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Figure 1: The ENERGYVIs user interface, with multiple coordinated views. (A) The Model Energy Profile View allows users
to select an energy profile of pre-loaded models, generate new profiles (for models that a user wishes to train), and import
saved profiles. (B) The Consumption Chart allows users to view the energy and carbon consumption of their selected model.
(C) Using the Model Region view, users can view the region where a model was trained, and select regions with a lower energy
intensity as an alternative to reduce emissions. (D) Users can expand the Colored Equations for succinct descriptions of various
variables and how they contribute to calculating a model’s emissions. (E) Finally, users can view or adjust hardware used to

train a model using Alternative Hardware.
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ABSTRACT

The advent of larger machine learning (ML) models have improved
state-of-the-art (SOTA) performance in various modeling tasks,
ranging from computer vision to natural language. As ML models
continue increasing in size, so does their respective energy con-
sumption and computational requirements. However, the methods
for tracking, reporting, and comparing energy consumption remain
limited. We present ENERGYV1s, an interactive energy consumption
tracker for ML models. Consisting of multiple coordinated views,
ENERGYVIs enables researchers to interactively track, visualize and
compare model energy consumption across key energy consump-
tion and carbon footprint metrics (kWh and CO3), helping users
explore alternative deployment locations and hardware that may
reduce carbon footprints. ENERGYVIs aims to raise awareness con-
cerning computational sustainability by interactively highlighting
excessive energy usage during model training; and by providing
alternative training options to reduce energy usage.
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1 INTRODUCTION & BACKGROUND

Researchers and practitioners alike utilize machine learning (ML)
to successfully model and draw insights from datasets. Continued
advancements in ML have also significantly furthered modeling
performance. However, as datasets grow more complex, researchers
are switching to larger architectures that require increasingly more
compute [2, 18, 24, 25]. These models’ parameter counts have in-
creased by over 300, 000X from 2012 to 2019 [2]. Models like GPT-3
are reflective of this trend, with performance increases relying on
scaling previously successful architectures [6]. Due to this rapid
increase, ML researchers will soon be forced to account for com-
putational efficiency for improved performance [13]. Other work,
like Bender et al. [5], Schwartz et al. [19], raises concerns regarding
computational equity: as models grow larger and larger, computa-
tional resources make replication prohibitive. Pushing for Green
Al, where compute requirements themselves are reduced, will guar-
antee a reduction in carbon footprints [19].

Continuing to reduce compute resources and energy consump-
tion has several benefits. Firstly, smaller research teams and com-
panies simply might not have access to renewable resources. In
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this case, tracking just efficiency plays a key role in computational
equity, as it enables users to explore how carbon footprints change
if their models were deployed elsewhere. Secondly, carbon credits
alone are an indirect—and occasionally ineffective—approach to
reducing carbon output, as they require third-party verification,
offset direct responsibility, and require monetary compensation,
which might be impractical for smaller labs or companies [17].
Thirdly, energy from training models can be repurposed towards
powering homes or essential infrastructure. Preliminary estimates
from Strubell et al. [20], summarized in Table 1, highlight the sig-
nificant carbon footprints coming from various natural language
processing pipelines. For example, training a state-of-the-art NLP
model (BERT [9]) on a GPU produces comparable carbon output
to a trans-atlantic flight [20]. By directly reducing computationally
intensive tasks, identified through monitoring ML training pro-
cess, the computing community can help play a role in reducing
emissions.

Despite these increases in computational intensity, tracking and
analyzing energy usage from training/evaluating these models re-
mains a challenge. Prior work, like Henderson et al. [12], covers the
lack of systemic reporting for carbon output stemming from ML
models, while providing a framework and a tool for tracking and
reporting energy usage using static graphs. Anthony et al. [3] builds
on prior work by offering predictions for total carbon consumption
through a command line interface. Finally, Lottick et al. [16] gener-
ates static energy usage reports at the end of an experiment, and
includes a set of fixed, location based counterfactuals. However,
these tools are limited to command line interfaces (CLI), or use
static visuals to communicate results. Furthermore, practitioners
may be unaware of alternatives to reduce their carbon footprint
even after tracking and monitoring their models using prior work.

