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Figure 1: The EnergyVis user interface, with multiple coordinated views. (A) The Model Energy Profle View allows users 
to select an energy profle of pre-loaded models, generate new profles (for models that a user wishes to train), and import 
saved profles. (B) The Consumption Chart allows users to view the energy and carbon consumption of their selected model. 
(C) Using the Model Region view, users can view the region where a model was trained, and select regions with a lower energy 
intensity as an alternative to reduce emissions. (D) Users can expand the Colored Equations for succinct descriptions of various 
variables and how they contribute to calculating a model’s emissions. (E) Finally, users can view or adjust hardware used to 
train a model using Alternative Hardware. 
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ABSTRACT 
The advent of larger machine learning (ML) models have improved 
state-of-the-art (SOTA) performance in various modeling tasks, 
ranging from computer vision to natural language. As ML models 
continue increasing in size, so does their respective energy con-
sumption and computational requirements. However, the methods 
for tracking, reporting, and comparing energy consumption remain 
limited. We present EnergyVis, an interactive energy consumption 
tracker for ML models. Consisting of multiple coordinated views, 
EnergyVis enables researchers to interactively track, visualize and 
compare model energy consumption across key energy consump-
tion and carbon footprint metrics (kWh and CO2), helping users 
explore alternative deployment locations and hardware that may 
reduce carbon footprints. EnergyVis aims to raise awareness con-
cerning computational sustainability by interactively highlighting 
excessive energy usage during model training; and by providing 
alternative training options to reduce energy usage. 

CCS CONCEPTS 
• Human-centered computing → Visual analytics; • Comput-

ing methodologies → Machine learning. 

KEYWORDS 
machine learning, environmental sustainability, interactive visual-
ization, computational equity 
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1 INTRODUCTION & BACKGROUND 
Researchers and practitioners alike utilize machine learning (ML) 
to successfully model and draw insights from datasets. Continued 
advancements in ML have also signifcantly furthered modeling 
performance. However, as datasets grow more complex, researchers 
are switching to larger architectures that require increasingly more 
compute [2, 18, 24, 25]. These models’ parameter counts have in-
creased by over 300, 000× from 2012 to 2019 [2]. Models like GPT-3 
are refective of this trend, with performance increases relying on 
scaling previously successful architectures [6]. Due to this rapid 
increase, ML researchers will soon be forced to account for com-
putational efciency for improved performance [13]. Other work, 
like Bender et al. [5], Schwartz et al. [19], raises concerns regarding 
computational equity: as models grow larger and larger, computa-
tional resources make replication prohibitive. Pushing for Green 
AI, where compute requirements themselves are reduced, will guar-
antee a reduction in carbon footprints [19]. 

Continuing to reduce compute resources and energy consump-
tion has several benefts. Firstly, smaller research teams and com-
panies simply might not have access to renewable resources. In 
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this case, tracking just efciency plays a key role in computational 
equity, as it enables users to explore how carbon footprints change 
if their models were deployed elsewhere. Secondly, carbon credits 
alone are an indirect—and occasionally inefective—approach to 
reducing carbon output, as they require third-party verifcation, 
ofset direct responsibility, and require monetary compensation, 
which might be impractical for smaller labs or companies [17]. 
Thirdly, energy from training models can be repurposed towards 
powering homes or essential infrastructure. Preliminary estimates 
from Strubell et al. [20], summarized in Table 1, highlight the sig-
nifcant carbon footprints coming from various natural language 
processing pipelines. For example, training a state-of-the-art NLP 
model (BERT [9]) on a GPU produces comparable carbon output 
to a trans-atlantic fight [20]. By directly reducing computationally 
intensive tasks, identifed through monitoring ML training pro-
cess, the computing community can help play a role in reducing 
emissions. 

Despite these increases in computational intensity, tracking and 
analyzing energy usage from training/evaluating these models re-
mains a challenge. Prior work, like Henderson et al. [12], covers the 
lack of systemic reporting for carbon output stemming from ML 
models, while providing a framework and a tool for tracking and 
reporting energy usage using static graphs. Anthony et al. [3] builds 
on prior work by ofering predictions for total carbon consumption 
through a command line interface. Finally, Lottick et al. [16] gener-
ates static energy usage reports at the end of an experiment, and 
includes a set of fxed, location based counterfactuals. However, 
these tools are limited to command line interfaces (CLI), or use 
static visuals to communicate results. Furthermore, practitioners 
may be unaware of alternatives to reduce their carbon footprint 
even after tracking and monitoring their models using prior work. 

