector vy that has non-trivial
correlation with v*, we consider the following update rule

E
(xy)~D

v = v 4 g, )
where A > 0 is an appropriately chosen step size and

g E

= E R (v,x) < =R/2} yproj g )= (%],

where PIoj(y(0))L (x) is the projection of x to the subspace (vD)L,
In Lemma 3.13, we show that if v(®) is not a certifying vector,
i.e., it does not satisfy Item 1 of Lemma 3.13, then there exists an
appropriately small step size A that improves the correlation with v*
after the update. This is guaranteed by Item 2 of Lemma 3.13, which
shows that g has positive correlation with (v*)1v (the normalized
projection of v* onto v1), and thus will turn v(*) towards the
direction of v* decreasing the angle between them.

We are now ready to state and prove our win-win structural
result:

LEmMMA 3.12 (WIN-WIN REsULT). Let D be a (2,L,R, f)-well-
behaved distribution on R x {1} that satisfies the (a, A)-Tsybakov
noise condition with respect to f(x) = sign({v*,x) +b), and v € R4
be a unit vector with (v,v*) > 4b/R. Consider the band B! = {x :
—R < (v,x) < —t} fort € [R/2,R] and define

g [T r/z (%) y projy. (x)] .

= E
(xy)~D

For some ¢ = (RLJA)O(/@) one of the following statements is satis-
ﬁed:

(1) There exists ty € (R/2,R], such thatE(y ,).p []].Bt(] (%) y] <
2.b
—C ﬁ
(2) It holds (g, v*) > czz—g.
Moreover, the first condition always holds if 6(v,v*) < bc/p.
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Algorithm 1 Computing a Certificate Given Initialization

1: procedure ComPUTECERTIFICATE((L, R, ), (A, @), d, Vo, ZA))

2: Input: Empirical distribution D ofa (2,L, R, p)-well-behaved
distribution that satisfies the (a, A)-Tsybakov noise condition,
initialization vector v¢, confidence probability §.

3: Output: A certifying vector v and positive scalars #1, t that
satisfy (4).

4 v v,

5. T« poly(1/L,1/R, A)Y* . poly(1/b,1/)

6: A /%poly(L,R, 1/A)Y% ¢ R—bﬁpoly(L,R, 1/A)«

7: fort=1,...,T do

8: B = {x:-R < (vD x) < -’}

9 if there exists ty € (R/2,R] such that
E(x,y)'vZA) [ﬂBto (X) y] < -c

10: return(v(=D | R, 1o)

11: g — E(x,y)~f) I:ILBR/Z(X)yproj(v(t—l))J_(X)

12 v T

In the next lemma, we show that if Item 2 of Lemma 3.12 is
satisfied, then an update step decreases the angle between the
current vector v and the optimal vector v*.

LEMMA 3.13 (CORRELATION IMPROVEMENT). For unit vectorsv*,v €

R, let § € R such that (§,v*) > 5. (V) =0, and ||gll, < B, with
> / — L{g i -

c > 0andf > 1. Then, forv Vg, with A we have that

(VY > (v, vy + A2 )2,

< _
26

To analyze the sample complexity of Algorithm 1, we require
the following simple lemma, which bounds the sample complexity
of estimating the update function and testing the current candidate
certificate.

LEMMA 3.14 (ESTIMATING g). Let D be a (2,L, R, f)-well-behaved

distribution. Given N = O((df?/€%) log(d/5)) i.i.d samples (x(D,y(D)))

from D, the estimator § = ﬁ Zfil 1 gry2 (xm) y(i)x(i) satisfies the
following with probability at least 1 — §:

o |lg—gll, <€ whereg = E(X’y)ND[]lBR/z (x) yx], and
o llgll; <ef+e.

Before we proceed with the proof of Proposition 3.11, we show
that we can efficiently check for the certificate in Line 9 of Algo-
rithm 1 with high probability.

LemMA 3.15. Let Dy be the empirical distribution obtained from
D withN = O(log(1/5)/€?) samples. Then, with probability 1-8, for
everyt € Ry, |E(x,y)~2) [1g:(x)y] _E(x,y)~f)N [Ig:(x)y]| <e€.

We are now ready to prove Proposition 3.11.