To help address a small subset of these challenges, we are de-
veloping ENERGYVIS, an interactive system that tracks energy con-
sumption for machine learning (ML) models, while providing prac-
titioners and researchers with alternative options to reduce this
consumption. By logging electricity usage from hardware com-
ponents (kilowatt hours, kWh, or watts, W), ENERGYVIs collects
energy usage from various computationally intensive experiments.
Using energy resource data from the National Renewable Energy
Laboratory (NREL) [1], along with collected energy usage, ENER-
GYVIS can estimate carbon output from experiments run in various
locations, while exploring location based alternatives. ENERGYVIS
also aims to raise awareness with respect to computational sustain-
ability. In this work, our contributions include:

o ENERGYVISs, a web-based system to interactively allow prac-
titioners to explore energy efficiency costs (CO2 consump-
tion, kWh, etc.) associated with training ML models. Building
on prior energy tracking tools, used through the command-
line interface or consisting of static graphs, ENERGYV1s pro-
vides a novel web-based interface for monitoring energy
utility across experiments. Furthermore, ENERGYVIS can op-
tionally sync to backend training code using a Python plugin,
which updates projections and recorded energy consumption
with respect to a running experiment.
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COse (Tons)

Air travel, 1 passenger, NY to SF
Human life, avg, 1 year
American life, avg, 1 year

Car, avg incl. fuel, 1 lifetime

Consumption Mode

COse (Tons)

BERTp4se 0.72
NLP Pipeline (parsing, SRL) 39.23
Neural Architecture Search 313.08

Table 1: CO; consumption from familiar sources compared to NLP pipelines, from Strubell et al. [20]

e Visual comparisons across experimental setups: ENER-
GYVIs provides users with the option to visually compare en-
ergy efficiency projections from other experiments, allowing
for cross-model energy efficiency comparisons. Given exper-
imental data from other work, users can define hardware and
energy source estimates, overlaying their own tracking data
with efficiency metrics from these works. If possible, users can
also import reports generated by ENERGYV1s, allowing for
direct comparisons instead of estimations.

e Interactive exploration of alternatives for reducing en-
ergy consumption and carbon footprint: ENERGYVISs al-
lows users to pause experiments and observe the impact of
alternatives on energy consumption projections. Concretely,
ENERGYVIs allows users to select hardware and location
counterfactuals while watching (real-time) projections for
carbon usage change appropriately. By enabling alternative
exploration, users can change elements of their training pro-
cess to consume less energy, and reduce their footprint.

2 SYSTEM DESIGN AND IMPLEMENTATION

ENERGYVIS is an interactive tool that allows users to compare en-
ergy usages across model training pipeline, and find alternatives to
reduce energy consumption and CO, production. ENERGYVIS con-
sists of two different modes. The first mode is a preloaded mode,
which allows users to load results from previously live-tracked mod-
els. The second mode is a live-tracking mode, which allows users
to actively track results from a training model. To support both
of these modes, ENERGYV1s consists of a frontend, which handles
visualization, comparison, and alternatives selection. A backend,
which is launched when users train a model using ENERGYV1S’s
Python library, handles live-tracking of models.

The frontend of ENERGYVIS was written using modern web tech-
nologies like React.js and D3, and consists of several components.
The (1) Energy Profile View component loads model energy
profiles into ENERGYV1S’s UL Energy Profiles are JSON (meta-data)
files that contain information about a models energy usage over
training epochs. The (2) Alternative Model Region component
highlights energy intensity (how much carbon is produced per
kilowatt-hour of electricity) across different regions, and allows
users to select alternate regions to train their models. Likewise, the
(3) Alternative Hardware component displays a user’s hardware
and allows alternative selection. The (4) Consumption Chart
component graphs the consumption from a model profile, along
with selected alternatives. Finally, (5) Color Equation components
display equations used to calculate a model’s emissions given se-
lected alternatives.

Energy Profiles

Enter Live Energy Profile URL ¥ EXPORT (D)

Figure 2: The Energy Profile View component allows users
to switch between Energy Profiles. A preloaded mode (top)
allows users to select, compare, or import preloaded energy
profiles. Users can compare efficiency metrics across dif-
ferent energy profiles by right-clicking on a profile. A live
tracking mode (bottom) allows users to collect their own en-
ergy profile for arbitrary models and export them, using EN-
ERGYVIS’s optional backend.