To help address a small subset of these challenges, we are de-
veloping EnergyVis, an interactive system that tracks energy con-
sumption for machine learning (ML) models, while providing prac-
titioners and researchers with alternative options to reduce this 
consumption. By logging electricity usage from hardware com-
ponents (kilowatt hours, kWh, or watts, W), EnergyVis collects 
energy usage from various computationally intensive experiments. 
Using energy resource data from the National Renewable Energy 
Laboratory (NREL) [1], along with collected energy usage, Ener-
gyVis can estimate carbon output from experiments run in various 
locations, while exploring location based alternatives. EnergyVis 
also aims to raise awareness with respect to computational sustain-
ability. In this work, our contributions include: 

• EnergyVis, a web-based system to interactively allow prac-
titioners to explore energy efciency costs (CO2 consump-
tion, kWh, etc.) associated with training ML models. Building 
on prior energy tracking tools, used through the command-
line interface or consisting of static graphs, EnergyVis pro-
vides a novel web-based interface for monitoring energy 
utility across experiments. Furthermore, EnergyVis can op-
tionally sync to backend training code using a Python plugin, 
which updates projections and recorded energy consumption 
with respect to a running experiment. 

https://doi.org/10.1145/3411763.3451780
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Consumption Mode CO2e (Tons) Consumption Mode CO2e (Tons) 
Air travel, 1 passenger, NY to SF 0.99 BERTbase 0.72Human life, avg, 1 year 5.52 NLP Pipeline (parsing, SRL) 39.23American life, avg, 1 year 18.08 Neural Architecture Search 313.08Car, avg incl. fuel, 1 lifetime 63.00 

Table 1: CO2 consumption from familiar sources compared to NLP pipelines, from Strubell et al. [20] 

• Visual comparisons across experimental setups: Ener-
gyVis provides users with the option to visually compare en-
ergy efciency projections from other experiments, allowing 
for cross-model energy efciency comparisons. Given exper-
imental data from other work, users can defne hardware and 
energy source estimates, overlaying their own tracking data 
with efciency metrics from these works. If possible, users can 
also import reports generated by EnergyVis, allowing for 
direct comparisons instead of estimations. 

• Interactive exploration of alternatives for reducing en-
ergy consumption and carbon footprint: EnergyVis al-
lows users to pause experiments and observe the impact of 
alternatives on energy consumption projections. Concretely, 
EnergyVis allows users to select hardware and location 
counterfactuals while watching (real-time) projections for 
carbon usage change appropriately. By enabling alternative 
exploration, users can change elements of their training pro-
cess to consume less energy, and reduce their footprint. 

2 SYSTEM DESIGN AND IMPLEMENTATION 
EnergyVis is an interactive tool that allows users to compare en-
ergy usages across model training pipeline, and fnd alternatives to 
reduce energy consumption and CO2 production. EnergyVis con-
sists of two diferent modes. The frst mode is a preloaded mode, 
which allows users to load results from previously live-tracked mod-
els. The second mode is a live-tracking mode, which allows users 
to actively track results from a training model. To support both 
of these modes, EnergyVis consists of a frontend, which handles 
visualization, comparison, and alternatives selection. A backend, 
which is launched when users train a model using EnergyVis’s 
Python library, handles live-tracking of models. 

The frontend of EnergyVis was written using modern web tech-
nologies like React.js and D3, and consists of several components. 
The (1) Energy Profle View component loads model energy 
profles into EnergyVis’s UI. Energy Profles are JSON (meta-data) 
fles that contain information about a models energy usage over 
training epochs. The (2) Alternative Model Region component 
highlights energy intensity (how much carbon is produced per 
kilowatt-hour of electricity) across diferent regions, and allows 
users to select alternate regions to train their models. Likewise, the 
(3) Alternative Hardware component displays a user’s hardware 
and allows alternative selection. The (4) Consumption Chart 
component graphs the consumption from a model profle, along 
with selected alternatives. Finally, (5) Color Equation components 
display equations used to calculate a model’s emissions given se-
lected alternatives. 