Proor oF ProprosITION 3.11. Consider the k-th ite}ge/ation of Al-
. 2
gorithm 1. Let g(k) =E(xy)~D [ILBﬁ/Z (x)yx], where B, "“(x) = {x :

-R < <x,v(k)> < —-R/2}and G := \/E(RL/A)O(I/“). Moreover, let

g<’<> = ﬁ Zfil L 2 (x(i)) y(i)x(i) and note that from Lemma 3.14
&
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we have that given N = O (dﬁz/G4 log(1/(LR)) log(dT/5)) sam-
g® —g®| <casp
and “g<’<> ”2 < ef+G?/(16f) < 3P, with probability 1 — §/T.

We first show that if Condition 1 of Lemma 3.12 is satisfied, then
Algorithm 1 terminates at Line 10 returning a certifying vector.
The only issue is that we have access to the empirical distribution

ples, for every iteration k, it holds that

Dy instead of D. From Lemma 3.15, we have that the empirical
expectation of Line 9 is sufficiently close to the true expectation
that appears in Condition 1 of Lemma 3.12, thus it is going to find
it.

We now analyze the case when Condition 1 of Lemma 3.12 is
not true. From Lemma 3.12, we immediately get that since Condi-
tion 1 is not satisfied, Condition 2 is true. Then, using the update

(k) 4 25 (F) ~
rule vkt = W with 1 = G?/(648°), where () =
2

PIOj (y(k)y1 g(k) (here g(k) is the g(k> with the component on the di-
rection v(K) removed). Note that this procedure only decreases the
norm of g (by the Pythagorean theorem). Then, from Lemma 3.13,

we have <v(k+1),v*> > <V(k),v*> + G4/ﬂ4.

The update rule is repeated for at most O($*/G*) iterations.
From Lemma 3.12, we have that a certificate exists if the angle with
the optimal vector is sufficiently small. Putting everything together,

:z—lé;) log(1/6). It is also

clear that the runtime is poly (N, d), which completes the proof. O

our total sample complexity is N = O (

3.4 Proof of Theorem 3.3

To prove Theorem 3.3, we will use the iterative algorithm developed
in Proposition 3.11 initialized with a uniformly random unit vector
vo. Itis easy to show that such a random vector will have non-trivial
correlation with v*.

FACT 3.16 (SEE, E.G., REMARK 3.2.5 OF [60]). Let v be a unit vector
in R9. For a random unit vector u € R¥, with constant probability, it

holds | (v, u) | = Q(1/V4d).

We now present the proof of Theorem 3.3 putting together the
machinery developed in the previous subsections.

Proor oF THEOREM 3.3. As explained in Section 3.1, we are look-
ing for a certificate function Ty, (x) of the form given in Equation (3).
As argued in Section 3.2, the search for such a certificate function
can be simplified by projecting the samples to a (d — 1)-dimensional
subspace via the perspective projection.

From Proposition 3.6, choosing p = O(0/Vd), there is a ¢ =
(LR)PW such that the resulting distribution Dg“’ is (2,¢0/Vd,

Vd/o, /3\/3/(::9) log(‘/ﬁ/Q))-Well-behaved and satisfies the («,
Adl/? /(c8))-Tsybakov noise condition.
From Fact 3.16, a random unit vector v € R4 with constant
probability satisfies <v, (w*)J'W> = Q(1/Vd). We call this event &.
From Proposition 3.11, conditioning on the event & and using

ﬁ4 A O(1/a) . -1:
v\ &L log(1/8) samples, with probability 1 — §, we get a

(v’, R, ty) such that

E  [1[-R < (v/,x) < ~to] y] < — (6LR/(Ad))° 1/ /5 .
(xy)~Dp¥
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By inverting the transformation (Lemma 3.7), we get that

E [Tw() (xw)yl <~ (0LR/(Ad) O/ /p .
(xy)~D

Overall, we conclude that with constant probability Algorithm 1
returns a valid certificate. Repeating the process k = O(log(1/6))
times, we can boost the probability to 1 — §. The total number
of samples for finding and testing these candidate certificates un-
til we find a correct one with probability at least 1 — § is N =

14 \00/@) , o
(m) log(1/6). It is also clear that the runtime is poly(N, d),
which completes the proof. O

4 MORE EFFICIENT CERTIFICATE FOR
LOG-CONCAVE DISTRIBUTIONS

In this section, we present a more efficient certificate algorithm for
the important special case of isotropic log-concave distributions. To
achieve this, we use Algorithm 1 from the previous section starting
from a significantly better initialization vector. To obtain such an
initialization, we leverage the structure of log-concave distributions.
The main result of this section is the following theorem.