2.0.1 Model Energy Profile View. The Model Energy Profile View
allows users to select between model energy profiles. Energy Pro-
files are JSON metadata files containing information about a model’s
training pipeline. These files consist of information like the hard-
ware used to train the model, the location the model was trained in,
how much energy the model used per epoch, and how long each
epoch lasted. After energy profiles are imported, they appear as a
button in the profile view.

The energy profile view also allows users to switch between
the preloaded mode and the live tracking mode, using the link
button placed at the right of the view (seen in Figure 2). In the
preloaded mode, users can either import an energy profile using
the import button, or select from pre-imported models (in Figure 2,
a Transformer [23] and BERT [9] model are imported). Users can
also right click on unselected energy profiles to load their data as
alternatives in ENERGYV1s’s UJ; alternative profiles are highlighted
using a dashed orange border. If users want to collect their own
energy profiles, the live-tracking mode allows users to input a URL
to ENERGYV1s’s backend (described in Section 2.2). After training a
model in live-tracking mode, users can export a profile using the
export button.

2.0.2  Alternative Model Region. The Alternative Model Region
Component (Figure 3, right) allows users to select alternative re-
gions for training their models. Alternative region emissions are
computing using energy intensity; some regions produce more Ibs
of CO; for the same amount of electricity (in kWh, or kilowatt
hours). Energy intensity is measured in %ZZS As different re-
gions are selected (by clicking) or previewed (by hovering) on the
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map, alternative emissions are computed by substituting new en-
ergy intensities in the emission computations. This allows users
to make informed decisions about deployment locations for their
models.

2.1 ENERGYVIs Frontend

2.1.1 Alternative Hardware. ENERGYVIs also enables users to ex-
plore hardware based alternatives. The alternative hardware com-
ponent (Figure 4) allows users to change the quantity of their hard-
ware, or add new hardware to their training pipeline, while viewing
updated energy usages. To implement hardware alternatives, we
utilize a dataset from Sun et al. [21], consisting of power draw p
and floating point operations per second (FLOPS) s for over 4000
GPUs and CPUs. To calculate alternative power consumed over an

epoch, we multiply the original power used by p“—ﬁ“ where p, and

sq are the power and FLOPs for the selected alternative hardware.
Using this ratio, ENERGYVIS rescales the original power draw while
considering power draw and speed of the alternate hardware.

2.1.2  Consumption Chart. The Consumption Chart component
plots energy data from an energy profile alongside selected alter-
natives, for each epoch. Data from the selected energy profile is
loaded into the chart component (left, Figure 3). The consumption
chart also allows users to toggle between carbon emissions (CO3)
and electricity usage (kWh). ENERGYV1s includes electricity usage
since some research labs or organizations may be restricted when
selecting region alternatives; a fairer comparison between models
should rely on electricity usage instead of carbon emissions.

Users can also extrapolate beyond the provided data points in the
selected energy profile. On the X-axis for the Consumption Chart
(bottom left, Figure 3) users can use a stepper to increase or decrease
extrapolated epochs. ENERGYVis performs a least-squares linear
regression on the recorded data, and predicts carbon emissions or
electricity usage for the extrapolated points. Given this data, users
can make informed decisions about training models for longer
periods of time.

2.1.3  Color Equations. To provide transparency into the calcula-
tions of carbon emissions, ENERGYVIs provides dynamically chang-
ing equations that walk users through emission computations.
Drawing from Azad [4] and Hohman et al. [14], color equations
highlight variables in color and provide corresponding text an-
notations in the same color. In ENERGYVIS, color equations can
be contracted (Figure 1) or expanded (Figure 5); and allow users
to directly edit constants within the explaining text, causing EN-
ERGYVIS’s remaining components to reflect the updated changes.
Likewise, edits made in the Alternative Region component also
affect constants in the color equations.

ENERGYVIs utilizes 3 equations to compute carbon emissions
(seen in 1). The first equation computes CO, emissions from each
epoch by multiplying electricity used over an epoch with a U.S
state-dependent energy intensity constant (i.e. how much carbon
each kilowatt hour of electricity produces). The second equation
computes the electricity used during each epoch. Lastly, the third
equation is described in Figure 5.