Figure 2: The Energy Profle View component allows users 
to switch between Energy Profles. A preloaded mode (top) 
allows users to select, compare, or import preloaded energy 
profles. Users can compare efciency metrics across dif-
ferent energy profles by right-clicking on a profle. A live 
tracking mode (bottom) allows users to collect their own en-
ergy profle for arbitrary models and export them, using En-
ergyVis’s optional backend. 

2.0.1 Model Energy Profile View. The Model Energy Profle View 
allows users to select between model energy profles. Energy Pro-
fles are JSON metadata fles containing information about a model’s 
training pipeline. These fles consist of information like the hard-
ware used to train the model, the location the model was trained in, 
how much energy the model used per epoch, and how long each 
epoch lasted. After energy profles are imported, they appear as a 
button in the profle view. 

The energy profle view also allows users to switch between 
the preloaded mode and the live tracking mode, using the link 
button placed at the right of the view (seen in Figure 2). In the 
preloaded mode, users can either import an energy profle using 
the import button, or select from pre-imported models (in Figure 2, 
a Transformer [23] and BERT [9] model are imported). Users can 
also right click on unselected energy profles to load their data as 
alternatives in EnergyVis’s UI; alternative profles are highlighted 
using a dashed orange border. If users want to collect their own 
energy profles, the live-tracking mode allows users to input a URL 
to EnergyVis’s backend (described in Section 2.2). After training a 
model in live-tracking mode, users can export a profle using the 
export button. 

2.0.2 Alternative Model Region. The Alternative Model Region 
Component (Figure 3, right) allows users to select alternative re-
gions for training their models. Alternative region emissions are 
computing using energy intensity; some regions produce more lbs 
of CO2 for the same amount of electricity (in kWh, or kilowatt 
hours). Energy intensity is measured in CO2lbs . As diferent re-kW h
gions are selected (by clicking) or previewed (by hovering) on the 
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map, alternative emissions are computed by substituting new en-
ergy intensities in the emission computations. This allows users 
to make informed decisions about deployment locations for their 
models. 

2.1 EnergyVis Frontend 
2.1.1 Alternative Hardware. EnergyVis also enables users to ex-
plore hardware based alternatives. The alternative hardware com-
ponent (Figure 4) allows users to change the quantity of their hard-
ware, or add new hardware to their training pipeline, while viewing 
updated energy usages. To implement hardware alternatives, we 
utilize a dataset from Sun et al. [21], consisting of power draw p 
and foating point operations per second (FLOPS) s for over 4000 
GPUs and CPUs. To calculate alternative power consumed over an 
epoch, we multiply the original power used by pa /sa , where pa and p/s 
sa are the power and FLOPs for the selected alternative hardware. 
Using this ratio, EnergyVis rescales the original power draw while 
considering power draw and speed of the alternate hardware. 

2.1.2 Consumption Chart. The Consumption Chart component 
plots energy data from an energy profle alongside selected alter-
natives, for each epoch. Data from the selected energy profle is 
loaded into the chart component (left, Figure 3). The consumption 
chart also allows users to toggle between carbon emissions (CO2) 
and electricity usage (kWh). EnergyVis includes electricity usage 
since some research labs or organizations may be restricted when 
selecting region alternatives; a fairer comparison between models 
should rely on electricity usage instead of carbon emissions. 

Users can also extrapolate beyond the provided data points in the 
selected energy profle. On the X-axis for the Consumption Chart 
(bottom left, Figure 3) users can use a stepper to increase or decrease 
extrapolated epochs. EnergyVis performs a least-squares linear 
regression on the recorded data, and predicts carbon emissions or 
electricity usage for the extrapolated points. Given this data, users 
can make informed decisions about training models for longer 
periods of time. 

2.1.3 Color Equations. To provide transparency into the calcula-
tions of carbon emissions, EnergyVis provides dynamically chang-
ing equations that walk users through emission computations. 
Drawing from Azad [4] and Hohman et al. [14], color equations 
highlight variables in color and provide corresponding text an-
notations in the same color. In EnergyVis, color equations can 
be contracted (Figure 1) or expanded (Figure 5); and allow users 
to directly edit constants within the explaining text, causing En-
ergyVis’s remaining components to refect the updated changes. 
Likewise, edits made in the Alternative Region component also 
afect constants in the color equations. 

EnergyVis utilizes 3 equations to compute carbon emissions 
(seen in 1). The frst equation computes CO2 emissions from each 
epoch by multiplying electricity used over an epoch with a U.S 
state-dependent energy intensity constant (i.e. how much carbon 
each kilowatt hour of electricity produces). The second equation 
computes the electricity used during each epoch. Lastly, the third 
equation is described in Figure 5. 