THEOREM 4.1 (CERTIFICATE FOR LOG-CONCAVE DISTRIBUTIONS).
Let D be a distribution on R x {1} that satisfies the (a, A)-Tsybakov
noise condition with respect to the halfspace f(x) = sign({w*, x))
and is such that Dy is isotropic log-concave. Let w be a unit vector
that satisfies 0(w, w*) > 6, where 0 € (0, ). There is an algorithm

o(1/a%)

log(1/6)
samples from D, it runs in poly(d, N) time, and with probability at
least 1 — & returns a certifying function Ty, : R? > Ry such that

that, given as input w, 6, and N = poly(d) - (%

g\0(/a)
) . (6)

Wy Ty )] < =

In other words, we give an algorithm whose sample complexity
and running time as a function of d is a fixed degree polynomial,
independent of the noise parameters.

To establish Theorem 4.1, we apply Algorithm 1 starting from
a better initialization vector. The main technical contribution of
this section is an efficient algorithm to obtain such a vector for
log-concave marginals.

THEOREM 4.2 (EFFICIENT INITIALIZATION FOR LOG-CONCAVE Dis-
TRIBUTIONS). Let D be a distribution on RY x {£1} that satisfies the
(a, A)-Tsybakov noise condition with respect to an unknown halfspace
f(x) = sign({w"*,x)) and is such that Dy is isotropic log-concave.
There exists an algorithm that, given an € > 0, a unit vector w such
that |[w* — wl|, = ©(e), and N = poly(d) - (A/ (ae))°P /D) samples
from D, it runs in poly(d, N) time, and with constant probability re-
turns a unit vector v such that <v, (W*)J'W> > (ae/A)PM D \yhere
(W*)1w is the component of w* perpendicular tow.

4.1 Intuition and Roadmap of the Proof

Here we sketch the proof of Theorem 4.2 and point to the rele-
vant lemmas in the formal argument. We start with the following
definition
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Definition 4.3 ((a, f)-isotropic distribution). We say that a dis-
tribution D is (e, B)-isotropic, if for every unit vector u € RY, it
holds | Ex.p[(x,u)]| < @ and 1/ < Ex.p [(x, u)?] < .

Given a weight vector w of unit length, our goal is to find a unit
vector v that has non-trivial correlation with (w*)v, i.e., such that
((w*)*w, v) is roughly €!/® where w* is the optimal halfspace.

Our first step is to condition on a thin band around the current
candidate w (similarly to Section 3, see Figure 1). When the size
of the band approaches 0, we get an instance whose separating
hyperplane is perpendicular to (w*)1+ and has much larger Tsy-
bakov noise rate. After that, we would like (similarly to Section 3) to
project the points on the subspace (w*)1v. Instead of having a zero
length band, we will instead take a very thin band. We have already
seen in Section 3 that we can apply a perspective transformation
in order to project the points on (w*)1v and obtain an instance
that satisfies the Tsybakov noise condition (with somewhat worse
parameters). Unfortunately, for the current setting of log-concave
distributions, we cannot use the perspective projection, as it does
not preserve the log-concavity of the underlying distribution. On
the other hand, we know that log-concavity is preserved when we
condition on convex sets (such as the thin band we consider here)
and when we perform orthogonal projections.

As we have seen (see Figure 2a), an orthogonal projection will
create a “fuzzy" region with arbitrary sign. However, we can control
the probability of this “fuzzy" region by taking a sufficiently thin
random band. In particular, instead of Tsybakov noise, we will end
up with the following noise condition: For some small & > 0, with
probability 2/3 the noise n(x) is bounded above by 1/2—¢, and with
probability roughly £© () we have n(x) > 1/2 (this corresponds to
the probability of the “fuzzy" region). For the proof of this statement
and detailed discussion on how the random band results in this
above noise guarantee.