Shaikh et al.

2.2 ENERGYVis Live-Tracking Backend

ENERGYVIS’s optional live-tracking backend allows users to live-
track and collect energy profiles for their models. If users already
have energy profiles, ENERGYVIs can be backend-agnostic. The
backend from ENERGYVIs is similar to Anthony et al. [3]: it moni-
tors CPU energy usage using Intel’s Running Average Power Limit
interface [7], collects GPU usage through NVIDIA’s System Man-
agement interface, and is written in Python. Like Anthony et al. [3],
using the backend involves simply wrapping the model training
code in a separate function provided by ENERGYVIS.

However, ENERGYVIS contains modifications that allows the fron-
tend to listen to training progress on the backend. On running the
training code, ENERGYV1s launches a backend server that exposes
an API to the frontend, and prints the access URL to the console.
The API provides a constantly updating model energy profile—users
can enter the APT’s access URL into ENERGYVIS’s frontend, enabling
live-tracking.

3 USAGE SCENARIOS

We envision the usage scenarios of EnergyVis to include user com-
munities involved in intensive computational tasks, where infor-
mation about environmental impacts may be difficult to access or
visualize. Here, we highlight three usage scenarios focusing on ML.

Tracking CO; emission in real-time, and comparing results:
Susan, a graduate student, is applying a series of models to a large
image classification task. Susan visits a leaderboard website and se-
lects the two promising models as candidates: EfficientNet [22] and
ResNet [11]. Although Susan is unfamiliar with the specific tech-
niques employed by the black-box models she is using, she is aware
of the potential energy efficiency limitations of her selected models;
therefore, she wants to limit the electricity usage and emissions of
her models. Susan cannot find an energy profile from her colleagues
or online, so she begins actively tracking each of her models. she
starts by using ENERGYV1s’s live-tracking mode. Susan begins by
wrapping her EfficientNet training loop with ENERGYV1S’s Python
plugin, and starts her training process—the training URL is printed
to her console by ENERGYV1s. She then loads ENERGYVIS’s frontend,
and enters the training URL in the Energy Profile component. She
lets her model train for only 10 epochs, then halts the training
process, since she cannot afford to spend too much time training.
She then exports a model energy profile, and repeats this process
for ResNet. After manually looking at the profiles, Susan realizes
that the accuracy differences between EfficientNet and ResNet are
insignificant for her task; however, EfficientNet uses significantly
less energy. Susan confirms this suspicion by loading the profiles
back into ENERGYVIs, and extrapolating several epochs in the Con-
sumption Chart. Susan finally decides to use EfficientNet for her
task.

Comparing electricity usage across different preloaded mod-
els: James is a software engineer working on a sentiment analysis
task. He’s interested in utilizing a state-of-the-art model for his
task, but he’s unsure on what model he wants to use. Unfortunately,
the startup he works for is trying to keep the monthly energy bill
low, so he needs to be aware of energy efficiency. James opens
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Figure 3: Adjustments made to other components (like the Energy Map, right) reflect as an alternative consumption line on
the Consumption Chart (left). In this figure, a user is hovering over Wyoming, causing the alternative to be rendered alongside

the original consumption line.
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Figure 4: The alternative hardware component, where
users can adjust or add hardware in their current training
pipeline, enabling them to view hardware based energy al-
ternatives.

ENERGYVIs and notices that energy profiles have already been col-
lected for two language models (a “vanilla” Transformer [23] model,
and BERT [9]) trained on a variant of his sentiment analysis task—
because profiles have already been collected, James does not need
to write any code, or use ENERGYV1S’s backend! He selects the BERT
model, then right clicks on the Transformer (Figure 2), loading the
Transformer’s data into the alternative views and overlaying the
original carbon emissions with alternative emissions. James notices
that ENERGYVIS is currently displaying Carbon Emissions, so he
toggles the Consumption Graph component to display electricity
usage instead. He realizes that the Transformer uses less energy

while having similar performance as BERT, and decides to use the
Transformer for his task.