2.2 EnergyVis Live-Tracking Backend 
EnergyVis’s optional live-tracking backend allows users to live-
track and collect energy profles for their models. If users already 
have energy profles, EnergyVis can be backend-agnostic. The 
backend from EnergyVis is similar to Anthony et al. [3]: it moni-
tors CPU energy usage using Intel’s Running Average Power Limit 
interface [7], collects GPU usage through NVIDIA’s System Man-
agement interface, and is written in Python. Like Anthony et al. [3], 
using the backend involves simply wrapping the model training 
code in a separate function provided by EnergyVis. 

However, EnergyVis contains modifcations that allows the fron-
tend to listen to training progress on the backend. On running the 
training code, EnergyVis launches a backend server that exposes 
an API to the frontend, and prints the access URL to the console. 
The API provides a constantly updating model energy profle—users 
can enter the API’s access URL into EnergyVis’s frontend, enabling 
live-tracking. 

3 USAGE SCENARIOS 
We envision the usage scenarios of EnergyVis to include user com-
munities involved in intensive computational tasks, where infor-
mation about environmental impacts may be difcult to access or 
visualize. Here, we highlight three usage scenarios focusing on ML. 

Tracking CO2 emission in real-time, and comparing results: 
Susan, a graduate student, is applying a series of models to a large 
image classifcation task. Susan visits a leaderboard website and se-
lects the two promising models as candidates: EfcientNet [22] and 
ResNet [11]. Although Susan is unfamiliar with the specifc tech-
niques employed by the black-box models she is using, she is aware 
of the potential energy efciency limitations of her selected models; 
therefore, she wants to limit the electricity usage and emissions of 
her models. Susan cannot fnd an energy profle from her colleagues 
or online, so she begins actively tracking each of her models. she 
starts by using EnergyVis’s live-tracking mode. Susan begins by 
wrapping her EfcientNet training loop with EnergyVis’s Python 
plugin, and starts her training process—the training URL is printed 
to her console by EnergyVis. She then loads EnergyVis’s frontend, 
and enters the training URL in the Energy Profle component. She 
lets her model train for only 10 epochs, then halts the training 
process, since she cannot aford to spend too much time training. 
She then exports a model energy profle, and repeats this process 
for ResNet. After manually looking at the profles, Susan realizes 
that the accuracy diferences between EfcientNet and ResNet are 
insignifcant for her task; however, EfcientNet uses signifcantly 
less energy. Susan confrms this suspicion by loading the profles 
back into EnergyVis, and extrapolating several epochs in the Con-
sumption Chart. Susan fnally decides to use EfcientNet for her 
task. 

Comparing electricity usage across diferent preloaded mod-
els: James is a software engineer working on a sentiment analysis 
task. He’s interested in utilizing a state-of-the-art model for his 
task, but he’s unsure on what model he wants to use. Unfortunately, 
the startup he works for is trying to keep the monthly energy bill 
low, so he needs to be aware of energy efciency. James opens 
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Figure 3: Adjustments made to other components (like the Energy Map, right) refect as an alternative consumption line on 
the Consumption Chart (left). In this fgure, a user is hovering over Wyoming, causing the alternative to be rendered alongside 
the original consumption line. 

Figure 4: The alternative hardware component, where 
users can adjust or add hardware in their current training 
pipeline, enabling them to view hardware based energy al-
ternatives. 

EnergyVis and notices that energy profles have already been col-
lected for two language models (a “vanilla” Transformer [23] model, 
and BERT [9]) trained on a variant of his sentiment analysis task— 
because profles have already been collected, James does not need 
to write any code, or use EnergyVis’s backend! He selects the BERT 
model, then right clicks on the Transformer (Figure 2), loading the 
Transformer’s data into the alternative views and overlaying the 
original carbon emissions with alternative emissions. James notices 
that EnergyVis is currently displaying Carbon Emissions, so he 
toggles the Consumption Graph component to display electricity 
usage instead. He realizes that the Transformer uses less energy 

while having similar performance as BERT, and decides to use the 
Transformer for his task. 