LEMMA 4.4 (PROPERTIES OF TRANSFORMED INSTANCE). Let D be
a distribution on R x {1} that satisfies the (a, A)-Tsybakov noise
condition with respect to an unknown halfspace f (x) = sign({w*, x))
and is such that Dx is isotropic log-concave. Fix € > 0 and unit vector
w such that 6(w, w*) = O(¢). Let s be a sufficiently small multiple
of €. Set & = (O(s/ANY* and s’ = O(8 s¢€). Pick xo uniformly at
random from [s, 2s] and define the random band By, = {x € RY :
(x,w) € [xp,x0 +5’]}. '

Define the distribution D+ = Z)g::]wi, the classifier f*+(xt) =
sign(xo/tan 0 + (xL, (W*)‘L‘”>), and the noise function

1 () = Priyy) ey # fL @)z = x*].

Then D+ is an (0(1), 0(1))-isotropic log-concave distribution and,
with probability at least 99%, satisfies the following noise condition:
Pryi_ps[nt(xh) < 1/2 -] 2 2/3 and Pryu_pe [ (x1) 2
1/2) < 8.

From this point on, we will be working in the subspace w
and assume that the distribution satisfies the aforementioned noise
condition. As we have discussed, the marginal distribution on the
examples remains log-concave and it is not hard to make its covari-
ance be close to the identity. However, conditioning on the thin slice
may result in a distribution with large mean, even though originally
the distribution was centered. This is a non-trivial technical issue.

1
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We cannot simply translate the distribution to be origin-centered,
as this would result in a potentially very biased optimal halfspace.
Our proof crucially relies on the assumption of having a distribu-
tion that is nearly centered and at the same time for the optimal
halfspace to have small bias. We overcome this obstacle in Step 1
below.

LEMMA 4.5. Let D be an isotropic log-concave distribution on R4
Letw € R be a unit vector andlet B = {x € R% : (w,x) € [a, bl} for
a,b > 0 smaller than some universal absolute constant. There exists
an algorithm that, given y > 0 and poly(d/y) independent samples

T0j . L 1.
from Z)g b runs in sample polynomial time, and returns a vectorr

such that if z is obtained from Dgroj“’L by rejection sampling, where
a sample x is accepted with probability min(1, e~ "), then:
o A sample is rejected with probability p, where p € (0,1) is an
absolute constant.
o The distribution of z is (y, O(1))-isotropic log-concave.

Our approach is as follows:

(1) First, we show that there is an efficient rejection sampling
procedure that preserves log-concavity and gives us a distri-
bution that is nearly isotropic (see Definition 4.3). For the al-
gorithm and its detailed proof of correctness, see Lemma 4.5.

(2) Then we show the following statement: Under the following
assumptions

(i) the x-marginal is nearly isotropic,
(ii) the optimal halfspace has sufficiently small bias, and
(iiii) the noise n(x) is bounded away from 1/2 with constant
probability,
we can compute in polynomial time a vector v with good
correlation to the target (w*)1v. This is established below.

PROPOSITION 4.6. Let D be a distribution on R x {+1} such that
Dy is (a, B)-isotropic log-concave. Let f(x) = sign({(v*,x) — 0) be
such that Pr(y )~ply # f(x)|x] = n(x), where for some £ > 0
we have that Pry_p_[n(x) < 1/2 = €] > 2/3 and Pry_p_[n(x) >
1/2] < &, where £’ is a constant degree polynomial in £'. Then, as
long as |a| + |0| is less than a sufficiently small constant multiple
of 1/(log(1/£)), there exists an algorithm with sample complexity
and runtime poly(d/&) that with constant probability returns a unit
vector v € RY such that (v, v*) > poly(¢).

We start by describing our algorithm to transform the distribu-
tion to nearly isotropic position (Step 1 above). We avoid translating
the samples by reweighting the distribution using rejection sam-
pling. To achieve this, we find an approximate stationary point of
the non-convex objective F(r) = ||Ex~1)X [x max (1, exp(—(r,x))] ||§
Notice that, since this is a non-convex objective as a function of
r, we can only use (projected) SGD to efficiently find a stationary
point. In particular, we show that a y-stationary point r of F(r) will
make the above norm of the expectation roughly O(y). Therefore,
in time poly(d/y), we find a reweighting of the initial distribution
whose mean is close to 0. Given this point r, we then perform re-
jection sampling: We draw x from the initial distribution O and
accept it with probability max(1, exp(— (r, x})), i.e., we “shrink" the
distribution along the direction r.