Picking location and hardware alternatives: Sarah, another
graduate student, is working on a text classification task. She al-
ready designed a novel architecture, live-tracked her model, and
collected energy profiles. However, she’s interested in exploring
alternatives to reduce her emissions when training her model, since
she plans on tweaking and training repeatedly. She opens ENER-
GYV1s and loads her model’s energy profile. Next, she begins using
the Model Region component to compare the CO, consumption in
alternate states to her original state. Her research institution has
compute deployed across several states. Sarah hovers over each
lighter-colored state and compares the experiment consumption
charts. After completing her search, she finds the least energy in-
tensive state. Sarah also realizes that the state she selected has
potentially more efficient hardware. To confirm this suspicion, she
enters the hardware details into Alternative Hardware component,
and notices that the alternative consumption in the Consumption
Chart reduces again. Finally, she decides on deploying her model
in her selected state.

4 ONGOING WORK & CONCLUSION

Planned Evaluation. We plan to extend our work by evalu-
ating ENERGYV1s using a two-phase user study. We will recruit
researchers and practitioners as participants of the study, where
they will use ENERGYVIs for their ongoing research projects. Both
phases may be conducted fully remotely via video-conferencing
software (e.g., Zoom, BlueJeans). We are developing the user study
protocol and will apply for our institution’s IRB (institutional re-
view board) approval. Given participant permission, we plan to
record computer screens and microphone audio for later analysis.
For both phases, we will provide participants with a list of EN-
ERGYV1S’s features, while encouraging participants to try them.
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Figure 5: An example of an expanded color equation. The above equation computes instantaneous power usage of all hardware
components. Users can adjust the PUE constant directly in the text above.

Users will also be encouraged to think aloud and ask questions.
All user study sessions will end with a questionnaire asking about
ENERGYVIS’s usability (e.g., Easy to use? Easy to understand?) and
feature usefulness.

Phase 1 will be a lab study whose focus is to evaluate ENER-
GYV1s’s usability. We will design a number of tasks that involve live-
tracking a popular model’s energy efficiency (like EfficientNet[22]
or a Transformer [23]), trained on a subset of ImageNet [8], or a
sentiment classification task. Models and datasets for our tasks
will be chosen to reflect a realistic training context for participants.
We also plan on creating tasks that involve identifying methods to
reduce emissions through ENERGYV1S’s alternative region or hard-
ware components. Based on the user feedback from phase 1, we
will improve ENERGYVIS’s usability and features.

In phase 2, we plan to evaluate the effectiveness of ENERGYVIs in
raising awareness and potentially reducing emissions. Our partici-
pants will be asked to use ENERGYV1s for their ongoing research
projects for a month, while collecting feedback about their experi-
ence. During this timespan, we will schedule regular, short check-
ins (twice a week) with the participants to collect feedback about
the tool’s impact on their research, e.g., whether the tool leads to a
change in their typical model training workflow, or prompts partic-
ipants to reflect on their choices of hardware and cloud providers.

Model Architecture Alternatives. Currently, ENERGYVIs offers
alternatives for hardware and location based counterfactuals. How-
ever, architectural changes have also resulted in reduced energy
consumption. Models like MobileNet [15] and REST [10] use tech-
niques like compression and early exiting to reduce parameter
counts and, therefore, energy consumption. Suggesting alternatives
and estimating updated energy consumption based on these tech-
niques might provide users with another avenue to reduce energy
usage.

Increased Region Support. Currently, ENERGYVIS only sup-
ports region based alternatives for the United States. In future
iterations, we aim to include locations that have readily available
energy intensities (carbon to energy production values). The Eu-
ropean Union’s environment agency, for example, provides these
intensity values—similar to NREL in the United States.

Deployment. ENERGYVIs will eventually be open sourced for
users to track their own models. We also plan on allowing users to
easily share and import model energy profiles through pull requests
on ENERGYVIs’s codebase, so users can easily compare their own
efficiency results with others in the research community.

Conclusion. As models grow larger, identifying how to reduce
the environmental impact of these models will lead to fairer and
more sustainable training pipelines. To this end, ENERGYV1S pro-
vides an interactive means to explore the energy usage of ML models
based on hardware and location of deployment. As we continue de-
velopment on ENERGYV1s, we aim to add increased region support,
support model architecture alternatives, allow users to share energy
profiles on ENERGYVISs itself, and evaluate ENERGYV1Is through a
user study.
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