Picking location and hardware alternatives: Sarah, another 
graduate student, is working on a text classifcation task. She al-
ready designed a novel architecture, live-tracked her model, and 
collected energy profles. However, she’s interested in exploring 
alternatives to reduce her emissions when training her model, since 
she plans on tweaking and training repeatedly. She opens Ener-
gyVis and loads her model’s energy profle. Next, she begins using 
the Model Region component to compare the CO2 consumption in 
alternate states to her original state. Her research institution has 
compute deployed across several states. Sarah hovers over each 
lighter-colored state and compares the experiment consumption 
charts. After completing her search, she fnds the least energy in-
tensive state. Sarah also realizes that the state she selected has 
potentially more efcient hardware. To confrm this suspicion, she 
enters the hardware details into Alternative Hardware component, 
and notices that the alternative consumption in the Consumption 
Chart reduces again. Finally, she decides on deploying her model 
in her selected state. 

4 ONGOING WORK & CONCLUSION 
Planned Evaluation. We plan to extend our work by evalu-

ating EnergyVis using a two-phase user study. We will recruit 
researchers and practitioners as participants of the study, where 
they will use EnergyVis for their ongoing research projects. Both 
phases may be conducted fully remotely via video-conferencing 
software (e.g., Zoom, BlueJeans). We are developing the user study 
protocol and will apply for our institution’s IRB (institutional re-
view board) approval. Given participant permission, we plan to 
record computer screens and microphone audio for later analysis. 
For both phases, we will provide participants with a list of En-
ergyVis’s features, while encouraging participants to try them. 
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Figure 5: An example of an expanded color equation. The above equation computes instantaneous power usage of all hardware 
components. Users can adjust the PUE constant directly in the text above. 

Users will also be encouraged to think aloud and ask questions. 
All user study sessions will end with a questionnaire asking about 
EnergyVis’s usability (e.g., Easy to use? Easy to understand?) and 
feature usefulness. 

Phase 1 will be a lab study whose focus is to evaluate Ener-
gyVis’s usability. We will design a number of tasks that involve live-
tracking a popular model’s energy efciency (like EfcientNet[22] 
or a Transformer [23]), trained on a subset of ImageNet [8], or a 
sentiment classifcation task. Models and datasets for our tasks 
will be chosen to refect a realistic training context for participants. 
We also plan on creating tasks that involve identifying methods to 
reduce emissions through EnergyVis’s alternative region or hard-
ware components. Based on the user feedback from phase 1, we 
will improve EnergyVis’s usability and features. 

In phase 2, we plan to evaluate the efectiveness of EnergyVis in 
raising awareness and potentially reducing emissions. Our partici-
pants will be asked to use EnergyVis for their ongoing research 
projects for a month, while collecting feedback about their experi-
ence. During this timespan, we will schedule regular, short check-
ins (twice a week) with the participants to collect feedback about 
the tool’s impact on their research, e.g., whether the tool leads to a 
change in their typical model training workfow, or prompts partic-
ipants to refect on their choices of hardware and cloud providers. 

Model Architecture Alternatives. Currently, EnergyVis ofers 
alternatives for hardware and location based counterfactuals. How-
ever, architectural changes have also resulted in reduced energy 
consumption. Models like MobileNet [15] and REST [10] use tech-
niques like compression and early exiting to reduce parameter 
counts and, therefore, energy consumption. Suggesting alternatives 
and estimating updated energy consumption based on these tech-
niques might provide users with another avenue to reduce energy 
usage. 

Increased Region Support. Currently, EnergyVis only sup-
ports region based alternatives for the United States. In future 
iterations, we aim to include locations that have readily available 
energy intensities (carbon to energy production values). The Eu-
ropean Union’s environment agency, for example, provides these 
intensity values—similar to NREL in the United States. 

Deployment. EnergyVis will eventually be open sourced for 
users to track their own models. We also plan on allowing users to 
easily share and import model energy profles through pull requests 
on EnergyVis’s codebase, so users can easily compare their own 
efciency results with others in the research community. 

Conclusion. As models grow larger, identifying how to reduce 
the environmental impact of these models will lead to fairer and 
more sustainable training pipelines. To this end, EnergyVis pro-
vides an interactive means to explore the energy usage of ML models 
based on hardware and location of deployment. As we continue de-
velopment on EnergyVis, we aim to add increased region support, 
support model architecture alternatives, allow users to share energy 
profles on EnergyVis itself, and evaluate EnergyVis through a 
user study. 
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