!t is not difficult to verify that & = ©(&3) suffices.
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We now explain how to handle the setting that the distribution
is approximately log-concave (Step 2 above). After we make our
distribution nearly isotropic, we compute the degree-2 Chow pa-
rameters of the distribution, i.e., the vector E(yx )~ p [yx] and the
matrix Ey )~ [y(xxT —1I)]. We show that there exists a degree-2
polynomial p(<(w*)J‘W, x)) that correlates non-trivially with the
labels y. This means that (w*)1w correlates reasonably with the
degree-2 Chow parameters. In particular, (w*)1¥ has a non-trivial
projection on the subspace V spanned by the degree-1 Chow param-
eters (this is a single vector) and the eigenvectors of the degree-2
Chow matrix with large eigenvalues. Our plan is to return a random
unit vector of the subspace V. However, in order for this random
vector to have non-trivial correlation with (w*)*¥, we also need
to show that the dimension of V is not very large.

The last part of our argument shows that V has reasonably small
dimension. To prove this, we first show that the dimension of V
can be bounded above by the variance of the projection of D onto
V, DProly Var, _ pprojy [||x||§] Then we make essential use of a
recent “thin-shell” result (Lemma 4.7) about log-concave measures
that bounds from above Var,_ sprojy, [||x||§].

LEMMA 4.7 (COROLLARY 13 OF [48]). Let D be any isotropic log-
concave distribution on R%. We have that Vary.. ¢ [||x||§] <d3.

4.2 Proof of Theorem 4.1

Using Theorem 4.2, we can prove Theorem 4.1. The proof is similar
to the proof of Theorem 3.3, but we additionally need to guess how
far the current guess w is from w*.

ProOOF OF THEOREM 4.1. We start by guessing a value € = Q(6)
such that ||w — w*||, = ©(e). From Proposition 3.6 with p =
O(0(ae /A)O(l/ “)), we have that the distribution Z)g“’ is then (2,
Q(p),1/p,0(log(1/p)/p))-well-behaved and also satisfies the («,
O(A/p))-Tsybakov noise condition, where we used that the val-
ues L, R are absolute constants. Using Theorem 4.2, a random unit
vector v € R? with constant probability &; satisfies (V, (W*)J‘“’> >
(zxe/A)O(l/ @) We call this event &. Conditioning on the event

N o(1/a?
&, from Proposition 3.11, using gz (%)
with probability 1 — §, we get a (v/, R, ty) such that

[L[-R < (v',x) < ~to]y] < — (8a/A)°V<) /5.

)
log(1/6) samples,

E
(xy)~Dg¥
Using Lemma 3.7, we get that
E [Tw() (xw)y] < - (8a/A)°N) /g
xy~D

Conditioning on the event E¢, where &€ is the complement of &,
Algorithm 1 either returns a certificate or returns nothing. Thus, by
taking k = O(log(1/8)) random vectors, we get that the probability
that event & happens is at most (1 — 6;)% < ¢=9%. Thus, by
taking O(log 1/8) random vectors and running Algorithm 1 with
confidence §/log(1/5), we get a certificate with probability 1 — 26.
Moreover, the number of samples needed to construct the empirical
o(1/a)

distribution is (éia )
€, it suffices to run the algorithm for the values 6, 26, ..., 1 which
will increase the complexity by a log(1/6) factor. This completes
the proof of Theorem 4.1. O

log(1/6). Finally, to guess the value of
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5 LEARNING A NEAR-OPTIMAL HALFSPACE
VIA ONLINE CONVEX OPTIMIZATION

In this section we present a black-box approach that uses our cer-
tificate algorithms from the previous sections to learn halfspaces in
the presence of Tsybakov noise. In more detail, we provide a generic
result showing that one can apply a certificate oracle in a black-
box manner combined with online gradient descent to learn the
unknown halfspace. We note that an essentially identical approach,
with slightly different formalism, was given in [29].

Using the aforementioned approach, we establish the two main
algorithmic results of this paper.

THEOREM 5.1 (LEARNING TsYBAKOV HALFSPACES UNDER WELL-BE-
HAVED DISTRIBUTIONS). Let D be a (3, L, R, U, f)-well-behaved iso-
tropic distribution on R? x {1} that satisfies the (a, A)-Tsybakov
noise condition with respect to an unknown halfspace f(x) = sign(

dUA)O(l/a)
RLe

log (1/8) samples from D, runs in poly(N, d) time, and computes a
vectorw such that, with probability 1-8, we have thaterrgz"1 (hg, f) <
€.

(W*,x)). There exists an algorithm that draws N = p* (

For the important special case of log-concave distributions on
examples, we give a more efficient learning algorithm.

THEOREM 5.2 (LEARNING TSYBAKOV HALFSPACES UNDER LOG—
CONCAVE DISTRIBUTIONS). Let D be a distribution on RY x {+1}
that satisfies the (a, A)-Tsybakov noise condition with respect to an
unknown halfspace f(x) = sign({w*,x)) and is such that Dx is
isotropic log-concave. There exists an algorithm that draws N =

A o(1/a?)
poly(d) - (g) log (1/8) samples from D, runs in poly(N, d)
time, and computes a vector W such that, with probability 1 — §, we
have that errgz"l (hg. f) <e.

To formally describe the approach of this section, we require the
notion of a certificate oracle. A certificate oracle is an algorithm that,
given a candidate weight vector w and an accuracy parameter p > 0,
itreturns a certifying function T'(x). Recall that a certifying function
is a non-negative function that satisfies E(x ). p [T(X)y (x, w)] <
—p for some p > 0. We have already described how to efficiently
implement such an oracle in Section 3.

Definition 5.3 (Certificate Oracle). Let D be a distribution on R x
{+1}that satisfies the (@, A)-Tsybakov noise condition with respect
to an unknown halfspace f(x) = sign({w",x)). For a decreasing
function p(-) : R4 — Ry, we define C(w, 0, §) to be the following p-
certificate oracle: For any unit vector w and 6 > 0, if 8(w, w*) > 0,
then a call to C(w, 0, §), with probability at least 1 — §, returns a
function T(x), with ||T||, < 1 such that

(X’yI;LD[T(X)y xw)] < —p(60),

and with probability at most & returns “FAIL”.

REMARK 5.4. We note that the above oracle provides a “one-sided”

guarantee in the following sense. When the candidate vector w satisfies
0(w, w") > 0, the oracle is required to return a certifying function T
with high probability. But it may also return such a function when
0(w,w*) < 0. In other words, the oracle is not required to output
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“FAIL" with high probability when w is nearly parallel to w*. We show
that an one-sided oracle of non-optimality suffices for our purposes.

REMARK 5.5. Using Fact 3.1 the optimal halfspace w* satisfies
E(x,y)~p[T(x) y {x, w*)] > 0 for any non-negative functionT. There-
fore, as w approaches w*, we have that

9(w¥g£l)—>0 T;||¥ﬁi51 (x,y];:~D[T(X) yGew)] =0,

where||T||, is the foo norm for functions, i.e., || T|l o = supycra |T(%)].
That is, limg_,o p(6) = 0 and it is natural that the non-negative func-
tion p(0) is a decreasing function of the (lower bound on the) angle
between w and w*. Intuitively, the closer w is to w*, the harder it is
to find a certifying function T that makes E (y, )~ [T(X) y (x, W)]
sufficiently negative. Moreover, if our goal is to estimate the vector
w* within angle €, we can always give the oracle this worst-case
target angle, i.e., 0 = €. Finally, notice that when the distribution D
is isotropic, we have p(6) < 1, as follows from ||T||,, < 1 and the
Cauchy-Schwarz inequality.

Given a certificate oracle, the following result shows we can
efficiently approximate the optimal halfspace using projected online
gradient descent.

PROPOSITION 5.6 (CERTIFICATE-BASED OPTIMIZATION). Let D
be a (3,L,R, p)-well-behaved isotropic distribution on R x {1}
that satisfies the (a, A)-Tsybakov noise condition with respect to
an unknown halfspace f(x) = sign({w*,x)), and let C be a p-
certificate oracle. There exists an algorithm that makes at most T =

O(1l/a 2
‘#6)5 (ﬁ) (/e calls to C(-), draws N = de;Tﬂe) log(%)
samples from D, runs in time poly(T, N, d), and computes a weight
vector W such that with probability 1 — § we have that (W, w*) < e

The algorithm establishing Proposition 5.6 is given in pseu-
docode in Algorithm 2. In the remaining part of this section, we
provide a proof sketch of Proposition 5.6.

Proor SKETCH. The main idea of the algorithm is to provide a
sequence of adaptively chosen convex loss functions to an Online
Convex Optimization algorithm, for example Online Gradient De-
scent (OGD). In more detail, we construct these loss functions using
our certificate oracle C. At round ¢, we call the certificate oracle to
obtain a certifying function T(x) and set

l’t(W)=—< E [(T(X)+/1)yX],W>,

(xy)~D
where A > 0 acts similarly to a regularizer. The last term A(w,
E(x,y)~» [yx]) prevents the trivial vector w = 0 from being a valid
solution (in the sense of one that minimizes regret, see also the full
version of the paper)

The crucial property of the above sequence of loss functions is
that they are positive and bounded away from 0 when w is far from
w*. Their value will always be greater than (roughly) p(e€), given
the guarantee of our certificate oracle from Definition 5.3 for § = €
and assuming that the regularizer A is sufficiently small.

We then provide this convex loss function to the OGD algorithm
that updates the guess according to the gradient of £ (w). Our
analysis follows from the regret guarantee of OGD. Since we provide
convex (and in particular linear) loss functions to OGD, we know
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the average regret will converge to 0 as T — co with a convergence
rate roughly O(1/VT). This means that the oracle can only succeed
in returning certifying functions for a bounded number of rounds,
since every time the oracle succeeds, OGD suffers loss of at least
p(€). Therefore, after roughly 1/p(€)? rounds the regret will be so
small that for at least one round the certificate oracle must have
failed. Our algorithm then stops and returns the halfspace of that
iteration. Even though our certificate is “one-sided", we know that
the probability that it failed with 6(w, w*) being larger than € is
very small, which implies that we have indeed found a vector w
very close to w*. |

Algorithm 2 Learning Halfspaces with Tsybakov Noise using a
p-certificate oracle C

1: procedure ALG(e, 3, D, C) > €: accuracy, J: confidence

2: Input: Disa (3, L, R, f)-well-behaved distribution that satisfies
the (a, A)-Tsybakov noise condition, and C is a p-certificate
oracle.

3: Qutput: A vector w such that err(e % (hg, f) < € with proba-
bility at least 1 — &.

4: W(O) «— €1

O<1/a)
T 1 A
> P(G)Z‘X (HL)

6: Draw N = O (d . ;;Tﬁz) log (%)) samples from D to form

the empirical distribution D
7: fort=1,...,T do

8 ne — 1/ (Nt +p(e))

9: if w(f=1) =0 then

10: Set f}(w) — <W’_E(x,y)~ﬁ [P(Ze) yx]>

11: w) —IIg (w(t’l) — 1Vt (w(t’l)))

12: else

13: ANs — C(w(t_l)/”w(’_l)”z,e, 5/T)

14: if Ans = FAIL then

15: return w(t_l)

16: Ty (X) < ANs

17: Set fy(w) — <w, - E(X’y%@ [(Tw(t) (x) + %e)) yx])
18: wlt) —TIg (w(t_l) — 1V ls (w(t_l))) >

B={xeR?:|x|, <1}

Given Proposition 5.6, it is straightforward to prove our main
results. Here we give the proof for the case of log-concave densities
and provide a similar argument for well-behaved distributions in
the full version of this paper.

Proor or THEOREM 5.2. First, we require a p-certificate oracle
for log-concave distributions. The algorithm of Theorem 4.1 returns

afunction Ty such that E(y ). p [Tw (X)y (W, x)] < - (Q/A)O(l/az).

From the definition of Ty (i.e., Equation (3)), it is clear that || Ty || oo <
log A\O(1/a@)

mingep [(w,x)| = ab

tion (3). Note that the function Ty /|| Tw ||« satisfies the conditions

of the p-certificate oracle. Thus, by scaling the output of the algo-

rithm of Theorem 4.1, we obtain a (Ga/A)O(l/ @*)_certificate oracle.

, where B is the band from Equa-
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From Proposition 5.6, this gives us an algorithm that returns a

vector w such that 8(w, w*) < m with probability 1 — 6.

Using the fact that for log-concave distributions errozz % (hg f) <
o (log2 (1/€)6(w, w*)) + € the result follows.
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